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Abstract Properties such as continuity, locality, and modularity may seem neces-

sary when designing representations and variation operators for evolutionary

algorithms, but a closer look at what happens when evolutionary algorithms perform

well reveals counterexamples to such schemes. Moreover, these variational prop-

erties can themselves evolve in sufficiently complex open-ended systems. These

properties of evolutionary algorithms remain very much open questions.
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The astonishing and unmatched capabilities of organisms—and in particular their

information processing capabilities—inspire us to emulate the ways they achieve

these capabilities, an effort called ‘‘bio-inspired computing’’. But there is a hazard

in blindly copying what we think nature is doing when we design representations

and operators for evolutionary algorithms. This is the caution that Whigham et al.

[24] ask us to heed. Indeed, unless we are simulating the physics and chemistry of

actual living things (the object of one thread of computational biology), we will be

abstracting what we think is the relevant essence of a particular biological

phenomenon, and here we are vulnerable to imposing an artifactual framework on

the biological reality that may miss the mark. Whigham et al. [24] propose one

particular example of this, grammatical evolution, inspired by the translation step of

the genetic code, in which a system that generates programs via a grammar is pre-
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appended with a another system that maps arbitrary strings to grammars. The

problem with the pre-appended string-to-grammar map, Whigham et al. point out, is

that small changes in the strings map to haphazard changes in the programs.

Whigham et al. seek out the ‘‘axioms’’ for designing representations that would

guide us away from such unproductive constructions, and draw upon nine

conditions (C1–C9) described by Sterelny [20]: ‘‘inheritance mediated by a

replication system satisfying C1–C9 would be evolutionarily potent; it would be

highly evolvable.’’ The conditions relevant to genetic programming are C6, C8, and

C9—they address the variational properties [1] of the genotype–phenotype map:

‘‘C6 The replicator/organization map should be robust.

C8 A small change in the replicator set should generate a small change in

biological organization.

C9 The generation of biological organization from the replicator set should be

modular ...designed so that they make a distinctive contribution to the generation

of one or a few traits, and relatively little distinctive contribution to others.’’

Whigham et al. [24] use these conditions to compare Grammatical Evolution (GE),

with another representation for executable structures, Context-Free Grammar-

Guided GP (CFG-GP). They note that an extra layer of representation in GE, a

binary or integer encoding of grammar rules, only serves to scramble the

neighborhood relations between grammars that are similar, whereas CFG-GP

changes the neighborhood relations in a more orderly fashion.

In the context of evolutionary computations, all of Sterelny’s conditions are ‘‘sort

of’’ right. But they are, first of all, not stated with the mathematical precision needed

to evaluate them, and secondly, they are several steps removed from the actual

criteria by which evolutionary algorithms are evaluated.

In evolutionary algorithms, evolvability is everything. By evolvability, I mean

how quickly the sampling of the search space finds desirable points (how ever we

may wish to define ‘desirable’, e.g. the global optimum, an approximation of the

global optimum, an approximation of the global optimum objective function,

Pareto-optimal, etc.). In living organisms, however, ‘‘survivability is more

fundamental than evolvability’’ [16], in that species survival is the precondition

for everything else. In evolutionary algorithms, populations do not actually go

extinct—selection is merely the choice of which prior samples to apply the variation

operators to.

In evolutionary algorithms, it is not the average fitness of new samples is that

matters; rather, it is how quickly the iteration of sampling finds the objective. Let us

consider what actually happens when an evolutionary algorithm works well. A

sequence of samples of the search space is generated by applying variation operators

to prior samples such that a path is produced that leads to desired points in the

search space. Typically, the selection operator focuses the application of the

variation operator on points with the best objective function values among those

previously sampled, which means that what is needed are short paths of improving

objective function values to the desired points in the space.
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Here, the ‘‘one fifth rule’’ from evolution strategies is instructive. Rechenberg

[17] examined evolutionary search on a landscape much like Fisher’s geometric

model [11], where a real-valued function is defined on points in Rn, and variation

consists of adding a random perturbation to sampled points. Fisher showed that in

the limit of small mutation perturbation, the probability of a mutation being

advantageous approaches 1/2. But Rechenberg [17] found that the fastest progress to

the optimal value of the objective function was attained when the mutation size was

increased until only about 1/5 of the mutations were advantageous, and about 80%

were deleterious. Orr [15] obtained a similar value of 1/5.6 for the success rate that

results from the optimal mutation step size, in a model that included random genetic

drift. The reason that adaptation progresses faster with larger steps, even though

large steps are less likely to be advantageous, is because the mutations that were

advantageous took much larger steps toward the optimum.

So we see that minimizing the effect of single mutations on the phenotype may

not produce optimal evolvability; what matters is not the average fitness of variants,

but the weight in the upper tail of the distribution of fitness effects of the variation

operators [1, 3]. Empirical studies of mutations in actual organisms show a typically

bimodal distribution of fitness effects of mutation, with one mode at near-lethal

mutations, and the other mode at neutral mutations. The large probability that a

mutation will be disruptive of the functions of the organism shows that genotype–

phenotype map is not smooth all around, but contains many ‘‘cliffs’’. Yet these

cliffs, which produce genetic load, are largely irrelevant to evolvability, because

with some small but non-vanishing probability, adaptive mutations occur. It is the

lack of adaptive mutations, not the presence of lethal mutations, that stymies

evolution.

Fisher’s geometric model also yields some insights on Sterelny’s condition C9,

modularity. We do not see improved evolvability in Fisher’s geometric model from

mutations that affect only a small number of traits. As long as the perturbations of

the phenotype are small, there is a 50% chance of a mutation being advantageous

regardless of how many traits it affects. The probability of selective advantage is not

improved if ‘‘they make a distinctive contribution to the generation of one or a few

traits.’’ As the dimensionality grows, the probability of a selective advantage drops,

but it does not depend on the number of traits affected, merely the total Euclidean

distance to the optimal phenotype.

As Orr [15] showed, when the dimensionality of the space of traits is very high,

the pace of adaptation will slow to a crawl, because the size of perturbations needed

to produce a selective advantage with any likelihood makes the selective advantage

so small as to be useless.

In fact, the only way to rescue the adaptive process in very high dimensions is to

focus the variation in those directions where there is still adaptive opportunity. And

these ‘‘directions of opportunity’’ may require changes in many organismal traits.

Modularity in and of itself, therefore, does not necessarily improve evolvability—it

has to be the right kind of modularity [4]. The right kind of modularity is one that

suppresses variation in useless directions, and focuses it in directions of adaptive

opportunity. The wrong kind of pleiotropy is variation that spills over into these

useless directions.
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And this brings us back to the genotype–phenotype map. Whigham et al. [24] are

certainly correct when they say that the representation and variation operators acting

on it ought to be ‘‘aware’’ of how their interaction searches the solution space. But

what kind of awareness will effectively focus the search in adaptive directions?

If we look to nature for the answer to this question, we need to keep in mind that

the way genes, physiology, and morphology of organisms represent their life

functions may not be so much an optimal system for evolving functions, as the other

way around: the functions that organisms have evolved may simply be those that

were easiest to discover with the mechanisms that they had (an idea to be found in

[21] and [10]).

We must also keep in mind, when thinking about evolutionary algorithms, that

evolvability and robustness may not be simple entailments of the designer’s choice

of representation and variation operators, but may change emergently as a

consequence of the evolutionary process itself. Numerous mechanisms have now

been proposed and analyzed in which evolvability or robustness can evolve

[1, 2, 5–9, 12, 14, 17, 18, 22, 23]. One may conjecture that in any sufficiently

complex, open-ended evolutionary computation system, evolvability and robustness

are not static properties but evolve as a consequence of the evolutionary dynamics.

One of the earliest proposals to explain bloat in genetic programming was that bloat

was a ‘‘defense against crossover’’—a means of producing phenotypic robustness in

the face of high recombination rates [19]. Other non-adaptive processes are also

involved in bloat [13]. In this phenomenon, the evolutionary system has its own

agenda that may depart from the designer’s hope for high evolvability.

To conclude, Whigham et al. [24] bring our attention to essential questions about

the design of evolutionary algorithms, and their proposals for the properties of

representations and variation operators are reasonable—but we see that evolutionary

dynamics bring in complications that preclude any simple formulae in terms of

‘‘locality’’, ‘‘smoothness’’, ‘‘modularity’’, and the like. And sufficiently complex

systems offer the possibility that their variational properties evolve under their own

dynamics, independently of the intentions of the designer. For all these reasons, we

can see that the field has a rich set of open questions that invite further investigation.
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