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Abstract Many retailers find it useful to partition customers into multiple classes

based on certain characteristics. We consider the case in which customers are pri-

marily distinguished by whether they are willing to wait for backordered demand. A

firm that faces demand from customers that are differentiated in this way may want

to adopt an inventory management policy that takes advantage of this differentia-

tion. We propose doing so by imposing a critical level (CL) policy: when inventory

is at or below the critical level demand from those customers that are willing to wait

is backordered, while demand from customers unwilling to wait will still be served

as long as there is any inventory available. This policy reserves inventory for

possible future demands from impatient customers by having other, patient, cus-

tomers wait. We model a system that operates a continuous review replenishment

policy, in which a base stock policy is used for replenishments. Demands as well as

lead times are stochastic. We develop an exact and efficient procedure to determine

the average infinite horizon performance of a given CL policy. Leveraging this

procedure we develop an efficient algorithm to determine the optimal CL policy
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parameters. Then, in a numerical study we compare the cost of the optimal CL

policy to the globally optimal state-dependent policy along with two alternative,

more naı̈ve, policies. The CL policy is slightly over 2 % from optimal, whereas the

alternative policies are 7 and 27 % from optimal. We also study the sensitivity of

our policy to the coefficient of variation of the lead time distribution, and find that

the optimal CL policy is fairly insensitive, which is not the case for the globally

optimal policy.

Keywords Inventory/production � Critical levels � Policies � Rationing �
Spare parts � Probability: Markov processes � Matrix analytic methods �
Queues: birth–death

1 Introduction and motivation

Managers often face demand from, and thus differentiate between, customers that

expect different standards of service. One class of industries that recognizes and

implements customer differentiation along these lines are those that deliver and

maintain expensive capital goods requiring high up-times; examples include defense

systems (e.g. Deshpande et al. 2003a, b), semiconductor manufacturing equipment

(e.g. Kranenburg and Van Houtum 2008), and mobile phone operating systems (e.g.

Möllering and Thonemann 2008). In all these cases customers are assigned

a priority level based on equipment criticality or demand type, for example demand

from a machine that is down may have higher priority than a replenishment demand

from a stockpoint in the network.

Various tools have been developed to differentiate between such customers: a

common approach is the use of a critical level policy that reserves some inventory

for the more important customer class. Specifically, current state information

(e.g. amount of inventory in hand) is used to deny some customers access to

inventory, in order to reserve this stock to serve more important demands that have

yet to arrive. This type of policy yields considerable benefits when compared to

cases in which all customers receive the same level of service, or when separate

inventories are kept for each customer class. These types of problems have been

studied under varying assumptions: (see e.g. Veinott 1965; Topkis 1968; Ha 1997a;

Cattani and Souza 2002; Dekker et al. 2002; De Véricourt et al. 2002; Deshpande

et al. (2003b; Möllering and Thonemann 2008; Kranenburg and Van Houtum 2007,

2008). An assumption common to this literature is that all customer classes behave

similarly, i.e. either all classes leave and the sale is lost when not immediately

satisfied, or all are willing to wait and are backordered.

We study a mixed problem in which one customer class leaves when demand is

not satisfied immediately, while the other customer class is willing to wait while

demand is backordered. This characteristic, in fact, may be the basis of customer

differentiation. We see, at least, three application areas for our model:

1. Consider a retailer that faces demand from both loyal (demanding), long term

customers with high service level requirements and occasional walk-in
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customers. One can imagine the retailer holding back some inventory to serve

anticipated demands from loyal customers while waitlisting walk-in customers.

2. When operating a physical store in combination with an online shop the

customers issuing their demand in the store observe actual inventory and may

leave unsatisfied if the desired item is not available. The online customers can

be backlogged when inventory is low and still be considered satisfied, since

they anticipated some lead time anyways. Cattani and Souza (2002),

Swaminathan and Tayur (2003), and more recently, Duran et al. (2008)

identify the opportunity to differentiate between these types of customers.

3. An OEM may operate a central warehouse as well as a network of local

warehouses from which it serves its customers. The central warehouse must

satisfy replenishment demands from the local warehouses as well as emergency

demands directly from customers; these latter demands occur when a

customer’s machine is down and the nearest local warehouse does not have

the desired item. In this case the emergency demand has priority over

replenishment demands, which can be delayed. This situation was recognized

by Alfredsson and Verrijdt (1999), Deshpande et al. (2003a, b), and Möllering

and Thonemann (2008), among others.

As mentioned above, nearly all previous papers consider different classes of

homogeneous customers—either all customers are willing, or all customers are

unwilling to wait. Because of this, the methods and models used by other papers

cannot be readily extended to the heterogeneous customers that we consider. We

further discuss the related literature in Sect. 2.2

In this paper we make several contributions.

1. We are the first to thoroughly analyze using a critical level in response to

heterogeneous classes of customers, i.e. customers reacting differently to being

denied an item. This important characteristic in practice has only been modeled

in a limited fashion before.

2. We develop an exact evaluation procedure for a given CL policy using matrix

analytic methods, and prove monotonicity properties of the main performance

measures via sample path analysis.

3. Using these monotonicity properties we develop an efficient optimization

procedure, which avoids enumerating over large numbers of potentially optimal

policies.

4. We demonstrate the near-insensitivity of the performance of the optimal CL

policy to lead time distribution variability. This near-insensitivity implies that

the assumption of exponential lead times that is needed in the analysis has little

effect on the solution.

5. Finally, we benchmark the performance of the optimal (static) CL policy

against the globally optimal (state-dependent) policy and two alternative, more

naı̈ve, policies. This provides insights into when it makes sense to use a critical

level policy. The comparison of CL policies to the globally optimal is

surprisingly absent in the literature. Kaplan (1969), Dekker et al. (2002), Ha

(1997a), and Möllering and Thonemann (2008) all compare to more naı̈ve

policies only. And, when comparisons to the globally optimal policy are made,

346 P. Enders et al.

123



this is often only done in oversimplified systems (see e.g. Benjaafar et al. 2011,

who consider only 1 customer class). We show that our CL policy improves

significantly upon the more naı̈ve policies and performs near optimally.

The remainder of the paper is structured as follows. First we will introduce our

model and review the related literature in Sect. 2. Section 3 develops an evaluation

procedure to compute the performance of a CL policy at any desired level of

exactness. An efficient optimization algorithm that bounds the enumeration space

using monotonicity results is presented in Sect. 4. Section 5 details our numerical

experiment comparing the performance of the optimal, CL and more naı̈ve, policies,

provides insight into sensitivity with respect to lead time variability, and studies the

efficiency of our bounds. Furthermore, some insight into the structure of the

globally optimal policy is provided. Section 6 introduces several extensions and

outlines how some of these can be incorporated in our model with relative ease.

Section 7 presents our conclusions.

2 Model and related literature

In this section we first describe our model as well as our main assumptions. Then,

having detailed our model, we briefly review the related literature and how it

compares with our model.

2.1 Model description

We consider a single stockpoint where a single product is kept on stock. Customer

classes are denoted by j = 1, 2; class 1 has the highest priority and its demand is lost

if not immediately satisfied from stock. Class 2 has lower priority and its demand is

backordered if not immediately satisfied. Demands of class j arrive according to a

Poisson process with rate kj, and the total demand rate is denoted by k ¼ k1 þ k2.

Inventory is controlled using a continuous review critical level (CL) policy, which

reserves inventory for the most important customer class by backordering class 2 as

soon as inventory drops below a certain CL. Backorders are delivered as soon as

inventory on hand increases above the CL.

We impose a static base stock level denoted by S, and let c denote the CL, with

S; c 2 N0 :¼ N [ f0g: Replenishment orders are assumed to have exponential lead

times1 with mean l�1: Orders need not arrive in the order in which they are placed.

An illustration of the behavior of inventory and backorder levels under this policy

can be found in Fig. 1. Events j = 1, 2 denote demands from customer class j, and

R denotes the arrival of a replenishment order. In Sect. 5.2.1 we generalize our

1 The assumption of exponential lead times considerably simplifies the analysis. Furthermore, we expect

that the performance of the optimal CL policy will be fairly insensitive to the distribution of the lead time,

because our model is a combination of the MjGj1 and MjGjCjC queueing models, both of which have

steady state queue length distributions known to be insensitive to the distribution of the service time (see

e.g. Cohen 1976).
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analytical results to lead times that have higher variability, distributed as degenerate

hyperexponential random variables.

We seek to minimize the infinite horizon expected cost of a policy, C(S, c),

which can be separated into three different types of cost. First, a one-time penalty

cost pj� 0 is incurred whenever a demand of class j is not immediately satisfied

from stock. Second, a backorder cost b� 0 is incurred per unit per unit time a (class

2) backorder exists. Third, an inventory holding cost h� 0 is charged per unit per

unit time an item is on hand. We denote the fraction of demand from class j that is

immediately satisfied from stock (the fill rate) by bjðS; cÞ, the average number of

backorders by B(S, c), and the average inventory by I(S, c). This leads to the

following optimization problem:

min
S;c

CðS; cÞ ¼ min
S;c

p1k1ð1� b1ðS; cÞÞ þ p2k2ð1� b2ðS; cÞÞ þ bBðS; cÞ þ hIðS; cÞf g;

s:t: c� S;

S; c 2 N0: ð1Þ
To solve (1) we first develop an efficient, exact procedure to determine the cost of

a given CL policy, C(S, c), in Sect. 3 Then we develop an efficient optimization

procedure that eliminates large sets of potentially optimal values for S and c,

bounding our enumeration space, in Sect. 4. We find the optimal S and c by

enumerating over the reduced space.

Throughout this paper we discuss three policies that use a CL: (1) a CL policy

(S, c) with given parameters S and c, (2) the optimal critical level (OCL) policy,

i.e. a CL policy with the optimal parameter values S and c, and (3) The globally

optimal, state-dependent, policy (OPT), i.e. a policy that does differentiate between

customers but does so based on a full state description, specifically the inventory on

hand and the number of backorders. Finding the optimal parameters of the OPT

policy is computationally much harder and the policy is more complex to implement

in practice. The OPT policy is described in Sect. 5.3, along with its drawbacks.

Fig. 1 An illustration of the critical level policy
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2.2 Related literature

The policy we describe in Sect. 2.1 belongs to the class of rationing or CL policies.

Veinott (1965) introduced the CL policy, and since then the performance of such

policies has been extensively studied. We focus on the case with a single static CL.

This in contrast to (e.g. Evans 1968; Topkis 1968; Kaplan 1969; Melchiors 2003;

Teunter and Klein Haneveld 2008); in their papers the CL depends on the time

remaining until the next replenishment arrives. This also is different from policies in

which the CL is state-dependent, (e.g. Benjaafar et al. 2011). A single static CL is

easy to explain to practitioners and to implement, as it does not depend on the

progress of items beyond your control, i.e. in the replenishment pipeline. In Sect.

5.3 we will compare the optimal state-dependent policy with our policy.

Within the class of papers having a single, static, CL, we distinguish problems by

the way customers react to unsatisfied demand. Studies in which demand from each

class is lost when not immediately satisfied have been performed by Ha (1997a),

(2000), Melchiors et al. (2000), Dekker et al. (2002), Frank et al. (2003), and

Kranenburg and Van Houtum (2007). Ha (1997a) studies a continuous review

model with a Poisson demand process, and a single exponential replenishment

server. He proves the optimality of CL policies and shows that both the base stock

level and the CL are time-independent. In Ha (1997a), (2000), is extended to include

Erlang distributed lead times. Dekker et al. (2002) consider a model similar to the

one studied by Ha (1997a) but assume an ample exponential replenishment server;

they derive exact procedures for determining the optimal CL policy. Melchiors et al.

(2000) generalizes Dekker et al. (2002) by including a fixed order quantity. They

optimize the order quantity, base stock level, and the CL. Frank et al. (2003)

consider periodic review models with fixed lead times (i.e. ample replenishment

servers) for which they find the optimal policy parameters. Many of the solution

approaches described above are computationally expensive for more than two

demand classes. Kranenburg and Van Houtum (2007) divide larger problems into

subproblems, and develop efficient heuristic algorithms for these subproblems (one

for each customer class). These heuristics are tested on a large testbed and shown to

perform well. This increase in speed allows for application in a multi-item setting as

demonstrated in Kranenburg and Van Houtum (2008).

The other primary subclass is that in which demands from both classes are

backordered when they cannot be met from stock. This is studied by Nahmias and

Demmy (1981), Ha (1997b), Dekker et al. (1998), De Véricourt et al. (2002),

Deshpande et al. (2003b), Duran et al. (2008) and Möllering and Thonemann

(2008). Nahmias and Demmy (1981) are the first to evaluate the performance of a

system with two classes that are backordered when not immediately satisfied. They

assume that there is at most one outstanding replenishment order to facilitate their

analysis; this assumption remains common to date in this stream of literature. Ha

(1997b) and De Véricourt et al. (2002) derive the optimal allocation policy in a

make-to-stock capacitated assembly system in which demands from all classes (two

classes in Ha 1997b, n classes in De Véricourt et al. 2002) are backordered if not

immediately satisfied. De Véricourt et al. (2002) use the same assumptions as Ha

(1997a) except concerning customer behavior when demand is not immediately
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satisfied. Dekker et al. (1998) derive an approximation to the performance of a

given policy under Poisson demands and deterministic lead times under a lot-for-lot

inventory management policy. Deshpande et al. (2003b) study a problem with two

customer classes and rationing under a (Q, r) policy, also clearly outlining what

complicates the problem when demands are backordered: (1) one has to determine

the order in which backorders are optimally cleared, and (2) if the optimal clearing

mechanism is used extensive state information is needed. Möllering and Thonemann

(2008) study a periodic review model with arbitrary, discrete, demand distributions

and a lead time that is an integer multiple of the review period. Duran et al. (2008)

consider the finite horizon problem for which they find the optimal policy in terms

of how much inventory to reserve, how many demands to backorder (the alternative

is to reject them) and what level to order-up-to.

We study the combination of these two subclasses of policies; demand from one

class is lost and the other is backordered. So far, this policy has received little

attention in the literature. It is one of several policies compared by Cattani and

Souza (2002), who assume Poisson demand, and a single, exponential, replenish-

ment server. They determine the parameters of the optimal policy through

exhaustive search over a suitably large state space. Compared to Cattani and Souza

(2002), our replenishment system can operate either a single, several parallel, or an

ample number of replenishment servers. We will focus on the ample server case as

this captures practical settings we wish to model, and as the other cases are special

(and easier) cases. Furthermore we avoid enumeration over a suitably large state

space by the development of bounds on the cost of a policy. Hence, Cattani and

Souza (2002) can be thought of as containing a special case of our problem.

In a practical setting, the ample server assumption is motivated, for example, by

the problems studied by Kranenburg and Van Houtum (2008). In Kranenburg and

Van Houtum (2008), like many other papers in the spare parts literature, lead times

are negotiated with suppliers such that the supplier is required to deliver within a

specified window, no matter how many orders are issued. Suppliers are able to meet

these requirements as they generally supply a variety of items to different customers

and hence have ample capacity when observed from the point of view of a single

item.

Throughout the literature several assumptions on lead times have been made; we

assume exponential lead times initially, and then generalize to degenerate

hyperexponential. In addition, we determine the cost of the globally optimal

policy, without assuming static CLs, using dynamic programming, and compare the

performance of our policy to the globally optimal policy and two alternative, more

naı̈ve, policies. We also compare the robustness of both the CL and the globally

optimal policy and establish for the first time that the CL policy is typically more

robust to changes in lead time variability than the globally optimal policy. In fact,

the OCL policy determined under exponential lead times may even outperform the

globally optimal policy determined under exponential lead times when they are

utilized in situations with non-exponential lead times.

There are some other related fields in the literature that deserve mentioning. In

the revenue management literature policies similar to the CL policy are common-

place. Most closely related are booking limits, these limit access to parts of the
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inventory to specific demand classes. For a review of the literature we refer the

reader to Talluri and Van Ryzin (2005). In general the revenue management

literature deals with a perishable item (like a hotel room or an airline seat) that can

only be sold once, while we deal with inventory that can be utilized at any point in

time. Wang and Toktay (2008) study a setting in which customers are willing to

accept flexible delivery, up to a certain deadline. A key differentiator of our work is

that we recognize customers who may, or may not, be willing to wait while Wang

and Toktay (2008) model customers that are always willing to wait but are

differentiated by how long the are willing to wait for. In addition we focus on

different penalty costs to differentiate between customers of specific types. In spare-

parts management the concept of lateral transshipments (see e.g. Paterson et al.

2011; Wong et al. 2006) relates to our work. Specifically the allocation of inventory

to ‘‘own’’ demand versus demand from another location. Van Wijk et al. (2009)

derive the optimal policy for lateral transshipments between warehouses. Our model

resembles theirs, except for a key assumption, which we will highlight when

discussing the optimal policy structure in Sect. 5.3.

3 Evaluation

Our model, under CL policy, (S, c), can be described by a Markov process with

states (m, n), where m 2 N0 represents the number of items on hand, n 2 N0 the

number of items backordered. The state space and transition scheme of this policy is

depicted in Fig. 2.

In Fig. 2 two categories of transitions can be recognized. First, demand-related

transitions that decrease the amount of stock or increase the number of backorders:

transitions from (m, 0) to (m - 1, 0) occur at rate k as long as m [ c (both classes

are served). If 0 \ m B c transitions from (m, n) to (m - 1, n) occur at rate k1 and

Fig. 2 Transition scheme of our critical level policy
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transitions to (m, n ? 1) occur at rate k2 (class 1 is served, class 2 is backordered).

If m = 0 the only demand related transition is from (0,n) to (0, n ? 1) which occurs

at rate k2, since class 1 demand is lost. Second, we have supply related transitions

that decrease the number of backorders or increase the amount of inventory:

All supply related transitions occur at rate (S - m ? n)l since there are

S - m ? n outstanding orders. If m = c and n [ 0 these transitions go from

(m, n) to (m, n - 1) (a backorder is cleared); all other supply related transitions

result in a transition from (m, n) to (m ? 1, n).2 Note that states with both m [ c

and n [ 0 are transient.

Let pm,n denote the steady state probabilities of our Markov chain. Since both

customer classes arrive according to a Poisson process we can use PASTA (Wolff

1982) to evaluate the cost as defined in (1). To do so we need four performance

measures, expressed in terms of pm;n as follows:

b1ðS; cÞ ¼ 1�
X1

n¼0

p0;n; ð2Þ

b2ðS; cÞ ¼
XS

m¼cþ1

pm;0; ð3Þ

IðS; cÞ ¼
XS

m¼1

mpm;0 þ
Xc

m¼1

X1

n¼1

mpm;n; ð4Þ

BðS; cÞ ¼
Xc

m¼0

X1

n¼1

npm;n: ð5Þ

In the next two subsections we develop an efficient procedure to evaluate the above

performance measures.

3.1 Structure of the Markov process

Our solution procedure exploits the structure of our Markov process. We partition

the set of all states into levels according to the number of backorders n. Level n

consists of the following states:

fð0; 0Þ; ð1; 0Þ; . . .; ðc; 0Þ; . . .; ðS; 0Þg for level n ¼ 0;
fð0; nÞ; ð1; nÞ; . . .; ðc; nÞg for level n [ 0:

According to this partitioning, the generator Q of the Markov process is given by:

Q ¼

B0 B1 0 0 0 � � �
B�1 A0ð1Þ A1 0 0 � � �

0 A�1ð2Þ A0ð2Þ A1 0 � � �
0 0 A�1ð3Þ A0ð3Þ A1

..

. ..
. . .

. . .
. . .

. . .
.

0

BBBBB@

1

CCCCCA
; ð6Þ

2 In case of N 2 f0; 1; . . .; g parallel replenishment servers the replenishment rates are Nl at maximum.
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where B0, B-1 and B1 are matrices of size ðSþ 1Þ� ðSþ 1Þ; ðcþ 1Þ� ðSþ 1Þ and

ðSþ 1Þ� ðcþ 1Þ respectively; and A0(n), A-1(n) and A1 are matrices of size

ðcþ 1Þ� ðcþ 1Þ. A more detailed description of these matrices is given in

Appendix 1.

Note that Q is a quasi-birth–death process. In case of level independent matrices, i.e.

A�1ðnÞ � A�1 and A0ðnÞ � A0; standard matrix analytic methods (MAM) can be

applied to compute the steady state distribution (see e.g. Neuts 1981; Lautouche and

Ramaswami 1987). In our case, the matrices A-1 (n) and A0 (n) do depend on level n,

which complicates the computation of the steady state distribution (see e.g. Bright and

Taylor 1995). However, the process’ characteristic that there is only one transition

from level n to n - 1, from (c, n) to (c, n - 1) considerably simplifies our analysis.

This enables us to determine the pm;n exactly, via recursion, as we demonstrate below.

Let pn be the vector of steady state probabilities at level n:

p0 ¼ ðp0;0; p1;0; . . .; pc;0; . . .; pS;0Þ
pn ¼ ðp0;n; p1;n; . . .; pc;nÞ; n 2 N

Let ~pn be the solution to:

~p0B0 þ ~p1B�1 ¼ 0 for n ¼ 0 ð7Þ
~p0B1 þ ~p1A0ð1Þ þ ~p2A�1ð2Þ ¼ 0 for n ¼ 1 ð8Þ

~pn�1A1 þ ~pnA0ðnÞ þ ~pnþ1A�1ðnþ 1Þ ¼ 0 for n� 2 ð9Þ
~pS;0 ¼ 1; ð10Þ

where ~pn is defined similar to ~pn, but now in terms of ~pm;n instead of pm,n. Note that

in (10) ~pn is normalized by setting ~pS;0 ¼ 1 instead of using
P1

n¼0 pne ¼ 1, which

cannot be determined yet.

Note that Eqs. (7–9) relate the steady state probabilities of level n to those of

levels n - 1 and n ? 1 as is standard in applying MAM, however, as A0(n) and

A-1(n ? 1) still depend on n, we cannot readily apply MAM. But the following

lemma offers a solution methodology. Define the (c ? 1) 9 (c ? 1) matrix A as:

A ¼
0 � � � 0 1

..

. ..
. ..

.

0 � � � 0 1

0
@

1
A: ð11Þ

Lemma 1 The ~p0, and ~p1 can be determined by solving:

~p0B0 þ ~p1B�1 ¼ 0 for n ¼ 0

~p0B1 þ ~p1A0ð1Þ þ k2~p1A ¼ 0 for n ¼ 1

~pS;0 ¼ 1;

and for n [ 1 the ~pn follow from:

~pn ¼ �~pn�1A1ðA0ðnÞ þ Ak2Þ�1
for n� 2: ð12Þ

The proof of Lemma 1, along with all other proofs, can be found in Appendix 2.
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In Lemma 1 the steady state probabilities of levels 0 and 1 can be solved

explicitly, and the steady state probabilities of level n are expressed in terms of level

n - 1 only, leveraging the special structure in our Markov process. The original

pm,n can then be calculated as follows:

pn ¼
~pnP1

n¼0 ~pne
:

As is standard in MAM, the infinite sums in the performance measures

introduced in (2)–(5) need to be truncated. Next, we develop (tight) bounds for this

truncation error, along with our general solution procedure.

3.2 Solution procedure

The performance measures can be written in terms of ~pn; again using PASTA:

b1ðS; cÞ ¼
PS

m¼1 ~pm;0 þ
P1

n¼1

Pc
m¼1 ~pm;nP1

n¼0 ~pne
;

b2ðS; cÞ ¼
PS

m¼cþ1 ~pm;0P1
n¼0 ~pne

;

IðS; cÞ ¼
PS

m¼1 m~pm;0 þ
P1

n¼1

Pc
m¼1 m~pm;nP1

n¼0 ~pne
;

BðS; cÞ ¼
P1

n¼1 n~pneP1
n¼0 ~pne

:

Lower bounds for the infinite sums appearing in these expressions are easily found

by truncation. Upper bounds follow from the next lemma.

Lemma 2 For all ‘ C 1,

0�
X1

n¼cþ‘
n~pne�Uð‘Þ

where

Uð‘Þ ¼ ~p0;‘; ~p1;‘þ1; . . .; ~pc;‘þc

� �
e ðSþ ‘Þ!

l
k

� �Sþ‘ k
l
/ðSþ ‘� 1Þ � ðS� cÞ/ðSþ ‘Þ

� �
;

and

/ð‘Þ ¼
X1

k¼‘

k
l

� 	k
1

k!
¼ e

k
l �
X‘�1

k¼0

k
l

� 	k
1

k!
: ð13Þ

The intuition behind Lemma 2 is that the definition of diagonal layers:

ð0; nÞ; ð1; nþ 1Þ; . . .; ðc; nþ cÞf g, for n C 0 highlights a structural property of the

Markov process. The transition rate from each of the states on a diagonal layer to the
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right (i.e. down to diagonal layer n - 1) is (S ? n)l and the flow to the left (i.e. up

to the diagonal layer n ? 1) is upper bounded by k. This structure is exploited in

upper bounding the probability mass above the truncation level. The proof of

Lemma 2 is given in Appendix 2.

Now we can bound our performance measures from above and below by either

ignoring the mass above the truncation level or using the bound from Lemma 2:
PS

m¼1 ~pm;0 þ
Pcþ‘

n¼1

Pc
m¼1 ~pm;nPcþ‘

n¼0 ~pneþ Uð‘þ 1Þ
� b1ðS; cÞ

�
PS

m¼1 ~pm;0 þ
Pcþ‘

n¼1

Pc
m¼1 ~pm;n þ Uð‘þ 1Þ

Pcþ‘
n¼0 ~pne

;

PS
m¼cþ1 ~pm;0Pcþ‘

n¼0 ~pneþ Uð‘þ 1Þ
� b2ðS; cÞ�

PS
m¼cþ1 ~pm;0Pcþ‘

n¼0 ~pne
;

PS
m¼1 m~pm;0 þ

Pcþ‘
n¼1

Pc
m¼1 m~pm;nPcþ‘

n¼0 ~pneþ Uð‘þ 1Þ
� IðS; cÞ

�
PS

m¼1 m~pm;0 þ
Pcþ‘

n¼1

Pc
m¼1 m~pm;n þ cUð‘þ 1Þ

Pcþ‘
n¼0 ~pne

;

Pcþ‘
n¼1 n~pne

Pcþ‘
n¼0 ~pneþ Uð‘þ 1Þ

�BðS; cÞ�
Pcþ‘

n¼1 n~pneþ Uð‘þ 1Þ
Pcþ‘

n¼0 ~pne
;

where ‘ C 1. To compute the performance measures at the desired level of accuracy

we start with ‘ = 1 and increase ‘, one unit at a time, until the upper and lower

bound for each of the performance measures are sufficiently close. As U(‘ ? 1) is

expected to decrease very rapidly as ‘!1, the bounds may already become tight

for moderate values of the truncation level c ? ‘. In the numerical experiment to be

introduced later we observe that, for a maximum distance between the upper and

lower bounds of 10-6, ‘ varies between 6 and 29 with a mean of 11.9. Also, ‘ seems

to increase in c as, with a higher CL, there is more mass below c, which leads to the

need of evaluating more levels for accuracy. Hence we conclude that, in practice,

the bounds become tight very rapidly.

These truncation error bounds, and their quality, is important as exact recursive

calculation of the steady state probabilities involves matrix inverses (12), which

become more costly for larger values of c. Using these truncation error bounds we

limit the number of matrix inversions.

4 Optimization

Recall that our goal is to find the parameters of the OCL policy, i.e. the optimal

values of S and c. So far we can determine the performance of a given CL policy,

i.e. for given S and c we can determine the cost [as defined in (1)]. In this section we

build this evaluation technique into a procedure for finding the optimal S and c

parameters.
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Even though our evaluation procedure avoids many matrix inversions, some are

unavoidable to precisely evaluate the performance of each S and c. Here, we

develop two sets of lower bounds on the optimal cost in terms of S and c

respectively. These bounds allow us to eliminate candidate solutions and hence

bound the enumeration space. We target to eliminate candidate solutions with large

S and c as the size of the matrices that need to be inverted grows in S and c.

For the development of these bounds we first need monotonicity results for

several performance measures with respect to the CL, c. We obtain these

monotonicity results using sample path arguments. Define X(S, c) as the average

pipeline stock, i.e. the average number of as yet undelivered items that have been

ordered from a supplier. We prove the following monotonicity results:

Theorem 1 The performance measures depend on c in the following manner:

BðS; cÞ�BðS; cþ 1Þ i:e:BðS; cÞ is monotonically increasing in c;

XðS; cÞ�XðS; cþ 1Þ i:e:XðS; cÞ is monotonically increasing in c;

b2ðS; cÞ� b2ðS; cþ 1Þ i:e: b2ðS; cÞ is monotonically decreasing in c:

ð14Þ

The results in Theorem 1 are in line with the literature for homogeneous

customer classes, (e.g. Ha 1997a; Dekker et al. 2002; Deshpande et al. 2003b;

Kranenburg and Van Houtum 2007; Möllering and Thonemann 2008), but our proof

is more involved due to customer heterogeneity. Using the results from Theorem 1

we develop an efficient nested procedure to solve the optimization problem from

Sect. 2. First, we need a lower bound for the costs:

Lemma 3 A lower bound for C(S, c) is given by:

CðS; cÞ�CLBðS; cÞ :¼ p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ þ h S� k
l

� 	

The proof of Lemma 3 is given in Appendix 2. Next, consider the minimum cost

for a fixed value of S; ĈðSÞ, and notice that this can be bounded as follows:

Corollary 1 A lower bound function for ĈðSÞ is given by:3

ĈðSÞ� ĈLBðSÞ :¼ h S� k
l

� 	

To find the optimal S, we increase S, one unit at a time, starting from S = 0. Let

the optimal cost up to a certain value for S be denoted by Ĉ
�ðSÞ. We keep increasing

S until Ĉ
�ðSÞ� ĈLBðSþ 1Þ [note that ĈLBðSÞ increases in S].

3 A stronger lower bound is given by p2k2ð1� b2ðS; 0ÞÞ þ ðbþ hÞBðS; 0Þ þ h S� k
l

� �
but our

computational experience is that the computational gain from this bound does not outweigh the

additional computational cost of computing the bound value; the increase in computational time is about

1 % over the 1,500 instances to be introduced later.
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We now have a way of bounding S, but for a fixed value of S we also want to

limit the number of values for c that we need to evaluate. This can also be done by

using Lemma 3. Using the monotonicity properties from Theorem 1 we know that

CLB(S, c) is increasing in c for given S. Thus, for given S, we increase c, one unit at

a time, starting from c = 0. Let eC�ðcÞ be the optimal cost for a given S up to a

certain value for c. We stop increasing c as soon as eC�ðcÞ�CLBðS; cþ 1Þ:
A summary of our procedure is given in Algorithm 4.1.

Figure 3a, b provide illustrative numerical examples of both of our lower bound

functions. Figure 3a shows the cost, C(S, c), for S 2 f0; . . .; 21g and c [
{0, …, min(S, 5)}; higher values for c are not displayed for clarity. In this figure,

one can observe two things: (1) the optimal cost function, Ĉ
�ðSÞ; is not convex in S

which makes optimization difficult, and (2) the lower bound is rather tight after the

minimum has been reached. For another instance, Fig. 3b shows the cost, C(S, c),

for S = 5 and S = 14 with c 2 f0; . . .; Sg. Here again one can see that the bound is

tight, especially when needed, i.e. for c large.

Using our lower bounds we are able to eliminate large parts of our enumeration

space. Using these bounds on a test bed of 1,500 instances (to be introduced in Sect.

5) we evaluate, on average, 0.933 values for S beyond the optimal S and save

44.8 % of cpu time finding the optimal c value.

5 Numerical experiments

In this section we conduct numerical experiments to gain insight into the

performance of our CL policy. Specifically, we seek to answer questions regarding:

the performance of the optimal CL policy as compared to the globally optimal

policy and more naı̈ve policies, the sensitivity of the OCL policy to the assumed

lead time distribution, and the structure of the globally optimal policy. These

questions will be answered in Sects. 5.1–5.3, respectively. Although numerical

results have been obtained by many papers in this line of research, to our knowledge

none compares the globally optimal policy, an advanced heuristic (the CL policy)

and naı̈ve policies.

For all of the numerical experiments we create a set of 1,500 instances, shown in

Table 1. All instances share some common settings, i.e. l = 1, h = 1 and the level

of accuracy in the evaluation of a given policy, i.e. the distance between the upper

and the lower bound of the performance measures, B10-6. We vary both the

magnitude of demand as well as the relative share of each customer class, to provide

insight into how the customer base affects the performance of different policies.

Furthermore, the cost parameters are changed, both in magnitude and in relation to

each other, as this gives insight into the effect of disparate customer valuations.

5.1 Comparison of CL to globally optimal and more naı̈ve policies

Our aim in this section is to analyze whether a static CL policy is an effective way to

differentiate between customers. To do so, we compare the CL policy to the
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globally optimal policy (OPT). To find the OPT policy, we formulate a Markov

decision process (MDP) and solve it using linear programming, as outlined by

Puterman (1994). The OPT policy does not assume a single, static, CL but is

allowed to make state-dependent decisions with respect to class 2 demand

and backorders. Details on the MDP formulation and solution can be found in

Appendix 3.

To broaden our comparison, we also consider two, somewhat naı̈ve policies, both

of which: (1) have been used for comparison against CL-type policies (see

e.g. Deshpande et al. 2003b; Möllering and Thonemann 2008), and (2) are

commonly used in practice (see e.g. Dekker et al. 2002; Deshpande et al. 2003b;

Möllering and Thonemann 2008). These policies are:

• First come first served (FCFS): All demands are served as long as there is

inventory, when inventory equals zero class 1 demand is lost and class 2 demand

is backordered. In effect this is a CL policy with c = 0.

• Separate inventories (SI): Each customer class is served from its own

‘‘reserved’’ inventory.

The CL policy can be seen as a combination of these alternatives, it utilizes

inventory pooling while also ‘‘reserving’’ inventory.

We compare policies i [ {CL, FCFS, SI} to the OPT policy by comparing their

cost. Let C�i be the cost of the optimal policy in class i and C�OPT the cost of the

optimal OPT policy; we then compare:

C�i � C�OPT

C�OPT
� 100; ð15Þ

for all our instances. For the analysis in this subsection we drop 268 instances where

no demand is satisfied from stock in the CL nor the OPT policy (OCL policy has

S = c = 0 and the costs are equal to the costs of the OPT solution), thus taking the

more conservative, worse-case performance of our CL policy.

Algorithm 4.1 Find an OCL policy (S, c)
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First, we compare the average performance over the remaining 1,232 instances.

Table 2 lists the average % difference as defined in (15). We see that the CL policy

is on average only 2.09 % from the OPT policy, and achieves the OPT policy cost in

45 % of the instances. Compared to OPT, FCFS and SI perform 7.17 and 27.21 %

worse, respectively. Focussing only on those instances in which difference is

nonzero (681 instances for CL), we see that the optimality gap does not increase

dramatically. Not only are FCFS and SI significantly outperformed by CL, but they

are significantly more unpredictable as well (larger standard deviations).

(a)

(b)

Fig. 3 Example of both lower bound functions. a ĈLBðSÞ illustration, instance 985. b eCS
LBðcÞ illustration

for S 2 f5; 14g, instance 1,485
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Next we investigate those instances in which the OPT policy outperforms the CL

policy to determine why the CL policy falls short. To do so we have found it useful

to look at two metrics for each instance: the ratio between class 1 and class 2

demand, k1

k2
; and the cost ratio between old and new backorders, k2p2

b
: The latter ratio

is an indicator of the rate at which cost is incurred when denying a class 2 demand

an item versus not clearing a current backorder. Table 3 shows that the largest

differences between the CL and the OPT policies occur when class 2 makes up a

Table 1 Demand and cost

parameters for the numerical

experiments

k1 k2

(a) Demand parameters

Low

k1 [[ k2 0.1 0.01

k1 [ k2 0.1 0.05

k1 = k2 0.1 0.1

k1 \ k2 0.05 0.1

k1 \\ k2 0.01 0.1

Middle

k1 [[ k2 1 0.1

k1 [ k2 1 0.5

k1 = k2 1 1

k1 \ k2 0.5 1

k1 \\ k2 0.1 1

High

k1 [[ k2 5 0.5

k1 [ k2 5 2.5

k1 = k2 5 5

k1 \ k2 2.5 5

k1 \\ k2 0.5 5

(b) Cost parameters

p1

1 p2 [ {0.01, 0.05, 0.1, 0.5}

b [ {0.01, 0.05, 0.1, 0.2, 1}

5 p2 [ {0.05, 0.25, 0.5, 2.5}

b [ {0.05, 0.25, 0.5, 1.5}

10 p2 [ {0.1, 0.5, 1.5}

b [ {0.1, 0.5, 1, 2, 10}

20 p2 [ {0.2, 1, 2, 10}

b [ {0.2, 1, 2, 4, 20}

50 p2 [ {0.5, 2.5, 5, 25}

b [ {0.5, 2.5, 5, 10, 50}

360 P. Enders et al.

123



large fraction of demand, i.e. k1

k2
is small,4 highlighting the importance of the size of

class 2. The second index is more subtle.

When the rate at which cost for a new backorder is accrued is much higher than

the rate at which existing backorders accumulate cost, i.e. k2p2

b
	 1, big differences

between the CL and OPT policies arise. This occurs because the OPT policy has the

opportunity to differentiate its decision regarding clearing backorders state-by-state.

When 100\k2p2

b
� 1; 000, deciding to backorder any new incoming class 2 demand

would lead to accruing cost at a much higher rate than the current backorder cost

rate. Therefore, there are states with positive backorders in which the OPT policy

serves new demand, but if a replenishment order comes in the item is added to

inventory, to protect against future backorders. The CL policy does not allow for

this flexibility as there is only a single CL. In these cases the cost difference can be

quite significant, up to almost 20 % on average when the class 2 demand rate is 10

times the demand rate of class 1 and the cost for new backorders is accrued much

faster than the cost of existing backorders.

We performed the same comparison between CL, FCFS and SI. From this we see

that CL improves most upon FCFS and SI when demand is balanced between class 1

and class 2, but class 2 is still sizeable (table omitted for brevity). In this case the

classes are competing for the same inventory and CL can thus actually make a

difference.

Finally, it is interesting to see how much CL improves on FCFS and SI for each

problem instance: How much of the distance from the optimal cost is closed by

using a CL policy instead of FCFS or SI is shown in Fig. 4a, b. We see that a CL

policy is always able to close some of the gap of SI (due to pooling) and is able to

close more of the gap whenever the gap is large. Thus introducing something as

simple as a single static CL into an inventory management system may yield large

benefits.

5.2 Sensitivity to lead time variability

For analytical tractability we assumed an exponential lead time throughout the

paper, which is in line with many of the other papers in this stream of literature (see

Sect. 2) However, it might be the case that the true lead time is more or less variable

Table 2 Performance of the CL, FCFS, SI policies versus the OPT policy

CL FCFS SI

Average % difference from optimal 2.09 7.17 27.21

SD 4.04 11.22 15.89

Number of instances different 681 829 1232

Average % difference from optimal 3.82 10.73 27.21

SD 4.82 12.26 15.89

4 There are no entries having both k1

k2
¼ 10 and 100\k2p2

b
� 1; 000 in our test bed.
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than exponential. In this subsection we will analyze the robustness of both the CL

and the OPT policy to changes in variability in the lead time distribution.

Specifically, we will examine how a policy that is found under one lead time

(a)

(b)

Fig. 4 Comparison of CL, FCFS, SI. a Optimality gap closed by CL from FCFS. b Optimality gap
closed by CL from SI

Table 3 Mean % difference. Under what parameter settings does the OPT policy outperform the CL

policy?

k1

k2
¼ 0:1 k1

k2
¼ 0:5 k1

k2
¼ 1 k1

k2
¼ 2 k1

k2
¼ 10

k2p2

b
� 1 0.14 0.39 0.25 0.19 0.14

1\k2p2

b
� 10 5.55 3.89 3.72 2.18 1.09

10\k2p2

b
� 100 12.79 10.03 8.80 4.77 1.72

100\k2p2

b
� 1; 000 18.27 14.45 11.42 6.71
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assumption (e.g. exponential), performs if the lead times follow a different

distribution (e.g. degenerate hyperexponential, H*). As a measure of variation we

use the squared coefficient of variation C2 ¼ var
mean2

� �
. Here we return to analyzing

the full set of 1,500 instances.

Thus, throughout this section we will at times use different assumptions to find

the parameters for a policy than for actually evaluating it (e.g. we will find a policy

assuming exponential lead times but evaluate its performance assuming actual lead

times are H*). As a general rule we will use superscripts to indicate the policy and

under which lead time assumptions a policy was identified, and parentheses to

indicate under which conditions it was evaluated. For example

C�CL;EXPðH�Þ ð16Þ

would represent the cost of the OCL policy identified under the exponential lead

time assumption and evaluated under H* distributed lead times. When both sets of

assumptions are the same, the (�) term is omitted, as is the policy index when this

can be done without confusion.

In the subsections to come we will make the following comparisons. In Sect.

5.2.1 we analytically explore the sensitivity of the CL policy to higher variability

lead times, using the H* distribution. In Sect. 5.2.2 we compare the sensitivity of

both the CL and the OPT policy.

5.2.1 Sensitivity of CL policy to lead time variability

The procedures introduced in Sects. 3 and 4 only require slight modifications to

accommodate a degenerate hyperexponential distribution (H* distribution), which

allows for larger, or equal, variability than exponential.5 (The modifications are

outlined in Appendix 4.) We first compare the parameters of the OCL policy for

C2 2 f1:1; 1:5; 2; 5; 10g with those of the OCL policy under an exponential lead

time (C2 = 1). To do so, let S�;H
�

and c�;H
�

be the OCL parameters found assuming

H* lead times with C2 2 f1:1; 1:5; 2; 5; 10g.
In Fig. 5a we plot the % of instances for which S�;EXP ¼ S�;H

2

; c�;EXP ¼ c�;H
2

; or

both, for varying values of C2. With only a slight increase in variability (C2 = 1.1)

we see that in almost 4 % of the instances the optimal c changes and in 5 % the

optimal S value changes. However, as C2 increases from 5 to 10, the effect is much

less pronounced. Numerically, we find that, the optimal values of S and c may

increase or decrease, but decreases become more numerous as variability grows.

From Fig. 5a it is clear that over the range of C2 values tested the optimal S value is

more sensitive to an increase in variability than the optimal c value.

Even though the optimal S and c change, we expect that the cost function is flat

around the optimal. To explore this, we analyze how much the cost increases when

implementing the OCL solution assuming exponential lead times in a more variable,

5 The H* distribution is a mixture of an exponential distribution and a point mass at 0, as defined in

Definition 1. It preserves most of the properties from the exponential distribution but can take on

coefficients of variation exceeding 1. The H* distribution with C2 = 1 is the exponential distribution.

Inventory rationing for a system with heterogeneous customer classes 363

123



H*, environment (in which the solution may not remain optimal). Specifically

[using notation along the lines of (16)], for the CL policy, we calculate

C�;EXPðH�Þ � C�;H
�

C�;H�
� 100; ð17Þ

for varying C2, i.e. C2 2 f1:1; 1:5; 2; 5; 10g. Figure 5b displays a boxplot6 of (17)

across our 1,500 instances. Clearly, on average, the effect of variability is small.

Even when the lead time distribution is 10 times as variable, the mean cost increase

is only 5.97 %; if 5 times as variable it is 2.69 %. For C2 B 2 the maximum

difference is 14.30 % and the mean difference is\0.37 %. This indicates that, even

(a)

(b)

Fig. 5 Sensitivity to lead time variability, all instances. a Sensitivity of S�;H
�
; c�;H

�
to C2. b % Cost

difference from implementing the OCL policy found using exponential lead times, compared to the OCL
policy at higher C2

6 See e.g. Montgomery and Runger (1999). The mean is indicated by a.
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when an exponential distribution is wrongly assumed for the lead time, and the true

lead time is more variable, the expected increase in cost for a CL policy is small,

even up to relatively high variabilities. This suggests that the performance of the CL

policy is robust with respect to lead time variability.

Unfortunately, the H* distribution cannot be used to evaluate C2 values below 1

nor can our approach be generalized to other types of distributions. However, using

simulation we were able to obtain similar results as described in this section for a

variety of distributions (i.e. Weibull, deterministic, Erlang-k, hyperexponential, and

lognormal distributions) with C2 values from 1
32

to 10.

5.2.2 Sensitivity of the optimal costs

Having established that the OCL policy parameters are largely insensitive to

changes in lead time variability, we now compare the robustness with respect to

costs of the OCL and OPT policies, using simulation. We compare the cost of only

the optimal policies. Specifically, using the notation as defined in (16), for both the

CL and the OPT policies we calculate

C�;EXPðWeibullÞ � C�;EXP

C�;EXP
� 100

over 1,500 instances under 7 different variabilities C2 2 1
32
; 1

8
; 1

2
; 1; 2; 5; 10


 �� �
,7

using 30 simulation runs of 20,000 customer arrivals each. Once again, results for

other distributions (i.e. deterministic, Erlang-k, H*, H2, and Lognormal) are similar

over the same range of C2 values and are omitted.

We construct ±3r confidence intervals to determine whether the % difference of

costs is significantly different from 0. The results are summarized in Fig. 6, where #

indicates the count of the number of instances in each setting. There are several

observations we can make.

First, we observe that the optimal cost of both the CL and OPT policies is rather

insensitive to the variability of the lead time distribution. Even for C2 = 10, more

than 72 % (OPT) and 86 % (CL) of the instances have costs that are insignificantly

different. Second, we see that the cost of the OPT policy is less robust than the cost

of the CL policy in the face of changing lead time distributions. Whereas, for

example, under the CL policy, 104 instances have a significantly higher cost when

lead times are Weibull distributed (Fig. 6c), for the OPT policy there are 211

instances (Fig. 6f). Note that all of these occur under lower variability lead times.

Third, the spread in differences is also larger for the globally optimal policy;

compare the interquartile ranges and standard deviations in the two rows of Fig. 6.

Finally, when lead time variability increases, the globally optimal policy is again

more sensitive, but now to its benefit (Fig. 6a, d): costs may be significantly lower

under C2 [ 1 as compared to the exponential baseline.

In fact, for both the OPT and CL policies, the effect of variability is such that if

the variability increases, the costs tend to decrease. The intuition behind this is that

for constant mean, as variability increases, the median lead time decreases.

7 C2 2 1
16
; 1

4
; 1:1; 1:5


 �
were also evaluated but omitted for brevity.
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Occasional long lead times will decrease inventory and/or increase the number of

backorders temporarily, but as long as there are items on hand this will not affect the

number of demands rejected. In contrast, the increased fraction of shorter lead times

increases availability and hence service. This has also been observed in the exact

results for the H* distribution. Note that having ample, or at least multiple, servers is

crucial for the existence of this effect.

Additionally, we have analyzed the relative performance of the OCL and OPT policies

as they were subjected to Weibull distributed replenishment lead times, while the

parameter values were optimized assuming exponentially distributed replenishment lead

times. In some instances the OCL policy outperformed the OPT policy, i.e. the OCL

policy is more robust to mis-specification of the replenishment lead time distribution.

5.3 Structure of the optimal policy

In this section we provide some insight into the structure of the OPT policy by

examining a representative instance in detail. Our model closely relates to the model

of Van Wijk et al. (2009) in which the optimal lateral transshipment policy is

derived. However, key to their analysis is the concept of ‘‘proportional allocation’’

of incoming replenishment orders. In our setting this would require incoming

replenishment orders to be allocated to inventory or clearing backorders according

to probabilities proportional to the number of backorders and inversely proportional

to the inventory level. Under this proportional allocation the structure of the optimal

policy can be proven. Note that the decision how to allocate incoming replenish-

ments cannot be optimized in this setting, as that would violate the structural

properties of the value function. Hence we resort to numerical analysis of the

optimal policy as that still brings to light how improvements over the CL policy can

be obtained. The instance we discuss here has the following parameters,

k1 = 5, k2 = 5, p1 = 1, p2 = 0.5, and b = 0.01. The parameters of the OCL

policy are S* = 11, and c* = 1. Figure 7 displays the OPT policy for this instance.

First, we observe that the maximum level of inventory in the OPT policy is 8, as

compared to an order up to level of 11 in the CL policy. Second, the OPT structure

does not show a single critical level, it varies depending on the pipeline stock. If we

fix an inventory level, say I = 1 (on the horizontal axes), we see that for low levels

of backorders (B B 2) arriving class 2 demand gets backordered, even though there

is stock on hand (Fig. 7a). Furthermore, if a replenishment arrives, no backorders

would get cleared (B B 14, Fig. 7b). As the number of backorders increases, for

fixed I (equivalently as the pipeline stock increases), we observe a threshold above

which a class 2 demand would get served (B C 3, Fig. 7a) or a backorder would get

cleared (for some B [ 14, not displayed for clarity, Fig. 7b). This is because for

these high levels of pipeline stock, the policy ‘‘expects’’ another replenishment

soon. Also, for certain states, for example at I = 2 and B = 2, we see that optimally

a new class 2 demand is served while a backorder would not be cleared. This recalls

the observation made in Sect. 5.1: The rate at which cost for new backorders accrues

is p2 k2 = 2.5 while a current backorder (if not cleared) accrues costs at rate 0.01.

Thus, at low inventory levels, the OPT policy will serve new demands while also

stockpiling inventory, leaving extant backorders unsatisfied. This stockpiling offers
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protection against losing a class 1 demand or needing to backorder a future class 2

demand. The CL policy does not have this flexibility to distinguish between these two

actions. Note that one undesirable feature of the optimal policy is that, through this

flexibility, it may happen that class 2 customers may end up being served out of order.

Thus, the OPT policy saves on inventory by changing the optimal decisions once

inventory becomes low while at the same time keeping the service levels high.

However, the OPT policy also has several drawbacks: (1) The OPT policy is

significantly harder to implement in practice. Not only does one need to consider

multiple state variables, beyond just the inventory level which typically can be

observed directly, but one might also serve demands from the same class ‘‘out of

order’’, something that might be undesirable in reality. (2) The OPT policy is

computationally much harder to calculate. We solve the LP model (for formulation

see Appendix 3) using a two stage linear program. To determine the OPT policy

calculation times may run up to several minutes8 solving problems with up to

(a)

(b)

Fig. 7 Example of globally optimal actions. a Backorder or serve an incoming class 2 demand? b Clear a
backorder or add to inventory?

8 On a Quad core machine with 8 GB of RAM.
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25,000 variables and over 1.5 million constraints. If the objective was to solve an

individual single item problem this would not be an issue but in realistic settings,

e.g. spare parts management, one may want to optimize inventories for thousands of

items on a regular basis; leading to prohibitive running times. (3) Finally, recall that

the OPT policy is less robust with respect to lead time variability. This is because its

power relies on conditioning on expected incoming replenishments, which change

as C2 changes.

6 Extensions

There are several opportunities for extensions of this work. In this section we will

present some, and where possible outline how these fit within our model. Extensions

to work with a single, or parallel servers and to include service level constraints are

rather straightforward. Two, more interesting, extensions are outlined in this

section.

6.1 Multiple customer classes of the same type

Increasing the number of customer classes would also be an interesting extension.

However, as the number of classes that gets backordered (when not immediately

satisfied) increases, the state space increases geometrically (see e.g. Deshpande

et al. 2003b).

If instead the number of classes is increased and only the lowest priority class

gets backordered, the model can be analyzed after some modifications. Let customer

classes be denoted by j ¼ 1; . . .; J; the priority of the classes decreases in j. Class Js

demand is backordered if not immediately satisfied (i.e. it has the lowest priority

and the inventory level is at or below cJ). Demand for all classes j \ J is lost as soon

as inventory is at or below cj, where c1,0: Demands for each class arrive according

to a Poisson process with rate kj and the total demand rate is denoted by k =
P

j=1
j=J

kj. The transition scheme for this policy is displayed in Fig. 8a.

For the evaluation of our new Markov process we can use the procedure as

outlined in Sect. 3. Lemma 1 straightforwardly holds, and in the proof of Lemma 2

several negative terms are added to the left hand side of (25), but these can then also

be omitted when moving to an inequality in (26).

When searching for the optimal policy ðS; c1; . . .; cJÞ; we can still use the lower

bounds from Lemma 3 and Corollary 1 to bound the search space for S and cJ.

However, for the CLs for the lost sales classes other bounds would need to be

developed or exhaustive search can be used.

6.2 Differentiation between new demands and replenishments

Guided by the structure of the optimal policy as displayed in Fig. 7 we explore a

related extension. A key observation is that incoming class 2 demands are served at

inventory levels at which backordered class 2 demands are not cleared. To mimic
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this feature we explore a policy with dual CLs: If the inventory level is at or below cn,

incoming class 2 demands are backordered; Incoming replenishment orders are used to

clear backorders only if the inventory level equals cb (if inventory is below cb priority

is given to inventory replenishment, and if inventory is above cb there are no

backorders). Note that, given our cost structure, it would never be beneficial to have

cn [ cb as this would ‘‘replace’’ a current backorder with a new one, while incurring

the one time penalty cost p2. The transition diagram is illustrated in Fig. 8b.

This modification ‘‘prioritizes’’ new demand over old ones and its transition

scheme is displayed in Fig. 8b. The structure needed in Lemma 1 is preserved, with

slight modifications to the transition matrices. Also, the concept of diagonal layers

as used in the proof of Lemma 2 can be applied in this case, allowing the calculation

of the performance measures with arbitrary precision.

(a)

(b)

Fig. 8 Transition diagram for extensions to our policy. a Multiple lost sales classes. b Dual critical levels
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For the optimization routine to work Theorem 1 should be specialized for the

different CLs. The bounds to limit the search for the optimal base stock level will

hold. For each base stock level one would have to search over a space of size

(S ? 2)(S ? 1)/2. Although we expect that bounds on this search space can be

developed, this is beyond the scope of this paper.

Note that, under this modification, class 2 demand may be served out of order.

Although this would be feasible in an online setting, in many other business settings

this would lead to significant customer dissatisfaction.

7 Conclusions

We considered a single-item inventory system with a high priority, lost sales

customer class and a lower priority, backordering customer class.

Using a CL policy, though sub-optimal, achieves good performance when

compared to alternative policies and is furthermore largely insensitive to changes in

lead time variability. Our evaluation and optimization procedures allow for

efficiently finding the optimal parameters of a CL policy (much faster than solving

an MDP), thus claiming much of the improvement of the more complex optimal

state-dependent policy at a fraction of the operational cost. This should prove

crucial as the problem size grows, considering more customer classes, more items,

or more locations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
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Appendix 1: Detailed structure of the submatrices of the generator Q

The generator Q as defined in (6) consists of six submatrices each of which is

described here. First, B0 is an (S ? 1) 9 (S ? 1) matrix and captures the transitions

within level 0 of the Markov process. Let i and j be the matrix indices, they equate

to the level of inventory ? 1:

B0ði; jÞ ¼

�ðk2 þ SlÞ if i ¼ j ¼ 1;
�ðkþ ðS� iþ 1ÞlÞ if 1\i� Sþ 1 and j ¼ i;
ðS� iþ 1Þl if 1� i\Sþ 1 and j ¼ iþ 1;
k1 if 1\i� cþ 1 and j ¼ i� 1;
k if cþ 1\i� Sþ 1 and j ¼ i� 1;
0 otherwise.

8
>>>>>><

>>>>>>:

:

Next, B-1 is an (c ? 1) 9 (S ? 1) matrix and describes the transition, through

the arrival of a replenishment order, from level 1 to level 0:

B�1ði; jÞ ¼
S� cþ 1Þl if i ¼ cþ 1 and j ¼ cþ 1;
0 otherwise.

�
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Third, B1 describes the transitions from level 0 to level 1 through the arrival of

a class 2 demand when inventory is at or below the CL c and is an (S ? 1) 9 (c ? 1)

matrix:

B1ði; jÞ ¼
k2 if 1� i� cþ 1 and j ¼ i;
0 otherwise.

�

For levels 1 and up, A0(n) describes the transitions within level n and is an

(c ? 1) 9 (c ? 1) matrix:

A0ðnÞði; jÞ ¼

�ððSþ nÞlþ k2Þ if i ¼ j ¼ 1;
�ððSþ n� iþ 1Þlþ kÞ if 1\i� cþ 1 and j ¼ i;
ðSþ n� iþ 1Þl if 1� i\cþ 1 and j ¼ iþ 1;
k1 if 1\i� cþ 1 and j ¼ i� 1;
0 otherwise.

8
>>>><

>>>>:

Fifth, the (c ? 1) 9 (c ? 1) matrix A-1(n) captures the transitions, by arriving

replenishment orders, from level n to level n - 1:

A�1ðnÞði; jÞ ¼
ðS� cþ nÞl if i ¼ j ¼ cþ 1;
0 otherwise.

�

Finally, the (c ? 1) 9 (c ? 1) matrix A1 describes the transitions from level n to

level n ? 1 by the arrival of class 2 demands when inventory is at or below the CL:

A1ðnÞði; jÞ ¼
k2 if 1� i� cþ 1 and j ¼ i;
0 otherwise.

�

Appendix 2: Proofs of lemmas and theorems

Proof of Lemma 1

Consider the balance Eqs. (7)–(10). For n C 1 the third term of the left-hand side of

(8) and (9) can be written as follows:

~pnþ1A�1ðnþ 1Þ ¼ ð0; . . .; 0; ~pc;nþ1ðS� cþ nþ 1ÞlÞ ð18Þ
As can be seen from Fig. 2 this captures that the only flow from level n ? 1 to

level n is from (c, n ? 1) to (c, n). Now, due to global balance the following

relation must hold:

~pc;nþ1ðS� cþ nþ 1Þl ¼ ~pnA1e ¼ k2~pne; ð19Þ

where e the vector of ones of the appropriate size. Then from (18) and (19) we get:

~pnþ1A�1ðnþ 1Þ ¼ k2pnA; ð20Þ

where A is defined in (11). Substitution of (20) into (8), and (9) leads to:

~p0B0 þ ~p1B�1 ¼ 0 for n ¼ 0 ð21Þ
~p0B1 þ ~p1A0ð1Þ þ k2~p1A ¼ 0 for n ¼ 1 ð22Þ

372 P. Enders et al.

123



~pn�1A1 þ ~pnA0ðnÞ þ k2~pnA ¼ 0 for n� 2 ð23Þ
~pS;0 ¼ 1: ð24Þ

Equations (21)–(24) have a unique solution.

Now ~p0 and ~p1 can be obtained from Eqs. (21) and (22) with ~pS;0 ¼ 1, and the

vectors ~pn for n C 2 can be recursively calculated from (23) which can be rewritten

as follows:

pn ¼ �pn�1A1ðA0ðnÞ þ Ak2Þ�1
for n� 2;

where (A0(n) ? Ak2)-1 exists, as it is a transient generator. h

Proof of Lemma 2

For the proof of Lemma 2 we first introduce diagonal levels for n C 0 defined as the

set of states: ð0; nÞ; ð1; nþ 1Þ; . . .; ðc; nþ cÞf g and the corresponding probability

vectors edn ¼ ð~p0;n; ~p1;nþ1; . . .; ~pc;nþcÞ: The balance flow between two subsequent

diagonal levels can be expressed as:

ednek� ~p0;nk1 ¼ ednþ1eðSþ nþ 1Þl: ð25Þ

So, leaving out the second term on the left-hand side results in:

ednek� ednþ1eðSþ nþ 1Þl: ð26Þ

and thus the probability of being at diagonal level n ? 1 can be expressed in the

probability of being at diagonal level n as follows:

ednþ1e� k
l

1

Sþ nþ 1
edne:

Now we can bound the weighted probabilities using a cut off parameter ‘ C 1. For

horizontal levels n C c ? ‘ we know the weighted probabilities are upper bounded

by the weighted probabilities of the diagonal layers. This works because the lowest

diagonal layer, which gets the same weight (c ? ‘) as the lowest horizontal layer

includes states below the lowest horizontal bounding level, and the mass decreases

in the level. Furthermore the weight assigned to each state under the diagonal layer

definition is at least as large as under the horizontal definition. The weighted

diagonal layer can then bound the weighted horizontal levels as follows:

X1

n¼cþ‘
n~pne�

X1

n¼‘
ðnþ cÞedne

¼
X1

k¼0

ðk þ ‘þ cÞed‘þke:

Using the following result for the relation between two diagonal levels at distance k
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ed‘þke� k
l

� 	k
1

ðSþ ‘þ kÞ. . .ðSþ ‘þ 1Þ
ed‘e

¼ k
l

� 	k ðSþ ‘Þ!
ðSþ ‘þ kÞ!

ed‘e

we can bound
P1

n¼cþ‘ n~pne as follows:

X1

n¼cþ‘
n~pne�

X1

k¼0

k
l

� 	k ðSþ ‘Þ!
ðSþ ‘þ kÞ!

ed‘eðk þ ‘þ cÞ

¼ ed‘eðSþ ‘Þ!
l
k

� �Sþ‘ X1
k¼0

k
l

� 	Sþ‘þk
1

ðSþ ‘þ kÞ!ðk þ ‘þ cÞ
" #

¼ ed‘eðSþ ‘Þ!
l
k

� �Sþ‘ X1
k¼0

k
l

� 	Sþ‘þk
1

ðSþ ‘þ kÞ!ðk þ Sþ ‘Þ
"

�ðS� cÞ
X1

k¼0

k
l

� 	Sþ‘þk
1

ðSþ ‘þ kÞ!

#

¼ ed‘eðSþ ‘Þ!
l
k

� �Sþ‘ k
l
/ðSþ ‘� 1Þ � ðS� cÞ/ðSþ ‘Þ

� �

where /(‘) is as defined in (13). h

Proof of theorem 1

Theorem 1 has been stated formulated for Poisson arrivals and exponentially

distributed lead times. We will prove Theorem 1 for general arrivals and for both

exponential (‘‘Exponential lead times’’ section) and degenerate hyperexponential

(‘‘Degenerate hyperexponential lead times’’ section) lead times

Exponential lead times

Both class 1 and class 2 orders arrive according to an arbitrary arrival process; let tn
denote the nth arrival time of an order and in indicates whether it is an arrival of a

class 1 (in = 1) or class 2 (in = 2) order. It is assumed that the sequence tn satisfies

0\t1\t2\ � � � (thus only single arrivals) and that tn !1 as n!1.

The assumption that lead times are exponentially distributed allows us to sample

new lead times for all items in the pipeline immediately after each arrival; let sj,n be

the jth lead time just after tn, where lead times are ordered such that orders that are

outstanding in both systems appear first, and those that are outstanding in only one

system appear later. Further, let mc(t) denote the number of items on hand, nc(t) the

number of backorders and xc(t) the number of items in the pipeline at time t in the

system with CL c; note that mc(t), nc (t) and xc(t) are step functions (with steps of

size 1) and we assume these functions are right-continuous (so the number at time t

is the same as the number just after time t).
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Using this notation we will prove that, on the same sample path, for all t C 0, the

performance measures depend on c in the following manner:

ncðtÞ� ncþ1ðtÞ ð27Þ

xcðtÞ� xcþ1ðtÞ ð28Þ

Note that this will give us that the number of backorders and the pipeline inventory

are stochastically increasing in c, which is actually stronger than just the monotonic

increase in the means. To prove the above relations, we fix a sample path of arrivals

to both systems. Replenishment orders that are common to both systems are also

coupled, i.e. we couple the resampled lead times in both systems. After every

customer arrival we sample max(xc(t),xc?1(t)), we then assign the first

min(xc(t),xc?1(t)) to both systems. The remainder is assigned only to the system with

the highest number of outstanding orders. Hence the sequences remain coupled. The

orders in the pipeline are indexed by j in the order in which they are assigned. As

there may be more outstanding orders in one system than in another, these addi-

tional replenishment orders are sampled separately.

At time t = 0 we assume that the on-hand inventory is S, there are no backorders

and the pipeline is empty, so mc(0) = S and nc (0) = xc(0) = 0.

Clearly, for all t C 0,

mcðtÞ ¼ S� ðxcðtÞ � ncðtÞÞ; ð29Þ

and the CL policy implies that nc(t) = 0 if mc(t) [ c. Let m(t-) denote the stock

level just before t, i.e.

mðt�Þ ¼ lim
s"t

mðsÞ;

and 1[A] the indicator which is 1 if A holds and 0 otherwise.

By induction we will prove that (27)–(28) hold for [0, tn) for all n C 1. Since

mc(0) = mc?1(0) = S and nc(0) = nc?1(0) = xc(0) = xc?1(0) = 0 and there are no

events during [0, t1) (since the pipeline is empty), it follows that (27)–(28) hold for

t 2 ½0; t1Þ. Now assume that (27)–(28) are valid for [0, tn), so just before tn,

ncðt�n Þ� ncþ1ðt�n Þ; ð30Þ

xcðt�n Þ� xcþ1ðt�n Þ: ð31Þ

Then we will show that (27)–(28) remain valid during [tn,tn?1). At time tn a new

demand arrives. If in ¼ 1 :

ncðtnÞ ¼ ncðt�n Þ� ncþ1ðt�n Þ ¼ ncþ1ðtnÞ;

so (27) is still valid for tn. For xc(tn) we have

xcðtnÞ ¼ xcðt�n Þ þ 1½mcðt�n Þ[ 0
 ¼ xcðt�n Þ þ 1½xcðt�n Þ�ncðt�n Þ\S
:

If xc(tn
-) \ xc?1(tn

-), then clearly, (28) is valid for tn and if xc(tn
-) = xc?1(tn

-), then

by (30)
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xcðtnÞ ¼ xcðt�n Þ þ 1½xcðt�n Þ�ncðt�n Þ\S
 � xcþ1ðt�n Þ þ 1½xcþ1ðt�n Þ�ncþ1ðt�n Þ\S
 ¼ xcþ1ðtnÞ:
ð32Þ

If in ¼ 2 : By (31)

xcðtnÞ ¼ xcðt�n Þ þ 1� xcþ1ðt�n Þ þ 1 ¼ xcþ1ðtnÞ; ð33Þ

so (28) is still valid for tn. For nc(tn) we have

ncðtnÞ ¼ ncðt�n Þ þ 1½mcðt�n Þ� c
 ¼ ncðt�n Þ þ 1½S�xcðt�n Þþncðt�n Þ� c
:

If nc(tn
-) \ nc?1(tn

-), then clearly, (27) is valid for tn and if nc(tn
-) = nc?1(tn

-), then

by (31)

ncðtnÞ ¼ ncðt�n Þ þ 1½S�xcðt�n Þþncðt�n Þ� c
 � ncþ1ðt�n Þ þ 1½S�xcþ1ðt�n Þþncþ1ðt�n Þ� cþ1

¼ ncþ1ðtnÞ:

Hence, (27)–(28) are valid at time tn.

Now we will show that (27)–(28) remain valid on (tn,tn?1) for both cases (in = 1

and in = 2). Assume that uj,n : = tn ? sj,n \ tn?1, i.e. the jth replenishment arrives

before tn?1. First suppose j B min(xc(tn),xc?1(tn)) = xc (tn), thus we have an arrival

in both systems c and c ? 1, and further assume

ncðu�j;nÞ� ncþ1ðu�j;nÞ;
xcðu�j;nÞ� xcþ1ðu�j;nÞ:

ð34Þ

Then we will show that (27)–(28) remain valid at uj,n [thus the arrival preserves

(27)–(28)]. Clearly

xcðuj;nÞ ¼ xcðu�j;nÞ � 1� xcþ1ðu�j;nÞ � 1 ¼ xcþ1ðuj;nÞ;

so (28) is still valid for uj,n. For nc(uj,n) we have, provided nc (uj,n
- ) [ 0,

ncðuj;nÞ ¼ ncðu�j;nÞ � 1½mcðu�
i;nÞ� c
 ¼ ncðu�j;nÞ � 1½S�xcðu�

j;nÞþncðu�
j;nÞ� c
:

If nc (uj,n
- ) = 0 or nc (uj,n

- ) \ nc?1 (uj,n
- ), then clearly, (27) is valid for uj,n and if

0 \ nc (uj,n
- ) = nc?1 (uj,n

- ), then by (34):

ncðuj;nÞ ¼ ncðu�j;nÞ � 1½S�xcðu�
j;nÞþncðu�

j;nÞ� c
 � ncþ1ðu�j;nÞ � 1½S�xcþ1ðu�
j;nÞþncþ1ðu�

j;nÞ� cþ1


¼ ncþ1ðuj;nÞ:

Now suppose we only have an arrival of a replenishment order in the c ? 1 system as

min(xc(tn), xc?1(tn)) = xc(tn)\ j B xc?1(tn) = max(xc(tn), xc?1(tn)). This implies xc

(uj,n
- )\ xc?1 (uj,n

- ) and thus (28) holds for uj,n. Again, if nc (uj,n
- ) = 0 or nc (uj,n

- )\nc?1

(uj,n
- ), then clearly, (27) is valid for uj,n. If 0\nc (uj,n

- ) = nc?1 (uj,n
- ), then, since nc

(uj,n) = nc (uj,n
- ), we have to show that also ncþ1ð�Þ does not decrease, i.e. mc?1

(uj,n
- ) \ c ? 1. It holds

mcþ1ðu�j;nÞ ¼ S� xcþ1ðu�j;nÞ þ ncþ1ðu�j;nÞ� S� xcðu�j;nÞ þ ncðu�j;nÞ ¼ mcðu�j;nÞ� c;

where the last inequality follows from nc (uj,n
- ) [ 0. This completes the proof of

(27)–(28) as, by induction, these relationships hold for all t.
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(14) remains to be proven. As class 2 customers only get served when there are

no backorders, i.e. nc(t) = 0, and c \ mc(t) we focus on times where nc(t) = 0. By

(28) and (29), we have that

mcðtÞ ¼ S� xcðtÞ þ 0� S� xcþ1ðtÞ þ 0 ¼ mcþ1ðtÞ
Consider first the specific inventory levels

cþ 1�mcþ1ðtÞ�mcðtÞ;

and note that when the first inequality holds at equality the system with CL c ? 1

does not serve class 2 demand, while the system with CL c does. When the first

inequality is strict, both systems serve class 2 demand. Hence, the fraction of class 2

demand satisfied from inventory is larger under the system with CL c. When

mc?1(t) \ c ? 1 class 2 customers will not be served in the c ? 1 system but may

be served in the c system and again the fraction of of class 2 demand satisfied from

inventory is larger under the system with CL c (Table 4). h

Remark 1 The relation between mc(t) and mc?1(t) is not monotonic in c as is

illustrated by the following example with S = 2, c = 0, t1 = 1, i1 = 2,

t2 = 2, i2 = 2, t3 = 3 and i3 = 1. Replenishments arrive at t = 4 and t = 5. This

will lead to the following system as outlined in Table 1. This shows that

mc(t) \ mc?1(t) (at t = 2) as well as mc(t) [ mc?1(t) (at t = 5) may happen.

Table 4 Example of potential

system evolution for S = 2,

c = 0

t = 0 mc(0) = 2 = mc?1(0)

nc(0) = 0 = nc?1(0)

xc(0) = 0 = xc?1(0)

t = 1 mc(1) = 1 = c ? 1 = mc?1(1)

nc(1) = 0 = nc?1(1)

xc(1) = 1 = xc?1(1)

t = 2 mc(2) = 0 \ 1 = mc?1(2)

nc(2) = 0 \ 1 = nc?1(2)

xc(2) = 2 = xc?1(2)

t = 3 mc(3) = 0 = mc?1(3)

nc(3) = 0 \ 1 = nc?1(3)

xc(3) = 2 \ 3 = xc?1(3)

t = 4 mc(4) = 1 = mc?1(4)

nc(4) = 0 \ 1 = nc?1(4)

xc(4) = 1 \ 2 = xc?1(4)

t = 5 mc(5) = 2 [ 1 = mc?1(5)

nc(5) = 0 = nc?1(5)

xc(5) = 0 \ 1 = xc?1(5)
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Degenerate hyperexponential lead times

Definition 1 A sample from a degenerate hyperexponential distribution is drawn

from an exponential distribution with rate l* with probability p and is 0 with

probability 1 - p.

We will now show that, with degenerate hyperexponential distributed lead times,

for all t C 0, the performance measures depend on c in the following manner:

ncðtÞ� ncþ1ðtÞ ð35Þ

xcðtÞ� xcþ1ðtÞ ð36Þ
This proof follows along the same lines as the proof of (27)–(28). First we

consider the points in time when a replenishment order is placed. Let 1[LT[0] be 1

with probability p (i.e. the lead time is to be drawn from the exponential with

rate l*), and 0 otherwise. Then we modify (32) and (33) as follows:

xcðtnÞ ¼ xcðt�n Þ þ 1½LT [ 0
1½xcðt�n Þ�ncðt�n Þ\S
 � xcþ1ðt�n Þ
þ 1½LT [ 0
1½xcþ1ðt�n Þ�ncþ1ðt�n Þ\S
 ¼ xcþ1ðtnÞ

xcðtnÞ ¼ xcðt�n Þ þ 1½LT [ 0
1� xcþ1ðt�n Þ þ 1½LT [ 0
1 ¼ xcþ1ðtnÞ;
As the lead time that is drawn is the same in both system, we know (35)–(36) are

valid at tn (the argument for (35) did not change). To show that (35)–(36) remain

valid on (tn,tn?1) we need to realize that only replenishment orders with non-zero

lead times actually entered the pipeline. Focussing on these replenishment orders

only the arguments from the proof of ‘‘Exponential lead times’’ section are still

valid. Which proves (35)–(36).

(14) for the degenerate hyperexponential case follows directly from the argument

for (14) in ‘‘Exponential lead times’’ section. h

Proof of lemma 3

The cost of a certain policy [see Eq. (1)] can be bounded from below as follows:

CðS; cÞ ¼ p1k1ð1� b1ðS; cÞÞ þ p2k2ð1� b2ðS; cÞÞ þ bBðS; cÞ þ hIðS; cÞ
¼ p1k1ð1� b1ðS; cÞÞ þ p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ
þ h IðS; cÞ � BðS; cÞð Þ

� p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ þ h IðS; cÞ � BðS; cÞð Þ
¼ p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ þ h S� XðS; cÞð Þ
� p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ þ h S� XðS; SÞð Þ

ð37Þ

� p2k2ð1� b2ðS; cÞÞ þ ðbþ hÞBðS; cÞ þ h S� k
l

� 	
; ð38Þ

where (38) follows from (37) by the monotonicity results in Theorem 1.
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Appendix 3: Markov decision process details

Since all events happen with exponentially distributed interarrival times it is

sufficient to only look at the states of the system when events occur.

States, events, decisions, transitions

The state of the system can be fully specified by:

• The amount of inventory on hand (I);

• The number of backorders (B, note that backorders may exist even if there is

inventory).

• The number of items on order (DI, information about when an order is placed is

not needed as long as exponential lead times are used);

• The last event that occurred (E, 1 if the event was such that in the current state

orders can be placed, i.e. a demand was satisfied or backordered, 0 else, i.e. a

demand was rejected or a replenishment arrived).

The state space is denoted by a four-tuple: (I, B, DI, E). In the MDP formulation

we make three additional assumptions to bound the state space and thus also the

maximum transition rate from any state. When solving the MDP we will ensure that

these bounds have insignificant effect on the optimal solution by solving the MDP

repeatedly with increasing bounds, as soon as the total probability mass in all

boundary states drops below a threshold the effect of bounding becomes negligible.

(1) We assume there exists a maximum inventory level Î, (2) we assume there exists

a maximum number of backorders B̂, and (3) we assume that as soon as the number

of backorders equals B̂ no further class 2 demands will arrive.

Given the three bounding assumptions we get bounds: 0� I� Î; 0�B� B̂, and

subsequently 0�DI� Î � I þ B̂, effectively: 0�DI� Î � I þ B. This second

bound on the amount DI is because whenever all replenishment orders arrive

before the next demand one must still be inside the state space.

We consider the following decisions at every event:

• a1 = 1: Satisfy class 1 demand as long as inventory is available

(I ¼ 0) a1 ¼ 0 since you have no inventory to act otherwise).

• a2 2 f0; 1g: If a class 2 demand occurs whether to serve it or backorder it. If

a2 = 0 you would reject (i.e. backorder) the class 2 demand and if a2 = 1 you

serve the demand. (I ¼ 0) a2 ¼ 0 since you have no inventory to act

otherwise).

• a3 2 f0; 1g: How to use an incoming replenishment order. If a3 = 0 any

incoming item is added to inventory and if a3 = 1 a backorder is cleared.

• a4 2 f0; 1g: How much to order. This order immediately becomes effective and

determines the current size of the pipeline.

We are aware of the fact that ordering at most 1 item at a time may lead to a

suboptimal solution. Since we are mainly interested in how our CL policy deals with
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class 2 demand we believe that this restrictions do not limit our insights in this

respect.

The timeline, seen in Fig. 9, is as follows: Suppose the state of the system is

changed by the occurrence of an event (a class 1 demand occurs and it is served, a

class 2 demand occurs, or a replenishment order arrives), at (after) the occurrence of

an event (i.e. when one has the knowledge of which event happened) one has to

make a decision consisting of an action tuple of size 4, {a1, a2, a3, a4}.9 The first

three types of decisions become effective at the occurrence of the next event

(i.e. they describe how to handle the next event). The fourth decision is the decision

how much to order, which is immediately implemented and affects the number of

items in the pipeline.

Now that we have specified the available actions we consider the transitions.

These depend on both the event occuring and the action taken:

• At rate k1 a demand from class one arrives.

• If a1 = 1, i.e. the demand is served, the transition goes to (I - 1,

B, DI ? a4, 1), and

• if a1 = 0, i.e. the demand is rejected, the transition goes to (I, B, DI, 0), this

is effectively a fake transition, happening at rate k1 if a1 = 0 (only if I = 0).

• At rate k2 a demand from class two arrives (when b\B̂).

• If a2 = 1, i.e. the demand is served, the transition goes to (I - 1,

B, DI ? a4, 1), and

• if a2 = 0, i.e. the demand is backordered, the transition goes to

(I, B ? 1, DI ? a4, 1).

• At rate (DI ? a4)l a replenishment order arrives. When a replenishment order

arrives one has to decide how to use the incoming item. Depending on this

decision (a3) the transition goes to (I ? 1 - a3, B - a3, DI - 1 ? a4, 0).

Fig. 9 Illustration of the sequence of events

9 When the event did not change the state of the system (e.g. reject a class 1 customer) the decision made

at the previous event will remain optimal after the current event because events follow a (memoryless)

exponential distribution.
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• At rate ½ðÎ þ B̂Þ � ðDI þ a4Þ
l ¼ ð̂I þ B̂� DI � a4Þl a ’’fake’’ transition will

happen, this transition goes back to our current state (I, B, DI, E).

The LP formulation

Now we have formulated the MDP we use linear programming to determine the

optimal cost. At this point the bounding of the state space and the bounding of the

transition rate out of any state enable us to uniformize (Ross 1997) using the ’’fake’’

transitions introduced in the previous section.

The LP formulation is based on Sections 8.8.1 and 11.4.4 from Puterman (1994) .

Throughout the LP the variables are such that for each (state, action) combination

there is a variable, denoted by p(I, B, DI, E, a1, a2, a3, a4), which denotes the

steady state distribution.

Objective function

The objective function consists of (39a) for the holding cost, (39b) for the penalty

cost for rejecting a class 1 demand, backordering cost p2 are incurred in those

states summed in (39c), i.e. when a class 2 demand is backordered, and finally the

cost b are incurred in all states where the number of backorders exceeds 0, see

(39d).

min
XÎ

I¼1

XB̂

B¼0

XÎ�IþB

DI¼0

X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
hIpðI;B;DI;E; a1; a2; a3; a4Þ

ð39aÞ

þ
XÎ

I¼0

XB̂

B¼0

XÎ�IþB

DI¼0

X1

E¼0

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
p1k1pðI;B;DI;E; 0; a2; a3; a4Þ ð39bÞ

þ
XÎ

I¼0

XB̂

B¼0

XÎ�IþB

DI¼0

X1

E¼0

X

a12f0;1g

X

a32f0;1g

X

a42f0;1g
p2k2pðI;B;DI;E; a1; 0; a3; a4Þ ð39cÞ

þ
XÎ

I¼0

XB̂

B¼1

XÎ�IþB

DI¼0

X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
bBpðI;B;DI;E; a1; a2; a3; a4Þ

ð39dÞ

Constraints

A constraint balance equation is needed for each state, (I, B, DI, E), and is of the

form OUT - IN = 0. We use s and a to denote the state and action tuples for

brevity. Here we describe the constraint for s = (I, B, DI, E), assuming this is a

state in the interior of the state space. Defining S as the set of states, now let

Cðs; aÞ ¼
P

j2S cðjjs; aÞ; C denotes the total rate out of state s whenever action a is
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taken and c(j|s, a) is the probability of going from state s to state j whenever action a

is taken. Due to the uniformization we know that Cðs; aÞ ¼ k1 þ k2 þ ðÎ þ B̂Þl:
The ‘‘OUT’’ part of the constraint would be as follows:

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
CðI;B;DI;E; a1; a2; a3; a4ÞpðI;B;DI;E; a1; a2; a3; a4Þ

ð40Þ
Here CðI;B;DI;E; a1; a2; a3; a4Þ consists of:

• k1 if a1 = 1, and I [ 0, since I ¼ 0) a1 ¼ 0;

• k2 if I [ 0, and B\B̂ (interior of state space), or I [ 0, and B ¼ B̂; and a2 = 1,

or I = 0, and B\B̂; where the later two are for the boundary states;

• (DI ? a4)l, the speed at which a replenishment will come in.

• k1 þ k2 þ ð̂I þ B̂Þl� ðk1Ifa1¼1^I [ 0g þ k2IfðI [ 0^B\B̂Þ_ðI [ 0^B¼B̂^a2¼1Þ_ðI¼0^B\B̂Þgþ
ðDI þ a4ÞlÞ, the fake transitions.

where I condition ¼ 1 if the condition is true and 0 otherwise.

The ‘‘IN’’ constraints are more complicated and describe all possible ways to

enter state (I, B, DI, E). They consist of 3 parts. Part (41a) deals with the arrival of a

class 1 demand. Part (41b) handles the arrival of class 2 demand. Part (41c) refers to

getting an item delivered and adding it to inventory (a3 = 0), or using the incoming

item to clear a backorder (a3 = 1). The last term of each of the lines below denotes

the rate at which you are going into our state s under consideration from the state in

the summation, note that this rate is action independent. Recall that we are looking

at states from which you will get into state (I, B, DI, E), (note 0�DI� Î � I þ B),

then:

X1

E¼0

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
IðIþ1;B;DI�a4;EÞ2S

pðI þ 1;B;DI � a4;E; 1; a2; a3; a4Þk1

ð41aÞ

þ
X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
IðIþa2;B�1þa2;DI�a4;EÞ2S

pðI þ a2;B� 1þ a2;DI � a4;E; a1; a2; a3; a4Þk2

ð41bÞ

þ
X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
IðIþa3�1;Bþa3;DIþ1�a4;EÞ2S

pðI þ a3 � 1;Bþ a3;DI þ 1� a4;E; a1; a2; a3; a4ÞðDI þ 1Þl
ð41cÞ

Furthermore, the fake transitions only lead into states (I, B, DI, 0), as no ordering

is allowed in a fake transition:
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X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
I ðI;B;DI�a4;EÞ2S

pðI;B;DI � a4;E; 1; a2; a3; a4Þ k1 þ k2 þ ðÎ þ B̂Þl
�

�

ðk1Ifa1¼1^I [ 0g þ k2IfðI [ 0^B\B̂Þ_ðI [ 0^B¼B̂^a2¼1Þ_ðI¼0^B\B̂Þg þ ðDI þ a4ÞlÞIE¼1

�

ð42Þ

This indicator function, I condition is used to effectively truncate the state space.

This leads to the constraint:

ð43Þ � ð41aÞ � ð41bÞ � ð41cÞ � ð42Þ ¼ 0 ð43Þ
Furthermore we need a ’’normalization’’ constraint:

X̂I

I¼0

X̂B

B¼0

XÎ�IþB

DI¼0

X1

E¼0

X

a12f0;1g

X

a22f0;1g

X

a32f0;1g

X

a42f0;1g
pðI;B;DI;E; a1; a2; a3Þ ¼ 1: ð44Þ

To find the optimal solution we solve the linear program outlined above using the

CPLEX barrier method. To determine whether the truncation of our state space

impacts our optimal solution, we track the probability mass in the boundary states.

Whenever the probability mass exceeds 10-6 we increase the size of our state space.

Since our problem is highly degenerate and the barrier method returns the solution

with the largest support we implemented a second phase in which we minimize the

probability mass in the boundary states while not moving away from the optimal

cost.

Appendix 4: Modifications for degenerate hyperexponential lead times

By setting p and l* as defined in Definition 1 (‘‘Degenerate hyperexponential lead

times’’ section) properly, this distribution can match the first and second moment of

any distribution with C2 C 1: p ¼ 1� C2�1
C2þ1

and l* = pl.

Modifications in the evaluation of a given policy

In the behavior of the policy there are some changes when the lead times follow the

degenerate hyperexponential distribution. The main difference is that some of the

replenishment orders get a zero lead time and thus arrive immediately. The

modifications to the Markov process in Fig. 2 are the following:

• The rate of all transitions from (m, n) to (m - 1,n) gets multiplied by p,

• The transition from (m, n) to (m, n ? 1) for m \ c gets replaced by two

transitions, one to (m, n ? 1) at rate pk2 and one to (m ? 1,n ? 1) at rate

(1 - p)k2,

• The rate of the transitions from (c, n) to (c,n ? 1) gets multiplied by p

• The replenishment rate l gets replaced by l* throughout.
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The above modifications change the matrices outlined in Appendix 1 and thus the

generator Q (6). Since our special structure is still maintained, the solution

procedure remains the same. In the bounding procedure as outlined in Lemma 2 all

k values get multiplied by p and l gets replaced by l*.

Modifications in the optimization

Since the monotonicity results do not depend on the specific structure of our Markov

process (see ‘‘Degenerate hyperexponential lead times’’ section), these still hold and

can be applied in the development of the bounds for the enumeration. Again k
should be replace by pk and l by l*.
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