Skip to main content
Log in

Can the Pioneer Anomaly be of Gravitational Origin? A Phenomenological Answer

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension α and declination δ of Uranus, Neptune and Pluto obtained by processing various data sets with different, well-established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular precessions of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1998). Phys. Rev. Lett. 81: 2858

    Article  ADS  Google Scholar 

  2. Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (2002). Phys. Rev. D 65: 082004

    Article  ADS  Google Scholar 

  3. Nieto M.M., Anderson J.D. (2005). Class. Quantum Grav. 22: 5343

    Article  MATH  ADS  Google Scholar 

  4. Turyshev S.G., Toth V.T., Kellogg L.R., Lau E.L., Lee K.J. (2006). Int. J. Mod. Phys. D 15: 1

    Article  MATH  ADS  Google Scholar 

  5. Turyshev S. G., Nieto M. M., and Anderson J. D., EAS Publication Series 20, 243 (2006b).

  6. Dittus H., Turyshev S. G., Lämmerzahl C., Theil S., Förstner R., Johann U., W. Ertmer, Rasel E., Dachwald B., Seboldt W., Hehl F. W., Kiefer C., Blome H.-J., Kunz J., Giulini D., Bingham R., Kent B., Summer T. J., Bertolami O., Páramos J., Rosales J. L., B.Cristophe , Foulon B., Touboul P., Bouyer P., Reynaud S., Brillet A., Bondu F., Samain E., de Matos C. J., Erd C., Grenouilleau J. C., Izzo D., Rathke A., Anderson J. D., Asmar S. W., Lau E.E., Nieto M.M., Mashhoon B. (2005). ESA Spec. Publ. 588: 3

    ADS  Google Scholar 

  7. Murphy E. M. (1999). Phys. Rev. Lett. 83: 1890

    Article  ADS  Google Scholar 

  8. Katz J. (1999). Phys. Rev. Lett. 83: 1892

    Article  ADS  Google Scholar 

  9. Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1999a). Phys. Rev. Lett. 83: 1891

    Article  ADS  Google Scholar 

  10. Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1999b). Phys. Rev. Lett. 83: 1893

    Article  ADS  Google Scholar 

  11. Anderson J.D., Campbell J.K., Nieto M.M. (2007). New Astron. 12: 383

    Article  ADS  Google Scholar 

  12. Will C.M. (2006). Living Rev Relativity, 9: 3 http://www.livingreviews.org/lrr-2006-3

    ADS  Google Scholar 

  13. Jaekel M.-T., Reynaud S. (2005a). Mod. Phys. Lett. A 20: 1047

    Article  ADS  Google Scholar 

  14. Jaekel M.-T., Reynaud S. (2005b). Class. Quantum Grav. 22: 2135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Jaekel M.-T., Reynaud S. (2006a). Class. Quantum Grav. 23: 777

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Jaekel M.-T., Reynaud S. (2006b). Class. Quantum Grav. 23: 7561

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Brownstein J.R., Moffat J.W. (2006). Class. Quantum Grav. 23: 3427

    Article  MATH  ADS  Google Scholar 

  18. Pitjeva E.V. (2005a). Sol. Sys. Res. 39: 176

    Article  ADS  Google Scholar 

  19. Pitjeva E.V. (2005b). Astron. Lett. 31: 340

    Article  ADS  Google Scholar 

  20. Pitjeva E. V., Limitations on some physical parameters from position observations of planets. Paper presented at 26th meeting of the IAU, Joint Discussion 16, #55, 22–23 August 2006, Prague, Czech Republic, (2006a).

  21. Pitjeva E. V., Private communication, (2006b).

  22. Anderson J.S., Lau E.L., Krisher T.P., Dicus D.A., Rosenbaum D.C., Teplitz V. L. (1995). Astroph. J. 448: 885

    Article  ADS  Google Scholar 

  23. Anderson J.D., Turyshev S.G., Nieto M.M. (2002). Bull. Am. Astron. Soc. 34: 1172

    ADS  Google Scholar 

  24. E. L. Wright, Pioneer Anomalous Acceleration. http://www.astro.ucla.edu/˜ wright/PioneerAA.html, (2003).

  25. Page G.L., Wallin J.F., Dixon D.S. (2005). Bull. Am. Astron. Soc. 37: 1414

    ADS  Google Scholar 

  26. Iorio L., Giudice G. (2006). New Astron. 11: 600

    Article  ADS  Google Scholar 

  27. K. Tangen, Could the Pioneer anomaly have a gravitational origin? (2006). http://www.arxiv.org/abs/gr-qc/0602089

  28. Morrison L.V., Evans D.W. (1998). Astron Astrophys Suppl Ser. 132: 381

    Article  ADS  Google Scholar 

  29. Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memorandum 312.F-98-048 (1998).

  30. Standish E.M. (1993). Astron. J. 105: 2000

    Article  ADS  Google Scholar 

  31. Standish E.M. (1982). Astron. Astrophys. 114: 297

    ADS  Google Scholar 

  32. Gomes R.S., Ferraz-Mello S. (1987). Astron. Astrophys. 185: 327

    ADS  Google Scholar 

  33. Bretagnon P. (1982). Astron. Astrophys. 114: 278

    MATH  ADS  Google Scholar 

  34. Gemmo A.G., Barbieri C. (1994). Icarus 108: 174

    Article  ADS  Google Scholar 

  35. Rylkov V.P., Vityazev V.V., Dementieva A.A. (1995). Astron. Astrophys. Trans. 6: 265

    ADS  Google Scholar 

  36. Standish E.M. (1990). Astron. Astrophys 233: 272

    ADS  Google Scholar 

  37. Bertotti B., Iess L., Tortora P. (2003). Nature 425: 374

    Article  ADS  Google Scholar 

  38. Taylor J. R., An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. Second Edition. (University Science Books, 1997).

  39. S. Kopeikin, G. Schäfer, A. Polnarev, and I. Vlasov, The orbital motion of Sun and a new test of general relativity using radio links with the Cassini spacecraft, (2006). http://www.arxiv.org/abs/gr-qc/0604060

  40. Turyshev S. G., M. Shao, and K. L. Nordtvedt Jr., Science, Technology and Mission Design for the Laser Astrometric Test of Relativity, to appear in Proceedings of the 359th WE-Heraeus Seminar on “Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity,” ZARM, Bremen, Germany, May 30–June 1, 2005, http://www.arxiv.org/abs/gr-qc/0601035

  41. Ni W.-T. (2002). Int. J. of Mod. Phys. D. 11: 947

    Article  ADS  Google Scholar 

  42. Vecchiato A., Lattanzi M.G., Bucciarelli B., Crosta M., de Felice F., Gai M. (2003). Astron Astrophys. 399: 337

    Article  ADS  Google Scholar 

  43. Moffat J.W. (2006a). J. Cosmol. Astropart. Phys. 3: 4

    Article  ADS  MathSciNet  Google Scholar 

  44. Moffat J. W., A modified gravity and its consequences for the solar system, astrophysics and cosmology. Paper presented at International Workshop “From Quantum to Cosmos: Fundamental Physics in Space”, 22–24 May, 2006, Warrenton, Virginia, USA, gr-qc/0608074, (2006b).

  45. Talmadge C., Berthias J.-P., Hellings R.W., Standish E.M. (1988). Phys. Rev. Lett. 61: 1159

    Article  ADS  Google Scholar 

  46. Sanders R.H. (2006). Mon. Not. Roy. Astron. Soc. 370: 1519

    Article  ADS  Google Scholar 

  47. Roy A. E., Orbital Motion. Fourth Edition. (Institute of Physics Publishing, Bristol, 2005).

  48. P. G. ten Boom, Reinterpreting the Pioneer anomaly and its annual residual, (2005). http://www.arxiv.org/abs/gr-qc/0505077

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. Can the Pioneer Anomaly be of Gravitational Origin? A Phenomenological Answer. Found Phys 37, 897–918 (2007). https://doi.org/10.1007/s10701-007-9132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9132-x

Keywords

PACS

Navigation