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                    Abstract
Many diversity techniques have been developed for addressing premature convergence, which is a serious problem that stifles the search effectiveness of evolutionary algorithms. However, approaches that aim to avoid premature convergence can often take longer to discover a solution. The Genetic Marker Diversity algorithm is a new technique that has been shown to find solutions significantly faster than other approaches while maintaining diversity in genetic programming. This study provides a more in-depth analysis of the search behavior of this technique compared to other state-of-the-art methods, as well as a comparison of the performance of these techniques on a larger and more modern set of test problems.
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                           Table 17 Max. genetic marker density \({L}_{2:3}\): mean maximum genetic marker density (of genetic markers composed of levels 2 and 3 in the trees) in the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 18 Max. genetic marker density \({L}_{3:4}\): mean maximum genetic marker density (of genetic markers composed of levels 3 and 4 in the trees) in the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 19 Max. genetic marker density \({L}_{4:5}\): mean maximum genetic marker density (of genetic markers composed of levels 4 and 5 in the trees) in the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 20 Max. genetic marker density \({L}_{5:6}\): mean maximum genetic marker density (of genetic markers composed of levels 5 and 6 in the trees) in the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 21 Behavioral diversity: mean behavioral diversity of the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 22 Total behavior groups: mean maximum number of groups of same-behavior individuals in the final population after 250,000 fitness evaluations for each method in each problemFull size table


                           Table 23 Mean max behavior group size: mean size of the largest group of same-behavior individuals in the final population after 250,000 fitness evaluations for each method in each problem, with a population size of 500Full size table


                           Table 24 Total unique fitness values: Mean total number of unique fitness values in the final population after 250,000 fitness evaluations for each method in each problem, with a population size of 500Full size table


                           Table 25 Fitness standard deviation: mean of the fitness standard deviation in the final population after 250,000 fitness evaluations for each method in each problem, where fitness ranges from 0 to 1Full size table
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