Skip to main content

Advertisement

Log in

The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that the strong form of Heisenberg’s inequalities due to Robertson and Schrödinger can be formally derived using only classical considerations. This is achieved using a statistical tool known as the “minimum volume ellipsoid” together with the notion of symplectic capacity, which we view as a topological measure of uncertainty invariant under Hamiltonian dynamics. This invariant provides a right measurement tool to define what “quantum scale” is. We take the opportunity to discuss the principle of the symplectic camel, which is at the origin of the definition of symplectic capacities, and which provides an interesting link between classical and quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.M.: Ellipsoids of maximal volume in convex bodies. Geom. Dedic. 41(2), 241–250 (1992)

    Article  MATH  Google Scholar 

  2. Creaco, A.J., Kalogeropoulos, N.: Phase space measure concentration for an ideal gas. Mod. Phys. Lett. B (2009, to appear)

  3. de Gosson, M.: The Principles of Newtonian and Quantum Mechanics: The Need for Planck’s Constant h. Imperial College Press, London (2001). With a foreword by Basil Hiley

    MATH  Google Scholar 

  4. de Gosson, M.: Phase space quantization and the uncertainty principle. Phys. Lett. A 317(5–6), 365–369 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. de Gosson, M.: Symplectic Geometry and Quantum Mechanics. Operator Theory: Advances and Applications. Advances in Partial Differential Equations, vol. 166. Birkhäuser, Basel (2006)

    Google Scholar 

  6. de Gosson, M.: Semi-classical propagation of wavepackets for the phase space Schrödinger equation; Interpretation in terms of the Feichtinger algebra. J. Phys. A, Math. Theor. 41, 095202 (2008). Preprint: http://www.esi.ac.at/Preprint-shadows/esi1951

    Article  ADS  Google Scholar 

  7. de Gosson, M., Luef, F.: Remarks on the fact that the uncertainty principle does not characterize the quantum state. Phys. Lett. A 364, 453–457 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. de Gosson, M., Luef, F.: Principe d’Incertitude et Positivité des Opérateurs à Trace; Applications aux Opérateurs Densité. Ann. Henri. Poincaré 9(2), (2008)

  9. Eliashberg, Ya., Kim, S.S., Polterovich, L.: Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol. 10, 1635–1747 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950). 2nd edn. (1980), 3rd edn. (2002)

    Google Scholar 

  11. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Hall, M.J.W.: Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 59(4), 2602–2615 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hartle, J.B.: The quasiclassical realms of this quantum universe. arXiv:0806.3776v3 [quant-ph] (2008); extended version of a contribution to Many Quantum Worlds edited by A. Kent and S. Saunders, Oxford University Press (2009)

  14. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts (Basler Lehrbücher). Birkhäuser, Basel (1994)

    MATH  Google Scholar 

  15. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948)

    Google Scholar 

  16. Katok, A.: Ergodic perturbations of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk. SSSR Ser. Mat. 37, 539–576 (1973) [Russian]. English translation: Math. USSR Izv. 7, 535–571 (1973)

    MathSciNet  Google Scholar 

  17. Littlejohn, R.G.: The semiclassical evolution of wave packets. Phys. Rep. 138(4–5), 193–291 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lopuhäa, H.P., Rousseeuw, P.J.: Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat. 19(1), 229–248 (1991)

    Article  Google Scholar 

  19. Luo, S.L.: Quantum versus classical uncertainty. Theor. Math. Phys. 143(2), 681–688 (2005)

    Article  MATH  Google Scholar 

  20. Kim, Y.H., Shih, Y.: Experimental realization of Popper’s experiment: violation of uncertainty principle? Found. Phys. 29(12), 1849–1861 (1999)

    Article  Google Scholar 

  21. Mabuchi, H.: The quantum-classical transition on trial: is the whole more than the sum of the parts? Caltech Eng. Sci. Mag. 65(2) (2002)

  22. Mackey, G.W.: The relationship between classical and quantum mechanics. In: Contemporary Mathematics, vol. 214. Am. Math. Soc., Providence (1998)

    Google Scholar 

  23. Man’ko, O.V., Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: Does the uncertainty relation determine the quantum state? Phys. Lett. A 357, 255–260 (2006)

    Article  MATH  ADS  Google Scholar 

  24. Narcowich, F.J.: Conditions for the convolution of two Wigner distributions to be itself a Wigner distribution. J. Math. Phys. 29, 2036–2042 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Narcowich, F.J.: Geometry and uncertainty. J. Math. Phys. 31(2), 354–364 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Narcowich, F.J., O’Connell, R.F.: Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. Phys. Rev. A 34(1), 1–6 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  27. Penrose, R.: The Emperor’s New Mind. Oxford University Press, London (1989)

    Google Scholar 

  28. Polterovich, L.: The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics. Birkhäuser, Basel (2001)

    Google Scholar 

  29. Popper, K.R.: Zur Kritik der Ungenauigkeitsrelationen. Naturwissenschaften 22, 807 (1934)

    Article  ADS  Google Scholar 

  30. Popper, K.R.: Quantum Theory and the Schism in Physics. Hutchinson, London (1983)

    Google Scholar 

  31. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)

    Article  ADS  Google Scholar 

  32. Rousseeuw, P.J.: Multivariate estimation with high breakdown point. In: Grossmann, W., Pflug, G., Vicenze, I., Wertz, W. (eds.) Mathematical Statistics and Applications, vol. B, pp. 283–297. Riedel, Dordrecht (1985)

    Google Scholar 

  33. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    MATH  Google Scholar 

  34. Rousseeuw, P.J., Zomeren, B.C.: Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85, 633–639 (1991)

    Article  Google Scholar 

  35. Matthew 19(24), St Luke 18(25), Mk 10(25)

  36. Schlenk, F.: Embedding Problems in Symplectic Geometry. Expositions in Mathematics, vol. 40. de Gruyter, Berlin (2005)

    MATH  Google Scholar 

  37. Schrödinger, E., Zum Heisenbergschen Unschärfeprinzip. Berl. Ber. 296–303 (1930). [English translation: Angelow, A., Batoni, M.C.: About Heisenberg uncertainty relation. Bulg. J. Phys. 26(5/6), 193–203 (1999). arXiv:quant-ph/9903100

    Google Scholar 

  38. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949). Reprinted in Proc. IEEE 86(2), 447–457 (1998)

    Article  MathSciNet  Google Scholar 

  39. Simon, R., Mukunda, N., Dutta, N.: Quantum noise matrix for multimode systems: U(n)-invariance. squeezing and normal forms. Phys. Rev. A 49, 1567–1583 (1994)

    MathSciNet  Google Scholar 

  40. Simon, R., Sudarshan, E.C.G., Mukunda, N.: Gaussian–Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36(8), 3868–3880 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  41. Stewart, I.: The symplectic camel. Nature 329(6134), 17–18 (1987)

    Article  ADS  Google Scholar 

  42. Talagrand, M.: Special invited paper: A new look at independence. Ann. Probab. 24(1), 1–34 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141–163 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice A. de Gosson.

Additional information

To my parents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gosson, M.A. The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg?. Found Phys 39, 194–214 (2009). https://doi.org/10.1007/s10701-009-9272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9272-2

Keywords

Navigation