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Abstract Successful planning and control of robots strongly depends on the

quality of kinematic models, which define mappings between configuration space

(e.g. joint angles) and task space (e.g. Cartesian coordinates of the end effector).

Often these models are predefined, in which case, for example, unforeseen bodily

changes may result in unpredictable behavior. We are interested in a learning

approach that can adapt to such changes—be they due to motor or sensory failures,

or also due to the flexible extension of the robot body by, for example, the usage of

tools. We focus on learning locally linear forward velocity kinematics models by

means of the neuro-evolution approach XCSF. The algorithm learns self-supervised,

executing movements autonomously by means of goal-babbling. It preserves

actuator redundancies, which can be exploited during movement execution to fulfill

current task constraints. For detailed evaluation purposes, we study the performance

of XCSF when learning to control an anthropomorphic seven degrees of freedom

arm in simulation. We show that XCSF can learn large forward velocity kinematic

mappings autonomously and rather independently of the task space representation

provided. The resulting mapping is highly suitable to resolve redundancies on the

fly during inverse, goal-directed control.
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1 Introduction

Robot control is a challenging task and a large variety of methods with different

prerequisites have been developed over the last decades. With the aim of mimicking

the flexibility and adaptiveness of humans, we present an approach that learns to

control the kinematics of a robot arm from scratch. In particular, we are aiming at a

system that satisfies the following requirements:

1. No external knowledge
The structure, capabilities, and representations (sensory and motor) of the robot

are assumed to be generally unknown.

2. Online learning
Learning takes place online while controlling the device.

3. Self-supervised learning
The learning system learns self-supervised, generating the learning data by

itself in online interaction with the environment.

4. Redundancy preservation
Instead of learning an inverse model directly resolving the actuator redundancy

during learning, the available redundancy is learned and resolved during

movement execution, allowing maximum behavioral flexibility.

In this paper, we are concerned with learning and controlling the kinematics of a

robot arm. Learning a full, accurate model of the dynamics is not considered here as

it is more complicated due to several reasons. The state space becomes extremely

large (velocities and accelerations in addition to positions) and some regions (e.g.

low velocity) are relevant while others may not be used at all. However, dynamics

can be treated completely separated [9, 25] from the kinematics approach taken

here. We focus on learning the velocity kinematics, that is, Jacobians, for directional

control. Planning mechanisms for, for example, obstacle avoidance are not

considered.

To meet the above requirements, we learn a model of the velocity kinematics of

an arm with the XCSF learning algorithm [31, 34, 36]. In our setup, XCSF learns to

predict end-effector movements given the current arm configuration and the current

motor command—where the arm configuration is specified in joint angles and the

motor command comes in the form of small angular changes. Due to the typical

redundant degrees of freedom (DoFs) of a robot arm, to move towards a certain

point in space a manifold of movement commands are possible. Thus, given a

certain goal location, the target direction has to be transferred into the manifold of

potential motor commands (inverse velocity kinematics mapping), which can move

the arm end effector in the desired direction. To account for additional task

constraints, this mapping needs to allow the effective, constraint-dependent

resolution of redundant alternatives on the fly upon task invocation. Our XCSF

approach solves the inversion problem by learning locally linear forward velocity

kinematics models, which can be easily inverted for inverse control with

redundancy resolution [6, 10]. A similar approach has also been realized with the

Locally Weighted Projection Regression (LWPR) algorithm [24]. In either case, the

result is a flexible control mechanism that can easily take additional task constraints
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into account. An explicit comparison of XCSF and LWPR on kinematic arm control

is not considered, as comparable performance was shown elsewhere [27].

While the basic setup of XCSF for arm control was introduced previously [6, 10],

here we give a comprehensive introduction to the overall system. More importantly,

we extend the previous setup by introducing fully autonomous, goal-oriented

behavior during learning using goal-babbling [20]. In contrast to motor-babbling,

where the system learns from randomly generated motor commands, in goal
babbling random task goals are generated and the system tries to reach those goals

using its current knowledge. We show that the setup scales up to the control of an

anthropomorphic arm with seven degrees of freedom moving through a three

dimensional workspace. We also show that successful model learning and resulting

control works in other frames of reference, such as a distance and angular encoding

of the end-effector location relative to a head-centered frame of reference.

The remainder of this article is structured as follows. First, we introduce robot

kinematics background and give an overview of the relevant related work. Section 3

starts with a short introduction to XCSF and then explains how XCSF is applied to

learn the velocity kinematics of a robot arm and how this model is used for robot

arm control. Section 4 gives the details of a seven DoFs arm simulation and

validates the framework in several experiments. The article ends with final

conclusions.

2 Background

This section poses the addressed problem of learning a forward velocity kinematics

model and using it for inverse control in a general way. Furthermore, the advantages

and drawbacks of related work are briefly discussed. We focus on a robot arm,

although the proposed framework is generally applicable to any robotic device.

2.1 Robot arm kinematics

To control a robot arm, at least two spaces have to be considered: the arm

configuration space C � R
n and the task space T � R

m of the end-effector, with

m \ n if the arm has redundant DoFs. The task space is often encoded in a Cartesian

coordinate system, but other encodings may be used as well.

Due to the robot arm kinematics, a particular configuration q 2 C fully

determines the corresponding task space location n 2 T : This mapping from

configuration space to task space is called the forward kinematics mapping and can

be expressed as a typically non-linear function

n ¼ f ðqÞ: ð1Þ

Since movements take place in small steps, it is useful to look at the velocity

kinematics. Given the current configuration q, the first-order derivative of (1) with

respect to time can be written as

_n ¼ JðqÞ _q ð2Þ
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where _n is the velocity vector in task space, _q is the joint-space velocity vector, and

J(q) = qf / qq is the m 9 n Jacobian matrix.

To control a robot device, a translation from the given task to the required control

command is required. However, the inverse is not uniquely defined if n [ m. Often

this is called the problem of inverse kinematics. More precisely, the inverse of J
represents an under-determined system with infinitely many solutions.1

One way to pick a solution from this set of solutions is the so-called

pseudoinverse or Moore-Penrose matrix [1], which represents the solution with

minimum norm. If J is lower-rectangular and of full rank, the pseudoinverse is

given by

Jy ¼ JTðJJTÞ�1: ð3Þ

The general solution to the inverse velocity kinematics of (2) is given by

_q ¼ Jy _nþ ðI� JyJÞ _q0
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

null space velocity

; ð4Þ

where _q0 is an arbitrary joint space velocity. The first summand represents the

translation of the desired task space velocity into configuration space. The second

summand yields zero task space velocity, since I� JyJ is the null space projection

matrix that represents available redundancy of the current configuration. Omitting

the second summand (or setting _q0 ¼ 0) results in zero null space movement. This is

one widely used solution to the problem of inverse kinematics [18].

Advanced methods exploit the redundancy in order to avoid angular boundaries

or singularities. For example, let _q0 ¼ s½ðqmin þ qmaxÞ=2� q�; where q is the

current configuration, qmin(max) is the minimum (maximum) joint angle configura-

tion, and 0 \ s B 1 is a scaling factor. The scaling factor should be set such that

resulting velocities stay in acceptable bounds. Here, _q0 describes a movement

towards the center of each joint’s range. Applied in (4), the available redundancy is

used to avoid extreme angular configurations. While other strategies are possible,

this constraint is applied throughout the main experiments in this work. Later, we

also analyze another constraint and how it affects the trajectory.

To sum up, one way to robot control is given by the first-order kinematics, which

is uniquely defined via the Jacobian matrix J. In this case, the pseudoinverse Jy plus

an additional constraint _q0 yield a unique solution _q given a desired task space

velocity _n: Since we learn locally linear approximations of the Jacobians with

XCSF, these equations are directly applicable for redundancy resolution within our

XCSF-based learning and control framework.

2.2 Related work

We restrict the discussion on related work to those approaches that fulfill at least

some of our targeted requirements, namely, approaches that learn a model

1 The discussion of singularities is beyond the scope of this article.
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autonomously online without any prior model knowledge and that preserve
redundancies while doing so.

Learning models that resolve redundancies during learning and thus have only

one inverse solution available for a given goal can be clustered into direct inverse
modeling (DIM) approaches [15], resolved motion rate control (RMRC) approaches

[15, 30], and feedback error learning (FEL) approaches [16]. Also, direct
reinforcement learning was applied to model human-like arm control development

[3, 4]. DIM approaches learn the inverse kinematics of a robotics device directly and

are known to possibly not converge given non-convex configuration subspaces for

specific goal states. RMRC approaches learn first the forward kinematics of the

partial derivatives, that is, an approximation of the Jacobian of the device, and then

apply constraints to also learn a suitable inverse model. Distal supervised learning is

one form of RMRC [15] where the redundancy is implicitly resolved by the back-

propagation mechanism employed. FEL approaches rely on the pre-existence of a

simple controller. These approaches optimize the control commands and eventually

take over most of the control requirements. Redundancy is resolved by the structure

of the given simple controller. FEL thus develops hierarchical control structures

building upon a simple controller, improving behavior efficiency and smoothness

[12, 38].

A more recent approach that was shown to be able to learn various kinds of direct

inverse models is the LWPR algorithm [11, 28]. In the control application case,

LWPR was trained to mimic an observed dynamic control behavior, such as

drawing a figure eight. Again, redundancies were immediately resolved during

learning, mimicking the observed behavior. Nonetheless, similar to XCSF, LWPR

builds a population of receptive fields (RFs) that employ locally linear models to

approximate a multi-dimensional, non-linear function. LWPR is a statistics-based

machine learning algorithm, while XCSF is based on an evolutionary algorithm.

The comparison of LWPR with XCSF on general function approximation problems

showed that XCSF often yields better spatial structurings while LWPR yields

slightly faster convergence [27]. Despite the close resemblance, in most applications

published, LWPR learns a direct inverse model [29, 28], that is, a one-to-one

mapping from the task space to the configuration space, thus loosing knowledge

about available redundant alternatives.

Our learning approach stores the redundant actuator capabilities during learning

and can flexibly resolve the available redundancies on the fly during goal-directed

behavior, thus being distinct from all the above approaches and their more recent

derivatives. Storing redundancies and exploiting behavioral alternatives is a typical

human property. Psychological models of these capabilities were introduced with

the posture-based (PB) theory of reaching and grasping [21–23]. In this architecture,

a set of exemplary postures is stored and evaluated given a desired goal state.

Directional movements are then executed towards the goal using the provided

kinematics model.

The so-called SURE_REACH framework [7] is a population-based neural

approach, which subsumes the PB theory. It learns the kinematics model used for

model-based reinforcement learning control online. RFs. Hebbian and temporal

Hebbian learning form connections between configuration and task space and within
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these spaces, respectively. The latter mapping allows for flexible movement

planning whereas the former encodes the redundant configuration alternatives given

a particular goal location. Despite its appealing features as a neural-psychological

model of reaching behavior, the model has the drawback of scaling exponentially in

the number of DoFs modeled. One approach to avoid this scaling problem is to learn

locally linear models that apply in extended subregions of the high-dimensional

input space, which is further explored in the remainder of this paper.

Another approach using LWPR that preserves actuator redundancies learns

locally linear forward kinematic models instead of inverse models [24]. Here,

LWPR learns the forward kinematics from (1). The derivation of the velocity

kinematics is straightforward due to the locally linear mapping [24]. Since the

derived Jacobians are linear, they are easily inverted, while the redundancy is

exploited to fulfill additional constraints. However, for the three DoFs planar arm

that was tested, up to 8000 RFs appeared necessary. Thus, it remains an open

research challenge to apply LWPR to a more complex robotic device and learn a

compressed representation of the full kinematics mapping. That is, it essentially

remains unclear to what extent LWPR is able to learn in large, fully-sampled

problem spaces [27]. Moreover, LWPR optimizes the spatial clustering for an

accurate kinematics model, but the first-order derivative is required for control—

thus, the structuring is not optimized for control.

We now turn to our XCSF approach, which learns the forward velocity

kinematics of an arm, thus storing redundancies in the locally linear Jacobian

mapping. Locality is defined within the configuration space, since a small change in

the configuration yields a unique change in task space given a particular current

configuration. Thus, our system resolves redundancies on the fly and does not

require the determination of derivatives during goal-directed behavior.

3 Directional control with XCSF

This section briefly introduces the general framework of the XCSF Learning

Classifier System. Most importantly, we describe how XCSF learns a kinematic

model and how this can be used for control.

3.1 XCSF: A learning classifier system

Learning Classifier Systems were introduced by John H. Holland [13]. Its most

prominent implementation is XCS2 [31, 32], which has been successfully applied to

various applications such as binary classification tasks [5, 31], data mining problems

[2, 33], and function approximation [8, 26, 35, 36]. Since we are interested in

learning a kinematic model, we apply the function approximation mode of XCS—

then called XCSF.

XCSF is able to approximate a non-linear, multi-dimensional function f:X ?
Y, f ðxÞ ¼ y using piecewise, linear models. Therefore a population of receptive

2 Sometimes XCS is said to be the ‘‘eXtended Classifier System’’, but this acronym was not intended.
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fields3 is evolved, where each RF covers a subspace of the input space X. In its

respective subspace, the RF learns a linear model pðxÞ ¼ ŷ � y to approximate the

underlying function. The prediction error f ðxÞ � pðxÞ ¼ y� ŷ is used to adapt the

linear models in a gradient descent fashion, typically using recursive least squares.

In turn, a genetic algorithm (GA) is applied to search for a better clustering of the

input space by modifying the position, size, and shape of the RFs, where a scaled

inverse of the prediction error yields the fitness. An illustration of the workflow is

given in Fig. 1. In sum, XCSF evolves a population of RFs with the goal of accurate

and maximally general approximations.

3.2 XCSF-based control via local Jacobians

With small modifications, XCSF is applicable to learn the velocity kinematics from

(2). In other words, the goal is to learn a mapping from configuration space

velocities _q to task space velocities _n; depending on the current configuration q.

While any function approximation method could be applied to learn a mapping

q� _q7! _n; not every method might be suitable. First of all, the input space is

2n-dimensional, but there is a strong relation from configuration space to its first

derivative and it is possible to reduce the complexity to an n-dimensional mapping.

Another requirement is a suitable representation to quickly invert the model during

movement execution.

XCSF is well-suited for the task, since the algorithm is able to cluster a context

space while learning a function that operates on a different space, but depends on

the context. In our task the current configuration is the context and XCSF clusters

the configuration space with RFs, e.g. rotating ellipsoids [8]. In turn, each RF

approximates the Jacobian matrix using linear recursive least squares approximation

(see Fig. 2). Together, the complexity is linear in the dimensionality of the

Fig. 1 Illustration of XCSF’s workflow for an exemplary two-dimensional function with just one-
dimensional output f(x1,x2) = y. Every iteration XCSF determines the RFs that match the current sample
input x1,x2. Matching RFs generate a prediction pi(x1,x2) based on their respective internal linear models.
The final prediction ŷ is computed as the sum of individual predictions, weighted by fitness estimates ui:
Using the prediction error y� ŷ; those models are updated and the structure is optimized via evolution
with the goal of accurate and maximally general RFs

3 Usually called classifiers in the XCS literature.
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configuration space. Given a particular configuration, the linear Jacobian is easily

inverted.

Given the current configuration q, a desired task space velocity _ndes; and a

constraint q0, the workflow is as follows. First, XCSF’s population is scanned for

experienced, matching RFs, that is, RFs that cover the current configuration and

have seen at least 2n samples.4 The Jacobian J of each active RF i is inverted with

respect to the constraint _q0: This yields the predicted configuration space velocity
_qi;pred from the ith RF. The final configuration space velocity is computed as an

activity-weighted average

_qexc ¼
P

i ai _qi;pred
P

i ai
; ð5Þ

where ai ¼ expð�ðq� ciÞTDiðq� ciÞÞ is the Gaussian activity of the ith RF, where

the shape is described by the matrix Di at center ci: A positive, semi-definite,

quadratic matrix Di describes an n-dimensional, not necessarily axis-aligned

ellipsoid [8, 27]. In sum, with increasing distance, the influence of an RF decays as

also its accuracy decreases. Finally, _qexc is executed and the actual resulting task

space velocity _nact is stored. The previous configuration, the executed angular

motion, and the resulting task space velocity yield the next learning sample

ðq; _qexc;
_nactÞ for XCSF.

Initially the population is empty and task space velocity requests cannot be

answered. If no RF covers a particular configuration, a new one with random shape

is generated (so-called covering). However, the Jacobian is initially a zero matrix

and consequently a zero motor command is predicted. While this would prevent

learning in an environment without noise and external forces (e.g. gravity), in more

realistic environments the problem does not occur. We model a small motor noise

Fig. 2 In order to approximate the velocity kinematics, XCSF generates RFs that cover the configuration
space. Over time, each RF learns a localized Jacobian in its respective context by means of recursive least
squares. The accuracy of the approximation guides the evolutionary search for a better context space
clustering. For illustrative reasons, both, the configuration space and the task space are two-dimensional

4 An n-dimensional linear approximation of less than 2n samples is probably inaccurate.
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by adding Gaussian noise to the angular control command that is executed. The

standard deviation r is set to 0.05(qmax - qmin), where qmax (qmin) is the upper

(lower) bound of the configuration space. This merely disturbs the movement, but

helps to get initial learning data and also improves the exploration of the state space:

Without noise on the control signal, the controller will follow one trajectory, which

prevents learning of weights for dimensions orthogonal to that trajectory. In

contrast, noisy movements also tackle orthogonal directions.

As the robot device moves along a trajectory, the learning samples are highly

biased. With high frequency sampling, XCSF would tend to accurately represent the

current configuration and configurations experienced lately, while RFs that cover

the remaining configuration space get lost. This is due to the GA that reproduces

RFs at the current input while deleting others from the population. We approach this

issue by ‘‘learning only from failures’’, that is, if XCSF’s approximation is

sufficiently accurate,5 no updates to the RFs model nor the genetic algorithm are

triggered. On the other hand, if the approximation is insufficient, the Jacobians of

currently active RFs are updated via recursive least squares and the GA further

optimizes the contextual clustering at the current configuration. Over time the full

space is well approximated and XCSF’s model is just used for prediction but rarely

modified.

4 Experimental validation

We use a simplified anthropomorphic, seven DoFs arm to validate the XCSF based

framework. Details of the kinematic specification are depicted in Fig. 3. Throughout

all experiments, the configuration space is the seven-dimensional space of joint

angle configurations q ¼ ½q1; . . .; q7�T and the end effector location defines the task

space. Thus, XCSF learns to map joint angle velocities to end effector velocities,

where the context is the current joint configuration. In turn, XCSF’s model of the

velocity kinematics can be used to control the end effector location.

Most of XCSF’s parameters were set to standard values.6 Two values for the

maximum population size are tested, namely 500 and 2,000. The number of

movement iterations is set to 500,000—however, as mentioned above active

learning does not occur at every iteration, but only when the approximation is

inaccurate. The threshold hGA specifies how frequently the GA is activated and is

increased to 200 in order to compensate for the imbalanced sampling as suggested in

[19]. Towards the end of a run, condensation [32] is activated, that is, reproduction

without mutation and crossover to remove evolutionary overhead. During conden-

sation highly fit classifiers are strengthened (reproduced but not modified) while

5 The approximation is said to be accurate, if the prediction error is below a target error e0; which is one

of XCSF’s parameters.
6 XCSF settings: a = 1, b = 0.1, d = 0.1, m = 5, v = 1, l = 1/42, hdel = 20, hsub = 20. The target

error is set to e0 ¼ 0:001: Uniform crossover, GA subsumption, and tournament selection with s = 0.4

are applied. Condensation [32] is applied after 450,000 iterations. Rotating ellipsoidal RFs [8] and linear

recursive least squares prediction [17] are used.
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inaccurate classifiers get deleted due to the limited population size. All experimental

results are averaged over 20 independent trials.

Goal locations ndes are generated randomly during learning and a simple greedy

control scheme computes the desired task space velocity _ndes ¼ ndes � n from the

current task space location n: Thus, requests to XCSF always assume that the goal

can be reached within one step, but the executed angular movements—predicted by

XCSF’s population—are constrained to a maximum velocity, dependent on the the

underlying robot device. It is important to note that task space goals are generated,

that is, the system acts in a goal directed way from the beginning. This is called goal
babbling [20]. The system autonomously uses its learned model to generate motor

commands which stands in contrast to motor babbling, where random motor

commands are generated externally.

4.1 First experiments

A typical graph of XCSF’s learning performance is depicted in Fig. 4, but due to

trajectory learning the error measurement is misleading: The local linear models are

quickly adapted to the current configuration and only minor updates are required to

maintain a low error along a trajectory. Due to this fact, it is also misleading to

measure the online reaching performance during learning. Eventually, the local

model around the current configuration gets updated fast enough to show suitable

reaching performance, but the remaining configuration space is not even covered.

In order to measure reaching performance thoroughly, we deactivate learning every

10,000 iterations and run 1,000 randomly created reaching tasks offline. The arm is set to a

random configuration and a nearby task space goal is activated for XCSF, but the

population is not updated during testing. A task space goal is said to be successfully

Fig. 3 Specification of the seven DoFs arm in simulation. The arm has a total length of 100 cm. Rotation
axes q1; . . .; q7 are drawn as dashed lines; the two rotary joints are depicted with a circle. Joint angles are
restricted to q1 2 ½�1:0; 2:9�; q2 2 ½�1:5; 1:5�; q3 2 ½�1:0; 1:0�; q4 2 ½�0:0; 2:8�; q5 2 ½�0:7; 1:0�; q6 2
½�1:5; 1:5�; q7 2 ½�0:5; 0:7�. For each joint the maximum rotation velocity is restricted to 0.01 radians
per step. Similar to a human arm, the shoulder has three DoFs, namely flexion-extension (q1), abduction-
adduction (q2), and internal-external rotation (q3). The elbow allows for two DoFs: flexion-extension (q4)
and pronation-supination (q5). Another two DoFs, that is, abduction-adduction (q6) and flexion-extension
(q7), are located at the wrist. With all angles qi = 0 the arm is fully extended, while the picture shows an
almost centered configuration
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reached, when the distance from end effector to target is less than 5% arm length. The

percentage of successful tasks is stored along with the task space efficiency, that is, the

minimal task space distance from initial to target location divided by the actual task

space distance traveled. Unfortunately, not every task space location can be reached

successfully from any configuration, even if XCSF’s population of RFs accurately

models the velocity kinematics. The simple greedy control scheme assumes that there is

a direct path in task space, but this is not always true. More sophisticated planning

algorithms could be used, but this goes beyond the scope of this article. Instead we avoid

deadlocks by generating reaching tasks that bridge just a short distance in configuration

space. Additionally, generated start configurations lie within the inner 80% of each

joint’s range. Furthermore, we do not expect to see 100% path efficiency, as the shortest

path is not a straight line when angular boundaries are hit. Since percentage

measurements are not normally distributed, mean and variance are not suitable to

visualize the data. Instead, we report the median as well as first and third quartile.

The experimental results over 20 independent runs are depicted in Fig. 5, where 50

offline tests are conducted over the learning time. With a maximum population size of

500 RFs the reaching performance is not as stable as with a size of 2,000 RFs.

Increasing the population size allows for higher precision and more stable

performance in offline tests. With 2,000 RFs, the worst percentage of successful

reaching tasks (out of the 20 experiments) in the final population was 99.1%. The same

tests would always yield 100% reaching performance in the online environment, when

RFs were continuously updated. It is important to note that the final population size is

reduced by means of condensation [32] during the last 50,000 iterations in order to

clean up evolutionary overhead. Figure 4 represents a typical graph for the

experiments with N = 2,000. After condensation 510.85 ± 27.31 RFs remain in the
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Fig. 4 XCSF’s performance during learning. While the population quickly reaches its maximum size
(here N = 2,000), the mean absolute error is intriguingly low (less than 0.004 cm from the beginning)
and does not reflect the average prediction error of the whole model due to learning along trajectories.
With condensation starting at iteration 450,000, the population size drops drastically, while the error
increases slightly. The left and right vertical axis is log-scaled
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seven dimensional population. Looking at the final iterations in Fig. 5, we see that this

process does not affect the reaching performance.

4.2 Representational independence

Up to now, a Cartesian task space representation was used, that is, end effector

coordinates are stored as three-dimensional vectors n ¼ ½x; y; z�T : Alternatively, an
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Fig. 5 XCSF’s offline performance using a Cartesian task space representation for maximum population
sizes a N = 500 RFs and b N = 2,000 RFs. Every 10,000 learning iterations an offline test is conducted.
The percentage of reached goals specifies how many out of 1,000 randomly generated reaching tasks
were successful, while the path efficiency describes how close XCSF’s task space trajectory is to a
straight line. The graphs show the median as well as first and third quartiles over 20 independent runs
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egocentric view n ¼ ½d; .;w�T of the end effector consisting of distance d, hori-

zontal angle .; and vertical angle w can be applied. More precisely, the center of
view is set to be the origin of the Cartesian coordinate system and the shoulder is

located at [15, -10, 0 cm]T. Thus, the origin resembles the location of an imaginary

vision system. The focus of this section is on the representational independence, not

on the alternative coordinate system.
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Fig. 6 Offline performance for the egocentric task space representation. Shown are median as well as
first and third quartiles over 20 independent trials. a 500 RFs, b 2,000 RFs
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The egocentric representation is computed as7

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

;

. ¼ atan2ðx;�zÞ;

w ¼ signðyÞ arccos
x2 þ z2

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

� �

:

ð6Þ

If x = z = 0 and y 6¼ 0; . is set to sign(y)p/2. If x = y = z = 0, both angles are

undefined and set to zero, which creates a point gap in this representation. The

horizontal angle . 2 ½�p; p� is the angle in x-z-plane between the end effector

location and [0, 0, -1]T, which is the vector that ‘‘points to the front’’. Thus, in this

direction . is zero. The vertical angle w 2 ½�p=2; p=2� represents the signed angle

between [x, y, z]T and [x, 0, z]T.

Performance with this alternative representation (Fig. 6) is comparable to the

Cartesian one (Fig. 5). With a population size of N = 2,000 RFs, the worst

percentage of successful reaching tasks during offline testing in the final population

was 98.9% for the egocentric representation. Comparing the learning speed with

N = 500 (Figs. 5a, 6a), the egocentric representation seems to allow for faster

learning. Intuitively this makes sense, as the angular representation yields a more

linear function surface. On the other hand, the point gap complicates transitions

close to the center of view. Thus, the final performance remains comparable.

4.3 Spatial structuring

Also within an egocentric task space XCSF’s generalization capabilities allow for a

suitable representation of the seven DoF velocity kinematics with intriguingly few

RFs: 503.65 ± 31.93 RFs remain in the final population, while initially up to 2,000

RFs are evolved by the GA. Unfortunately, the spatial clustering is difficult to

analyze for seven DoFs, since the space is covered by rotated, seven-dimensional

ellipsoids. However, using a reduced number of controlled joints, we can visualize

XCSF’s population of RFs with respect to the contextual clustering. Figure 7

illustrates the evolved structure for two and three DoF arms. Only joints q1, q4 (two

DoF), and q2 (three DoF) are controlled, while the other joint angles remain fixed at

a centered position. Again we can see that XCSF has a harder time with the

Cartesian representation, because smaller RFs and a rather strict structure are

required to maintain a suitable accuracy. The egocentric representation induces

more linearities and almost spherical RFs suffice to learn a suitable prediction.

Interestingly, rather small RFs are evolved for the egocentric task space at the top

right corner (Fig. 7b). This corresponds to maximum angle in q1 and q4. In other

words, shoulder and elbow are flexed and the end effector almost reaches the center

of view. Here, small joint angle changes yield large task space changes for the

egocentric representation. Consequently, small RFs are required to maintain an

accurate mapping. In contrast, large ellipsoids cover the bottom part that

7 atan2(x,-z) evaluates to arctan(-x/z) for z \ 0, arctan(-x/z) ? p for z [ 0 ^ x C 0, arctan(-x/z) - p
for z [ 0 ^ x \ 0, p/2 for z = 0 ^ x [ 0, -p/2 for z = 0 ^ x \ 0, and 0 for z = x = 0.
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corresponds to a stretched elbow. Here, the distance from end effector to the center

of view is large and configuration changes affect the task space location only

slightly. For a Cartesian task space, the clustering is more uniform (Fig. 7a, c). This

is consistent with the uniform sinusoidal structure of a kinematic forward mapping

from joint angles to Cartesian coordinates.

With regard to the full seven joint arm, we can analyze the spatial structuring at

least partially, although not as illustrative as above. Boxplots of the normalized

extent per dimension of the RFs are depicted in Fig. 8. The larger the extent of a RF

in a particular dimension, the more general it is in this dimension. Assuming an

optimal clustering, this corresponds to less curvature in the underlying function. An

extent of 1 implies that the RF covers the whole dimension. XCSF generalizes

(a) (b)

(c) (d)

Fig. 7 Visualization of XCSF’s final contextual clustering for a reduced number of DoFs. All RFs are
depicted at 20% of their actual size. a 2 DoF, Cartesian representation, b 2 DoF, egocentric
representation, c 3 DoF, Cartesian representation, d 3 DoF, egocentric representation
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crudely over all wrist related joint angles ðq5; . . .; q7Þ with respect to both

representations, especially within the Cartesian task space. The wrist related joint

angles have less influence on the prediction error than the other joints and

consequently XCSF focuses on joints q1; . . .; q4 to increase its accuracy.

4.4 Analysis of an individual movement

The crude generalization raises the question if XCSF’s model is accurate enough to

control the wrist. In order to reach a particular location, it is often sufficient when

shoulder and elbow are used to counter impreciseness in wrist control. Therefore,

we measure individual joint angles for a single reaching task using a Cartesian task

space and vary the angular target for the wrist. The initial arm configuration is set to

q = [0, 0, 0, 0, 0, 0, 0]T, which corresponds to a fully extended arm and a

Cartesian task space location t = [100 , 0 , 0 cm]T. The task space goal is set to

[25 , 0 , -70 cm]T. Initially, the default constraint is applied, that is, a centered

configuration is preferred. Figure 9b shows that XCSF quickly reaches the desired

target and maintains the task space location.

At time step t = 500, the constraint is slightly changed: Now wrist joint angle

q6 = 1.4, which is almost its maximum, is desired. Concerning the other joints, a

centered position is preferred. Figure 9a illustrates the movement in configuration

space. XCSF quickly navigates to the task space target that is reached after about

150 simulation steps. Upon change of the constraint, the redundancy is exploited to

flex the wrist and the new constraint is fulfilled, while the task space accuracy is

hardly affected.

To compare the results of the Cartesian task space with the egocentric

representation, the Cartesian target is converted to egocentric coordinates, namely

[0.812 , -0.519, -0.123 cm]T. Figure 10 validates the representational indepen-

dence once again. With an egocentric task space, XCSF also reaches the target after

about 150 simulation steps and the new constraint at t = 500 is flexibly realized

using null-space movements as with the Cartesian representation. To sum up, the
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Fig. 8 Boxplots of the normalized RF extents. For each dimension, 50% of the data is contained within
the box, which represents the range from first quartile Q1 to third quartile Q3. In each box the median is
depicted as a thick line. Data points farther away than 1.5 (Q3 - Q1) are outliers and are depicted as
crosses. a Cartesian representation, b egocentric representation
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Fig. 9 After 100,000 learning steps with the Cartesian representation, a single movement is analyzed in
depth. The task space goal is reached at t& 150, where the initial constraint aims at a centered position
for each joint. Due to the range of the elbow joint (Fig. 3), the center for q4 is at 1.4. At t = 500, the
constraint is changed: Now, q6 = -1.4 is desired. The task space location is hardly affected, while the
null-space movement realizes q6 = -1.4. a Joint angles, b Cartesian end effector location
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Fig. 10 Here the egocentric representation is used during learning and control. However, in (b) the
Cartesian coordinates of the end effector are depicted to maintain comparability with Fig. 9b. Again, the
target is reached at about t& 150, while the constraint is changed at t = 500. a Joint angles, b Cartesian
end effector location

154 Genet Program Evolvable Mach (2012) 13:137–157

123



individual movements illustrate that the wrist is accurately controlled although the

size of the RFs suggested impreciseness in those dimensions.

5 Summary and conclusions

We have presented a learning framework for autonomous learning and control at the

kinematics level of a robot arm. In particular, the neuro-evolution algorithm XCSF was

enhanced to learn a locally linear forward-inverse model of the velocity kinematics of

robotic arms. XCSF learns a representation that preserves redundant control

capabilities during learning. This knowledge can be easily exploited during goal-

directed behavioral control due to its locally linear representation. Moreover, it was

shown that the learner does not rely on any a priori controller but learns and controls the

robot arm autonomously from ‘‘scratch’’. To achieve this, the system acts goal-directed

from the beginning by means of goal babbling. Also, the model is adapted continuously

online and can thus generally cope with changes in the controlled robotic device.

The framework was applied on an anthropomorphic, seven DoFs, three

dimensional arm simulation. It was shown that XCSF quickly learned the full

kinematic forward model and a simple control scheme based on XCSF’s knowledge

successfully reached arbitrarily generated task space goals. Due to its structuring

and generalization capabilities, approximately 500 RFs in the final population,

which covered the seven-dimensional joint angle space, sufficed to control the arm

accurately, effectively, and flexibly: (a) The end-effector follows an approximately

straight line to the target and reaches all targets. (b) The joint movements are

minimized while approaching targets given no further constraints. (c) Additional

constraints can be incorporated easily and on the fly—such as the avoidance of

angular boundaries or the preference of a particular joint angle [10].

Moreover, no assumptions about the underlying coordinate system were made and

consequently learning success was rather independent of the chosen configuration and

task space representations. In particular, we compared a Cartesian task space

representation with an egocentric, angular-distance representation and showed that the

resulting behavioral capabilities were comparable. However, we also showed that

XCSF learned a different spatial partitioning for the respective task space represen-

tations, where the partitioning was optimized for the development of an accurate

forward model within the given representation. This insight strongly suggests that

XCSF is a very general learner that can learn conditional forward models within

various configuration and task spaces as well as for various types of robotic devices.

In conclusion, this paper has shown that the XCSF learning system can be

applied to learn models for the control of robotic devices that preserve control

alternatives during learning where available. The behavioral redundancy can be

resolved on demand considering—possibly varying—additional task constraints. In

comparison to the closely related LWPR system, XCSF has the advantage of being

able to partition a contextual space (here the joint angle space) that does not need to

be the same as the input space for the predictions (here joint angle velocities). As

shown in various previous approaches, XCSF is furthermore not restricted to

optimize Gaussian kernels, but can be generally applied for the optimization of any
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kernel structure [8, 14, 36, 37]. Thus, XCSF is a more general learning system that,

nonetheless, shows high learning reliability in various setups ranging from data

mining and reinforcement learning problems to function approximation problems

[2, 5, 8, 26, 31, 36].

Future research efforts should focus further on the applicability of the XCSF

system to other robotic devices and setups, including real robots. For example, it is

expected that also the dynamics of a device will be learnable by XCSF. Also,

behavioral manifolds for imitation, such as the ones learned with LWPR [28], may

be learned even more effectively and reliably with XCSF. Moreover, theoretical

efforts should focus on the adaptability of the system as well as on the scalability in

even higher dimensional problem spaces—within which possibly only a lower-

dimensional manifold may be sampled. Most recent theoretical analyses suggest

optimal system scalability at least in constrained problem settings [26]. Finally, the

modularization of the XCSF system is expected to open up an even broader range of

suitable application domains.
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