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Abstract. Drilled shafts are, typically, designed by considering the axial ultimate limit state. In
this design methodology, the axial displacement requirements are verified once the design is
completed. As an alternative, drilled shafts may be designed by considering the axial service
limit state. Service limit state foundation design is more efficient when done using the load and

resistance factor design (LRFD) approach. Furthermore, reliability may be rationally incor-
porated into the design process that utilizes the LRFD method. In this paper, we develop
probabilistic approaches for axial service limit state analysis of drilled shafts. The variability of

shaft-soil interface properties is modeled by lognormal probability distribution functions. The
probability distributions are combined with a closed-form analytical relationship of axial load-
displacement curves for drilled shafts. The closed-form analytical relationship is derived based

upon the ‘‘t–z’’ approach. This analytical relationship is used with the Monte Carlo simulation
method to obtain probabilistic load-displacement curves, which are analyzed to develop
methods for determining the probability of drilled shaft failure at the service limit state. The

developed method may be utilized to obtain resistance factors that can be applied to LRFD
based service limit state design.

Key words. drilled shaft, failure probability, load-displacement relation, serviceability.

Notation: D: drilled shaft diameter, mm; dP/du: drilled shaft initial stiffness, kN/m;
Es: soil elastic modulus, kN/m2; K: shear modulus of shaft-soil interface, kN/m2; Kc:
axial stiffness of debond zone, MN; Km: drilled shaft axial stiffness, MN; Kt: drilled
shaft tip soil stiffness, kN/m; Lb: shaft interaction zone length, m; Ld: shaft non-
interaction length, m; P: drilled shaft load, kN; Pt: drilled shaft tip resistance force,
kN; Pu: drilled shaft ultimate pullout capacity, kN; q: shear force per unit length,
kN/m; qo: yield strength of shaft-soil interface, kN/m; u: displacement, mm; uo:
interface displacement at yield, mm; ut: tip displacement, mm; �u: deformation at top
of drilled shaft, mm; U: non-dimensional displacement; �u: non-dimensional dis-
placement at top of interaction zone; x: location along the drilled shaft length; a:
normalizing factor, cm; j: non-dimensional factor; k: scaling factor; ls: tip soil
Poisson’s ratio; su: ultimate shear strength of shaft-soil interface, kN/m2; n: non-
dimensional length; no: location of transition point.
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1. Introduction

Drilled shafts are, traditionally, designed by considering the axial ultimate limit state

following the so-called working stress design (WSD) or the allowable stress design

(ASD) methodology. In this design methodology, the axial displacement require-

ments are verified once the design is completed. As an alternative, drilled shafts may

be designed by considering the axial service limit state. In this alternative design

methodology, reliability based approaches, such as the load and resistance factor

design (LRFD) approach, may be rationally incorporated. As discussed in FHWA

(1999) and Paikowsky et al. (2004), the LRFD approach of drilled shaft design has

the following advantages: (1) foundation design is easier and efficient when the

structure is designed using LRFD method, as the load combinations need not be

redefined, and (2) reliability may be rationally incorporated into the design process.

In the LRFDmethod, the design may be evaluated for a variety of load combinations,

including those for normal strength requirements and those for extreme-event-load-

ing requirements. Furthermore, drilled shaft axial capacity may be evaluated at both

the ultimate limit state and the service limit state AASHTO (2004).

This paper presents probabilistic approaches for axial service limit state analysis

of drilled shafts based upon a probabilistic mathematical model for drilled shaft

load-displacement behavior. The soil-drilled shaft interaction is considered explic-

itly in the model development along the lines of the ‘‘t–z’’ approach. To ensure

model simplicity, we consider the shaft-soil interface to be homogeneous with depth

and ideally elasto-plastic. Consequently, we obtain closed form analytical rela-

tionships for drilled shaft load-displacement behavior. These expressions are given

in terms of the shaft-soil interface properties: the shear modulus of shaft-soil

interface sub-grade reaction, K, the ultimate shaft-soil interface shear strength, su,
and the modulus of tip soil sub-grade reaction, Kt. In traditional analysis, ‘‘char-

acteristic’’ values of shaft-soil parameters are used to obtain the deterministic load-

displacement curves. However, considering the uncertainties associated with drilled

shaft installation, a probabilistic analysis is desirable. In recent years, the

application of probabilistic analysis and reliability based design in geotechnical

engineering is being increasingly recognized (see Baecher and Christian, 2003;

Christian, 2004).

Uncertainties in the shaft-soil interface properties may arise from three primary

sources: inherent variability, measurement error, and transformation uncertainties

(Phoon and Kulhawy, 1999). Inherent variability results from the natural processes

of soil deposition, consolidation etc., while the measurement error and transfor-

mation uncertainties result from soil testing and the attempts to correlate soil tests

into design soil properties. The purpose of this paper is to establish the probabilistic

behavior of the shaft head displacement due to these uncertainties. To that end, we

utilize probability distribution functions for shaft-soil interface properties along with

the derived analytical relationships to obtain probabilistic load-displacement curves

for drilled shafts.
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Since the derived closed form solutions for drilled shaft head displacement are

complex, typical analytical probabilistic methods, such as the first-order second-

moment method, cannot be used to determine the probability distribution of shaft

head displacement. Instead, the Monte Carlo simulation method is used. The shear

modulus of the shaft-soil subgrade reaction, K, and the ultimate shaft-soil shear

strength, su, are assumed to be random variables and are characterized statistically

by the lognormal probability distribution functions defined by a mean and standard

deviation. Probability curves are generated in order to quantify the probability of

service limit state failure given an allowable head displacement.

2. Drilled Shaft-Soil Interaction and Variability of Shaft-Soil Interface

Properties

The drilled shaft-soil interaction and the load transfer mechanism is schematically

shown in Figure 1. It is assumed that the load-transfer to the ground occurs through

the soil-concrete interface of the drilled shaft as represented by spring-slider system in

Figure 1. Similar assumptions are commonly made for analytical and numerical

models for load-displacement behavior (or the so called ‘‘t–z’’ curves) of piles and

drilled shafts (cf. Scott, 1981; Kraft et al., 1981; Reese and O’Neill, 1987; FHWA,

1999; Misra and Chen, 2004). Thus, the drilled shaft-soil interface is assumed to

behave as an ideal elastic–plastic material, both in the drained and the undrained

conditions.

Figure 2 shows the idealized force-displacement behavior of the spring-slider sys-

tem as depicted by the shear force per unit length q, versus displacement u, curve.

Here K is the shear modulus of shaft-soil interface sub-grade reaction, qo is the yield

strength of the shaft-soil interface given by the product of shaft perimeter pD and the

Figure 1. Spring and slider model for drilled shaft-soil interface.
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ultimate shear strength of shaft-soil interface in drained or undrained conditions

denoted by su, and uo=qo/K is the interface displacement at yield. The interface

properties are related to the soil parameters and the construction techniques.

Moreover, the interface properties may follow the stratification of the natural soil;

however, for simplicity of analysis that could benefit engineers in drilled shaft design,

a homogeneous interface is assumed. The advantage of this assumption is that the

constant values of K and su may be used as representative shaft-soil interface

parameters for a given installation.

In a deterministic analysis, a characteristic value of the shaft-soil interface prop-

erties, K and su, are used to obtain a representative shaft load-displacement curve.

The load-displacement curve is then used as a basis for design and/or analysis of the

drilled shaft foundation. However, these shaft-soil interface properties may vary from

one installation to the other at a given site due to the natural variations in soil deposits

and construction procedures. Therefore, it is desirable to describe the interface

properties statistically using probability distribution functions based upon their

means and standard deviations. From a review of the literature, there does not appear

to be any single probability distribution function that has been used to describe shaft-

soil interface variability. Since the shaft-soil interface properties are non-negative, the

use of non-Gaussian probability distribution function, such as lognormal, gamma,

chi-square and beta is necessary (see for example Chalermyanont and Benson, 2004;

Griffiths and Fenton, 2004). In this paper, the shaft-soil interface properties, su andK,

are assumed to be random variables and are described statistically by the lognormal

probability distribution function.

Several probabilistic approaches exist for evaluation of functions that involve

random variables. Since the load-displacement relationships are non-linear functions

of these interface properties, closed-form probabilistic relations are not possible.

Moreover, due to the complexity of the head displacement functions, truncated Taylor

series expansion methods, such as the first-order, second moment method (FOSM),

are cumbersome to use. However, because the probability distribution functions of the

soil properties have been initially defined by the lognormal distribution, the so called
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Figure 2. Drilled shaft-soil interface behavior.
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exact probabilistic solution methods (Harr, 1996), may be utilized to solve for the shaft

head displacement. Therefore, the Monte Carlo simulation method is utilized here to

obtain probabilistic load-displacement relations for drilled shafts.

In a Monte Carlo simulation, a large set of randomly generated numbers having a

defined probability distribution function is generated. During each trial, a random

number is generated from within the probability distribution function for each ran-

dom variable. Figure 3a and b show the results of random values of shaft-soil interface

properties, K and su, generated using a lognormal distribution function. In Figure 3a,

the solid lines depict the shape of the lognormal distribution function for a mean value

equal to 89 MPa and standard deviation of 27 MPa. The symbols superimposed over

the lognormal distribution function depict the histogram of 5000 values that were

randomly generated by aMathcad program for the shear modulus, K, based upon the

lognormal distribution functionwith the same parameters. Similarly, in Figure 3b, the

Figure 3. (a) Probability distribution histogram for random generation of K based upon a mean value of

89 MPa with a standard deviation equal to 27 MPa. (b) Probability distribution histogram for random

generation of su based upon a mean value of 90 kPa with a standard deviation equal to 27 kPa.
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solid lines depict the shape of the lognormal distribution function for a mean value

equal to 90 kPa, and standard deviation of 27 kPa and the symbols depict the histo-

gram of 5000 values that were randomly generated for the ultimate shear strength, su,
based upon the lognormal distribution function with the same parameters.

The required number of Monte Carlo trials is based upon achieving a particular

level of reliability (Harr, 1996; Baecher and Christian, 2003). Each trial in a Monte

Carlo simulation is assumed to be an independent experiment with a certain prob-

ability of success, P. Based upon this assumption, the trials will generate a binomial

distribution. When the number of trials, N, is large, the binomial distribution can be

approximated as a Gaussian (normal) distribution with a mean of NP and a stan-

dard deviation of (NP(1)P))1/2 (Harr, 1996). The level of reliability, or confidence

interval, can be set by selecting the level of uncertainty. Based upon this reliability

principle, the number of Monte Carlo trials required for a confidence level of 90% is

approximately 4500 (Harr, 1996). For the results reported in this paper, a Monte

Carlo simulation with 5000 trials was conducted.

3. Elastic Shaft-Soil Interaction Model

Given the manner in which drilled shafts are installed, the load transfer occurs via the

shaft-soil interface in the interaction zone, Lb. The remainder of the shaft-soil

interface is considered to be non-interacting having negligible shear resistance. The

non-interacting zone is considered to be the top 0.3–1.5 m depending upon the

ground disturbance, fill placement and construction sequence used. As the drilled

shaft is subjected to loading, the shaft-soil interface in the interaction zone, Lb, first

deforms elastically. Subsequently, the interface begins to yield as the load is increased

further. The interface yield initiates at the top of the interaction zone and progresses

to the bottom of the shaft. The shaft itself is assumed to behave elastically throughout

considering that the load required to reach the interface yield strength is much smaller

than that required to yield the concrete.

Following the procedure presented by Scott (1981) in the context of pile analysis,

under elastic deformation of the shaft-soil interface, the force balance of the shaft-

soil interaction of a slice Dz is given by the following equilibrium equation:

qðzÞ � KuðzÞ ¼ 0 ð1Þ
where, q(z) is the shear force per unit length along the shaft, K is the shear modulus

of shaft-soil interface sub-grade reaction, and u(z) is the shaft deformation at that

location. Denoting the shaft axial stiffness to be Km, the axial force in the shaft is

given by Kmdu/dz and hence, the shear force per unit length q(z) is obtained to be:

qðzÞ ¼ Km
d2u

dz2
ð2Þ

Using a non-dimensionalized length n=z/Lb, the governing equation Equation (1)

may be written as:
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d2u

dn2
� k2uðnÞ ¼ 0 for 0 � n � 1 ð3Þ

where scaling factor k is given by:

k2 ¼ KL2
b

Km
ð4Þ

Considering the shaft interaction zone, Lb, may range from 3 to 30 m, and the

ratio of interface sub-grade reaction and shaft axial stiffness, K/Km, may vary

from 10)3 m)2 to 0.1 m)2, average values of scaling factor, k, would range from

as low as 0.1 for a softer interface to as high as 10 for a stiff interface. However,

its probability distribution will depend upon that of shaft-soil interface sub-grade

reaction, K, and as evident from Equation (4), is directly proportional to the

square root of K. Figure 4a gives a plot of the probability distribution histogram

Figure 4. (a) Probability distribution histogram for k. (b) Probability distribution histogram for j.
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for the scaling factor, k, calculated using Equation (4) and the probability dis-

tribution of the shear modulus of the shaft-soil interface sub-grade reaction, K,

given in Figure 3a. In these computations, the shaft diameter=900 mm, shaft

length=10 m, the interaction zone, Lb=9 m, and modulus of elasticity of the

drilled shaft=26300 MPa. The expected value of k is found to be approximately

0.72.

Under compression, the drilled shaft will develop a tip resistance force, Pt

proportional to the tip displacement, ut given by:

Pt ¼ Ktut ð5Þ
where Kt is the tip soil stiffness. Based upon theories for rigid punch bearing upon

elastic half-space, the tip soil stiffness, Kt, may be related to shaft diameter and

elastic properties of tip soil as follows (Johnson, 1985):

Kt ¼
0:3pDEs

ð1� l2
s Þ

ð6Þ

where Es is the tip soil elastic modulus and ls is tip soil Poisson’s ratio.

Considering that the shaft has an applied load, P, at the top and a tip force given

by Equation (5), Equation (3) may be solved to obtain the following expression for

normalized shaft deformation:

UðnÞ ¼ 1

a
uðnÞ ¼ P

Pu

cosh knþ jk sinh kn
kðsinh kþ jk cosh kÞ for 0 � n � 1 ð7Þ

where Pu=p DLbsu and the non-dimensional factors a and j, are given as:

a ¼ PuLb

Km
and j ¼ Kt

KLb
ð9Þ

Thus, the elastic deformation, �u, at the shaft head under an applied load, P, is

obtained as:

�u ¼ PLb

Km

cosh kþ jk sinh k
kðsinh kþ jk cosh kÞ þ

PLd

Km
ð10Þ

The factors that control the non-dimensional factor, j, are the ratio of shaft

diameter and interaction length, D/Lb, and the ratio of tip soil modulus of elas-

ticity and the shaft-soil interface sub-grade reaction, Es/K. Considering that D/Lb

ranges from 10)2 to 3�10)2 and Es/K ranges from 2�10)2 to 8, the average value

of non-dimensional factor, j, would typically range from 10)4 to 10)1. However,

its probability distribution will depend upon that of shaft-soil interface sub-grade

reaction, K and as evident from Equation (9), is inversely proportional to K.

Figure 4b gives a plot of the probability distribution histogram for the

non-dimensional factor, j, calculated using Equation (9) and the probability dis-

tribution of K given in Figure 3a. In these computations, the elastic soil modu-

lus=75 MPa, and soil Poisson’s ratio=0.4. The expected value of j is found to be

approximately 0.086.
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4. Elasto-Plastic Shaft-Soil Interaction Model

As the load on the drilled shaft is increased, the shaft-soil interface will begin to yield

from the top of the interaction zone. Now, considering the force balance of slices Dz
at location z in the plastic zone along the shaft, we obtain an additional equilibrium

equation:

qðzÞ � qo ¼ 0 ð11Þ

Thus, under elasto-plastic deformation of shaft-soil interface, the following gov-

erning equations are obtained:

d2u

dn2
� k2uðnÞ ¼ 0 for 0 � n � no ð12Þ

and

d2u

dn2
� k2uo ¼ 0 for no � n � 1 ð13Þ

The interface displacement at yield, uo=qo/K, and the location along the shaft of the

transition from the elastic zone to the plastic zone is denoted by no. To satisfy

continuity of displacement and equilibrium at the transition point no, the following

boundary conditions must be satisfied:

u noð Þ½ �E ¼ u noð Þ½ �P and
du noð Þ
dn

� �E
¼ du noð Þ

dn

� �P
ð14Þ

where superscript E refers to the elastic zone and superscript P refers to the plastic

zone along the shaft as described by Equations (12) and (13), respectively.

Considering that the shaft has an applied load, P, at the top and the tip force given

by Equation (5), Equations (12) and (13) yield the following expressions for

normalized shaft deformation in the interaction zone:

UðnÞ ¼ 1

a
uðnÞ ¼ cosh knþ jk sinh kn

k2 cosh kno þ jk sinh knoð Þ
for 0 � n � no ð15Þ

and

UðnÞ ¼ 1

a
uðnÞ ¼ 1

2
n2 � n2o
� �

� 1� P

Pu

� �
n� noð Þ þ 1

k2
for no � n � 1

ð16Þ

The condition of continuity of displacements at the elastic to plastic transition point

yields the following identity, which can be solved for a given load P to obtain the

location of transition point no:

no � 1ð Þ � tanh kno
k

þ P

Pu
� 1

cosh kno

j
cosh kno þ jk sinh kno

� �
¼ 0 ð17Þ
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From Equation (17), it is seen that the yielding behavior of the shaft-soil interface

not only depends upon the load ratio P/Pu, it also depends upon the scaling factor k
and the non-dimensional factor j that embody the effects of shaft length, shaft

stiffness, shaft-soil interface stiffness, and tip soil stiffness. The scaled shaft

displacement, �u, at the shaft head under an applied load, P, is given by:

�U ¼ 1

2
1� n2o
� �

� 1� P

Pu

� �
1� noð Þ þ 1

k2
þ P

Pu

Ld

Lb
for 0 � no � 1 ð18Þ

Rewriting Equation (18), the shaft head displacement, �u, under an applied load, P,

is given as:

�u ¼ 1

2

qoL
2
b

Km
1� n2o
� �

� Lb qoLb � Pð Þ
Km

1� noð Þ þ uo þ
PLd

Km
for 0 � no � 1

ð19Þ

When the shaft-soil interface yields completely (i.e. no=0), the tip carries the addi-

tional applied load and the normalized shaft deformation is given by:

UðnÞ ¼ 1

a
uðnÞ ¼ 1

2
n2 þ P

Pu
� 1

� �
nþ P

Pu
� 1

� �
1

k2j
for 0 � n � 1 ð20Þ

When the tip force, Pt, calculated from Equation (5), reaches the tip bearing

capacity, the drilled shaft fails by plunging. Drilled shaft tip bearing capacity may be

obtained from bearing capacity theories for deep foundations assuming a punching

shear failure (see for example Coduto, 2001).

5. Determination of Shaft-Soil Interface Properties

The shaft-soil interface properties have a complex dependency upon the soil prop-

erties and construction techniques. These properties may be empirically obtained by

analyzing the measured load-displacement curve obtained from a load test at given

installations. The shaft-soil interface properties are related to the drilled shaft initial

stiffness, dP/du, and the ultimate pullout capacity or the load corresponding to yield

under shaft compression denoted by Pu. From Equation (10), the drilled shaft initial

stiffness may be related to the scaling parameter, k, interaction length, Lb, and axial

stiffness, Km, by the following expression:

dP

du
¼ kKm

Lb coth kþ Ldk
ð21Þ

Thus, the scaling parameter,k, and consequently, the shaft-soil interface shear

modulus of sub-grade reaction, K, may be computed from measured load-

displacement curves. The ultimate shear strength, su, may be similarly obtained from

measured load corresponding to yield, Pu.

The shaft-soil interface properties used in the Monte Carlo simulation reported in

this paper were obtained using load test data provided by Phoon et al. (1995). For
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each load test, the shaft diameter, shaft length, ultimate load, ultimate displacement,

and displacement at 50% of the ultimate load were given. This data was used to

back-calculate values of su and K from each load test. Since a majority of the load

test data was for drilled shafts installed in clay, the modulus of elasticity=75 MPa,

and Poisson’s ratio=0.4 was assumed for the tip soil to calculate the value of Kt used

in Equation (6). The mean values of su and K from the entire data set were calculated

to be 90 kPa and 89 MPa, respectively. The coefficient of variation for each random

variable was set at 0.30, assuming typical variability of the shaft-soil interface for a

given site, and the standard deviation of each soil property was based upon this

value.

In Figure 5, we plot typical load-displacement curves based upon a deterministic

closed-form shaft head displacement solution using the back-calculated mean values

of su=90 kPa and K=89 MPa. We also plot the load displacement curve based

upon an empirical hyperbolic equation proposed by Phoon et al. (1995) as a best fit

to the measured load test data. Literature review suggests that the shaft side resis-

tance becomes fully plastic along the length, Lb, at a shaft head displacement of

10 mm. From the closed-form solution given in Figure 5, it is apparent that the side

resistance soil becomes fully plastic at a displacement of approximately 4 mm.

Because the closed form solution utilizes an ideal elasto-plastic shaft-soil interface

model, the calculated load-displacement curve does not completely capture the non-

linear behavior. However, it is encouraging that the simple closed form solution

presented here replicates the main features of the load-displacement curves. The

closed form solution closely matches the initial stiffness of the hyperbolic curve as

well as the post-yield hardening behavior. For illustration, we also plot the load-

displacement curves that are obtained using mean su and K±1-standard deviation.

Figure 5. Load-displacement curve based upon closed-form displacement solution. Dashed lines are

±1-standard deviation from deterministic solution. The dotted line is based upon an equation given by

Phoon et al. (1995) for drilled shafts under compression.
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6. Probabilistic Load-Displacement Relationships

A computer program was written utilizing Mathcad software to solve for the drilled

shaft head displacement. The Mathcad program generates a random value for K and

su within the defined probability distribution function and uses these values in

Equations (10), (19), and (20) to solve for drilled shaft head displacement. As

mentioned previously, 5000 trials were performed. The load-displacement curves

from the first 20 trials are plotted in Figure 6 along with the deterministic load-

displacement curve obtained from mean values of the properties. Classic load-dis-

placement curves are obtained characterized by an initial steep curve, a yield point at

which the shaft-soil interface completely yields, followed by a hardening curve

during which the additional load is supported by the shaft tip.

6.1. ALLOWABLE DISPLACEMENT EXCEEDANCE PROBABILITIES

Based upon the probabilistic load-displacement simulations, the probability distri-

bution of shaft head displacement at 2, 3 and 4 MN loads were obtained as shown in

Figure 7a. The corresponding cumulative probability distribution is plotted in

Figure 7b. We find that the resulting distribution of displacements do not fit the

lognormal distribution. Moreover, the distributions vary significantly with increase

in load. Since the displacements are a complex function of shaft-soil interface

properties, such a result is expected. At low loads, the likelihood of the drilled shaft-

soil interface completely yielding is small; therefore, the displacements are distrib-

uted in a narrow range. At higher loads, the distribution becomes broader as more

and more load-displacement curves reach yield. It can be observed that the
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Figure 6. Load-displacement curve for 20 realizations based upon lognormal distribution (dark line

indicates deterministic results).
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distribution for the shaft head displacement at a load of 2 MN is rather small,

encompassing a range of less than 10 mm; conversely, the distribution for the shaft

head displacement at a load of 4 MN is rather large, encompassing a shaft head

displacement range of nearly 40 mm.

For the purposes of demonstrating the concept of exceedance probability, distri-

bution histograms were developed based upon an allowable drilled shaft displace-

ment of 10 mm. For this study, an allowable displacement of 10 mm was used for

convenience. Although there does appear to be some literature on the subject of

allowable vertical displacements for foundations, the values seem to be greatly

varied. NCHRP Report 343 provides a table of allowable displacements for bridges

expressed in terms of settlement magnitude (Barker et al., 1991). The range of the

displacement magnitude is from 51 mm, termed as ‘‘not harmful,’’ to 102 mm,

termed as ‘‘harmful but tolerable.’’ A settlement criterion in terms of angular

Figure 7. (a) Probability distribution histograms for shaft head displacement when drilled shaft is sub-

jected to loads of 2, 3, and 4 MN, respectively. (b) Cumulative distribution histograms for shaft head

displacement when drilled shaft is subjected to loads of 2, 3, and 4 MN, respectively.
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distortion is also provided in the NCHRP Report and is expressed in terms of

tolerable movements for single-span and multiple span bridges.

In Figure 8, we have plotted the probability that the allowable displacement will

be exceeded at a given load. From the 5000 simulations generated at each load, the

number of simulations exceeding the allowable displacement is determined. The

probability is computed as the number of simulations exceeding the allowable dis-

placement divided by the total number of trials. At small loads, the numbers of

simulations that exceed the allowable displacement are small, thus the exceedance

probability is small. As the load-level increases, the numbers of simulations that

exceed the allowable displacement will increase. Finally, at a certain load, it is likely

that the allowable displacement is always exceeded. From Figure 8, we see that at a

load of 5800 kN, the probability of exceedance of the 10 mm allowable displacement

is 100%. Alternatively, the load corresponding to 50% probability of exceedance of

the 10 mm allowable displacement is approximately 3000 kN. Thus, these excee-

dance probability curves may be applied to evaluate the likelihood that the drilled

shaft will exceed an allowable displacement at the design load.

6.2. LOAD CAPACITY PROBABILITY DISTRIBUTION

The load-displacement curves generated from the simulations may also be analyzed

to determine the drilled shaft load capacity at a given allowable displacement. In

Figure 9, we have plotted the probability distribution function for the load capacity

at an allowable head displacement of 10 mm. The corresponding cumulative

distribution function is plotted in Figure 10.

The probability distribution function from Figure 9 may be used to develop

resistance factors at a given allowable displacement provided that the probability

distribution function of the loads acting on the drilled shaft are known based upon

Figure 8. Exceedance probability curve for an allowable shaft head displacement of 10 mm.
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LRFD service load criteria. To that end, the probability of exceeding the allowable

displacement can also be calculated based upon the load and load capacity distri-

bution functions. Figure 10 provides the probability that the load capacity will be

equal to or less than the required load capacity for a given allowable displacement.

For example, the probability that the load capacity of the drilled shaft is less than or

equal to 3000 kN is approximately 0.50 for an allowable displacement of 10 mm. If

10 mm were the absolute allowable displacement, this probability is most likely too

Figure 9. Probability distribution histogram for shaft service limit state load capacity given an allowable

shaft head displacement of 10 mm.

Figure 10. Cumulative distribution histogram for shaft service limit state load capacity given an

allowable shaft head displacement of 10 mm.
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high, and the designer would then need to adjust the design to produce a much lower

probability. For a designer to meet the criteria of a high reliability, a load of

1800 kN or less is most likely appropriate

6.3. CASE HISTORY

For practical design, it may be desirable to represent the probability and cumulative

distribution histograms given in Figures 9 and 10 by a factor of safety histogram.

Assuming the load on the drilled shaft to be deterministic, the factor of safety of the

drilled shaft at the service limit state may be expressed as:

FS ¼ R

Q
ð22Þ

where Q=load on the drilled shaft and R=drilled shaft load capacity. Since the

drilled shaft load capacity is a probability distribution function given in Figure 9,

Equation (22) will result in a probability distribution function for the factor of

safety. When the factor of safety is calculated to be less than unity, failure of the

drilled shaft at the service limit state will occur. Therefore, assuming that the drilled

shaft load capacity histogram (and consequently, the factor of safety histogram)

follows a lognormal distribution, the probability of drilled shaft failure at the service

limit state can be calculated as:

Pf ¼ PðFS � 1Þ ¼ U
lnð1Þ � lln FS

rln FS

� �
ð23Þ

where lln FS is the log mean of the factor of safety, rln FS is the log standard

deviation of the factor of safety, and F( ) is the cumulative standard normal dis-

tribution function. If we assume, for example, that the load on the drilled shaft is

equal to 2000 kN, the probability distribution and cumulative distribution histo-

grams given in Figures 11 and 12 are obtained for the factor of safety using Equation

(22).

Using Equation (23), the probability of drilled shaft failure at the service limit state

(10 mm allowable displacement) was calculated to be 2.2%, which corresponds

approximately to a reliability index, b, of 2.0. The reliability index is an alternate

method of measuring the probability of failure on a more convenient scale as the

probability of failure can be difficult to assess when its value is small (Kulhawy and

Phoon, 1996). Standard statistics textbooks provide the relationship between prob-

ability of failure and the reliability index. At the service limit state, it has been

suggested that the reliability index be equal to 2.6 (Phoon et al., 1995), which

approximately corresponds to a probability of failure of 0.5%. Therefore, in the

design scenario presented here, the drilled shaft must be revised until the reliability

index is increased to 2.6 (i.e. the probability of failure is decreased). Alternatively, the

load capacity at the service limit state should be reduced to 1800 kN. For simplicity,

the probability of failure can also be determined directly from the cumulative

distribution histogram in Figure 12.
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The development of the factor of safety histograms, and consequently the calcu-

lation of the probability of service limit state failure, was based upon a deterministic

value of load applied to the drilled shaft rather than a load defined by a random

variable. This approach is somewhat similar to the serviceability design methods

presently utilized by practicing engineers; current methods are often based upon

calculating a factor of safety for serviceability failure by dividing the drilled shaft

service load capacity by a single deterministic load. However, the drawback with the

current method is the fact that the drilled shaft service load capacity is not

Figure 11. Probability distribution histogram for factor of safety against service limit state failure based

upon a drilled shaft load of 2000 kN.

Figure 12. Cumulative distribution histogram for factor of safety against service limit state failure based

upon a compression load of 2000 kN.
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determined based upon probabilistic theory, but rather using nominal values for soil

properties. Therefore, using probabilistic theory, and defining soil properties in

terms of random variables, provides a robust and powerful method for determining

service limit state failure for drilled shafts.

7. Summary and Conclusions

A mathematical model is presented for drilled shaft load-displacement behavior

under compression. The shaft-soil interaction is explicitly considered in the model

development. To ensure model simplicity and accessibility to designers, the shaft-soil

interface is assumed to be homogeneous with depth, elastic-perfectly plastic charac-

terized by the shear modulus of the shaft-soil interface sub-grade reaction K, and the

ultimate shaft-soil interface shear strength su. Closed form expressions for drilled

shaft load-displacement are obtained for compressive and pullout loading under both

elastic and elasto-plastic deformation of shaft-soil interface. Since the derived closed

form solutions are complex, theMonte Carlo simulation method was used to perform

the probabilistic load-displacement analysis. For these simulations, the shaft-soil

interface properties were assumed to be random variables and were characterized

statistically by the lognormal probability distribution function. Probability curves

were generated in order to quantify the probability of drilled shaft failure at the

service limit state based upon an allowable head displacement.

Two methods for determining the probability of drilled shaft failure at the service

limit state have been proposed. In the first method, the factored load acting on the

drilled shaft is assumed to be known. Based upon this load, a probability distribution

histogram may be created for the range of possible displacements. We find that as

the value of the desired load increases, the variability in the displacement increases

resulting in a histogram with a narrow peak and a long tail to the right. This

approach can be appropriate for describing a range of possible allowable displace-

ments and their corresponding probabilities. However, this method forces the

designer to choose the level of reliability at the service limit state. Although this can

be an ambiguous task, service limit state levels of reliability have been defined in the

literature, including Phoon et al. (1995), and are based upon achieving a certain

reliability index. The reliability index at the service limit state is usually smaller than

at the ultimate limit state due to the consequences of exceeding an allowable

displacement being less than exceeding an ultimate capacity.

In the second method, the probability of service limit state failure is determined

based upon an allowable displacement. The designer must decide the value of this

allowable displacement based upon tolerable movement limits for the structure. The

load capacity histogram for a given allowable displacement is obtained from the

Monte Carlo simulations. The load capacity histogram may be used to develop

resistance factors at a given allowable displacement provided that the probability

distribution function of the loads acting on the drilled shaft are known based upon

LRFD ultimate strength criteria. In addition, factor of safety histograms may be
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created and the probability of service limit state failure calculated using standard

probability statistics.

Although both of these methods are somewhat cumbersome for the designer to use

and require the development of probability distribution histograms based upon some

advanced probabilistic analysis technique such as Monte Carlo simulation, this

process is a necessary step for developing resistance factors at the service limit state.

In addition, both procedures demonstrate that a reliability based design process may

indeed be developed for the service limit state. Ultimately, the development of

probability distribution curves for the drilled shaft load capacity based upon an

allowable displacement is desired.
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