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Abstract New historical aspects of the classification, by Cayley and Cremona, of ruled
quartic surfaces and the relation to string models and plaster models are presented. In a ‘mod-
ern’ treatment of the classification of ruled quartic surfaces the classical one is corrected and
completed. The string models of Series XIII of some ruled quartic surfaces (manufactured
by L. Brill and by M. Schilling) are based on a result of Rohn concerning curves in P

1 × P
1

of bi-degree (2, 2). This is given here a conceptional proof.

Keywords Ruled surface · Quartic suface · Grassmann variety · Dual surface ·
Reciprocal surface
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0 Motivation and Introduction

0.1 The models of K. Rohn

The series of ten string models of ruled quartic surfaces, present at some mathematical insti-
tutes (for instance at the department of mathematics in Groningen) is the direct motivation for
this paper. This Series XIII, first produced by L. Brill in 1886 and later by Martin Schilling,
is based upon a paper of K. Rohn [13] containing a classification of ruled quartic surfaces
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over C and R. As a start we will explain some of the geometry of these models. The classical
work of Cayley, Cremona et al. on ruled quartic surfaces and a modern viewpoint will be
discussed in later sections.

Classically, a ruled surface S is a reduced, irreducible surface in projective space P
3 (say,

over the complex numbers) which is the union of the (straight) lines on it. We consider S
of degree 4 and omit cones over a plane quartic curve. A (2, 2) correspondence is a curve
� ⊂ P

1 × P
1, defined by an irreducible bi-homogeneous polynomial of bi-degree (2, 2).

Rohn’s paper contains two ways to obtain from � a ruled quartic surface, namely:

(1) Identify the two factors of P
1 × P

1 with two skew lines L1 and L2 in P
3. Define S to

be the union of the lines through the points a1 ∈ L1, a2 ∈ L2 such that (a1, a2) ∈ �.
Models XIII, no. 1, 2, 3, 4. For these models the singular locus of S is L1 ∪ L2 with
multiplicities 2.

(2) Identify the two factors of P
1 × P

1 with a line L1 and a conic C2 in P
3 such that L1

does not lie in the plane of C2 and L1 ∩ C2 is one point. Define S to be the union of
the lines through the points a1 ∈ L1, a2 ∈ C2 such that (a1, a2) ∈ � (for special �).
Model XIII, no. 8. The singular locus of S is L1 ∪ C2 with multiplicities 2.

By a deformation of (1), where L1 and L2 are moving to a line L , Rohn obtains Model XIII,
no. 5. The singular locus of S is L with multiplicity 2.

If S contains a singular line L with multiplicity 3, then, by an algebraic computation, one
obtains explicit equations for S. Models XIII no. 6, 7.

If S contains as singular locus the twisted cubic space curve, then, by an algebraic com-
putation, one finds equations for S. Models XIII no. 9, 10.

Now we provide some geometric interpretation of the models.
Case (1) is very explicit. Consider the rational map M : P

3 · · → P
1 × P

1, given by
(t1, t2, t3, t4) �→ ((t1, t2), (t3, t4)), which is defined ouside the two lines L1 = {(0, 0, ∗, ∗)}
and L2 = {(∗, ∗, 0, 0)}. The fibres of M are lines and S is the Zariski closure of M−1(�). If f
is the bi-homogeneous equation for � of degree (2, 2), then S is defined by f as homogeneous
equation of degree 4.

Case (2) is similar but less obvious (probably implicitly in Rohn). The line L1 and the conic
C2 are defined by t3 = t4 = 0 and t1 = t2t3 − t2

4 = 0. The rational map M : P
3 · · → L1 ×C2,

given by

(t1, t2, t3, t4) �→ ((t1t3, t2t3 − t2
4 , 0, 0), (0, t2

4 , t2
3 , t3t4)),

is not defined on L1 and C2. Almost all fibres of M are lines and the surface S is the Zariski
closure of M−1(�) for a special � ⊂ P

1 × P
1 and a suitable identification P

1 × P
1 with

L1 × C2.
The geometry of some cases where the surface S has a singular line with multiplicity 3,

is similar to case (1). Using M : P
3 · · → P

1 × P
1 as in case (1), the surface S is the Zariski

closure of M−1(�) where � ⊂ P
1 × P

1 is a curve of bi-degree (1, 3).
Also for the case where the twisted cubic curve is singular on S there is a geometric

construction for S (implicitly in Rohn). The rational map M : P
3 · · → P

2, given by the
formula

(t1, t2, t3, t4) �→ (X, Y, Z) with X = t1t3 − t2
2 , Y = t2t3 − t1t4, Z = t2t4 − t2

3 ,

is defined outside the twisted cubic curve {(s3, s2t, st2, t3)| (s, t) ∈ P
1}. The closure of the

fibres of M are the lines that meet the twisted cubic with total multiplicity 2. One considers
an irreducible conic � in P

2 given by a homogeneous equation H . The closure of the M−1(�)

is the ruled quartic surface S with equation H(X, Y, Z) = 0. Its singular locus is the twisted
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cubic curve. The surface S corresponding to H = Y 2 − X Z consists of the tangent lines of
the twisted cubic curve. There are many more distinct cases for H (see § 3.2.4).

An important contribution to the classification problem is Rohn’s theorem stating that,
at least in the complex case, the coordinates of the two factors P

1 can be chosen such that
the equation for a (2, 2)-curve in P

1 × P
1 is symmetric. For the classification over R, which

is of course essential for the string models, the situation is more complicated. Rohn has to
introduce ‘anti-symmetric forms’ as well. For case (1) he also dealt with the situation where
the two lines L1, L2 are complex conjugated. As a consequence case (1) leads to the various
models XIII no. 1, 2, 3, 4. In Sect. 4 a ‘modern’ proof of Rohn’s theorem is presented.

About the actual construction of the models we have no information. An inspection of the
models shows a metal frame, more or less a cube. On its lower and upper sides quartic curves,
namely the intersections with S, are present. The strings connect the corresponding points
of these two curves. The singular locus of the surface (line(s), conic, cubic space curve) is
visible in most models. The symmetry of the equation for � has disappeared. The geometric
interpretation of the family of lines on the surface is evident for only some models.

0.2 The classification by Cayley and Cremona

Cremona [5] classified the ruled quartic surfaces in 12 types. We present his statements and
results, together with, in brackets [ ], some comments. Let S ⊂ P

3 be a ruled quartic surface,
not a cone. S is seen as a 1-parameter family of lines. Through a general point of S there is
only one line of the family [This non trivial fact, compare Lemma 1.2, is tacitly assumed by
Cremona].

The locus D of the points on S through which there are at least two lines in the 1-param-
eter family is a curve, called the ‘double curve’, and has ‘in general’ degree 3 [D need not
coincide with the singular locus of S. Further D can also have degree 2 and even D = ∅
occurs].

Two intersecting lines of the family determine a plane. The collection Ď of all these planes
is called the ‘bitangent developable’. This 1-dimensional family [assuming D 
= ∅] can be
seen as a curve in the dual projective space.

The genus of S is defined as the genus of the (irreducible, singular) curve H ∩ S of degree
4, where H is a general plane. Cremona states that the genus can only be 0 or 1 [Missing
is the non trivial argument showing that genus 2 is impossible, see Observation 1.4 and [20,
Proposition 2.6])]. Then S is classified according to the genus and the nature, i.e., the degrees
and multiplicities of the irreducible components, of the curves D and Ď. In one special case,
namely Cremona 9 and Cremona 10 (see below), a relation between D and Ď plays a role.
The list of the possibilities is obtained by the following construction:

Consider a tuple (C1, C2, f ) consisting of two conics C1, C2 ⊂ P
3, not in the same plane,

and an isomorphism f : C1 → C2. This defines a ruled surface S which is the union of
the lines through the pairs of points {c1, f (c1)} with c1 ∈ C1. In the general case, the line
H1 ∩ H2, where Ci lies in the plane Hi for i = 1, 2, intersects C1 in two points p1 
= q1 and
intersects C2 in two points p2 
= q2. Now H2 ∩ S is the union of the conic C2 and the two
lines through the pairs of points (p1, f (p1)) and (q1, f (q1)). Thus S is an irreducible ruled
surface of degree 4. Moreover, the two lines intersect in a point of the ‘double curve’ and H2 is
a ‘bitangent plane’, i.e., a point on the ‘bitangent developable.’ The same holds of course for
H1. Cremona’s examples are obtained by varying and degenerating C1, C2, f and he asserts
to have found all types in this way [This is not correct since some ruled quartic surfaces
are only obtained from a line and a curve of degree 3. However, by including ‘reciprocal
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surfaces’ and maybe stretching the meaning of ‘degeneration’, some other surfaces can be
obtained].

Before giving Cremona’s list we need to explain to notion of ‘reciprocal surface’ or
‘dual surface’ in more modern terms, of a surface S ⊂ P

3. It is obtained by considering
all tangent planes at the nonsingular points of S. Each tangent plane is a point in the dual

projective space P̌3. The Zariski closure of all these points is the dual surface Š ⊂ P̌3. In
the case that S is ruled, also Š is ruled and has the same degree as S. In the special case
that S is a ruled quartic surface, the dual Š is again a ruled quartic surface and the ‘dou-
ble line’ of Š can be seen to be the ‘bitangent developable’ of S. Cremona’s list shows
that the species 3 and 4 are dual and similar for the species 7 and 8. The other types are
‘selfdual’.

In the table one has to give ‘double curve’ the interpretation ‘singular locus’. The genus
g of the surface is 0, except for Cremona 11, 12 where it is 1. We adopt a notation of Cay-
ley, namely the expression dm stands for an irreducible component of the singular locus of
degree d and with multiplicity m. The difference between Cremona 6 and Cremona 11 is
that the two lines intersect in the first case and are skew in the second one. The difference
between Cremona 9 and Cremona 10 is somewhat subtle. In case 10 the bitangent planes are
the planes containing the singular line, denoted by 1. In case 9, the bitangent planes are the
planes containing another line, denoted by 1′.

Double curve Double curve
recip. surface

Cremona type Double curve Double curve
recip. surface

Cremona type

32 32 1 32 13 7
22, 12 22, 12 2 13 32 8

13 22, 12 3 13 1′3 9
22, 12 13 4 13 13 10
12,12, 12 12, 12, 12 5 12, 12 12, 12 11, g = 1
12, 12 int 12, 12 int 6 12 12 12, g = 1

The approach of Cayley [3] (and of Rohn) has the classical name “analytic geometry”,
indicating the use of coordinates and algebraic operations with formulas. In contrast, Cre-
mona’s (and Sturm’s) approach is purely “synthetic”. As a consequence, Cremona’s paper is
difficult to read and his results are not easily verified.

Cayley’s method consists of taking three curves in P
3 and to consider the ruled surface S

which is the union of the lines meeting the three curves. Using a formula for the degree of S,
he now computes possibilities of ruled quartic surfaces. The expression “the six coordinates
of a line” in Cayley’s work indicates that the Grassmann variety Gr(2, 4) of the lines in P

3

plays a role. Moreover, Cayley made explicit calculations of reciprocal surfaces.
Cremona, in competition with Cayley it seems, gives in [5] an inadequate account of

Cayley’s work on ruled quartic surfaces. The classification by Cremona has been accepted
by later authors, e.g., in the book of W.L. Edge [7].

There are however some critical comments by R. Sturm. In Rohn’s paper [12], p.147,
there is an explicit equation

wx2(x + 3N z) + F4(x, y) = 0, F4 a binary quartic, N a constant

(in homogeneous coordinates x, y, z, w) and the remark in a footnote: “this ruled surface is
not mentioned by Cremona in his treatise”. Unfortunately, the equation is wrong. It does not
define a ruled surface. But Rohn’s geometric construction is valid and is indeed not explicitly
mentioned by Cremona. It could be interpreted as hiding in Cremona’s species 10.
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In Pascal’s well written Repertorium, the classification by Cayley and Cremona is
reviewed, [11], XII, §10, and there Rohn’s extra case reappears on p. 338-339 with the
same correct geometric construction and another wrong formula. In the classification of
the present paper Rohn’s example is Number 5. Bottema [2, p. 349] mentions Rohn’s extra
case and points out that Cremona’s treatment of the case where the double curve is 32, is
unsatisfactory.

We mention, as a curiosity, the thesis of Wong [23]. There, a rational morphism P
3 · · →

Gr(2, 4), associated to the classical ‘tetrahedral complex’, is considered. Certain plane curves
in P

3 of degree 2 and 3 have as images in Gr(2, 4) curves of degree 4 and correspond there-
fore to ruled quartic surfaces. He claims that every ‘species’ in Cremona’s list is obtained in
this way.

For other details on the early history of the subject we refer to the contribution of
W.Fr. Meyer in [9] and the References of the present paper. These historical facts and
the critical remarks are our motivation to investigate the classification of ruled quartic sur-
faces.

0.3 A modern classification

We indicate the notions and background needed for the proposed modern classification and
for the understanding of the table containing the classification. In later sections details and
proofs are presented.

A ruled quartic surface S corresponds to an irreducible curve C on the Grassmann variety
Gr(2, 4) of the lines in P

3. This Grassmann variety is in a natural way a non singular quadric
in P

5 and C has degree 4 w.r.t. this embedding. Let Cnorm → C denote the normalization of
C . The genus of Cnorm is 0 or 1 and Cnorm = C if its genus is 1.

The curve C can have a singularity, in fact only a node or a cusp. Let P(C) ⊂ P
5 denote

the smallest projective subspace containing C ⊂ Gr(2, 4) ⊂ P
5. The dimension of P(C)

can be 3 or 4. The projective subspace P(C) of P
5 can lie on 0, 1 or 2 tangent spaces of

Gr(2, 4).
The tautological bundle on Gr(2, 4), restricted to C and pulled back to Cnorm is a vector

bundle B of rank 2 on Cnorm . If Cnorm ∼= P
1, then there are two possibilities for B, namely

OP1(−1) ⊕ OP1(−3) and OP1(−2) ⊕ OP1(−2).
In some situations, a morphism f : P

1 → P
1 of degree 3 is involved. The three possibilities

for f (assuming characteristic 0) are indicated by a, b, c.
An item of the table of the classification is given by the above discrete invariants, the

structure of the singular locus and sometimes an additional discrete invariant. Every case
corresponds to an irreducible moduli space of ruled quartic surfaces, implicit in the calcula-
tions. We have not found a natural numbering of the 29 cases. The item ‘Number’ appearing
in the tables is introduced for notational reasons and refers to the computations in § 3.1.

The cases with Cnorm of genus 0 and B of type −1,−3 are:

Number singular
locus

dim P(C) singularities
of C

tangent spaces Cremona XIII

1 a, b, c 13 3 − 2 9
2 a, b, c 32 4 − 1 7
3 a, b 12, 22 4 − 1 4
4 13 3 node 1 10 7
5 13 3 cusp 1 10
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The cases with Cnorm of genus 0 and B of type −2,−2 are:

Number singular locus dim P(C) singularities
of C

tangent spaces Cremona XIII

6 12, 12, 12 3 node 2 5
7 12, 12, 12 3 cusp 2 5
8 13 4 − 1 3
9 13 4 − 1 3
10 a 12, 12, int 3 node 1 6
10 b 12, 12, int 3 cusp 1 6
11 12, 22 4 − 1 2
12 12, 22 4 − 1 2 8
13 a,b,c 13 4 − 1 8 6
14 ... 32 4 − − 1 9,10

It is shown in § 3.2.4 that Number 14 consists of six distinct cases. In what discrete aspect
Number 11 and 12 differ is explained in § 3.1. The reciprocals of 2 a, b, c are 13 a, b, c. The
reciprocals of 3 a, b are 8, 9 (and thus showing that Number 8 and 9 are distinct). The other
examples are ‘selfdual’.

The cases with Cnorm = C of genus 1 are:

Number singular locus dim P(C) tangent spaces Cremona XIII

15 12 3 1 12 5
16 12, 12 3 2 11 1,2,3,4

Now we summarize the remaining part of this paper.
In Sect. 1, well known, useful properties of the Grassmann variety Gr(2, 4) are collected.
The relation between curves on Gr(2, 4) and ruled surfaces in P

3 is studied in detail. The
vector bundle B on Cnorm is introduced. It is shown how B can be used to obtain an equation
for a ruled surface S ⊂ P

3 and the structure of the normalisation of S (the latter is a ruled
surface in the modern sense).

A list of possibilities for the singular locus of S is deduced from the possibilities for
the singularities of a general hyperplane section of S which is an irreducible plane quar-
tic of genus 0 or 1. The useful notion ‘reciprocal of a ruled surface’ is given in ‘modern’
terms.

The above material is used in Sect. 2 to obtain the well known classification of ruled
cubic surfaces. § 3.1 is a case by case study of ruled quartic surfaces. For the most
complicated situation, where the genus of Cnorm is 0, one considers two meromorphic
sections a, b of the vector bundle B, giving rise to morphisms a, b : P

1 → P
3. The

surface S consists of the lines connecting the pairs of points {a(p), b(p)} with p ∈
P

1.
By considering linear combinations of a, b and by choosing homogeneous coordinates

for P
1 and P

3, one obtains ‘normal forms’ and ‘normal’ equations for S. Details are given
in some cases and in many cases only the final result is presented. The limitation of this
process is compensated by a second method in § 3.2, namely deriving equations for S
using a given singular locus. Moreover, § 3.2 is used as a verification of the results of
§ 3.1.

Section 4 provides a proof of Rohn’s forgotten remarkable theorem using real and complex
elliptic curves and their degenerations.
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1 Curves on the Grassmann variety Gr(2, 4)

1.1 Properties of the Grassmann variety

Let V be a vector space of dimension 4 over the (algebraically closed) field K . The lines in the
projective space P(V ) ∼= P

3 are points of the Grassmann variety Gr := Gr(2, V ) = Gr(2, 4)

and the natural way to study a ruled surface S ⊂ P(V ) is to consider the set of the lines on
S as subset of Gr . We briefly define Gr and summarize its main properties.

For notational convenience we fix a basis e1, e2, e3, e4 of V and we identify the exterior
power �4V with K by e1∧· · ·∧e4 �→ 1. The obvious symmetric bilinear map �2V ×�2V →
�4V = K is non degenerate.

A line in P(V ) correspond to a plane W ⊂ V , a line �2W ⊂ �2V and to a point in
P(�2V ) ∼= P

5. If W has basis v1, v2, then w = v1 ∧ v2 is a basis vector for �2W and
w := Kw is this point of P(�2V ).

Gr = Gr(2, V ) ⊂ P(�2V ) consists of all these points. Now w (with w ∈ �2V, w 
= 0)
belongs to Gr if and only if w is decomposable, i.e., has the form v1 ∧ v2. The latter is
equivalent to w ∧ w = 0. We use the six elements ei j := ei ∧ e j , i < j as basis for �2V
and write an element of this vector space as

∑
i< j pi j ei j . The pi j are called the Plücker

coordinates. They also serve as homogeneous coordinates for P(�2V ). One finds that Gr
is the non degenerate quadric given by the equation p12 p34 − p13 p24 + p14 p23 = 0. For
notational purposes and for convenience of the reader we recall the following.

List of properties of Gr (of importance for our purposes).

(i) p0, �0, h0 are a point, a line and a plane of P(V ) = P
3. One identifies p0 with a

v0, v0 ∈ V, v0 
= 0 and �0 with a w0, w0 ∈ �2V, w0 ∧ w0 = 0. We note that
w ∈ P(�2V ) with w ∧ w = 0 is both seen as a point of Gr and as a line in P(V ).

(ii) Two lines w1, w2 of P(V ) intersect if and only if w1 ∧ w2 = 0.
(iii) Every hyperplane of P(�2V ) has the form {z| w ∧ z = 0} with w ∈ �2V, w 
= 0

and unique w. If w is indecomposable, then the intersection of the hyperplane with
Gr is a non degenerate quadric.
If w is decomposable, i.e., w = w0 ∈ Gr , corresponding to the line �0, then the
hyperplane is the tangent plane TGr,w0 of Gr at w0. The intersection TGr,w0 ∩ Gr is
singular and can be identified with the cone in P

4 over a nonsingular quadric in P
3.

This intersection identifies with σ1(�0) := the collection of all lines � with � ∩ �0 
=
∅. Consider for example w0 = e1 ∧ e2. This intersection is now {{pi j }| p34 =
0, −p13 p24 + p14 p23 = 0}. The vertex w0 of this cone is its only singular point.
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(iv) σ2(p0) := the collection of all lines through p0; this is a 2-plane in Gr . Indeed, take
p0 = e1. Then σ2(p0) = {∑1< j≤4 p1 j e1 ∧ e j | no relations} (called a ω-plane in
[7]).

(v) σ1,1(h0) := the collection of all lines in the plane h0. This is a 2-plane
in Gr . Indeed, take h0 = < e1, e2, e3 >. Then this collection identifies with
{∑1≤i< j≤3 pi j ei ∧ e j | no relations } (called a ρ-plane in [7]).

(vi) σ2,1(p0, h0) := is the collection of all lines in h0 through p0. This is a line on Gr .
Indeed, take h0 = < e1, e2, e3 >, p0 = e1. Then this collection identifies with
{∑ j=2,3 p1 j e1 ∧ e j | no relations}.

(vii) Every plane in Gr has the form σ2(p0) or σ1,1(h0). Every line in Gr has the form
σ2,1(p0, h0) and is thus the intersection of a (uniquely determined) pair of 2-planes
in Gr of different type.

(viii) There are three types of projective subspaces P ⊂ P(�2V ) of dimension 3 with
respect to their relation with Gr , namely:

(a) Gr∩P is a non degenerate quartic surface. The equations of P are p12 = p34 = 0
for a suitable basis of V . Moreover P lies in precisely two tangent space, namely
TGr, e12 and TGr, e34 .

(b) Gr ∩ P is an irreducible degenerate quartic surface. The equations of P are p34 =
p13 + p24 = 0 for a suitable basis of V . Now P lies on only one tangent space,
namely TGr, e12 and Gr ∩ P is the cone p2

13 + p14 p23 = p34 = p13 + p24 = 0
over the quadric curve p2

13 + p14 p23 = 0.
(c) Gr ∩ P is reducible. The equations for P are p12 = p13 = 0 for a suitable basis

of V . Further, Gr ∩ P is the union of the planes p14 = 0 and p23 = 0. ��
1.2 Ruled surfaces and curves on Gr

Lemma 1.1 (1) Let C ⊂ Gr be an irreducible curve of degree d ≥ 2, not lying in some
2-plane σ2(p0). Then S̃ := {(w, v) ∈ C × P(V )| w ∧ v = 0} is an irreducible variety
of dimension 2. Its image S under the projection map pr2 : S̃ → P(V ) is an irreducible
surface of degree e. Suppose that through a general point of S there are f lines w ∈ C.
Then d = e · f .

(2) Let P(C) denote the smallest projective subspace of P(�2V ), containing C. If d ≥ 3
and S is not a cone, a plane or a quadric, then dim P(C) ≥ 3.

Proof (1) We note that C ⊂ σ2(p0) is not interesting since then S is a cone. The fibres of
pr1 : S̃ → C are lines in P(V ) and the fibres of pr2 : S̃ → S are finite. Thus S is an
irreducible ruled surface of some degree e. A general line w0 in P(V ) intersects S in e
points. Through each of these e points there are f lines w ∈ C . Thus the intersection
of C with the general hyperplane {w ∈ P(�2V )| w ∧ w0 = 0} consists of e · f points
and therefore d = e · f .

(2) Since d > 1, one has dim P(C) > 1. Suppose that dim P(C) = 2. If P(C) ⊂ Gr , then
either P(C) is a σ2(p0) and S is a cone, or P(C) is a σ1,1(h0) and S is the plane h0. If
P(C) 
⊂ Gr , then C ⊂ P(C) ∩ Gr is a curve of degree at most 2 and S is a plane or a
quadric. Hence dim P(C) ≥ 3. ��

In the sequel we consider ruled surfaces (reduced, irreducible) S ⊂ P(V ) of some degree
d ≥ 3 which are not cones. One associates to S the subset C̃ of Gr corresponding to the lines
on S.
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Lemma 1.2 C̃ is the union of an irreducible curve C (not lying in some 2-plane σ2(p0)) of
degree d and a finite, possibly empty, set. Moreover, through a general point of S there is one
line of the surface.

Proof Consider the affine open part of Gr given by p12 
= 0. The points of this affine part,
actually ∼= A

4, can uniquely be written as planes in V with basis e1+ae3+be4, e2+ce3+de4

and correspond to the vectors

e12 + ce13 + de14 + ae23 + be24 + (ad − bc)e34.

Let F(t1, . . . , t4) = 0 be the homogeneous equation of S. The intersection of C̃ with this
affine part consists of the tuples (a, b, c, d) such that F(s, t, as + ct, bs + dt) = 0 for all
(s, t) 
= (0, 0). Write this expression as a homogeneous form in s, t and coefficients poly-
nomials in a, b, c, d . Then the ideal generated by these polynomials in a, b, c, d defines the
intersection of C̃ with this affine part of Gr . Thus C̃ is Zariski closed.

Clearly C̃ has dimension 1 and can be written as the union of irreducible curves Ci , i =
1, . . . , r and a finite set. The image of the projection {(w, v) ∈ C1×P(V )|w∧v = 0} → P(V )

is a ruled surface contained in S. Since S is irreducible, the image is S. If r ≥ 2, then, through
a point v of a line w2 ∈ C2, w2 
∈ C1 passes a line w1 ∈ C1. Hence w1 ∧ w2 = 0 for all
w1 ∈ C1 and thus w ∧ w2 = 0 for all w ∈ P(C1). By symmetry w1 ∧ w2 = 0 for all
w1 ∈ P(C1), w2 ∈ P(C2). Since the symmetric bilinear form (w1, w2) �→ w1 ∧ w2 on
�2V is not degenerate, one obtains a contradiction by comparing dimensions: dim P(C1) ≥
3, dim P(C2) ≥ 3, dim P(�2V ) = 5. We conclude that the f of Lemma 1.1 is 1 and that
the degree of C is d . ��
Lemma 1.3 Let w0 ∈ C̃\C, then C lies in the tangent space of Gr at w0. In other words,
the line w0 intersects every line on S, belonging to C.

Proof If the tangent space at w0 does not contain C , then the intersection C ∩ TGr, w0 con-
sists of d points, counted with multiplicity. Thus the line w0 on S intersects d lines of S,
corresponding to points of C . Let H ⊂ P(V ) be a plane through w0. The intersection H ∩ S
consists of w0 and a curve � of degree d − 1. Therefore � ∩ w0 consists of d − 1 points
(counted with multiplicity), instead of the d points that we expect. This contradiction proves
the lemma. ��
Definition 1.4 The lines on S corresponding to the points of C̃ \C will be called here isolated
lines. A line w1 on S is, classically, called a directrix if w1 meets every line w2 with w2 ∈ C .
Thus an isolated line is a directrix. It is also possible that a line w1 ∈ C is a directrix. The
classical concept of ‘double curve’ on S is, according to [7], p. 8, (the Zariski closure of) the
set of points on S lying on at least two, non isolated, lines of S.

Observation 1.5 Let C ⊂ P = P
r , r ≥ 3 be an irreducible curve of degree 4 and such

that C does not lie in a proper subspace of P. Let g ≤ 2 be the genus of the normalization
n : Cnorm → C. Then one of the following holds:

(1) g = 0, r = 4, C is the, non singular, rational normal quartic.
(2) g = 0, r = 3, C is non singular or has one singular point which is a node or ordinary

cusp.
(3) g = 1, r = 3 and C is non singular.

Moreover, if C lies on a quadratic cone in P
3, then g = 1 or g = 0 and C has a singular

point.
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Proof Let I be the sheaf of ideals of C ⊂ P . The exact sequence

0 → I ⊗ OP (1) → OP (1) → L → 0

with L = OP (1) ⊗ OC and the minimality of r implies that H0(OP (1)) → H0(L) is injec-
tive and thus 1 + r ≤ dim H0(L). Define the skyscraper sheaf Q on C by the exact sequence
of sheaves on C , 0 → L → n∗n∗L → Q → 0. One finds that

4 ≤ 1 + r ≤ dim H0(C, L) ≤ dim H0(Cnorm, n∗L) = 1 − g + 4 + dim H1(Cnorm, n∗L).

H1(Cnorm, n∗L) = 0, since the degree of n∗L is 4 and g ≤ 2. Thus g = 2 is not possible.
For g = 1, one has H0(C, L) = H0(Cnorm, n∗L) and C = Cnorm since n∗L is very ample
on Cnorm . Let E be an elliptic curve with neutral element e, then H0(E, 4[e]) has basis
t1 = 1, t2 = x, t3 = y, t4 = x2 (in the standard notation) and E lies on the quadratic cone
t2
2 − t1t4 = 0.

For g = 0, the curves C ⊂ P are parametrized by polynomials of degree ≤ 4 in a variable
t . Hence r ≤ 4. For r = 4, the only possibility is t �→ (1, t, t2, t3, t4). For r = 3, one has
the examples:

t �→ (1, t, t3, t4) and C is non singular,
t �→ (1, t2, t3, t4) and C has an ordinary cusp,
t �→ (t, t2, t3, t4 − 1) and C has a node.

In general, by intersecting C with planes H ⊂ P
3, through one singular point (or more), one

can verify that C has at most one singular point and that such a point can only be a node or
an ordinary cusp.

Finally, if g = 0 and C is contained in a quadratic cone in P
3, then C is singular (see [8],

exercise IV, 6.1). According to the examples, this singular point can be either a node or a
cusp. We note that the exercises IV, 3.4, 3.6 and II, Example 7.8.6 of [8] are closely related
to the above reasoning. ��
Corollary 1.6 A ruled surface of degree d ≥ 3 can have at most two isolated lines. If S has
two isolated lines w1, w2, then w1 ∩ w2 = ∅.

Proof The first statement follows from dim P(C) ≥ 3. If w1 ∩ w2 
= ∅, then C lies in
Gr ∩ TGr, w1 ∩ TGr,w2 . According to the List of properties of Gr , (viii) part (c), the latter is
the union of two planes. One of them contains C and this contradicts dim P(C) ≥ 3. ��
Corollary 1.7 (1) A general line of a ‘general’ ruled surface S of degree d ≥ 3 meets

d − 2 other lines of S, corresponding to points of C. In particular, the ‘double curve’
is not empty. However:

(2) Let T C ⊂ P
3 be the twisted cubic curve. The equation of the surface S consisting of

the tangents of T C is (t1t4 − t2t3)2 − 4(t1t3 − t2
2 )(t2t4 − t2

3 ) = 0.
The singular locus of S is T C and no two distinct lines of the surface intersect.

Proof (1) For a general point w0 ∈ C , the intersection C ∩ TGr, w0 is a positive divisor on
C of degree d , with support in the non singular locus of C and ≥ 2[w0]. For a ‘general’
S the divisor will be 2[w0]+∑d−2

i=1 [wi ] with distinct points wi ∈ C, i = 0, . . . , d −2.
Thus w0 meets precisely d − 2 other lines corresponding to points of C .

(2) Let t �→ (1, t, t2, t3) ∈ P
3 be T C in parametrized form. The tangent line wt goes

through the point (0, 1, 2t, 3t2) and has Plücker coordinates

p12 = 1, p13 = 2t, p14 = 3t2, p23 = t2, p24 = 2t3, p34 = t4.
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This defines the non singular curve C ⊂ Gr corresponding to S. From wt ∧ ws =
(t − s)4 it follows that the tangent lines do not intersect for t 
= s. In other terms
TGr,w0 ∩ C = 4[w0] for every w0 ∈ C . ��

Proposition 1.8 (1) pr2 : S̃ := {(w, v) ∈ C × P(V )| w ∧ v = 0} → S is a birational

morphism. Let Cnorm → C denote the normalization of C and let ˜̃S = S̃ ×C Cnorm be

the pullback of S̃ → C. Then ˜̃S → Cnorm is a ruled surface (in the modern sense) and
˜̃S → S is the normalization of S.

(2) The singular locus of S is purely 1-dimensional or empty.
(3) Suppose that the line w belongs to the singular locus of S and does not correspond to

a singular point of C. Then C lies in the tangent space of Gr at the point w.

Proof (1) The morphism is finite since pr−1
2 (v) is the finite set of lines of S through v ∈ S.

For a general v ∈ S, this set has one element and therefore the degree of pr2 is 1 and
so pr2 is birational.
The fibres of pr1 : S̃ → C are isomorphic to P

1 and the same holds for the fibres of
˜̃S → Cnorm . Therefore the latter is a ruled surface in the modern terminology. Moreover

the morphism ˜̃S → S̃ is birational and so ˜̃S → S is the normalization.
(2) The local ring of an isolated singular point of S is normal and will remain a singular

point of the normalization of S. Since ˜̃S is smooth, S has no isolated singularities.
(3) This follows from Lemma 1.3 since, by assumption, w ∈ C̃\C . ��
Remark 1.9 The ‘double curve’, as defined above, is seen, by Proposition 1.8, to be part of

the singular locus of S. The genus of S is defined as the genus of ˜̃S and thus is equal to the
genus of Cnorm . ��
Lemma 1.10 Suppose that dim P(C) = 3 and that P(C) is the intersection of two tangent
spaces of Gr at points w1 
= w2. Then the lines w1, w2 do not intersect. For a suitable choice
of the homogeneous coordinates t1, t2, t3, t4 of P(V ), the equation F of S is bi–homogeneous
of degree (a1, a2), with a1 + a2 = d, in the pairs t1, t2 and t3, t4. Further C̃\C = {w1, w2}.

The lines w1, w2 are ‘directrices’. The singular locus of S consists of the lines wi with
ai > 1 and for each singular point w ∈ C, the line w ⊂ S.

Proof The assumption that the lines w1, w2 intersect, yields, according to (viii) part (c),
the contradiction that C lies in a plane. Take w1 = e12 and w2 = e34, then P(C) =
TGr, e12 ∩ TGr, e34 is the projective space with coordinates p13, p14, p23, p24 and C lies on
the quadric surface Gr ∩ P(C) given by −p13 p24 + p14 p23 = 0. Identifying Gr ∩ P(C)

with P
1 × P

1 leads to C ⊂ P
1 × P

1 of bi–degree (a1, a2) with a1 + a2 = d .
Consider the rational map f : P(V ) · · → P

1 × P
1, given by (t1, t2, t3, t4) �→

((t1, t2), (t3, t4)), which is defined outside the two lines w1, w2. The surface S is the Za-
riski closure of f −1(C) and so the equation F of S is bi-homogeneous and coincides with
the equation for C ⊂ P

1 × P
1. The other statements of the lemma are easily verified. ��

Observation 1.11 dim P(C) = 3 and P(C) in a single tangent space of Gr. For a suit-
able basis of V the projective subspace P(C) ⊂ TGr, e12 is given by the equations p34 =
0, p13 + p24 = 0 and p12, p13, p14, p23 are the homogeneous coordinates of P(C). Further
Gr ∩ P(C) is the cone with equation p2

13 + p14 p23 = 0 with vertex e12. Since C lies on
this cone we have a rational map f : C · · → E := {p2

13 + p14 p23 = 0}. This map can be
identified with the rational map C · · → e12, given by w �→ w ∩ e12. The rational map f is
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a morphism if e12 
∈ C or if e12 ∈ C and this is a regular point of C. Let e be the degree of
the morphism f .

In case e12 
∈ C, take two unramified points e1, e2 ∈ E and the plane through the cor-
responding two lines through e12. This plane meets C in 2e points. Hence d = 2e. In case
e12 ∈ C and is not a singular point, the same reasoning yields d − 1 = 2e.

It seems difficult to investigate the possibilities for general d. The cases d = 3 and d = 4
will be presented later on.

1.3 The vector bundle B on Cnorm

Let again d ≥ 3 denote the degree of the ruled surface S and let C ⊂ Gr be the corresponding
curve. Put

B := {(p, v) ∈ Cnorm × V | p �→ w ∈ C, w ∧ v = 0} ⊂ Cnorm × V .

This is a (geometric) vector bundle of rank two on Cnorm . We will identify B with its

sheaf of sections. We note that Proj (B) = ˜̃S. The line bundle �2 B on Cnorm is the pull-
back of the restriction of OP(�2V )(−1) to C and has therefore degree −d . The vector space
H0(Cnorm, B) = 0, otherwise all the lines of C pass through one point and S is a cone.

The vector bundle B is an important tool in case Cnorm has genus 0.
For the case d = 3 it is easily seen that Cnorm has genus 0. Let t parametrize Cnorm . One

has B ∼= OCnorm (−1) ⊕ OCnorm (−2) since B has no holomorphic sections. In particular, ˜̃S
is isomorphic to P

2 with one point blown up (see [8], V, Example 2.11.5).
The sections of B with a pole of order 1 at t = ∞ are Ca and those with a pole of order

≤ 2 at t = ∞ are Ca + Cb. By choosing a suitable basis of V one can normalize to the
following two cases:

a(t) = (1, t, 0, 0), b(t) = (0, 0, 1, t2) and a(t) = (1, t, 0, 0), b(t) = (0, 1, t, t2).

The surface S consists of the lines connecting the pairs of points {a(t), b(t)} for t ∈ P
1. We

find the equations t2
1 t4 − t2

2 t3 = 0 and t3
3 + t4(t1t4 − t2t3) = 0 and the classification of the

ruled cubic surfaces over, say, C.
In Sect. 2 we follow another method to obtain the classification of ruled cubic surfaces

over any field and compare this with a method of Dolgachev.
For d = 4 and assuming that Cnorm has genus 0, there are (B has no holomorphic sections)

two possibilities for the vector bundle B, namely:

B ∼= OCnorm (−1) ⊕ OCnorm (−3) and ˜̃S is the Hirzebruch surface �2,

B ∼= OCnorm (−2) ⊕ OCnorm (−2) and ˜̃S is P
1 × P

1.

In the first case, overlooked by Cremona, there are meromorphic sections a(t), b(t) with
degrees 1 and 3 and the surface S is the union of the lines connecting the pairs {a(t), b(t)}.
In the second case, the meromorphic sections a(t), b(t) both have degree 2 and the surface
S is determined in a similar way. As explained in the Introduction, this is Cremona’s method
to obtain ruled quartic surfaces. The method of Cayley can be interpreted as taking three
sections of the vector bundle B(d) for a certain values of d ≥ 1.

Normalizing sections of B with poles of order 1,2,3 at t = ∞, by a choice of the basis of
V and possibly changing t , we will arrive in Sect. 3.1 at a classification of the corresponding
ruled quartic surfaces.

If the genus of Cnorm is 1, the vector bundle B is not helpful for the computation. However,

B and also ˜̃S = Proj (B) will be identified.
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1.4 The possibilities for the singular locus

It is helpful for the classification of the ruled surfaces to consider Q := S∩H with H ⊂ P(V )

a general plane. By Bertini’s theorem, Q is an irreducible reduced curve of degree d . The
morphism C → Q, given by w ∈ C �→ w ∩ H ∈ Q, is birational. Thus Cnorm is the nor-
malization of Q. The singular locus of S is written as a union of its irreducible components
Ci , i = 1, . . . , s of degree di and generic multiplicity mi ≥ 2. The curve Q meets every
Ci in di points with multiplicity mi . For every singular point q ∈ Q one defines a number
δq which is the sum of the integers k(k−1)

2 taken over the multiplicities k of q itself and of
all the singular points that occur in the successive blow ups of q . The Plücker formula states

that the genus of the normalization Cnorm of Q is (d−1)(d−2)
2 − ∑

δq .
For d = 3, there is a single singular point q and δq = 1 (and q is a node or cusp). The

singular locus is described by s = 1, d1 = 1, m1 = 2.
For d = 4, there are more possibilities. We adopt the terminology of the standard reference

[1], p.62. The singularities of a simple plane curve (i.e., reduced, multiplicity ≤ 3 and in the
blow ups there are only singularities of multiplicity ≤ 3) are classified by formal standard
equations F ∈ K [[x, y]]. The condition that Q is irreducible, has degree 4 and the genus
of its normalization Cnorm is 0 or 1, leads to the list of possibilities (with their symbols or
names):

for m = 2: A2 : x2 − y2, δ = 1; A3 : x2 − y3, δ = 1; A4 : x2 − y4, δ = 2;
for m = 3: D4 : y(x2 − y2), δ = 3; D5 : y(x2 − y3), δ = 3; E6 : x3 − y4, δ = 3

and the last case E7 : x(x2 − y3), which is ruled out by δ = 4.

The inequalities
∑s

i=1 di
mi (mi −1)

2 ≤ ∑
δq ≤ (4−1)(4−2)

2 lead to a list of possibili-
ties for the singular locus, again with Cayley’s convention that dm stands for an irre-
ducible curve of degree d and with multiplicity m and ‘int’ meaning intersection lines:
12; 13; 22; 32; 12, 12 int; 12, 12; 12, 22; 12, 12, 12.

1.5 The reciprocal of a ruled surface

As before, V is a vector space of dimension 4 over a field K . One identifies �4V with K . The
non degenerate symmetric bilinear form on �2V , given by (w1, w2) = w1∧w2 ∈ �4V = K ,
yields an isomorphism f : �2V → �2V ∗ = (�2V )∗ by f (w1)(w2) = w1 ∧ w2 ∈ K . This
isomorphism maps decomposable vectors of �2V to decomposable vectors of �2V ∗.

Indeed, consider f (v1∧v2). Let v1, v2, v3, v4 be a basis of V . The kernel of f (v1∧v2) has
basis v1∧v2, v1∧v3, v1∧v4, v2∧v3, v2∧v4. Let �1, �2 be a basis of (V/Kv1+Kv2)

∗ ⊂ V ∗.
Then �1 ∧ �2 has the same basis vectors in the kernel. Hence f (v1 ∧ v2) is a multiple of
�1 ∧ �2.

Thus f induces an isomorphism f̃ : Gr(2, V ) → Gr(2, V ∗). Let P ⊂ V be a 2-dimen-
sional subspace. Then f̃ (P) is the 2-dimensional subspace (V/P)∗ of V ∗. For 2-dimensional
subspaces P1, P2 ⊂ V with P1 ∩ P2 
= 0 one has (V/P1)

∗ ∩ (V/P2)
∗ 
= 0. This also fol-

lows from the formula f (w1) ∧ f (w2) = w1 ∧ w2 for any w1, w2 ∈ �2V (for a suitable
identification of �4V ∗ with K ).

Any 1-dimensional subspace L ⊂ V determines the plane in Gr(2, V ) consisting of all
2-dimensional P ⊂ V, P ⊃ L (an ω-plane in [7]). The image of this plane under f̃ is the
plane in Gr(2, V ∗) consisting of all 2-dimensional Q ⊂ (V/L)∗ ⊂ V ∗. Since the latter is a
plane of the ‘opposite type’ (a ρ-plane in [7]), there is no isomorphism V → V ∗ inducing
f̃ .
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Let e1, . . . , e4 denote a basis of V and e∗
1, . . . , e∗

4 the dual basis of V ∗. Then ei j :=
ei ∧ e j , i < j is a basis of �2V and e∗

i j = e∗
i ∧ e∗

j , i < j is a basis of �2V ∗. From the
Plücker coordinates {pi j } of a line w ∈ Gr(2, V ) one easily finds the Plücker coordinates of
f (w) ∈ Gr(2, V ∗) by the identities

f (e12) = e∗
34; f (e13) = −e∗

24; f (e14) = e∗
23; f (e23) = e∗

14; f (e24) = −e∗
13; f (e34) = e∗

12.

Let an irreducible ruled surface S ⊂ P(V ) (of degree d) be given by an irreducible curve
C ⊂ Gr(2, V ) of degree d . Consider a non singular point s ∈ S lying on a single line � of
the surface. The tangent plane TS,s contains the line �. The same holds for the tangent planes
TS,s′ for almost all points s′ ∈ �. Since TS,s′ cannot be all equal, the reciprocal (or dual)
surface contains all planes H ⊃ �. It now follows that the reciprocal surface Š ⊂ P(V ∗) is
ruled, the corresponding curve in Gr(2, V ∗) is f (C). It also has degree d since the degree
of the curve f (C) is d .

Using Plücker coordinates one easily finds Š. Another useful computation of the reciprocal
surface is the following.

Consider S̃ = {(w, v) ∈ C × P(V )| w ∧ v = 0} → S ⊂ P(V ) and a non singular point
v0 ∈ S and the non singular point w0 ∈ C with w0 ∧ v0 = 0. (We note that the tangent plane
of S̃ at the point (w0, v0) is mapped isomorphically to the tangent plane of S at the point v0.
The first tangent plane is the product of the tangent line of C at the point w0 and the line w0).

Let a (local) parametrization t �→ w(t) for C be given, such that w0 = w(t0). Choose a
decomposition w(t) = a(t) ∧ b(t), locally at t0. Then v0 = s0a(t0) + (1 − s0)b(t0) and S
has the local parametrization (t, s) �→ sa(t) + (1 − s)b(t). The linearization of this, i.e.,

v0 + (s − s0)(a(t0) − b(t0)) + (t − t0)(s0a′(t0) + (1 − s0)b
′(t0)),

is a parametrization of the tangent plane TS,v0 . This corresponds with the 3-dimensional
subspace of V with basis

v0, v0 + a(t0) − b(t0), v0 + s0a′(t0) + (1 − s0)b
′(t0).

The exterior product a(t0)∧ b(t0)∧ (s0a′(t0)+ (1 − s0)b′(t0)) of these vectors is an element
of �3V = V ∗. This defines a point in P(V ∗) corresponding to the tangent plane TS,v0 . The
reciprocal surface Š consists of all these points. In varying s0 one finds a line on Š, through
the points a(t0) ∧ b(t0) ∧ a′(t0) and a(t0) ∧ b(t0) ∧ b′(t0). By varying t0 one obtains Š.

For the two cases of ruled quartic surfaces S with genus 1, it is easily seen that Š ∼= S.
For the ruled quartic surfaces cases of genus 0 there are explicit global expressions w(t) =
a(t) ∧ b(t) (with t ∈ P

1) and the above can be used for the computation of Š.

2 Ruled surfaces of degree 3

Here we give the classification over an arbitrary field K . The singular locus of S is a line,
Cnorm has genus 0 and dim P(C) = 3. This implies that C = Cnorm is the twisted cubic
curve in P(C).

In the first case P(C) lies in two tangent spaces at the points w1, w2 ∈ Gr . From
Lemma 1.10 we conclude that S is given by a bi-homogeneous equation F in the pairs of
variables t1, t2 and t3, t4 of bi-degree (2, 1), corresponding to a morphism f : w1 → w2

of degree 2. The line w1 is non singular and a ‘directrix’. The line w2 is the singular locus.
Further C̃\C = {w1, w2}.
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If the field K has characteristic 
= 2, then C, P(C), w1, w2 are all defined over K and
can be put in a standard form. The morphism f is defined over K . The ramification points of
f are either both in K or belong to a quadratic extension of K and are conjugated. Explicit
expressions for f can be chosen to be (t1, t2, 0, 0) �→ (0, 0, t2

2 ,−t2
1 ) and (t1, t2, 0, 0) �→

(0, 0, at2
1 + t2

2 ,−t1t2) with a ∈ K ∗, not a square.
If the field K has characteristic 2, then f is either separable and has one point of ramifi-

cation (and has standard form (t1, t2, 0, 0) �→ (0, 0, t2
2 + t1t2, t2

1 )), or f is inseparable (and
has standard form (t1, t2, 0, 0) �→ (0, 0, t2

2 , t2
1 )).

In the second case P(C) lies in only one tangent space, namely at the point w0 which is
the singular line of S. Then C lies on the quadratic cone in P(C) and w0 ∈ C . In this case
C̃ = C . Now C and S can be put into a standard form. We arrive at the following result.

Proposition 2.1 The standard equations for ruled cubic surfaces S/K , which are not cones,
are the following

(1) t3t2
1 + t4t2

2 = 0. If char K = 2, then there are no twist. For char K 
= 2 the twists are
t3(t1t2) + t4(at2

1 + t2
2 ) = 0 with a ∈ K ∗ not a square.

(2) t3t1t2 + t4t2
1 + t3

2 = 0 (there are no twists).
(3) t3t2

1 + t4(t2
2 + t1t2) = 0 if char K = 2 (there are no twists).

The curves C for (1) and (2) are in parameter form

p12 = 0, p13 = −t2, p14 = 1, p23 = −t3, p24 = t, p34 = 0 and

p12 = 0, p13 = t3, p14 = t2, p23 = −t2, p24 = −t, p34 = −1.

The above equations for S are derived in an elegant way by I. Dolgachev [6], using only the
information that the singular locus of S is a line with multiplicity 2.

For K = R, there are three types of cubic ruled surfaces (omitting cones). The plas-
ter models VII, nr. 20–23 and the string models XVIII, nr. 1– 4, in part I of the Schilling
catalogue, represent equations (1) and (2).

3 Ruled surfaces of degree 4

The base field K is supposed to be algebraically closed. The only role that the characteristic of
K plays is in the classification of the morphisms P

1 → P
1 of degree 2 and 3. For convenience
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we suppose that K has characteristic 0 or > 3. We need both the vector bundle B and the
possibilities for the singular locus in order to find all cases and to verify the computations by
comparison.

3.1 Classification of S, using the vector bundle B

3.1.1 Cnorm of genus 0 and B of type −1,−3

Choose a parameter t for Cnorm ∼= P
1 and let p be the pole of t . Then H0(Cnorm, B([p]))

has basis a and H0(Cnorm, B(3 · [p])) has basis a, ta, t2a, b. Now a, b ∈ K [t] ⊗K V have
degrees 1 and 3. We note that b is not unique and can be replaced by μb+λ0a +λ1ta +λ2t2a
with μ 
= 0.

We start with some observations. First we recall that S consists of the lines through the
pairs of points a(t), b(t) ∈ P(V ) with t ∈ P

1. The (unique) morphism a : Cnorm → P(V )

is not constant since S is not a cone. Let W ⊂ V be the 2-dimensional subspace defined
by a ∈ K [t] ⊗ W . Let b′ be the image of b in K [t] ⊗ (V/W ). The points of P(V/W )

can be identified with the planes in P(V ) containing the line P(W ). The (unique) morphism
b′ : Cnorm → P(V/W ) is clearly not constant and its degree can be 1, 2 or 3.

Now we want to derive ‘normal forms’ for a and b. This means that we make choices
for b, t and a basis e1, e2, e3, e4 of V such that the formulas for a and b (as 4-tuples) are as
simple as possible. This is done case by case. For the first three cases the details are presented
and for the later cases we restrict to writing down a ‘normal form’.

The Plücker coordinates of the line through explicit points a(t), b(t) are easily computed
and this yields C ⊂ Gr in parametrized form. From this one deduces dim P(C), possible
singularities of C and the relation of C w.r.t. the tangent spaces of Gr . The reciprocal surface
(needed for the comparison with Cremona’s list) is computed by the method of § 1.5, again
using a(t), b(t). For some cases (especially when the singular locus is 32), the equation of
the surface S (done by a MAPLE computation) is rather long and uninteresting. We avoid
this and compute the singular locus by other means.

Suppose that the degree of b′ is 3. The possibilities for the ramification indices of b′ are:
(a) 3, 3, (b) 3, 2, 2 or (c) 2, 2, 2, 2. A choice of t , parametrizing Cnorm , and a choice of the
basis e3, e4 of V/W brings b′ into a standard form

(1, t3), (1, t2(t + 1)), or (t − μ, (2μ − 1)t3 + (2 − 3μ)t2) with μ 
= 0, 1, 1/2.

In the last case the 4 ramification points are 0, 1,∞,
μ

2μ−1 .
Preimages e3, e4 of e3, e4 and a basis e1, e2 of W can be chosen such that a = (1, t, 0, 0),

b = (b1, b2, b3, b4); (b3, b4) as above and max(deg b1, deg b2) ≤ 2. Then b−b1 ·a produces
a new b = (0, b2, b3, b4). There are two cases:
Number 1 (a,b,c) b2 = 0. One finds: P(C) = TGr,e12 ∩ TGr,e34 ; e12, e34 
∈ C ; C is non
singular; equation t3

1 b3(
t2
t1

)t4 − t3
1 b4(

t2
t1

)t3 = 0; the singular locus of S is the line e34 with

multiplicity 3. Then 13 and Cremona 9.
Number 2 (a,b,c) b2 
= 0. One finds: C non singular, P(C) = TGr,e12 and e12 
∈ C . A
direct computation of the equation seems difficult. The points of the line through a(t) and
b(t) can be written as (1, t + λ b2

b3
(t), λ, λ b4

b3
(t)). The intersection of two lines on S is given

by the equality

(

1, t + λ
b2

b3
(t), λ, λ

b4

b3
(t)

)

=
(

1, s + λ
b2

b3
(s), λ, λ

b4

b3
(s)

)

, with s 
= t.
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This leads to the result that the ‘double curve’ and thus also the singular locus is a twisted
cubic curve. Then 32 and Cremona 7.

For the next cases we start with a basis e1, e2, e3, e4 of V , such that e1, e2 is a basis of
W . Thus a = (a1, a2, 0, 0) and b = (b1, b2, b3, b4). We modify this basis and t in order to
obtain a ‘normal form’.
Number 3 (a,b) Suppose that max(deg b3, deg b4) = 2 and g.c.d.(b3, b4) = 1. Since b′
has degree 2, one can normalize (b3, b4) = (t2, 1). Further a is normalized to (a1, 1, 0, 0)

with deg a1 = 1. After subtracting from b a suitable (∗ + ∗t + ∗t2)a one obtains that b1 is a
constant. Base changes e3 �→ e3 + ∗e1 + ∗e2; e4 �→ e4 + ∗e1 + ∗e2 eliminate the terms ∗t2

and ∗ from b1 and b2. Finally, after multiplying e1, · · · , e4 and t by constants one obtains a
normalization a = (t + β, 1, 0, 0) and b = (0, t3 + αt, t2, 1). Equation

t3t4(t2 − β(t3 + αt4))
2 − (t3(t3 + αt4) − βt2t4 + t1t4)

2 = 0.

One has P(C) = TGr,e12 and e12 ∈ C . The singular locus is the union of the line e12 and the
conic t2 − β(t3 + αt4) = 0, t3(t3 + αt4) − βt2t4 + t1t4 = 0. Then 12, 22 and Cremona 4.
The degree morphism C → D, where D denotes the conic, has two points of ramification.
The point L ∩ D is a ramification point on D if and only if β = 0. We consider this as two
distinct cases.
Number 4 Suppose max(deg b3, deg b4) = 2 and g.c.d.(b3, b4) has degree 1.

A normalization is a = (t, 1, 0, 0), b = (0, t3 + α, t (t + β), t + β) with g.c.d.(t3 +
α, t + β) = 1. The equation is

t1t2
4 (t3 + βt4) − t2t3t4(t3 + βt4) + αt3t3

4 + t4
3 = 0.

Further e12 ∈ C is a node (for t = ∞, t = −β), dim P(C) = 3 and P(C) lies in only one
tangent space TGr,e12 . Then 13 and Cremona 10.
Number 5 Suppose that max(deg b3, deg b4) = 1.
A normalization is a = (t, 1, 0, 0), b = (0, t3 + αt2, t, 1). The equation is

t1t3
4 − t2t3t2

4 + αt3
3 t4 + t4

3 = 0.

Further e12 ∈ C is a cusp (for t = ∞), dim P(C) = 3 and P(C) lies in only one tangent
space, namely TGr,e12 . Then 13 and Cremona 10.

Finally, the omitted cases for (b3, b4) can be reduced to the above. Indeed:
For max(deg b3, deg b4) = 3 and g.c.d.(b3, b4) of degree 1, a normalization is

a = (1, t, 0, 0), b = (b1, b2, t, t (t + μ)2). Replacing t by s−1 and multiplying by s3

yields a = (s, 1, 0, 0), b = (s3b1(s−1), s3b2(s−1), s2, (1 + μs)2). Thus reduction to
max(deg b3, deg b4) = 2.

For max(deg b3, deg b4) = 3 and g.c.d.(b3, b4) of degree 2, a normalization is a =
(1, t, 0, 0), b = (b1, b2, t (t + μ), t (t + μ)(t + λ)). Replacing t by s−1 and multiplying by
s3 gives a reduction to max(deg b3, deg b4) = 2.

3.1.2 Cnorm of genus 0 and B of type −2,−2

V, t, p have the meaning of § 3.1.1. The vector space H0(Cnorm, B(2[p])) has dimension 2
and consists of elements in K [t]⊗V of degree ≤ 2 and the only element of degree ≤ 1 is 0. We
are interested in lines K a ⊂ H0(Cnorm, B(2[p])) such that a ∈ K [t]⊗ W with dim W = 2.
We note that for such K a, the image of the corresponding morphism a : Cnorm → P(V ) is
a line. For the other lines K a, the image of a is a conic.
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Suppose that there are two such lines K a and K b in H0(Cnorm, B(2 [p])).

One can normalize to a = (a1, a2, 0, 0), b = (0, 0, b3, b4). The two morphisms a, b :
Cnorm → P

1, t �→ (a1, a2) and t �→ (b3, b4) have degree 2 and are distinct and their sets of
ramification points can be either disjoint or have one point of intersection. Choosing t leads
to the following normalizations.
Number 6 a = (1, t2, 0, 0), b = (0, 0, (t − 1)2, (t − λ2)2). The singular locus consists of

the lines e12, e34 and a third line corresponding to t = ±λ. The morphism Cnorm (a,b)→ P
1×P

1

maps t = ±λ to the same point of C . Thus C has a node, P(C) = TGr,e12 ∩ TGr,e34 , singular
locus 12, 12, 12 and Cremona 5.

Number 7 a = (1, t2, 0, 0), b = (0, 0, 1, (t − 1)2). The image C of Cnorm (a,b)→ P
1 × P

1

has a cusp corresponding to t = ∞. The singular locus consists of the lines e12, e34 and the
line corresponding to t = ∞. Thus P(C) = TGr,e12 ∩ TGr,e34 , singular locus 12, 12, 12 and
Cremona 5.

Suppose that there exists only one such line K a in H0(Cnorm, B(2[p])).

Normalize by a = (1, t2, 0, 0), b = (b1, b2, b3, b4) with deg b2 < 2. The pair (b3, b4)

is, up to taking linear combinations, uniquely determined by the surface. The morphism
m : Cnorm → P

1, t �→ (b3 : b4) cannot be constant and has degree 1 or 2. There are the
following cases.
Number 8 deg m = 1, (b3, b4) = (1, t). Then P(C) = TGr,e12 and e12 
∈ C . The equation
is

t1t3t2
4 − t2t3

3 − t2
3 t2

4 b1

(
t4
t3

)

+ t4
3 b2

(
t4
t3

)

= 0.

Singular locus 13 and Cremona 3.
Number 9 deg m = 1, (b3, b4) = (t −α, t (t −α)). Then P(C) = TGr,e12 and e12 ∈ C . The
equation is

t1(t4 − αt3)t
2
4 − t2t2

3 (t4 − αt3) − t2
3 t2

4 b1

(
t4
t3

)

+ t4
3 b2

(
t4
t3

)

= 0.

Singular locus 13 and Cremona 3.
Number 10 (a,b) deg m = 2. If t = 0,∞ are the ramification points of m, then one nor-
malizes to (b3, b4) = (1, t2). Then dim P(C) = 3 and P(C) lies in only one tangent space,
namely TGr,e12 , and e12 
∈ C . Write b1 = b12t2 + b11t + b10 and b2 = b21t + b20. After
a base change of the form e3 �→ e3 + ∗e1 + ∗e2, e4 �→ e4 + ∗e1 + ∗e2, one obtains
b1 = b11t, b2 = b21t . Then C has a node (case (a)) if b21b11 
= 0 and has a cusp otherwise
(case (b)). Singular locus 12, 12, int (i.e., intersecting lines) and Cremona 6.
Number 11 deg m = 2. If m : Cnorm → P

1 is ramified for, say, t = 1,∞, then one can
normalize a = (1, t2, 0, 0), b = (b1(t − 1), b2(t − 1), 1, (t − 1)2)) with b1, b2 ∈ K . The
equation is

t3t4 (2t1 + (b2 − b1)t3 − b1t4)
2 − (t2t3 − t1t3 − t1t4 + 2b1t3t4)

2 = 0.

The singular locus is the union of the line L = e12 and the conic D given by 2t1 + (b2 −
b1)t3 − b1t4 = 0, t2t3 − t1t3 − t1t4 + 2b1t3t4 = 0. P(C) = TGr,e12 , e12 
∈ C , the image of
C → L × D, w �→ (w ∩ L , w ∩ D) is a rational curve having a cusp. Singular locus 12, 22

and Cremona 2.
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Number 12 deg m = 2. If m is ramified for, say, t = 1, μ with μ 
= 0, 1,∞, then one can
normalize to a = (1, t2, 0, 0) b = (b1, b2, (t − 1)2, (t − μ)2) with b1, b2 ∈ K . One can
replace b by b−b1 ·a and normalize further to a = (1, t2, 0, 0), b = (0, 1, (t −1)2, (t −μ)2).
A somewhat long computation yields the equation

4t3t4((μ − 1)2(t2 − μt1) − 2t3 − 2t4)
2 − ((μ − 1)2(−μ2t1t3 − t1t4 + t2t3 + t2t4)

−t2
3 − 6t3t4 − t2

4 )2 = 0.

The singular locus is the union of the line L = e12 and the conic D given by the equations

(μ − 1)2(t2 − μt1) − 2(t3 + t4) = 0, (μ − 1)3t1(t3 − μt4) − (t3 − t4)
2 = 0.

Further P(C) = TGr,e12 , e12 
∈ C , the image of the morphism C → L × D is a rational curve
having a node. Singular locus 12, 22 and Cremona 2.

Suppose that there is no such line K a and that P(C) lies in a tangent space.

The inclusion P(C) ⊂ TGr,e12 yields a morphism f : Cnorm → e12 induced by
e12 
= w ∈ C �→ w ∩ e12. The degree of f cannot be 1. Indeed, if the degree of f is
1, then we may assume that (1, t, 0, 0) lies on S. Combining this with a non zero element
a ∈ H0(Cnorm, B(2[p])), one finds a surface of degree 3 instead of 4.

The possibility that the degree of f is 2 is excluded by the following reasoning. Let t be
a parameter for Cnorm and write f = ((αt + β)2, (γ t + δ)2, 0, 0). Let a, b be a basis of
H0(Cnorm, B(2[p])). Then λ0(t) f = λ1(t)a + λ2(t)b holds for some λ0(t), λ1(t), λ2(t) ∈
K [t] with g.c.d.(λ1(t), λ2(t)) = 1.

The Plücker coordinates of a ∧ b are polynomials in t with g.c.d. 1 and maximal degree
4, since these parametrize C . The same holds for the Plücker coordinates of f ∧a and f ∧b.
The equality λ0(t) f ∧ a = −λ2(t) · a ∧ b implies that λ0(t) is a constant multiple of λ2(t).
Similarly, λ0(t) is a constant multiple of λ1(t). We conclude that the λi (t) are constant. Then
f ∈ H0(Cnorm, B(2[p])) and this contradicts the assumption.
Number 13 (a,b,c) If the degree of f is 3, then e12 has multiplicity 3 and the singular locus
is 13. As in the case of Number 2, there are three different possibilities for the ramification
of f . One writes f (t) = (c1, c2, 0, 0) where c1, c2 are relatively prime polynomials in t
and, say, deg c1 < deg c2 = 3. Let a(t) = (a1, a2, a3, a4) be a non zero section of B(2[p]).
An inspection of the Plücker coordinates of f ∧ a implies that max(deg a3, deg a4) ≤ 1.
Moreover a3, a4 are linearly independent. Thus we may normalize to (a3, a4) = (1, t).
Because e12 has multiplicity 3, the equation for S has the form t1 A1 + t2 A2 + A3 = 0,
where A1, A2, A3 are homogeneous polynomials in t3, t4 of degrees 3, 3, 4. Substitution of
(λc1 + a1, λc2 + a2, 1, t) in this equation yields c1(t)A1(1, t) + c2(t)A2(1, t) = 0 and we
can normalize to A1(1, t) = c2(t), A2(1, t) = −c1(t). In particular, g.c.d.(A1, A2) = 1.
Further A3(1, t) = −a1(t)c2(t)+a2(t)c1(t). The term A3 cannot be made 0 by a transforma-
tion of the form t1 �→ t1 +∗t3 +∗t4, t2 �→ t2 +∗t3 +∗t4, since P(C) does not lie in another
tangent space. Therefore, max(deg a1, deg a2) = 2. Further dim P(C) = 4 and e12 
∈ C .
One verifies that the equations belong to the case that B has type −2,−2 by comparing with
the cases 13 where B has type −1,−3. Further Cremona 8.

Suppose that there is no such line and P(C) does not lie in a tangent space.
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Number 14 Surface of species Cremona 1 and singular locus 32. dim P(C) = 4 and C is
non singular. According to Proposition 1.8, (3), S does not contain a line. Then, because of
Lemma 3.1 and § 1.4, the singular locus of S is the twisted cubic curve. In § 3.2.4 it is shown
that this Number 14 consists of six distinct subclasses.

3.1.3 The vector bundle B for a genus 1 curve Cnorm

The vector bundle B does not provide information that leads to the possibilities for S. Instead,
we use the information 3.2.5 and 3.2.7 of § 3.2 and deduce the structure of the vector bundle
B on the genus 1 curve C = Cnorm .
Number 15 Case 12. The equation is (t1t4 − t2t3)2 + H(t3, t4), where H is homogeneous
of degree 4 and defines 4 distinct points on P(K e3 + K e4) = P

1. We may suppose that these
points are 0, 1, λ,∞. The lines w(t) ∈ C on S are computed to be the lines passing through
the points (1, t, 0, 0) and (0, y, 1, t), with y2 = H(1, t). The genus one curve C is made
into an elliptic curve by the choice of the neutral element e to correspond to t = y = ∞. We
note that e12 
∈ C ; (1, t, 0, 0) is a section of B(2[e]) and (0, y, 1, t) is a section of B(3[e]).
Further w(t) = (1, t, 0, 0)∧(0, y, t, 1) = ye12 +e13 + te14 + te23 + t2e24 +0e34 is a section
of �2 B([4]e). Consider the exact sequence

0 → OC (1, t, 0, 0) → B(2[e]) → OC (0, 0, 1, t) → 0.

From OC (1, t, 0, 0) ∼= OC (0, 0, 1, t) ∼= OC and H0(C, B(2[e])) = K (1, t, 0, 0) one con-
cludes that the sequence does not split. Therefore the ruled surface (in the modern sense)
S̃ → C corresponds to the unique indecomposable vector bundle on C which is an extension
of OC by OC . (see [8]).
Number 16 Case 12, 12. The equation F for S is bi-homogeneous of degree (2, 2) in the
pairs of variables t1, t2 and t3, t4. The equation F also defines a genus one curve E ⊂
P(K e1 + K e2) × P(K e3 + K e4). Further E → C ⊂ Gr is the isomorphism which sends
p ∈ E to the line through the points (pr1(p), 0, 0) and (0, 0, pr2(p)). The vector bundle B
is the direct sum of the line bundles L1 := {(w, v)|w ∈ C, v ∈ K e1 + K e2, w ∧ v = 0}
and L2 := {(w, v)|w ∈ C, v ∈ K e3 + K e4, w ∧ v = 0} of degree −2.

A line bundle L on E of degree -2 induces a non constant morphism E → P(H0(E, L∗)).
This yields a bijection between the isomorphy classes of line bundles of degree 2 and the
equivalence classes of non constant morphisms E → P

1 of degree 2. Then L1 is not isomor-
phic to L2, since the two morphisms are not equivalent. The ruled surface S̃ → E is equal
to Proj (OE ⊕ L), where L = L1 ⊗ L−1

2 is any line bundle of degree 0, not isomorphic to
OE . In particular, S̃ is not isomorphic to P

1 × E .

3.2 The classification, using the singular locus

3.2.1 22 does not occur as singular locus

Lemma 3.1 The singular locus of a quartic ruled surface cannot be a conic.

Proof Suppose that the conic D, lying in a plane H ⊂ P(V ), is the singular locus of some
ruled quartic surface S, corresponding to a curve C ⊂ P(�2V ).

If C has genus 1, then P(C) is contained in a tangent space of Gr at some point w0. The
morphism w ∈ C �→ w ∩ w0 ∈ w0 has degree at least 2 and thus w0 belongs to the singular
locus. This contradicts the assumption and implies that Cnorm has genus 0.
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The morphism f : Cnorm → D, given by w ∈ Cnorm �→ w ∩ H ∈ D, has degree at most
2, since the multiplicity of D is 2.

Suppose that the degree of f is 1. One can parametrize Cnorm with a parameter t and
choose coordinates for P(V ) such that the line w(t) ∈ Cnorm intersects the conic D in the
point (0, 1, t, t2). Let (1, 0, a, b) with a, b ∈ K (t) be another point of this line w(t). The
Plücker coordinates of w(t) are

p12 = 1, p13 = t, p14 = t2, p23 = −a, p24 = −b, p34 = t2a − tb.

Let d be the common denominator of a and b. Then {dpi j } are polynomials of degree ≤ 4
and with g.c.d. = 1. If α is a zero of d , then the line w(α) lies in the plane H . Since this is
not possible, d = 1 and a, b ∈ K [t]. One obtains the contradiction that the line w(∞) lies
in the plane H .

Suppose that the degree of f is 2. One can parametrize Cnorm with parameter t , and choose
coordinates for P(V ) such that w(t) �→ (0, 1, t2, t4) ∈ D. The line w(t) goes through a point
(1, 0, a, b) where a, b ∈ K (t). The Plücker coordinates of w(t) are

p12 = 1, p13 = t2, p14 = t4, p23 = −a, p24 = −b, p34 = t4a − t2b.

Let d be the common denominator of a and b. After multiplying the Plücker coordinates
with d , the degrees are bounded by 4. Hence d = 1 and a, b ∈ K [t]. Further the degree of a
is ≤ 2 and the degree of c := b − t2a is ≤ 2.

The symmetric polynomial w(s) ∧ w(t) in s, t can only have the factors s + t and s − t .
Indeed, t 
= s and w(s)∧w(t) = 0 implies that w(s)∩w(t) ∈ D and thus s = −t . It follows
that a = a0 + a2t2, c = c0 + c2t2 and this contradicts that Cnorm is parametrized by t . ��

3.2.2 Singular locus 12, 22

The curve Cnorm , corresponding to a ruled quartic surface S with this type of singular locus,
has genus 0 by Observation 1.11. The singular locus is the union of a conic D and a line L .
The plane H ⊃ D satisfies S ∩ H = C . Thus L does not lie in H and the intersection L ∩ H
is a point of D. As in the proof of Lemma 3.1, one shows that the morphism Cnorm → D,
given by w ∈ C �→ w ∩ H ∈ D, has degree 2.

Let D = {(0, 1, μ2, μ)| μ ∈ P
1} and L = {(1, λ, 0, 0)| λ ∈ P

1}. The equations for D
and L are t1 = t2t3 − t2

4 = 0 and t3 = t4 = 0. The equation F for S lies in the ideal
(t1, t2t3 − t2

4 )2 ∩ (t3, t4)2. Thus F = t2
1 A2 + t1(t2t3 − t2

4 )A1 + (t2t3 − t2
4 )2 where A2 and A1

are homogeneous of degrees 2 and 1. One may suppose that A1 does not contain t1. If A1

contains t2, then F contains the monomial t1t2
2 t3 which is not possible. Hence A1 is linear

in t3, t4 and it follows that A2 is homogeneous of degree 2 in t3, t4. Thus

F = t2
1 (c1t2

3 + c2t3t4 + c3t2
4 ) + t1(t2t3 − t2

4 )(c4t3 + c5t4) + (t2t3 − t2
4 )2.

We will show that an irreducible equation F as above, defines a ruled surface. Consider
a point (0, 1, μ2, μ) ∈ D, μ 
= 0,∞, then there is a (1, λ, 0, 0) ∈ L such that the line
{(s, sλ + 1, μ2, μ)| s ∈ P

1} lies on the surface F = 0. Indeed, substitution in F yields the
equation

s2(c1μ
4 + c2μ

3 + c3μ
2) + s2λμ2(c4μ

2 + c5μ) + s2λ2μ4 = 0.

For general constants ci and general μ 
= 0,∞, this equations has two solutions for λ. If the
equation has for every μ only one solution for λ, then one easily verifies that F is reducible
(in fact F is then a square).
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Suppose now that (1, λ, 0, 0) ∈ L is given. The μ 
= 0,∞ such that the line {(s, sλ +
1, μ2, μ)| s ∈ P

1} lies on F = 0 are solutions of the equation

μ2(λ2 + c4λ + c1) + μ(c2 + λc5) + c3 = 0.

(a) Suppose c3 
= 0. If the equation has only one solution for μ 
= 0,∞, then F is easily
verified to be a square. The assumption that F is irreducible, implies that there are for
general λ two solutions μ. We conclude that the maps C → D and C → L , given by
w ∈ C �→ w ∩ H ∈ D and w ∈ C �→ w ∩ L ∈ L = e12 both have degree 2. A
further calculation shows that P(C) = TGr,e12 , e12 
∈ C and the vector bundle B has
type −2,−2. There are still two cases, Number 11 and 12.

(b) If c3 = 0, then c2 = c5 = 0 is excluded by F is irreducible. Thus there is only one
solution μ. The maps C → D and C · · → L = e12 have degrees 2 and 1. Further
calculation shows that P(C) = TGr,e12 , e12 ∈ C and the vector bundle B has type
−1,−3. This is Number 3.

In Rohn’s paper only case (a) is considered and this is treated as follows. The image E of
the morphism Cnorm → D × L is given by an irreducible bi-homogeneous form of bi-degree
(2, 2). Since Cnorm has genus 0, the curve E has a singular point which is a node or a cusp.
The embedding E ⊂ D × L ∼= P

1 × P
1 can be chosen to be symmetric if the field K is

algebraically closed. For K = R one can have a symmetric or an anti-symmetric embedding
(see Sect. 4).

If E has a node, then the equation, symmetric in λ,μ, for the embedding is written as
A(λ, μ) := a1λ

2μ2 + a2(μ
2 ± λ2) + 2a3λμ = 0, where λ and μ are inhomogeneous coor-

dinates for the rational curves L and D. The ± sign takes care of the real case where one
also has to consider an anti-symmetric embedding. The singular point of E corresponds to
λ = μ = 0, which is the point (0, 1, 0, 0). The surface S containing the family of the lines
through the the pairs of points {(λ, 1, 0, 0), (0, 1, μ2, μ)} satisfying A(λ, μ) = 0, λ, μ 
= 0
has the equation

a1t2
1 t2

3 + a2((t2t3 − t2
4 )2 ± t2

1 t2
4 ) + 2a3t1t4(t2t3 − t2

4 ) = 0.

There are various possibilities over R of the ‘pinch points’ on L and D, i.e., the ramification
points for the two projections pr1 : E → D, pr2 : E → L .

(i) All four are real if ± = + and
a2

3−a2
2

a1a2
> 0.

Series XIII, no 8, corresponds to this case with additionally a1, a2 > 0.

(ii) No real ones, if ± = + and
a2

3−a2
2

a1a2
< 0.

(iii) Real on L and not real on D if ± = − and a1 > 0, a2 < 0.
(iv) Not real on D and real on L if ± = − and a1 > 0, a2 > 0.

If E has a cusp, then the equation, symmetric in λ,μ, for the embedding E ⊂ P
1 × P

1

can be normalized (following Rohn) to

(λ − μ)2 − 2λμ(λ + μ) + λ2μ2 = 0. This leads to the equation

t2
1 t2

3 − 2t1t3(t1t4 + t2t3 − t2
4 ) + (t1t4 − t2t3 + t2

4 )2 = 0 for S.

3.2.3 Singular locus 13

The line with multiplicity 3 is chosen to be t3 = t4 = 0. Then the equations have the
form t1 A1 + t2 A2 + A3 = 0 with A1, A2, A3 homogeneous in t3, t4 of degree 3,3,4;
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g.c.d.(A1, A2, A3) = 1 and A1, A2 are linearly independent. Conversely, one easily ver-
ifies that the above equation defines a ruled surface of degree 4.

The pair (A1, A2) is unique up to taking linear combinations (and linear changes of t3, t4).
In other words the morphism f : P

1 → P
1, given by (t3 : t4) �→ (A1 : A2), is unique and can

have degree 3, 2 and 1. In the first case there are three possibilities for f (see the beginning
of § 3.1.1). In the second case one can normalize (A1, A2) = d(t3, t4) · (t2

3 , t2
4 ) and in the

third case (A1, A2) = d(t3, t4) · (t3, t4).
The term A3 can be changed into A3 + �1 A1 + �2 A2 with �1, �2 homogeneous in t3, t4

of degrees 1, by replacing t1, t2 by t1 + �1, t2 + �2.

1. g.c.d.(A1, A2) = 1 and A3 = 0. Number 1 a, b, c.
2. g.c.d.(A1, A2) = 1 and A3 
∈ {�1 A1 + �2 A2}. Number 13 a, b, c, XIII 6.
3. g.c.d.(A1, A2) has degree 1. Number 8, 9.
4. g.c.d.(A1, A2) has degree 2 and is not a square. Then e12 is a node. Number 4, XIII 7.
5. g.c.d.(A1, A2) has degree 2 and is a square. e12 is a cusp. Number 5.

3.2.4 Singular locus 32

The twisted cubic curve T C := {(1, λ, λ2, λ3)| λ ∈ P
1} is the singular locus of S. The

homogeneous ideal of T C is generated by the three homogeneous forms X = t1t3 − t2
2 , Y =

t2t3−t1t4, Z = t2t4−t2
3 . There are two relations t3 X +t2Y +t1 Z = t4 X +t3Y +t2 Z = 0. The

equation F of S is homogeneous of degree 4 and lies in the ideal (X, Y, Z)2 ⊂ K [t1, t2, t3, t4].
A computation in the ring R := K [ t2

t1
, t3

t1
, t4

t1
] shows that the element G := F(1, t2

t1
, t3

t1
, t4

t1
)

of total degree ≤ 4, lying in the ideal (R X
t2
1

+ R Y
t2
1
)2 ⊂ R, is a homogeneous polynomial in

the terms X
t2
1
, Y

t2
1
, Z

t2
1

of degree 2. It follows that F(t1, t2, t3, t4) = H(X, Y, Z), where H is a

homogeneous form of degree 2.
Consider the morphism f : P(V )\T C → P

2, given by (t1, t2, t3, t4) �→ (X, Y, Z). The
fibres of f are the lines of P(V ) intersecting T C with total multiplicity 2. Thus a fibre is a
corde of T C or a tangent line of T C . Let H(X, Y, Z) be homogeneous of degree 2. Then the
closure of the preimage under f of the subscheme H = 0 of P

2 is the ruled surface S given
by the equation F(t1, t2, t3, t4) := H(X, Y, Z). Further F is irreducible and reduced if and
only if H = 0 is a conic. In the sequel we suppose that {H = 0} is a conic and we classify
the possibilities.

The surface with H = T := Y 2 − 4X Z is rather special. It consists of all tangent lines
of T C (see Corollary 1.7). For any other conic H = 0, the intersection with T = 0 has
multiplicity 4. In the general case, the intersection of the two conics consists of 4 points. This
is Series XIII 9, 10.

Suppose that the intersection has at least one point with multiplicity > 1. The projective
space P

3 admits an automorphism which preserves the curve T = Y 2 −4X Z = 0 and brings
this point to (X, Y, Z) = (0, 0, 1). Then H has the form X Z + aX2 + bXY + cY 2. One has
the following cases for the intersection.

(i) aX2 + bXY + (c + 1/4)Y 2 = 0 has two distinct solutions (i.e., b2 − a(4c + 1) 
= 0)
and (c + 1/4) 
= 0. Then the intersection consists of one point with multiplicity 2 and
two points with multiplicity 1.

(ii) aX2 +bXY + (c +1/4)Y 2 = 0 has two distinct solutions and (c +1/4) = 0. Then the
intersection consists of one point with multiplicity 3 and one point with multiplicity 1.

(iii) aX2 + bXY + (c + 1/4)Y 2 = 0 has one solution (i.e. b2 − a(4c + 1) = 0) and
(c + 1/4) 
= 0. Then the intersection consists of two points with multiplicity 2.

123



174 Geom Dedicata (2011) 150:151–180

(iv) aX2+bXY +(c+1/4)Y 2 = 0 has one solution (i.e. b2−a(4c+1) = 0), (c+1/4) = 0
and a 
= 0. Then the intersection consists of one point with multiplicity 4.

Thus we found in total six distinct cases for 32 (compare [2]). As we will show below,
there is a further natural subdivision of these classes.

Let C ⊂ Gr be the curve associated to the surface SH associated to the irreducible
H = H(X, Y, Z) of degree 2. The morphism C → {H = 0} ⊂ P

3 is clearly an isomor-
phism. Thus C is a non singular rational curve. It is clear that P(C) does not lie in two
tangent spaces of Gr . Moreover, since C is not singular, one must have dim P(C) = 4. For
the surfaces ST and SH with H = X Z + aX2 − 1

4 Y 2 with a 
= 0 (case (iv) above), P(C) is
not a tangent space. For the remaining 4 classes there are, a priori, now two possibilities:

(a) If P(C) is not a tangent space, then B has type −2,−2. There are in total six cases and
they fill up Number 14.

(b) If P(C) is a tangent space TGr,w0 , then B has type −1,−3. Number 2 a, b, c. These
cases are explained as follows.

The line w0 coincides with e12 of the cases 2 a, b, c. The image f (w0) is the conic given by
H = 0. The possibilities for intersection of H = 0 with T = 0 reflect the possibilities for
the ramification of the degree 3 morphism in 2 a, b, c. Case 2 a corresponds to (iii) above;
case 2 b to (i) above; case 2 c to the case where the intersection consists of 4 points.

3.2.5 Singular locus 12

From Observations 1.5 and § 1.4, one obtains that the genus of C is 1. Further P(C) lies in
only one tangent space of Gr , say at the point e12, since otherwise the surface S has two skew
singular lines. The morphism C → e12, given by w ∈ C �→ w ∩ e12, has degree 2 since the
singular line e12 has multiplicity 2. This map has 4 ramification points and we obtain for, say,
t 
= 0, 1, λ,∞ two lines of C through the point (1, t, 0, 0) ∈ e12. The map t �→ P(t), where
P(t) ⊃ e12 denotes the plane through these two lines (or one line with multiplicity 2), has
degree 1. We may suppose that P(t) ∩ {(0, 0, ∗, ∗)} = (0, 0, 1, t). Since e12 has multiplicity
2, the equation for S has the form

t2
1 A + t2

2 B + t1t2C + t1 D + t2 E + F; A, B, C, D, E, F homogeneous in t3, t4.

For any point (a1, a2, 0, 0) ∈ e12, the plane a2t3 − a1t4 = 0 meets S in e12 and two lines (or
one with multiplicity 2) through (a1, a2, 0, 0). This implies that t2

1 A(t3, t4) + t2
2 B(t3, t4) +

t1t2C(t3, t4) is a multiple of (t4t1 − t3t2)2 and that t1 D(t3, t4) + t2 E(t3, t4) is divisible by
(t4t1 − t3t2). After changing the variables t1, t2 we are reduced to two possible equations
for S:

(t4t1 − t3t2)
2 + H(t3, t4) = 0 and G(t3, t4)(t4t1 − t3t2) + H(t3, t4) = 0.

The line e12 has multiplicity 3 for the second equation. Thus only the first equation is pos-
sible with H not a square since S is irreducible. Moreover, the ruled surface defined by this
equation has e12 as singular locus if and only if H has no multiple factor. This is Number 15.

Rohn found an equation a(t2
3 ± t2

4 )+2bt2
3 t2

4 +c(t4t2 − t4t1)2 = 0 of this form. The sign ±
distinguishes two classes of real cases. For ± = + and b

a < −1, the four ramification points
of C → e12 are real. This is XIII, no 5.

Remark The equation (t4t1 − t3t2)2 + H(t3, t4) = 0 where H has no multiple factors, is
valid for any field K . If K is algebraically closed, then H is determined by the j-invariant
of the four zeros of H in P

1. For a general field K there are forms for H .
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3.2.6 Singular locus 12, 12, int , i.e., intersecting lines

The two intersecting lines L1, L2, making up the singular locus of the ruled quartic surface
S, lie in a plane H . For w ∈ C and w 
= L1, L2 the intersection w ∩ H is a point of L1 ∪ L2.
The induced morphism Cnorm → L1 ∪ L2 has, say, the line L1 as image. Thus we find a non
constant morphism f : Cnorm → L1 and P(C) lies in the tangent space of Gr at the point
L1. For q ∈ L2 and q 
∈ L1, there is no w ∈ C, w 
= L1, L2 with q ∈ w. One concludes that
L2 ∈ C . Moreover L2 is a singular point s of C since L2 belongs to the singular locus. In
particular, C is a rational curve and dim P(C) = 3.

If P(C) lies in the tangent space of Gr at another point M ∈ Gr , then one obtains a mor-
phism C → M by w �→ w ∩ M . Since C has a singular point, this morphism has degree > 1
and one finds the contradiction that M belongs to the singular locus. Thus P(C) lies in a
single tangent space.

The rational map C · · → L1, given by w �→ w ∩ L1, is well defined at the singular
point s ∈ C . Then f has degree > 1 and its degree is 2, since L1 has multiplicity 2. Further
L1 
∈ C , otherwise the multiplicity of L1 would be 3.

For a suitable basis of V and parametrization of Cnorm , the morphism Cnorm → L1

has the form w(t) �→ (1, t2, 0, 0). Let b := (b1, b2, b3, b4), with all bi ∈ K [t] and
g.c.d.(b1, . . . , b4) = 1, be another point of the line w(t). By subtracting a multiple of
(1, t2, 0, 0) one arrives at deg b2 ≤ 1.

The Plücker coordinates of w(t) are (b2 − t2b1, b3, b4, t2b3, t2b4, 0) and thus deg b1, deg
b3, deg b4 ≤ 2. The morphism C → P

1; w(t) �→ (b3(t) : b4(t)), is well defined and not
constant. Since C is singular, this morphism has degree 2. The corresponding morphism
g : Cnorm → P

1 of degree 2 factors over C . If the singular point of C is a cusp for t = ∞,
then t = ∞ is a ramification point and g has the form g(t) = (1 : (t + α)2). If the sin-
gular point of C is a node, corresponding to t = ±1, then g(t) = (1 : ( at+b

ct+d )2) satisfies

g(1) = g(−1) and hence g(t) = (1 : (
t+β
βt+1 )2) with β2 
= 1.

Suppose that C has a cusp, then (b3(t), b4(t)) = (1, (t + α)2) and b1, b2 can be normal-
ized to constant multiples of t . The condition that t = ∞ is a cusp for C implies b1 = 0 and
so we arrive at b = (0, t, 1, (t + α)2). The equation reads

(t2t3 − t1t4 − α2t1t3 + αt2
3 )2 − t3t4(2αt1 − t3)

2 = 0. Number 10 b.

Suppose that C has a node, then (b3, b4) = ((βt +1)2, (t +β)2) with β2 
= 1. For β = 0,
one can normalize b1, b2 to constant multiples of t . The condition w(1) = w(−1) implies
that b1 = b2 = ct 
= 0. The equation reads

c2t3t4(t3 − t4)
2 − (t1t4 − t2t3)

2 = 0. Number 10 a.

For β2 
= 0, 1, one can normalize b1, b2 to constants and the condition w(1) = w(−1)

implies b1 = b2 = c 
= 0. The equation reads

t3t4{2β(t1 − t2) + c(1 − β2)(t3 − t4)}2 − {−t1(β
2t3 + t4) + t2(t3 + β2t4)}2 = 0.

Again Number 10 a.
Rohn found the two similar equations

at3t3
4 + (t1t4 − t2t3)

2 = 0 and at4
4 + 2bt2

3 t2
4 + (t1t4 − t2t3)

2 = 0.
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3.2.7 Singular locus 12, 12, skew lines

The skew lines can be supposed to be e12, e34. Every monomial in the equation F of S is
divisible by one of the terms t2

1 , t1t2, t2
2 and by one of the terms t2

3 , t3t4, t2
4 . Therefore F is bi–

homogeneous of degree (2, 2) and F defines a Zariski closed subset of e12 × e34 ∼= P
1 × P

1,
which is an irreducible curve E . One considers the morphism f : P(V )\e12∪e34 → P

1×P
1,

given by (a1, a2, a3, a4) �→ ((a1, a2), (a3, a4)). Then S is the Zariski closure of f −1(E). The
curve E has no singularities since otherwise the singular locus of S would contain another
line. Thus E is a curve of genus 1. One easily sees that C identifies with E and that P(C)

lies in the two tangent space of Gr at the points e12 and e34. Number 16.
In the above the bases of the two vector spaces K e1 +K e2 and K e3 +K e4 (or equivalently

the parametrization of e12 and e34) can be chosen in a suitable way. Rohn (see Sect. 4) shows
that for K = C these bases can be chosen such that the equation F becomes symmetric,
i.e., F(t1, t2, t3, t4) = F(t3, t4, t1, t2). For K = R the results of Rohn are more complicated.
These results are essential for the understanding of the models in Series XIII, 1,2,3,4 of
quartic ruled surfaces with two skew lines of singularities.

3.2.8 Singular locus 12, 12, 12

Let L1, L2, L3 denote the singular lines with multiplicity 2. Suppose that the lines L1, L2 are
skew. We may suppose L1 = e12, L2 = e34. From Lemma 1.10 it follows that the equation
F of the surface S is bihomogeneous of degree (2, 2) in the pairs of variables t1, t2 and t3, t4.
The curve E ⊂ e12 × e34 ∼= P

1 × P
1, defined by F , has one singular point corresponding to

the line L3. This point is a node or a cusp. Number 6, 7. Not in Series XIII.
The parametrization of e12 and e34 can be chosen (see Sect. 4) in order to obtain the

standard equations of Rohn

a1λ
2μ2 + a2(λ

2 ± μ2) + 2a3λμ = 0 and λ2μ2 + (λ − μ)2 − 2λμ(λ + μ) = 0,

where λ = t2
t1

, μ = t4
t3

.
The next case to consider is L1 ∩ L2, L1 ∩ L3, L2 ∩ L3 
= ∅. The three lines cannot lie

in a plane H since otherwise the curve H ∩ S has degree 6. It follows that L1 ∩ L2 ∩ L3

is one point. We may suppose that L1 is given by t1 = t2 = 0, L2 by t1 = t3 = 0 and L3

by t2 = t3 = 0. Every monomial of the equation F is divisible by ta0
1 ta1

2 with a0 + a1 = 2,

by tb0
1 tb1

3 with b0 + b1 = 2 and by tc0
2 tc1

3 with c0 + c1 = 2. The t4-part of F can only
be c · t1t2t3t4. If c = 0, then F defines a cone. Otherwise one can reduce to the equation
(t2

2 t2
3 + t2

1 t2
3 + t2

1 t2
2 ) + t4t1t1t3 = 0 (or equivalently (t2t3 + t1t3 + t1t2)2 + t4t1t2t3 = 0). This

equation defines the Steiner’s Roman surface and the three singular lines are in fact the only
lines on this surface.

4 Rohn’s symmetric form for bi–degree (2, 2)

K. Rohn proves that over the field K = C, there is an identification of e12 × e34 with P
1 ×P

1

such that the equation F of bi–degree (2, 2) is symmetric in the pairs of variables t1, t2 and
t3, t4, i.e., F(t3, t4, t1, t2) = F(t1, t2, t3, t4). This leads to only a few standard forms for F .

Over the field R, there are more possibilities. First of all, e12, e34 can be a pair of con-
jugated lines over C. Secondly, even if e12, e34 are real lines, then the above identification
need not be defined over R. Thirdly, there are various possibilities over R for the ramification
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points of the two projections C → P
1. The models Series XIII, nr. 1,2,3,4 represent some of

these cases. A ‘modern version’ of this work of Rohn is as follows.
Consider the closed subset E of P

1 × P
1, defined by a bi–homogeneous form F of

bi–degree (2, 2). To start we consider the case that F is irreducible and E is non sin-
gular and thus E has genus 1. We call the embedding E ⊂ P

1 × P
1 symmetric if

(p, q) ∈ E ⇒ (q, p) ∈ E .

Theorem 4.1 [K. Rohn] For a given embedding E ⊂ P
1 × P

1 as above, there exists an

automorphism f of the first factor, such that the new embedding E ⊂ P
1 × P

1 f ×1→ P
1 × P

1

is symmetric.

Proof The required automorphism f of P
1 has the property (p, q) ∈ E ⇒ ( f −1q, f p) ∈ E .

In particular, the morphism C : (p, q) �→ ( f −1q, f p) is an automorphism of E of order 2.
We assume that f exists, try to find its explicit form and then use this form to produce an f
with the required property.

Some explicit information concerning the automorphisms of order 2 of E is needed. For
this purpose, we choose a point e0 ∈ E . This makes E into an elliptic curve (and the addition
of two points a, b is written as a + b). Consider the automorphisms σ and τa (any a ∈ E),
given by σ(p) = −p and τa(p) = p + a. One verifies that the automorphisms of order 2 of
E are:

(a) στa for any point a on E ,
(b) τa where a 
= 0 is a point of order two on E .

Division of E by the action of an element in the first class yields P
1 and division by the

action of an element in the second class yields an elliptic curve. Thus the two projections
pri : E → P

1 correspond to distinct elements στa1 and στa2 of order 2 with the property
pri ◦ στai = pri for i = 1, 2.

The assumption on f and the definition of C are equivalent to pr2(Ce) = f (pr1(e)) for
any e ∈ E . Replacing e by στa1 e does not change the right hand side. Thus Cστa1 e is either
Ce or στa2 Ce. The first equality can only hold for four elements e ∈ E . Hence the second
equality holds for almost all e and thus holds for all e. We conclude that Cστa1 = στa2 C .

Suppose that C = στc. The equality στcστa1 = στa2στc is equivalent to 2c = a1 + a2.
There are 4 solutions c of this equation.

Suppose that C = τc with c an element of order 2. Then one finds the contradiction
a1 = a2.

Take C = στc for some c with 2c = a1 + a2. Define f by the formula f (pr1(e)) :=
pr2(Ce). This is well defined because of Cστa1 = στa2 C . It is easily verified that f is an
isomorphism and has the required property. ��

Let E ⊂ P
1 × P

1 be a symmetric embedding and the homogeneous coordinates of the
two projective lines are denoted by x0, x1 and y0, y1. Let {p1, p2, p3, p4} ⊂ P

1 denote
the four ramification points of the projection pr1 : E → P

1. There is an automorphism s
of order two which permutes each of the pairs {p1, p2} and {p3, p4}. The two fixed points
of s can be supposed to be 0,∞ and thus s has the form s(x0, x1) = (x0, −x1). The four
ramification points are then {(1,±d)} and {(1,±e)}. By scaling (x0, x1) �→ (x0, λx1) with
λ2ed = ±1 we arrive at four ramification points {(1,±d±1} (with of course d4 
= 1). Write
F = Ay2

0 + By0 y1 + Cy2
1 . Then the four ramification points of pr1 are the zeros of the

discriminant B2 − 4AC and thus B2 − 4AC = x4
1 + bx2

1 x2
0 + x4

0 with b = −(d2 + d−2).
Then we obtain the normal form of K. Rohn for F :

a1(x2
0 y2

0 + x2
1 y2

1 ) + a2(x2
0 y2

1 + x2
1 y2

0 ) + 2a3x0x1 y0 y1 with a1a2 
= 0
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or in Rohn’s notation a1(λ
2μ2 + 1) + a2(λ

2 + μ2) + 2a3λμ with λ = x1
x0

, μ = y1
y0

,

and with discriminant x4
1 + bx2

0 x2
1 + x4

0 and b = a2
1+a2

2−a2
3

a1a2

= ±2.

The above calculations are valid over any algebraically closed field of characteristic 
= 2.
Now we analyze the more complicated situation over the field R. Assume that the two lines
e12, e34 and E are defined over R. Assume moreover that E(R) is not empty (indeed otherwise
the real model for the corresponding surface has no points). Fix a real point e0 as the neutral
element of E . The group E(R) is either isomorphic to the circle R/Z (the connected case)
or to R/Z × Z/2Z (the disconnected case). In the connected case E(R) has two elements of
order dividing 2 and in the disconnected case there are 4 such elements. The collection of
the real automorphisms of order two of E consists of the στa with a ∈ E(R) and τv where
v is a real point of order 2. Now we revisit the proof of the theorem for the case K = R.

The connected case. The fixed points b of στa1 (note that a1 ∈ E(R)) are the solutions
of 2b = −a1. Two of the b’s are real. The other two are complex conjugated. Hence two of
the ramification points for pr1 : E → P

1 are real, the other two are complex conjugated.
The same holds for the ramification points of pr2 : E → P

1.
For the element c with 2c = a1 + a2 there are two real choices. Thus the real version of

the theorem remains valid in this case. Two of the four ramification points are real and the
other two are complex conjugated. One can normalize such that the ramification points are
±d, ±id−1 and this leads to Rohn’s normal equation

a1(−x2
0 y2

0 + x2
1 y2

1 ) + a2(x2
0 y2

1 + x2
1 y2

0 ) + 2a3x0x1 y0 y1 with real a1, a2, a3.

The disconnected case. There are 4 real fixed points of στa1 if a1 lies in the component of the
identity of E(R). In the opposite case there are no real solutions of 2b = a1, The same holds
for στa2 and for the solutions of the equation 2c = a1 + a2. Hence there are cases where no
real automorphism f exist. All cases can be listed by:

(a) 4 real ramification points for pr1 and for pr2 and 4 real solutions for c,
(b) no real ramification points for pr1 and pr2 and 4 real solutions for c,
(c) 4 real ramification points for pr1, none for pr2 and no real solution for c,
(d) 4 real ramification points for pr2, none for pr1 and no real solution for c.

Suppose that c can be chosen to be real. For Rohn’s normal form one needs an automor-
phism s permuting each pair {p1, p2} and {p3, p4}. One may suppose that the each pair is
invariant under complex conjugation. Then the resulting s is also real.

For the cases (a) and (b) the standard equation is indeed

a1(x2
0 y2

0 + x2
1 y2

1 ) + a2(x2
0 y2

1 + x2
1 y2

0 ) + 2a3x0x1 y0 y1

and discriminant x4
1 + a2

1 + a2
2 − a2

3

a1a2
x2

1 x2
0 + x4

0 .

with a1, a2, a3 ∈ R. One easily calculates that
(a1+a2)2−a2

3
a1a2

< 0 corresponds to (a) and
(a1+a2)2−a2

3
a1a2

> 0 corresponds to (b).
For the cases (c) and (d) there is no real symmetric normal form for F . In case (c) (case

(d) is similar), Rohn’s real normal form we will call anti-symmetric, because of its form

a1(x2
0 y2

0 − x2
1 y2

1 ) − a2(x2
0 y2

1 − x2
1 y2

0 ) + 2a3x0x1 y0 y1.

The models 1,2 and 3 of Series XIII deal with a pair of real skew double lines. In the
terminology of Rohn, a pinch point is a ramification point for one of the two projections
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pr1, pr2 and situated on L1 and L2 with the obvious identification of these lines with the
two P

1’s. Series XIII no 1, corresponds to (a), Series XIII no 2, corresponds to (b) and Series
XIII no 3 to (c).

Rohn also considers the situation where the ruled surface has a pair complex conjugated
lines as double lines and produces a standard form and an example, namely model 4 of series
XIII.

Rohn’s normal form for other curves E ⊂ P
1 × P

1 of type (2, 2).
These normal forms are useful for §3.2.2, 3.2.5, 3.2.6 and 3.2.8. There are three cases:

(a) E is irreducible and has a node,
(b) E is irreducible and has a cusp and
(c) E is reducible or is not reduced.

In the following we use the notation and the ideas of the proof of the theorem.

(a) The non singular locus of E is, after a choice of a point e0, the group Gm . Let σ denote
the automorphism x �→ −x and define τa(x) = ax . The automorphisms of order 2 of E
are στa (any a ∈ Gm) and τ−1. Dividing E by the action of στa yields the quotient P

1

and dividing by the action of τ−1 yields a rational curve with a double point. Thus the
two projections pri : E → P

1 correspond to order two elements στai for i = 1, 2 with
a1 
= a2. The required automorphism C of order two should satisfy Cστa1 = στa2 C .
There are two possibilities for C , namely C = στc with c2 = a1a2. Thus we find a
symmetric embedding E ⊂ P

1 × P
1 for any algebraically closed field of characteristic


= 2.
For R as base field, the situation is more complicated. Suppose that both lines, i.e., the
two factors P

1, and E are defined over R. We assume that the non singular locus E∗
has a real point e0. There are two possibilities for E∗(R), namely: (i) Gm(R) = R

∗ and
(ii) R/Z.
In case (i), one has to solve the equation c2 = a1a2 with c ∈ R

∗. If there is a solution,
then one has a symmetric embedding E → P

1 × P
1, defined over R. In the opposite

case, one makes an anti-symmetric embedding (by adding some minus signs). The two
standard equations are

a1λ
2μ2 + a2(λ

2 ± μ2) + 2a3λμ = 0, with λ = x1

x0
, μ = y1

y0
.

In case (ii), the automorphism of order two are the maps fa : x �→ −x+a (any a ∈ R/Z)
and x �→ x + 1/2. The last automorphism is ruled out because it does not give a P

1

as quotient. Now we have to solve C fa1 = fa2 C for some order two automorphism C .
The two solutions for C are fc with 2c = a1 + a2. There are two solutions for c in R/Z

and therefore there is a symmetric embedding. The standard equation is

a1λ
2μ2 + a2(λ

2 + μ2) + 2a3λμ = 0, with λ = x1

x0
, μ = y1

y0
.

Finally, there is the possibility that the two lines form a conjugate pair over R (we do
not work out the details here).

(b) The non singular locus E∗ of E is isomorphic to the additive group Ga . The automor-
phism of order two are fa : x �→ −x + a (any a ∈ Ga). The equation C fa1 = fa2 C
(with a1 
= a2) has a unique solution C = fc with 2c = a1 + a2. Thus there exists a
symmetric embedding E ⊂ P

1 × P
1 and this embedding is unique. The above is valid

for any field of characteristic 
= 2, because the group Ga has no forms. The standard
equation is
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λ2μ2 + (λ − μ)2 − 2λμ(λ + μ) = 0.

(c) For a reducible or non reduced E , Rohn obtains the following standard equations

(λ + μ)2 + 2aλμ = 0, λ2μ2 ± (λ − μ)2 = 0, (λ − μ)2 = 0.
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