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Abstract Evolutionary techniques may be applied to search for specific structures

or functions, as specified in the fitness function. This paper addresses the challenge

of finding an appropriate fitness function when searching for generic rather than

specific structures which, when combined wiacteristic of defect tolerance on the

circuit. Production defects for integrated circuits are expected to increase consid-

erably. To avoid a corresponding drop in yield, improved defect tolerance solutions

are needed. In the case of Field Programmable Gate Arrays (FPGAs), the pre-

designed gate array provides a bridge between production and the application

designers. Thus, introduction of defect tolerant techniques to the FPGA itself could

provide a defect free gate array to the application designer, despite production

defects. The search for defect tolerance presented herein is directed at finding defect

tolerant structures for an important building block of FPGAs: Look-Up Tables

(LUTs). Two key approaches are presented: (1) applying evolved generic building

blocks to a traditional LUT design and (2) evolving the LUT design directly. The

results highlight the fact that evolved generic defect tolerant structures can con-

tribute to highly reliable circuit designs at the expense of area usage. Further, they

show that applying such a technique, rather than direct evolution, has benefits with

respect to evolvability of larger circuits, again at the expense of area usage.
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1 Introduction

The continued miniaturisation of features in CMOS integrated circuits (ICs) has

resulted in larger, more complex and faster devices. The feature size in today’s

high-end chips is already at the nanoscale and is expected to scale further [19]. The

lithographic process employed for the production of ICs can not be perfectly

controlled, resulting in reduced yield due to production defects. The ITRS roadmap

[19] predicts that this situation will worsen as CMOS is scaled down, resulting in a

significant percentage of produced chips having defects. Predictions for future

technologies are even more pessimistic where a significant portion of each produced

chip is expected to be defective [26]. To handle the increasing defect rates and avoid

yield levels resulting in prohibitively expensive chips, circuits should be designed to

tolerate a certain amount of defective components. Such defect tolerant circuits

could be achieved through the introduction of redundant components.

The Field Programmable Gate Array (FPGA) is a suitable target for redundancy

techniques. FPGAs are today widely used, both for the original purpose as a

prototyping device and as a component in end user products. High end FPGAs are

produced with the most advanced production processes and are, therefore, among

the first ICs that will encounter the expected increase in production defects. FPGAs

can be seen as a bridge between production and the application designer. In a

scenario where ICs must exhibit some kind of defect tolerance, an FPGA built with

transparent redundancy techniques can provide the application designer with a

functionally correct gate array, despite production defects. In addition, specialising

the redundancy techniques towards the FPGA architecture can result in more

efficient redundancy. To achieve area efficient defect tolerance, the typical approach

is to exploit structural regularity [22]. The FPGA has a regular structure, which has

inspired the search for effective defect tolerance techniques for FPGAs.

In traditional design, generic defect tolerant structures exist that may be applied

to a circuit design to provide the design with fault/defect tolerance. However,

finding new generic defect tolerant structures that are more defect tolerant, area

efficient and/or power efficient than today’s commonly used triple modular

redundancy has proved challenging. To find new and innovative design solutions,

the application of Evolvable Hardware (EHW) [17] techniques would seem

appropriate. However, defect tolerance presents a challenging application for EHW.

EHW, in general, is already challenged with respect to scaling up the technique to

larger circuits—larger number of inputs. Adding faults and ensuring sufficient

experiments for fault coverage, further exacerbates the fitness evaluation challenge

and thus the viability of evolving such circuits.

The approach applied in this work is to apply evolution to the design of

innovative generic defect tolerant structures that may be included in a traditional

design, similar to the way triple modular redundancy is included today. However,

such an application provides a further challenge for evolution. Traditionally,

evolutionary techniques are applied to the evolution of given structures or functions,

specified in the fitness function. However, in this case there is no given structure or

function. Fitness needs to guide the emergence of a generic structure that when

applied to a functioning circuit will provide for the property of increased reliability.
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This paper is an extension of earlier papers by the authors. A potential new

generic transistor level defect tolerance technique/structure, termed herein as the

Multiple Short-Open (MSO) Technique, was presented by the authors in [10]. The

MSO technique was the result of a manual analysis of circuits created with an

evolutionary Algorithm (EA). The process towards this technique, as well as the

technique itself, is presented in Sect. 5 so as to highlight how EAs were applied in

this process. Further, in a first step towards a fault tolerant FPGA, the structure is

applied to an important building block of the FPGA, a Look-up table (LUT).

Two different strategies towards a defect tolerant LUT are followed in this paper.

The first strategy is to apply the MSO technique to a traditionally designed LUT and

the second is to evolve the defect tolerant LUT directly. Both strategies involve

evolutionary experiments which share some of the same challenges regarding fitness

functions and experimental setup. A large part of this paper is, therefore, devoted to

describing and discussing these challenges.

Section 2 presents an overview of related work on traditional defect tolerance.

Section 3 gives an introduction to artificial evolution and presents related work on

evolved defect tolerance. Section 4 discusses a number of issues and practical

considerations important for the evolution of transistor level circuits exhibiting

redundancy. Section 5 presents the process that led to the MSO technique. Section 6

applies the MSO technique for constructing a defect tolerant LUT. Section 7

presents an evolutionary experiment where a defect tolerant LUT is evolved

directly. A comparison of LUT implementations and a discussion is given in Sect. 8

and the paper concludes in Sect. 9.

2 Redundancy techniques for defect tolerant systems

One of the most popular and well known redundancy techniques is Triple Modular
Redundancy (TMR) [24]. Three equal modules calculate the same function and a

voter outputs the majority output. TMR is most often applied at the system level for

critical systems with very low probability of failing. However, the reliability of a

system is typically increased if redundancy is introduced at a more fine grained

level. A system can be split up into smaller subsystems, each made redundant with

TMR and cascaded to form the complete system. In a cascaded TMR system with

small modules, a significant part of the system is devoted to voting. As such, the

voter may need to be triplicated as well.

At the gate level, when the size of each submodule is only a few gates, TMR is

unsuitable due to the voter becoming a dominant factor with respect to susceptibility

to defects. A gate level alternative to TMR is interwoven logic [28]. Interwoven

logic involves constructing the network of logic gates in a way such that it masks

defects. Defect masking is achieved by quadrupling every gate in the system and

connecting the gates in a specific way so as to avoid the need for a voter.

If very high reliability is required, redundancy can be introduced at the transistor

level. Transistor level redundancy can be applied to build reliable components that

form the basis for higher level redundancy techniques. One transistor level

redundancy technique known as series-parallel transistor replication is shown in
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Fig. 1. Originally described by Moore and Shannon for relays [27], the technique

provides redundant transistors in series for tolerating stuck-closed defects and

redundant transistors in parallel to tolerate stuck-open defects. Combining these, as

in Fig. 1, results in tolerance to both stuck-open and stuck-closed faults. TMR may

also be applied at the transistor level. However, when considering only stuck-open

and stuck-closed defective transistors at high defect rates, the series-parallel

technique results in more reliable circuits than TMR [3]. Although the series-

parallel technique tolerates all single stuck-open and stuck-closed defects, other

possible defects, such as transistors with shorted gate and source, can still be

catastrophic.

Bolchini et al. [2] present another example of transistor level redundancy

targeting multiple output static CMOS circuits. Single stuck-closed defects are

tolerated and a number of other defects are detected through the application of

Berger codes.

One benefit of introducing redundancy at the transistor level is the possibility of

exploiting non-digital properties of the technology [8]. One example is found in

earlier work by the authors [7] where a minority gate was made tolerant to stuck-

open and stuck-closed defects through a redundancy technique not possible at the

digital gate level. Bolchini et al. [4] presents another example of transistor level

redundancy not possible at the gate level, providing tolerance to stuck-closed

defective transistors.

2.1 Defect tolerance for FPGAs

The most widely researched defect tolerance technique for FPGAs is variants on the

redundant row technique, originally proposed by Hatori et al. [16]. One row of logic

blocks is reserved as a spare row. If a defect is found in a row, the defective row is

bypassed and the spare row is put into use. A variant of the redundant row technique

is employed by Altera to enhance yield in some of their commercial FPGAs [1].

Most of the redundancy techniques for FPGAs, including the redundant row

technique, may be said to work at the chip level. However, it is also possible to

apply redundancy internal to the basic building blocks of the FPGA, such as the

logic blocks and switch blocks. KleinOsowski and Lilja [21] explore both the

application of error correcting codes and TMR to enhance the reliability of LUTs.

Saha et al. [29] suggests introducing error correcting codes to the LUTs in the Cell

A

B

C

A

B

C

Fig. 1 Series and parallel
replication of transistors
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Matrix architecture. Doumar and Ito [11] add an extra wire to the switch block to

provide a bypass for a faulty switch.

Defect tolerance techniques for FPGAs, especially in the context of enhancing

yield, are reviewed in detail by the authors in [6].

3 Evolution of defect tolerant circuits

Several researchers have applied evolvable hardware (EHW) [17] in the search for

fault or defect tolerant circuits. One approach is to evolve new solutions when the

old one no longer functions, e.g. [12, 20, 32]. A defect that results in faulty

behaviour triggers a mechanism that starts the evolution of a new circuit that can

cope with the defect.

A further approach to achieve defect tolerant FPGAs is through static hardware

redundancy. The goal of this work is static redundancy for LUTs and the static

strategies for evolved fault and defect tolerance are, therefore, more relevant to this

paper.

Thompson [30, 31] pioneered the field of evolved fault tolerance with an evolved

state machine for a robot controller, capable of tolerating stuck-at faults in the 32 bit

large RAM implementing the state machine. Thompson was able to evolve a static

solution that was tolerant to any single stuck-at fault in the RAM. Canham and

Tyrrell [5] evolved an oscillator for a Xilinx Virtex FPGA exhibiting redundancy to

tolerate simulated stuck-at and bridging faults. Hartmann and Haddow [15] have

evolved gate level circuits targeting tolerance to both noise and faults. Keymeulen

et al. [20] have evolved fault tolerant transistor level circuits for a field

programmable transistor array (FPTA), resulting in analog multipliers and digital

XNOR gates tolerant to six predefined defects in the FPTA. Layzell and Thompson

[23] present another example of evolved transistor level defect tolerance for digital

gates. Although a byproduct of their fitness function, they evolved digital inverters

where parallel replication of transistors provides tolerance to stuck-open defects.

The work of Hilder et al. [18] is, as in this paper, concerned with the yield issue,

applies evolution to transistor sizing and applies spice simulations to evaluate

designs. Rather than adding defect tolerant structures to an otherwise potentially

unreliable circuit, the intention is to create reliable components for a standard cell
library (SCL). SCLs are libraries of components, where each component is a pre-

designed circuit, and such components may be selected and combined to create a

circuit. Using statistically enhanced SPICE models based on 3D-atomistic

simulations, a multiobjective optimisation algorithm is applied to evolve the

transistor dimensions of the circuit (component) so as to tolerate random

fluctuations prevalent in future technology.

4 Issues on evolving transistor level redundancy

The approach taken for evolution of redundant circuits in this paper follows the

technique outlined in [8]. When fitness is to be evaluated, the circuit is tested

Genet Program Evolvable Mach (2011) 12:281–303 285

123



repeatedly with different injected defects. Defect injection during fitness evaluation

provides a means to calculate a reliability metric for the circuit. The quality of the

evolved redundancy depends on the way defect injection is performed and how the

reliability metric is included in the fitness function.

4.1 Measuring functionality

To measure if a circuit is functional according to a specification, test vectors are

applied at the circuit’s inputs and the response on the output is monitored with

SPICE simulations. The output of a circuit is defined to be true if having a value

larger than Vdd

2
. If the output is less than Vdd

2
, it is defined to be false. One functionality

metric, fbool, simply states whether the circuit has a correct Boolean response to all

tested input vectors (fbool = 1) or not (fbool = 0).

fbool is an important functionality metric when reliability is to be determined.

However, fbool might be too coarse grained when evolving towards a specific

functionality. To avoid the evolutionary algorithm from becoming a random search,

the fitness function must provide enough information for separating good and poorer

individuals, even when no individual in the population has reached 100%

functionality. Fitness should, therefore, include a functionality metric that

represents functionality in terms of how close the circuit’s output voltage is to

the desired output voltage. The main functionality metric for this paper, frms, is

based on the Root-Mean-Square (RMS) error between the simulated output and the

ideal output, for all n output measurements.

frms ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i ðsimðiÞ � idealðiÞÞ2

n

s

ð1Þ

An illustration of the functionality test setup is given in Fig. 2. To make sure the

evolved circuits are able to drive a representative load, the output of the circuit

under test is connected to a chain of two inverters. Inverters are also driving the

inputs to the circuit under test to avoid using perfect voltage sources as inputs.

Perfect voltage sources would not be representative when an injected fault results in

a short between input and either Vdd or Vss.

+−

+−

+−

Circuit under test

in_1

in_2

in_n

out

Measured output

~Vin_1

~Vin_2

~Vin_3

Fig. 2 Functionality test setup
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4.2 Fault models

A fault scenario is one possible configuration of faulty transistors for a given circuit.

The term fault model is applied in this paper as the specification of how the fault

scenarios can be constructed and how probable the different fault scenarios are of

occurring. Two fault models are considered in this work: the transistor reliability
model and the single fault model.

In the transistor reliability model, each transistor has a certain probability of

failing and each transistor fails independently of each other. If a fault scenario for

the transistor reliability model is to be created, each transistor in the circuit is tested

against a random number generator and selected to be faulty or not, based on a

chosen fault rate.

In the single fault model, a circuit can have exactly one fault at any time and any

single fault scenario is equally probable. One and only one of the transistors are

selected to fail for any given fault scenario.

4.3 Failing transistors

A transistor may fail in several ways. In this paper, several types of transistor

defects are considered: Stuck-open transistors are permanently off and are modelled

by connecting the gate to Vdd for pMOS transistors and Vss for nMOS. Stuck-closed

transistors are permanently on and are modelled by connecting the gate to Vss for

pMOS transistors and Vdd for nMOS. In addition, there may be a short between gate/

drain or gate/source which both are modelled with a 1X resistor shorting the

respective transistor terminals. It should be noted that a 0X resistor would have been

preferable but not allowed for in the simulator. However, the 1X resistor could have

been replaced with a smaller resistor.

4.4 Measuring reliability

A reliability metric indicates how well a circuit functions in the presence of faults.

Reliability may be measured by testing the circuit against a number of randomly

selected fault scenarios. The possible fault scenarios depend on the chosen fault

model. The Rtrad metric, which is used in this paper, is the percentage of these tests

where the circuit is fully functioning (fbool = 1). When Rtrad is applied with the

single fault model, it is named Rtrad single. When applied with the transistor

reliability model, the metric is named Rtrad trans. Rtrad trans can be said to be the

probability of functioning 100%, given a certain transistor fail rate.

Rtrad single may be calculated exactly by testing all possible single faults.

Rtrad trans may be estimated using a Monte Carlo simulation. Rtrad trans must,

however, be estimated once for every fitness evaluation for every individual in the

population during the entire evolutionary experiment. The result is that thousands of

Rtrad trans estimations must be performed for every evolutionary run. A thorough

Monte Carlo simulation is, therefore, too time consuming during evolution. One

possibility is to exploit the fact that the number of defective transistors in a fault
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scenario with the transistor reliability model is binomially distributed. If X is a

random variable for the number of faults in a fault scenario, x is the number of

faults, n is the number of transistors in the circuit and p is the fail rate for the

transistors, (2) may be applied to find the probability of having a specific number of

defective transistors in a fault scenario.

P½X ¼ x� ¼ bðx; n; pÞ ¼ n
x

� �

pxð1� pÞn�x ð2Þ

To find the reliability of a circuit, the circuit is evaluated with the zero fault

scenario and all the single fault scenarios and the results may be scaled by the

probability for that number of defects (x0 and x1). This is shown in (3).

Rtrad trans ¼ x0 � fbool þ x1 � Rtrad single

þ ð1� x0� x1Þ � RMC [ 1

ð3Þ

The reliability of the circuit when having more than one defect (RMC[1) must still

be found through Monte Carlo simulations. However, if (1 - x0 - x1) is small, the

number of Monte Carlo tests can be greatly reduced. If (1 - x0 - x1) is close to

zero, the RMC[1 part of (3) may be ignored completely.

4.5 Fitness function

Earlier work on evolving transistor level redundancy [8] achieved best results when

evolving the circuits in two phases. First generate redundancy using an Rtrad single

based fitness function. As concluded in [9], an Rtrad single based fitness function is

better suited for generating redundancy than an Rtrad trans based fitness function.

Phase one typically generates very bloated circuits. The evolved circuit is, therefore,

optimised in a second evolutionary phase using an Rtrad trans based fitness function.

Rtrad trans is much less forgiving for transistors without any real purpose.

The following two fitness functions, f1 and f2, are applied in this paper for phase

one (4) and phase two (5):

f1 ¼ k1frms þ k2 f̂rms þ k3Rtrad single þ k4fbool ð4Þ

f2 ¼ k1frms þ k2 f̂rms þ k3Rtrad trans þ k4fbool ð5Þ
The first component, frms, is for a single test with no defective transistors and is

included to guide evolution towards a functioning circuit with high output voltage

swing. The second component, f̂rms, represents the average frms after having tested

the circuit for all single faults. The second component is included to encourage high

output voltage swing also when there are defective transistors. The third component

is the reliability metric and the fourth component, fbool is to make sure a working

circuit is always rewarded more than a non-working circuit.

4.6 Evolutionary algorithm

Two different evolutionary algorithms are applied in this work. In the first

experiments a (1 ? 4) evolutionary strategy is employed and in the later

288 Genet Program Evolvable Mach (2011) 12:281–303

123



experiments a genetic algorithm with tournament selection. A Cartesian Genetic
Programming (CGP) [25] like representation was applied in both cases as shown in

XML in Fig. 3. An example genome is shown in Fig. 3. As is traditional for CGP,

each node \fu[ represents a gene and is described in terms of its input and output

nets and a type. In addition, each node has a value for width and length.

There is no explicit definition of a net, a net is implicitly formed when a gene

references a net by the same number as in another gene. The numbered ID is,

therefore, uniquely identifying a net. Some nets have fixed IDs: Vss has ID 0 and Vdd

has ID 1. The next IDs represent the inputs to the circuit (ID 2 in the example). The

output net of the last gene in the genome represents the circuit output (ID 3 in the

example). All other IDs are generic nets. The transistor well is always connected to

the source. In addition, transistor type (nMOS or pMOS) and characteristics (gate

dimensions) are specified for each transistor. The genome can be directly translated

to a SPICE netlist for simulation. The genome can specify any circuit topology,

including feedback loops.

Mutation is applied independently for each information block (inputs, output,

type, sizes) inside each gene in the genome. This means that a mutation that changes

e.g. the output connection will not affect any other parts of the gene. Mutation is

performed by simply exchanging the value with a random value within predefined

limits.

For crossover, the genome can be seen as a string of genes. The ordering of this

string is independent of the connections the transistors have with each other.

Crossover is performed on gene boundaries, splitting each genome in two at a

randomly selected spot, joining the resulting parts together.

(a) (b)

Fig. 3 Example of a genome
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There are several different experiments in this paper. The details of the

evolutionary algorithm (selection, mutation rate, population size etc.) are specified

when the different experiments are explained.

5 Multiple short-open technique

The series-parallel technique described in Sect. 2 is designed for tolerance to stuck-

open and stuck-closed defective transistors. Other defect types can, however, still be

catastrophic. One example is transistors where the gate is shorted to either source or

drain. To tolerate such defects, a new redundancy technique was introduced in [10].

The technique provides tolerance to any short between two of the three transistor

terminals and any open on any of the three transistor terminals. The new technique

is herein termed the Multiple Short-Open (MSO) technique and is presented in Sect.

5.3. The process towards the technique is also presented as the process highlights

one way of applying evolution for the creation of redundancy structures.

5.1 Experimental setup

The first step towards the new redundancy technique is to evolve a circuit with

successful redundancy. To be able to measure redundancy, a functional circuit is

required which can then be exposed to faults and the tolerance measured. Further, to

keep the circuit complexity low (and thus the evolution time), the chosen target

functionality was a digital inverter.

When the functionality of a circuit is to be tested, all possible input transitions are

tested in turn by setting the Piece Wise Linear (PWL) input voltage sources in Fig. 2

to correspond to the input transition to be tested. A transient analysis of the test

setup is then performed in the BSD licensed SPICE simulator ngspice [13].

The circuit output is measured after inputs have been stable for 50 ns. Circuit

components allowed are nMOS and pMOS transistors expressed in the format

illustrated in Fig. 3. The V1.0 Berkeley Predictive Technology Model (BPTM)

22 nm CMOS transistor models [33] are applied with allowed transistor sizes from

30 to 1,000 nm. Supply voltage Vdd = 1V.

A (1 ? 4) evolutionary strategy is applied with mutation rate 0.1. Evolution may

create the circuit from a maximum of 50 transistors and 55 nets for each circuit. A

net is an internal wire in the circuit, including inputs and output. Fault scenarios are

created, employing the following defect types: drain-source short (stuck-closed),

gate-drain short and gate-source short. It should be noted that this is not an

exhaustive list of defect types.

Rtrad trans, a component in the fitness function for evolution phase two (equation

(5)), can only be found given a certain transistor reliability. The transistor reliability

applied in this experiment is 0.99, a relatively low number chosen because of the

small size of the circuits in this paper. Coefficients used for the fitness functions for

both evolution phases are k1 ¼ k2 ¼ k3 ¼ 0:2 and k4 = 0.4. The high value for k4 is

there to favour fully functioning circuits over non-functioning circuits.

290 Genet Program Evolvable Mach (2011) 12:281–303

123



5.2 Analysis of best evolved inverter

The best circuit found by evolution is shown in Fig. 4. The evolved inverter is fully

functional and characteristics of the inverter are shown in Table 1. As seen by the

Rtrad single metric, the inverter is tolerant to all possible single gate/drain, gate/

source and source/drain shorts on any transistor present in the circuit. As such, the

circuit in Fig. 4 is suited for further analysis.

The standard CMOS inverter is shown in Fig. 5 and consists of a pull-up pMOS

transistor (M1) and a pull-down nMOS transistor (M2). The first step towards

understanding the evolved circuit is to identify the corresponding pull-up and pull-

down transistor networks. Transistors M1, M2, M6 and M7 in Fig. 4 represent the

pull-up network, while transistors M12 and M15 represent the pull-down network.

M1 pmos
w=268nm
l=30nm

M6 pmos
w=79nm
l=30nm

M3 pmos
w=65nm
l=30nm

M7 pmos
w=30nm
l=30nm

M2 pmos
w=156nm
l=345nm

M4 pmos
w=247nm
l=282nm

M11 pmos
w=275nm
l=30nm

M10 pmos
w=198nm
l=30nm

M14 pmos
w=373nm
l=30nm

M13 nmos
w=303nm
l=37nm

M8 nmos
w=226nm
l=58nm

M12 nmos
w=72nm
l=30nm

M15 nmos
w=331nm
l=51nm

M9 nmos
w=65nm
l=247nm

M5 nmos
w=100nm
l=30nm

Pull−up network

Pull−down network

Input network

Vdd

Vss

Fig. 4 Evolved defect tolerant inverter

Table 1 Characteristics of

inverter in Fig. 4
Property Value

Size 15 transistors

frms 0.998929

f̂rms 0.978471

Rtrad single 1.000000

Rtrad transjRt ¼ 0:99 0.965700
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The pull-up and pull-down structures are interesting by themselves. First, they

show that evolution has introduced redundant transistors in series (M1/M6, M2/M7,

M12/M15) to tolerate drain/source shorts (stuck-closed transistors). As the drain/

source short defect was one of the defects injected during evolution, redundant

transistors in series was expected.

However, evolution also introduced redundant transistors in parallel in the pull-

up network (the M1–M6 chain is parallel to M2–M7), a structure known to tolerate

stuck-open defective transistors. Stuck-open was not one of the defects injected

during evolution, so why did evolution introduce these parallel structures? When

there is a short between gate and source on transistor M1 or M2, the transistor is

effectively stuck-open, resulting in the need for a parallel chain of transistors. The

same reasoning applies for the pull-down network. However, instead of introducing

parallelism in the pull-down network, evolution has relied on the output slowly

discharging to the correct value. Unfortunately, such a solution is suboptimal

because the delay will increase and the output will just barely reach a value less than
Vdd

2
.

The next step is to understand the purpose of the transistors in the input network

i.e the transistors that connect the inverter input with the transistor gates in the pull-

up and pull-down networks. None of these transistors are connected to Vdd or Vss,

but are instead just passing on the inverter input. SPICE simulations showed that all

nets in the input network are more or less degraded versions of the inverter input. It

seems that evolution has tried to separate the inverter input from the pull-up and

pull-down networks with a resistive circuit. To tolerate a short between, for

example, the transistor M1 gate and source, the inverter input must be separated

from the gate to avoid clamping the input to Vdd and thus resulting in the inverter

output stuck-at-0. If the input is separated from the shorted gate with a resistor, the

result is a slightly degraded input signal whilst retaining correct output.

A resistor in a CMOS IC can be formed with an nMOS transistor with gate

connected to Vdd. Evolution never introduced such resistors in the input network in

Fig. 4 because those resistors are not themselves tolerant to gate/source and gate/

drain shorts. Instead, evolution has created the input network without any

connections to Vdd or Vss, thus avoiding the problem of gate shorts in the input

network.

Vdd

Vss

M1
pmos

M2
nmos

Fig. 5 Standard inverter
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5.3 A generalised defect tolerance technique

The analysis in Sect. 5.2 was then used as a basis to form the new redundancy

technique: (1) To allow for stuck-open and stuck-closed transistors, redundant

transistors should be introduced to the pull-up and pull-down networks both in

series and parallel, as in Fig. 1, (2) To tolerate gate/source and gate/drain shorts, the

transistor gates in the pull-up and pull-down networks must be isolated from the

inverter input using a defect tolerant resistor. A defect tolerant resistor can be

formed with a high-resistivity polysilicon meander structure but is here imple-

mented with two transistors as shown in Fig. 6. Combining Fig. 1 and the defect

tolerant resistor results in the MSO technique summarised in Fig. 7.

To demonstrate how the MSO technique can be used to create a defect tolerant

inverter, Fig. 8 shows the result after having applied the substitution in Fig. 7 to the

standard inverter in Fig. 5. The resistance of the resistors must be large enough to

achieve isolation. For the circuit in Fig. 8, minimum sized transistor gates are

suitable for most of the resistors, except for R7 and R8 that should be sized for

larger resistance to reduce the impact of a gate short to Vss.

pmos

nmos
Fig. 6 Resistor implementation

A

B

C

A

B

C

Fig. 7 The multiple short-open (MSO) technique, shown for pMOS. nMOS transistors are substituted in
the same way. Resistors can be implemented as in Fig. 6
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6 Defect tolerant LUT based on the MSO technique

The MSO technique described in Sect. 5 can now be applied when implementing a

LUT with traditional design techniques. To keep the size and complexity of the

LUT at a manageable level for the evolutionary experiment in Sect. 7, the chosen

LUT specification for this paper is one with only one address input, referred to as

LUT1. A traditional implementation of LUT1 is shown in Fig. 9, consisting of two

standard 6-transistor SRAM cells and a standard 8-transistor static CMOS

multiplexer. Figure 9 also shows which inputs and outputs are required for

LUT1. Asserted ‘‘W0’’ or ‘‘W1’’ results in the value on ‘‘D’’ (and its complement

‘‘D’’) is written to the respective SRAM cell. ‘‘A’’ chooses which SRAM value

should be reflected on the output.

D

W1

W0

A

~D
SRAM0

SRAM1

Fig. 9 Traditional
implementation of LUT1

Vdd

Vss

M3
pmos

w=50nm
l=30nm
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l=30nm

M1
pmos

w=50nm
l=30nm

M2
pmos

w=50nm
l=30nm

M5
nmos

w=30nm
l=30nm

M6
nmos

w=30nm
l=30nm

M7
nmos

w=30nm
l=30nm

M8
nmos

w=30nm
l=30nm

R2

pmos=30/30
nmos=30/30

R4

pmos=30/30
nmos=30/30

R6

pmos=30/30
nmos=30/30

R8

pmos=30/30
nmos=30/90

R7

pmos=30/30
nmos=30/90

R5

pmos=30/30
nmos=30/30

R3

pmos=30/30
nmos=30/30

R1

pmos=30/30
nmos=30/30

Fig. 8 Defect tolerant inverter. Resistor sizing given as W/L
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When the test setup in Fig. 2 is applied for testing a LUT1, it is not possible to

test all possible input values as was the case for the inverter experiment in Sect. 5.1

The fact that a LUT consists of storage elements means that a waveform must be

employed, testing the effect of input vectors over time. A functionality test

waveform for LUT1 is shown in Fig. 10. Figure 10 shows at which times the input

signals are asserted and also shows the expected output value at different times. For

calculating frms, the output is measured at the following times: 300, 400, 650, 750,

1,000, 1,100, 1,350 and 1,450 ms.

The output of a simulation of the LUT1 for the test vectors in Fig. 10 is shown in

Fig. 11 and it can be seen that the LUT1 is functioning as intended. There is a glitch

in the output at 800 ns which is the consequence of the SRAM cell delay. The delay

W0

W1

D

A

O

1000 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 1 1 10 0 1 0

Fig. 10 Functionality test of LUT1
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[V
]
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Fig. 11 Output of MSO LUT1, according to test vectors in Fig. 10. Vertical dotted lines indicate where
the output is measured
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is visible as a glitch due to changing the ‘‘A’’ input at the same time as ‘‘W0’’ is

asserted.

7 Evolved defect tolerant LUT

While the LUT1 in Sect. 6 is highly defect tolerant, the transistor count is very high

and is thus not meeting our goal of area efficiency. As such, a second strategy

towards a defect tolerant LUT is to directly evolve a LUT with redundancy. The

hypothesis is that more efficient redundancy techniques can result if specialising

towards the LUT functionality and letting evolution play with larger and more

complex circuits.

7.1 Exploring experiment

A LUT1, even though much less complex than the more common 4-input LUTs,

still presents a significant challenge to evolution. As such, the successful setup from

Sect. 5.1 may not be suitable. An introductory and exploring experiment is,

therefore, conducted where different experimental setups are tried. To keep

complexity down on this introductory experiment, the only defects injected are gate-

source shorts in nMOS transistors. The experiment in Sect. 5.1 showed that gate-

source short tolerance can lead to tolerance also to other possible defect types.

Concentrating on nMOS cuts the number of evaluations in half. In addition, the

functionality test in Fig. 10 is reduced to the part between 450 and 1,150 ns.

It should be noted that the purpose of this experiment is not to conclude on the

EAs ability to evolve circuits. Many more experiments are needed to draw any

conclusion on such matters. Instead, the purpose is to generate at least one

promising circuit to serve as a starting point for a refining experiment in Sect. 7.2.

Eight different experimental setups are tried and a total of 20 different

evolutionary runs are conducted. The experimental setups differ in three areas:

Seeding, elitism and test coverage. Seeding refers to how the initial population is

created. The initial population is either completely random or seeded with five

LUT1 circuits where nMOS transistors are made defect tolerant with the MSO

technique from Sect. 5. The purpose of seeding is to optimise or enhance a given

circuit, as opposed to starting evolving a circuit from just random individuals.

Elitism is a feature of some EAs where the most fit individual is copied unaltered to

the next generation. Elitism is either present or not. Elitism ensures that the fitness

of the best individual in a population is never less than in the previous generation.

Test coverage refers to how many of all possible single defects are tested during

fitness evaluation. Complete test coverage provides the most accurate fitness

estimation but is time consuming. Partial test coverage speeds up the evolutionary

experiment. For runs with partial test coverage, the defects that are tested for are

randomly selected.

For seeded experiments, the goal is to optimise the given redundant circuit and

fitness function (5) is therefore applied. Non-seeded experiments start with a
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random initial population and, therefore, needs fitness function (4) to provide

sufficient information to evolve.

A genetic algorithm is applied with population size 20, mutation rate 0.02,

crossover rate 0.2 and tournament selection with group size 3 and selection

probability 0.7. The maximum number of transistors is 400 and the maximum

number of nets is 407. Feedback is allowed to give evolution the possibility of

evolving static storage elements. All other details of the experimental setup are as

for the experiment in Sect. 5.1

Each evolutionary run is stopped after 1 week. Characteristics of the best

individual from each run are shown in Table 2. In addition, the characteristics of the

circuit applied as seed for the seeded experiments are shown in the first row of

Table 2. The numbers in Table 2 are based on 100% test coverage, even for the

individuals that were evolved with partial test coverage.

It is clear from Table 2 that the seeded experiments with complete test coverage

did not manage to improve the seed in any way. The resulting individual has the

same characteristics as the seeding individual. Some of the seeded experiments with

reduced test coverage removed some redundant transistors, with the effect of

reducing Rtrad single. This is probably due to the fact that reduced test coverage

Table 2 Results from the exploring LUT1 experiment

Run Seed Elitism Test cov. (%) f Rtrad single f̂rms frms Size Works

(Trad. designed) 0.998930 1.000000 0.996812 0.997838 165 Yes

1 Yes No 100 0.998930 1.000000 0.996812 0.997838 165 Yes

2 Yes No 100 0.993349 1.000000 0.996812 0.997838 165 Yes

3 Yes Yes 100 0.998930 1.000000 0.996812 0.997838 165 Yes

4 Yes Yes 100 0.998930 1.000000 0.996812 0.997838 165 Yes

5 Yes Yes 10 0.998930 1.000000 0.996812 0.997838 165 Yes

6 Yes Yes 10 0.988609 0.960396 0.986770 0.997712 158 Yes

7 Yes Yes 10 0.998930 1.000000 0.996812 0.997838 165 Yes

8 Yes No 10 0.998930 1.000000 0.996812 0.997838 165 Yes

9 Yes No 10 0.976675 0.934783 0.980497 0.997325 143 Yes

10 Yes No 10 0.998930 1.000000 0.996812 0.997838 165 Yes

11 No No 100 0.443721 1.000000 0.609302 0.609302 4 No

12 No No 100 0.425508 0.000000 0.551135 0.596305 3 No

13 No Yes 100 0.871550 1.000000 0.673611 0.684732 8 Yes

14 No Yes 100 0.415692 0.000000 0.502494 0.585967 4 No

15 No Yes 10 0.424682 0.000000 0.537003 0.616108 4 No

16 No Yes 10 0.424385 0.000000 0.552871 0.588953 3 No

17 No Yes 10 0.419506 0.000000 0.534065 0.593164 4 No

18 No No 10 0.433093 0.000000 0.585882 0.609286 4 No

19 No No 10 0.421290 0.000000 0.503640 0.612811 4 No

20 No No 10 0.427660 0.000000 0.518157 0.640041 5 No

Genet Program Evolvable Mach (2011) 12:281–303 297

123



results in a noisy fitness. ‘‘Noisy fitness’’ means that if fitness is evaluated twice for

the exact same individual, the fitness value may vary. In this case, the reason is that

a removed transistor may reduce the circuits ability to tolerate defects, but this is not

necessarily detected by the fitness function as the circuit is not tested for all possible
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M3 nmos
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M4 pmos
w=622nm
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M7 pmos
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M11 pmos
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M12 pmos
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Fig. 12 Evolved LUT1
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Fig. 13 Output of evolved LUT1, according to test vectors in Fig. 10. Vertical dotted lines indicate
where the output is measured
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defects. One interesting result is run 9 where the reduction in transistor count is

larger than the reduction in Rtrad single.

For the non-seeded experiments, evolution was unable to find any working

circuits, except in one case (run 13) with elitism and complete test coverage.

7.2 Refining experiment

The exploring experiment in Sect. 7.1 resulted in at least two interesting circuits.

Run 13 resulted in a working circuit with complete tolerance to all single gate-

source shorts in nMOS gates, yet consisting of only eight transistors. As the

motivation for these experiments is a more area efficient redundant LUT than what

was constructed in Sect. 6, run 13 was selected for a refining experiment.

The same experimental setup was applied, except with the full functionality test

in Fig. 10 and gate-source short defects where injected in both nMOS and pMOS

transistors. The initial population for the refining experiment was seeded with the

individual from run 13.

As explained in Sect. 4.5, evolution was conducted in two phases. A parallel

variant of the EHW simulator was run on 20 compute nodes on a cluster and each

evolutionary phase was run for several days. Figure 12 shows the resulting evolved

LUT1 and Fig. 13 shows a simulation for the test vectors in Fig. 10.

8 Discussion

To evaluate the two LUT1 implementations in Sects. 6 (MSO) and 7 (Evolved), two

other LUT1 implementations have been constructed and simulated. The first is a

traditional non-redundant LUT1 (Non-red.), as shown in Fig. 9. The second is a

TMR implementation (TMR) where the non-redundant LUT1 is triplicated and a

mirrored adder [14] applied as the voter. The mirrored adder has the very useful

property of being tolerant to single stuck-closed and stuck-open defects when

applied as a TMR voter, as long as there are no defective modules.

Characteristics for all four LUT1 implementations are given in Table 3 for

comparison. Rtrad trans is estimated for a transistor reliability of 0.99 and is based on

standard Monte Carlo simulations with 10,000 tests. Delay is the time the output

needs for stabilising after the address input ‘‘A’’ changes. Delay measurements are

Table 3 Comparison of LUT1 implementations

Property Non-red. TMR MSO Evolved

Size 22 trans. 76 trans. 264 trans. 14 trans.

frms 0.998717 0.999346 0.997665 0.733561

f̂rms 0.779882 0.961079 0.994218 0.643702

Rtrad single 0.102273 0.858553 1.000000 0.446429

Rtrad trans 0.820000 0.882200 0.986700 0.921900

delay \ 1 ns \ 1 ns \ 1 ns &15 ns
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based on the slowest transition for the test in Fig. 10 with no injected defects.

Although not entirely accurate, these delay numbers provide an estimate for

discussions. Timing requirements for writing to the LUT are not considered, based

on the assumption that configuration of the LUT is rarely on the critical path for an

FPGA application and, therefore, less important. The numbers in Table 3 are based

on simulations where the full range of defect types are injected: gate-source short,

gate-drain short, stuck-open and stuck-closed.

When considering Rtrad single, the MSO LUT1 is the most reliable and tolerates

all possible single defective transistors (Rtrad single ¼ 1). The TMR LUT1 comes in

second and tolerates 86% of all single defects. The reason TMR does not tolerate all

possible single defects is a lack of tolerance to gate shorts. Some gate shorts in the

TMR modules either pulls up or pulls down one of the module inputs so much that

the other modules also fail. The voter also fails for some gate shorts.

For Rtrad trans, the MSO LUT1 is again the most reliable, estimated to 0.99. This

means that given a transistor reliability of 0.99, the probability that the MSO LUT1

is working 100% is 0.99. TMR with 0.88 is a considerable improvement over the

non-redundant LUT1 with 0.82. The evolved LUT1 is even better than TMR and is

estimated to 0.92. The reason for the high Rtrad trans of the evolved solution despite

the lower number of tolerated single defects, is the small size. The evolved LUT1

consists of only 14 transistors, resulting in a lower probability of having one or more

defective transistors. 14 transistors is even less than the standard non-redundant

LUT1, which is interesting, considering the higher number of tolerated single

defects. The MSO LUT1 is by far the largest implementation in number of

transistors, with 3.5 times the number of transistors of the TMR LUT1.

Although the evolved solution is both small and scores well on the reliability

metrics, there are several disadvantages that separates it from all the three other

LUT1 implementations. As evident from the simulation in Fig. 13, the evolved

solution relies on some form of dynamic storage that is discharged by the output

load. Some form of refresh is, therefore, needed. The output voltage swing is also

very low, shown as a low value for frms in Table 3, and a restoring gate must,

therefore, be present at the output. In addition, the evolved solution has a high

delay.

This paper has concentrated on the 1-input LUT. Most FPGA LUTs today have

from four to six inputs. The technique applied when constructing the LUT in Sect. 6

can easily be applied to any LUT implementation with more inputs. A multiple

input LUT is, however, far too complex to be evolved with current EHW techniques

and must therefore be constructed from several evolved 1-input LUTs and a defect

tolerant multiplexer. Any general improvement on the scalability of evolvable

hardware techniques will be of direct benefit for the techniques in this paper.

Some factors limit the accuracy of the results in Table 3. All simulations are

based on the functionality test in Fig. 10 where only a limited number of test cases

are present. It is possible that a faulty LUT may be classified as working because the

tested input pattern does not reveal the faulty behaviour. Investigation into more

effective ways to test a time dependent circuit, such as an LUT, is needed so as to

reduce the evaluation time of a single individual.
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In addition, the results are only valid for the four types of transistor defects

considered in this paper. If other defects are considered, such as shorts in the

interconnect between two transistors, the results could change. An important issue

with scaled down devices is variability. Exploring solutions to such issues requires

specialised models such as those being developed at the University of Glasgow, UK

and incorporated in the EH defect tolerant work presented in [18]. The evolved

circuits presented in this paper are not proposed as viable circuits but rather to

highlight the advantages and disadvantages of the techniques at this stage. Further,

refinement of the techniques and more accurate modelling of real world defects is

needed before these techniques may be applied to evolve realistic solutions to real-

world problems.

9 Conclusion

This paper has investigated the application of artificial evolution as a tool for

achieving generic defect tolerant structures. Further, the challenges addressed and

remaining are presented. An evolved defect tolerant structure (MSO) has been

presented and applied to achieve a defect tolerant LUT for FPGAs and the resulting

circuit has been compared to an evolved defect tolerant LUT in terms of defect

tolerance and area usage.

Both the MSO LUT1 and the evolved LUT1 have advantages and disadvantages.

The evolved solution is very small, yet still exhibits some tolerance to defects. As

such, the evolved solution is an interesting example for further research. However,

high delay; an output signal far from being close to perfect; possible input pattern

ordering dependence and the fact that the LUT relies on dynamic storage, makes the

evolved solution unrealistic in real FPGAs without further improvements. Further,

the evolved solution is challenged with respect to evolvability due to the high

evaluation cost.

The MSO LUT1 has the advantage of high output voltage swing, reasonable low

delay and tolerates all single transistor defects of the four types this paper has

addressed. Further, since the LUT design does not involve evolution but rather

inclusion of the generic defect tolerant structure, scaling up the LUT will not be

hindered by the complexity issues faced by the evolved solution. However, an

unacceptably high area requirement requires further refinement of the technique.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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