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Abstract We analyze output from six regional climate models (RCMs) via a spatial
Bayesian hierarchical model. The primary advantage of this approach is that the sta-
tistical model naturally borrows strength across locations via a spatial model on the
parameters of the generalized extreme value distribution. This is especially important
in this application as the RCM output we analyze have extensive spatial coverage, but
have a relatively short temporal record for characterizing extreme behavior. The hier-
archical model we employ is also designed to be computationally efficient as we
analyze RCM output for nearly 12000 locations. The aim of this analysis is to com-
pare the extreme precipitation as generated by these RCMs. Our results show that,
although the RCMs produce similar spatial patterns for the 100-year return level,
their characterizations of extreme precipitation are quite different. Additionally, we
examine the spatial behavior of the extreme value index and find differing spatial
patterns for the point estimates for the RCMs. However, these differences may not be
significant given the uncertainty associated with estimating this parameter.

E. M. Schliep - D. Cooley () - J. A. Hoeting
Department of Statistics, Colorado State University,
Fort Collins, CO, USA

e-mail: cooleyd @stat.colostate.edu

S.R. Sain

Geophysical Statistics Project, National Center
for Atmospheric Research, Boulder, CO, USA

@ Springer



220 E.M. Schliep et al.

Keywords Generalized extreme value distribution - Climate change impacts -
Intrinsic autoregressive model - NARCCAP - Reanalysis-driven simulations

AMS 2000 Subject Classification 62-Statistics

1 Introduction

The motivation for this work comes from concern about impacts of climate change.
The summary for policymakers of the Intergovernmental Panel on Climate Change’s
(IPCC) 2007: Synthesis Report (IPCC 2007a) begins with the statement: “Warming
of the climate system is unequivocal, as is now evident from observations of increases
in global average air and ocean temperatures, widespread melting of snow and ice and
rising global average sea level.” As attention turns toward assessing potential impacts
of climate change and toward possible approaches for climate change mitigation,
many new questions arise. Policymakers will need to not only have scientists’ best
estimates of the effects of climate change, but also accurate quantifications of the
uncertainty of these estimates as they weigh the costs of mitigating climate change
or the costs of addressing the impacts of a changed climate.

In terms of impacts, it is often rare but extreme weather events that are the most
costly in economic or human terms. There is currently much interest in assessing
possible changes in weather extremes due to climate change, and a recent summary
of the state of the science and findings for the United States can be found in CCSP
(2008). Because it is impossible to observe weather under a changed climate until
the climate change actually occurs, much of our knowledge about the impacts of
climate change come from climate model simulations. In this work, we compare the
maximum precipitation data generated by a number of climate models to begin to
understand and quantify how extreme precipitation may differ between the climate
models.

Extreme value analyses can be challenging due to the lack of informative data.
Even when given a long time series of data, because extreme events are rare, there
still can remain considerable uncertainty in the parameter estimates that describe the
tail behavior of the modeled distribution. When given data from multiple locations,
one may wish to sensibly “trade space for time” to better estimate the parameters at
all locations.

There have been several approaches of varying complexity that have attempted to
borrow strength across location. The methodology described in this paper is moti-
vated by the data sets which we analyze. We investigate extreme precipitation from
six regional climate model (RCM) simulations. The RCM output are spatially rich
in that we have daily precipitation amounts at every location in our study domain.
At the same time, the RCM output are temporally poor as we have only 20 year
simulations, and this is a relatively short period to determine extreme value behav-
ior. Additionally, the data analysis is computationally challenging as we have nearly
12000 locations that we need to model simultaneously. To understand the nature
of extreme precipitation as produced by these RCMs, we construct a Bayesian
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hierarchical model which sensibly borrows strength across location and is compu-
tationally feasible. This is done by constructing a multivariate spatial model on the
parameters of the extreme value distribution.

1.1 Climate models and the NARCCAP project

Climate models are deterministic models that produce simulated weather. These
models are able to capture the known physics of the Earth’s climate system by
producing a discretized solution to the differential equations that describe the fluid
dynamics of the Earth’s atmosphere and oceans. The weather from these models
is simulated at discrete time intervals on a given spatial grid. Climate models are
usually extremely computationally intensive, expensive to run, and run on supercom-
puters. For an overview of climate models and and their evaluation see IPCC (2007b,
ch. 8). The power of climate models is that they allow scientists to not only simu-
late weather under current atmospheric and ocean conditions, but also under possible
altered conditions due to natural and/or anthropogenic causes.

The output of a climate model run are a vast collection of simulated weather data.
The model records numerous variables (e.g., temperature, precipitation, humidity,
barometric pressure to name just a few) at all grid locations and at every time interval.
As is common practice in the climate literature, we will refer to the weather ‘data’
produced by the climate model as ‘model output’.

There are different types of climate models that are used for different purposes. An
atmosphere-ocean general circulation model (AOGCM) is used to model synoptic
(large-scale) phenomena. These models are run on a spatial domain that spans the
globe and thus are often referred to as global climate models or GCMs. GCMs have
grid scales on the order of 100’s of kilometers. Therefore, GCMs are able to capture
climate phenomena on the continental or sub-continental scale; however their spatial
resolution leaves them unable to model climate patterns or changes at a more local
level.

GCMs differ from weather forecast models. The purpose of a GCM is not to mimic
weather at a specific time. That is, the GCM-simulated weather corresponding to a
particular “day” most likely will not resemble the actual observed weather for that
day. However, the weather produced by a GCM simulation will span decades of
(simulated) time. The climatological characteristics of this simulated weather should
capture that of actual weather which would occur given the general atmospheric
conditions that characterize the GCM run.

While the understanding of synoptic climate phenomena is an important facet of
climate change research, it is often desirable to investigate localized climate patterns.
RCMs are a different type of climate model that simulate weather at a higher resolu-
tion than GCMs. The grid scale for RCMs are on the order of 10’s of kilometers, and
therefore, RCMs are better able to answer questions about local impacts of climate
change. RCMs do not simulate weather over the entire globe, but rather the spatial
domain of a RCM is restricted to a study area of interest. Because local weather is
largely determined by synoptic scale phenomena, RCMs need to be driven by some-
thing which provides the large-scale weather patterns. That is, data capturing the
synoptic climate phenomena is needed as input for the RCM.
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It is natural to, therefore, drive a RCM with GCM model output. This allows
researchers to compare different climate scenarios at the local level. It is also pos-
sible, however, to drive RCMs with reanalysis model output. Reanalysis models are
retrospective models of the atmosphere that take observed weather data and upscale
to produce model output on a regular grid and discretized time intervals. The reanal-
ysis model’s dynamic upscaling method takes into account the known physics of the
Earth system, like a GCM. Reanalysis model output can be thought of as data that
a GCM would produce if the model were to know the actual weather, and therefore
a fundamental difference of reanalysis output is that, unlike GCM output, it should
reflect the observed weather from a specific time. Reanalysis model output also dif-
fers from observed weather data in its spatial and temporal scale. Reanalysis driven
RCMs are beneficial because they make it possible to compare the RCMs to actual
weather observations.

Multiple institutions are currently producing RCMs to gain knowledge of climate
patterns over specified regions. With such an abundance of models, it is currently
unclear as to the similarities and differences between the climate patterns being pro-
jected by the models. The North American Regional Climate Change Assessment
Program (NARCCAP) is a project that is currently producing a suite of simulations
from different RCMs (Mearns et al. 2009). NARCCAP is studying six different
RCMs and these models are being driven by a set of four AOGCMs and, addi-
tionally, a reanalysis model. The AOGCMs are run according to the A2 scenario
(Nakicenovic and Swart 2000) while the reanalysis models are, as described above,
based on observed data. The study region for all of these RCM simulations spans
North America. A primary goal of NARCCAP is to investigate variability between
these simulations and to attempt to attribute this variability to differences in both the
GCMs and the RCMs.

1.2 Hierarchical models for extremes

The purpose of this work is to compare the extreme precipitation simulated by each
of the six RCMs. We will focus only on the RCM simulations being driven by reanal-
ysis output. Because each of the RCMs share a common driver, any differences are
attributable to the RCMs themselves.

This is not the first study whose aim is to characterize extreme values of climate
model output. Most previous studies have used a point-by-point analysis and have not
tried to borrow strength across locations (e.g., Kharin et al. 2007; Frei et al. 2006).
This point-by-point approach results in considerable parameter uncertainty as it is
difficult to characterize extreme behavior given a relatively short data record.

One approach for trading space for time is regional frequency analysis (RFA).
This approach is summarized in the monograph by Hosking and Wallis (1997) and
traces its roots back to the pioneering work of Dalrymple (1960). RFA pools data
among predetermined homogenous geographic regions. Spatial hierarchical model-
ing of extremes is a recent alternative to RFA and has only become feasible as a
result of increased computational capabilities and the statistical methodologies that
have been developed to utilize these capabilities. Like RFA, a hierarchical model
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combines information across locations effectively increasing the sample size at each
location. The hierarchical approach differs from RFA in that it constructs a spatial
model for the parameters that describe the marginal distributions’ tails.

Much of the early work in spatial hierarchical modeling was done in the context
of epidemiology; the book by Banerjee et al. (2004) gives an excellent overview
of the general practice and many of the examples within reflect this origin. Only
recently has the technique been applied to extreme value analyses. Casson and Coles
(1999) produced an early work that modeled simulated hurricane wind speeds with
a one-dimensional spatial model. Cooley et al. (2007) used a hierarchical approach
to model extreme precipitation data from weather stations and then used their hierar-
chical model to interpolate over the study region. Sang and Gelfand (2009) modeled
annual maximum rainfall over a region of South Africa. In their work, Sang and
Gelfand use a spatial autoregressive model in their hierarchy as their data occur on a
regular lattice. The spatial model that we employ here is similar. This work builds on
that of Cooley and Sain (2008), who model extreme precipitation from the output of
a single RCM. As their study region covered the western one-third of the contiguous
United States, Cooley and Sain showed that it is beneficial to spatially model the
shape parameter of the extreme value distribution; previous studies had assumed this
parameter to be constant over their study regions.

The work here differs from that of Cooley and Sain (2008) in a number of ways.
The goal of Cooley and Sain was to compare the extreme precipitation produced by
a control (current climate conditions) run to that of a run under a future climate sce-
nario where both runs come from a common RCM driven by a GCM. Here, our goal
is to compare extreme precipitation from six different RCMs that are being driven
by the same reanalysis output. Another difference is that in this work we model
annual maxima for each season via a model based on the generalized extreme value
(GEV) distribution whereas Cooley and Sain used a point process model for thresh-
old exceedances. Additionally, the spatial domain of our study area is much larger,
covering all of North America, and this leads to increased computational difficulty.
Like Cooley and Sain, we model all three (location, scale, and shape) parameters of
the extreme value distribution over the study region. Of particular interest is the shape
parameter (also called the extreme value index) which determines the tail behavior
of the distribution and which is often difficult to estimate.

The remainder of the article is structured as follows. In Section 2, we provide fur-
ther information about the RCMs that provide the output and the reanalysis model
that was used to drive the RCMs. In Section 3, we explain the hierarchical model that
we construct and our implementation method for obtaining inference. We present
a summary of results for the six RCMs in Section 4. We conclude with a brief
discussion and summary.

2 Description of regional climate model output

Table 1 lists the six RCMs being compared in this work as well as the corresponding
modeling group. We henceforth refer to the RCMs by their four letter acronym in
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Table 1 RCMs used in the comparison study

i Model Full name Modeling group

1. CRCM Canadian Regional Climate Model OURANOS / UQAM

2. ECPC Experimental Climate Prediction Center UC San Diego / Scripps

3. HRM3 Hadley Regional Model 3 Hadley Centre

4. MMSI MMS - PSU/NCAR mesoscale model Towa State University

5. RCM3 Regional Climate Model version 3 UC Santa Cruz

6. WRFP Weather Research & Forecasting model Pacific Northwest Nat’l Lab

the first column of the table. Because they were developed independently, the RCMs
differ in their parameterizations; the major characteristics of the six RCMs can be
found at http://narccap.ucar.edu/data/rcm-characteristics.html. We will be compar-
ing the results of these six RCMs, each being driven by the same reanalysis output.
The RCM simulation we investigate begins in December 1981 and terminates in
November 2002. The weather simulated by the RCMs is output every 3 hours, how-
ever we choose to analyze the daily precipitation totals as this is a familiar summary
measure and many other data sets are summarized this way. While the spatial grid for
the six RCMs vary somewhat, the daily precipitation values for each are interpolated
to a common 98 x 120 grid with 50 km resolution, yielding 11760 grid cells covering
nearly all of North America.

Each of these RCM simulations is driven by the NCEP Reanalysis 2 output
(Kanamitsu et al. 2002) which comes from the National Oceanic & Atmospheric
Administration National Centers for Environmental Predictions. The NCEP Reanaly-
sis 2 project is ongoing. It has produced a reanalysis dating back to 1979 and currently
has generated output through December of 2005. NCEP uses a global T-62 Gaus-
sian grid resulting in a spatial grid of 192 (longitude) x 94 (latitude) which covers
the globe.

Seasonality has a large effect on precipitation characteristics and climatologists
are interested in extreme precipitation for all seasons; therefore, we analyze each sea-
son’s precipitation separately. For this work, we focus on the winter season and we
analyze the seasonal maximum daily precipitation amounts produced by the RCMs.
An alternative to separately analyzing each season would be to incorporate season-
ality as a covariate, however this would add another level of complexity which we
choose not to address in this work. We define the winter season as the months of
December, January and February, and retain the daily maximum precipitation amount
at each location during this 90-day period. Because the RCM runs are only 20 years
in length, we have only 20 observations at each location with which to characterize
the upper tail. We analyze six separate data sets of seasonal maxima, one for each
RCM. Although all of the results found in Section 4 are for the winter season only,
similar analyses will be done for each 3-month season as part of the NARCCAP
project.
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3 TAR-based spatial Bayesian hierarchical model

Our focus is in modeling the marginal behavior of the extreme precipitation at each
location. We construct a hierarchical model to analyze seasonal maxima in order to
compare the six RCMs. The hierarchical model has three levels: data, process, and
prior. The borrowing of strength comes from a spatial component in the process level
of the statistical model.

3.1 Data level

The GEV distribution comprises the foundation of our hierarchical model. Let d be
the number of cells in our region, D = {1, ..,d}, and let j in D be the index of
the cell. The spatial domain of the NARCCAP region is a 98 by 120 grid, thus,
d = 11760. Further, let Z;;; be the random variable representing the maximum pre-
cipitation value simulated for the winter season by RCM run i, (wherei = 1,2, ..., 6,
see Table 1), at grid cell j, during the year ¢, where t = (1, .., 20).

We assume the Z; ;; follow the GEV distribution with parameters ;;, 0;;, and &;;,

that is:
RN V271
Z
P(Zij; <z) =exp |:— <1 +&; /’Ll/) i| ’

Uij

for values of z such that (1 + &; Z;Zij
location, scale, and shape parameters for RCM i and grid cell j respectively.

In our hierarchical model, it is necessary to employ a likelihood at the data level.
It is also known that GEV likelihood-based estimates for return levels are often poor
when the number of observations is few. Hosking et al. (1985) show that probabil-
ity weighted moment (PWM) estimation outperforms maximum likelihood for small
sample sizes. Coles and Dixon (1999) show the poor ML estimates of high quan-
tiles result from poor estimation of the shape parameter &, and that a likelihood
approach which penalized for high values of & performed similarly to PWM esti-
mation. Martins and Stedinger (2000) take a similar approach and create a penalized
likelihood specifically designed for precipitation data; they find the parameter esti-
mates that maximize the posterior distribution resulting from a GEV likelihood and a
prior density that incorporates well-accepted knowledge about the tail of the precipi-
tation distribution. The Martins and Stedinger prior consists of a shifted beta density
function with support on the interval [—0.5, 0.5] and mean of 0.1. Since our RCM
simulations are only 20 years in length, we found that it was necessary to penalize
high estimates for £ in order to obtain sensible estimates for the shape parameters
in our MCMC inference (described in Section 3.4). We assess the statistical model’s
sensitivity to the penalty in Section 4.2.

Let z;; be a vector of the 20 years of maximum precipitation values for run i at

) > 0 and where w;;,0;;, and §;; are the

location j, and let z; = (lel cel, zl?;l)T. Furthermore let u; = (i1, ..., Mid)
and define o; and §; analogously. We assume that z;;, given w;;, o;j, and &; is
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conditionally independent of z;x; given w;x, ok, and & for j # k. This condi-
tional independence assumption is common in hierarchical modeling (e.g. Banerjee
et al. 2004) and this assumption is discussed in Section 5. The penalized likelihood
function we employ at the data level of the model to compare the six RCMs is:

d 20

zije — i \ 175
wlzil(mij, 017 &)1 = K [ [ [Jexp { - [1 +‘§’7< o )}

j=lt=1 tj

1 Zii — i —1/6ij—1
X — |:1 + &) <’J’—M’1)j|
Cfij Oij

PAS s e 85— g
X Forg S HEN S &) (M

The K in Eq. 1 comes from the fact that the likelihood does not result from a proper
density due to the incorporation of the Martins and Stedinger prior. Although K is
not known, this is unimportant as this normalizing constant disappears when drawing
inference via MCMC.

3.2 Process level

The spatial component of the statistical model occurs at the process level. We employ
a multivariate spatial random effect which introduces dependence between the GEV
parameters at each location. As noted in Section 1.2, we spatially model all three
GEYV parameters because our study region is large. We assume

Wij ~ N(X,Tﬂiu + Uijp. UT&)
log(0ij) ~ N (X Bio + Uijo. 1/7) )

where X; is the vector of covariate information for location j, B;s is a vector of
regression coefficients for RCM i, ‘L'92 is a fixed precision common to all RCMs,
U = (Ui, Uis, Uig)T is a spatial random effect where U;p = (Ujig, ---, Uias),
and 0 is used generically to stand in for i, o, and &. For this work, the covari-
ate information X ; consists of latitude and longitude at location j. The values for
(T, 7o, Te) = (4,200, 2000). These values reflect the difference in the scales of the
three GEV parameters, but were also chosen so that most of the variability would
have to be explained by the spatial effect U;.

The relationship between the three GEV parameters at different locations occurs
via U;. We employ a multivariate intrinsic autoregressive (IAR) model (Banerjee
et al. 2004, Sec. 3.3) as our spatial model. This model was chosen because it is
computationally feasible for the size of the spatial region and because it is a simple
way to borrow strength across locations. Schliep (2009) employed a geostatistical
model with a Matérn covariance structure (Schabenberger and Gotway 2005, p. 143)
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to model a subregion of the NARCCAP domain, but found that the model was too
computationally challenging for the entire domain.

The IAR model is an improper formulation of the spatial conditional autoregres-
sive (CAR) model, Schabenberger and Gotway (2005, Sec. 6.2.2.2). A CAR model
begins with specified conditional distributions at each location and from these con-
structs a valid joint distribution. Usually one assumes a Gaussian formulation, and
additionally one assumes the conditional relationships have a Markov property, in
which case the resulting CAR is a Gaussian Markov random field (GMRF, Rue and
Held 2005). GMRFs are most easily described via their precision matrices Q where
Q0 = 7!, and T is the covariance matrix of the model. Q is often a function an
adjacency or proximity matrix W, which is determined by the spatial relationships in
the studied locations. Because their conditional relationships are explicit, CARs are
particularly well suited to Gibbs sampling methods.

Here, we illustrate construction of a simple one-dimensional zero-mean CAR
model following (Banerjee et al. 2004, pp. 79-80). Assume the conditional rela-
tionship is given by [Y;|yk,k # j] ~ N(Zzzl by, 1/t]2). Here, bji are the
spatial dependence parameters (b;; = 0), and tjz is the conditional precision. Then

the joint distribution of ¥ = (Y1, ..., Yd)T is normal with mean zero and precision
matrix 0 = D(I — B) where D is diagonal with d;; = t]z, and B is the matrix
{bji}. Given a symmetric proximity matrix W with non-negative elements, if we let
bix = pwjr(X¢_, wir) " and =1 S°¢_, wjx where p and 2 are global depen-
dence and scale parameters, it can be shown that Q = t>(Dw — pW) where Dy is
diagonal with dy ;; = Zle w ji. Further, it can be shown that Q is positive definite
if and only if |p| < 1.

If one assumes a CAR model as the likelihood for the data and allows p = 1, it
is easy to see that 2(Dy — pW)1 = 0, and the model is improper. However, such
a model can be employed as a prior in a Bayesian setting and can lead to a proper
posterior distribution. This is the so-called IAR model. An advantage of this IAR
model is that there is no dependence parameter to estimate. For this project, we view
the TAR model as a very simple spatial model which achieves our desired goal of
borrowing strength across locations.

Our multivariate IAR is constructed by employing a first order proximity matrix;
that is, wj; = 1 if cells j and k share a border and is O otherwise. We let
Q1 = Dw — W where Dy is defined as above and the subscript 1 denotes that
Q1 is univariate. To achieve a multivariate model for (U;,, Uiy, U;g) we assume
separability, thus Q = T ® Q1. T here is a 3x 3 precision matrix which contains the
dependence information between (Uj,, Ui, Uie). The matrix Q can be very large;
for our example, the dimension of Q is 35280 x 35280.

3.3 Prior level

For computational purposes, conjugate prior distributions are used in our work for the
parameters 8 and matrix 7. The prior for each intercept term S;99 (Where 6 = u, o,
or £) is an independent Gaussian distribution with mean set to the mean of the cell-
wise maximum likelihood estimate of the parameter and variance 100. The regression
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coefficients Bjo1 and S92 have a zero-mean Gaussian with variance 10. A Wishart
prior with 3 degrees of freedom (the minimum allowed) is assigned to the precision
matrix T. The mean is given by the diagonal matrix with main diagonal (.02, 4, 40)7 .
These values reflect the variability found in each location’s MLE parameter estimates
during preliminary analysis. This empirical Bayesian approach was used as we have
little prior knowledge about the variability inherent in the parameter estimates for the
GEV parameters for RCM data, but these values simply reflect the different scales in
the precision of these estimates.

3.4 MCMC algorithm

The model is implemented using a Gibbs sampler (Robert and Casella 1999, ch. 7).
The parameters of the GEV distribution will be drawn using a Metropolis-Hastings
step. Starting values for (u;;, 0jj, §;;) are the corresponding maximum likelihood
estimates for RCM i at location j plus some random error noise. Candidates for
the three parameters, (u;;, o;;, &;;) are drawn in a block for each location j using a
uniform random walk.

Instead of applying the spatial model directly to the GEV parameters, in Eq. 2 the
spatial process is modeled as a random effect in the mean of the normally-distributed
parameters. This allows the entire parameter vector U, which is a normal-IAR
likelihood-prior combination, to be drawn at once. The vector can be corrected to
meet the linear constraints of the IAR model using a method in Rue and Held (2005,
pp- 89-90). The Kronecker form of Q and the fact that W is a very sparse matrix
allow for very quick matrix operations. As Q is already defined as a precision matrix,
no large matrix inversions are necessary. We employ the R package spam for sparse
matrix operations (Furrer 2008; Furrer and Sain 2008).

The other parameters can also be drawn directly from their respective distributions.
The conjugate relationship standard normal-normal is used to draw the 8’s. The 7!
matrix can be drawn directly using a result from Banerjee et al. (2000) which shows
the conjugate relationship of an inverse-Wishart prior in a Kronecker product.

4 Results of comparison of RCM winter extreme precipitation
4.1 Parameter and return level estimates

For each of the six RCM output sets, the statistical model was run for 15000 MCMC
iterations and the first 5000 were discarded to allow for burn-in. To reduce depen-
dence, each parameter was retained only every 10th iteration leaving us with a sample
of n = 1000 draws from the posterior distribution of each of the model parameters.
A chain of 5000 iterations takes a bit less than 12 h to run.

Four parallel chains were run to assess convergence. Convergence was assessed
by viewing trace plots of all of the higher level parameters 8, 7T and randomly
selected locations for the GEV parameters w;;, 0j;, & and spatial random effects
Uiju, Uijo, Uije. Not surprisingly, trace plots showed rapid convergence of the GEV
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parameters, and more slow convergence for the higher-level parameters, but all
appeared to have converged by the 5000th iteration.

Model fit was assessed using quantile-quantile plots where the 20 observed sea-
sonal maximum measurements at a location were plotted verses the quantiles of the
GEYV distribution with the posterior mean values used for u, o, and &. Figure 1 shows
the qqg-plot at four randomly selected locations, and at each location the models
appear to fit the RCM output well. Note that at the Pacific Coast location, the differ-
ence between the RCMs is quite noticeable, for instance the HRM3 model’s seasonal
maxima are all lower than those of the other RCMs.

Our MCMC provides us with draws from the posterior distributions of u, 0, &, U,
B, and T for each of the six RCMs. Maps of the means and variances of the poste-
rior distributions for px, o, and £ can be found at www.stat.colostate.edu/~cooleyd/
Papers/additionalFig.pdf .

Canada Pacific Coast
. o o R o
9 4
o
©
o
w _| wn
e} - el
fo) o o
S 5 ¥
(9} [0
3 &
w o g 8
o
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n — o
T T T T T T T
5 10 15 20 25 30 80
Observed Observed
Great Lakes Mexico
e} el
2 2
[5] |5}
Q (]
o Q
x x
L w
Observed Observed
CRCM ¢ ECPC ¢ HRM3 ¢ MMSsI RCM3 ¢ WRFP

Fig. 1 Quantile-quantile plots for four locations within our region. The values are given in mm/day and
the scales vary based on the precipitation values at each location.
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We summarize our findings by examining the 100-year return levels, that is, the
(1 — 1/100)th quantile of the annual maximum precipitation event at each location.
Since we only analyze winter precipitation in this work, a 100-year return level is the
maximum amount of precipitation we expect to observe once every 100 years during
the winter months. The return level is simply a function of the GEV parameters. As
we have draws (s, 0ijs. &ijs) from the posterior distribution of each of these for
RCMi =1,...,6,location j = 1,...,d, and iteration s = 1, ..., n, we can obtain
draws from the posterior distribution of the 100 year return level:

Oijs

rijs = Wijs + —— [(—log(1 — 1/100)) " — 1)].

ijs
In providing 100-year return level estimates, notice we extrapolate beyond the range
of the data as we have only 20 years of precipitation values. Of course, extrapolation
increases the amount of uncertainty of these estimates.

Figure 2 shows the posterior mean of the 100 year winter precipitation event for
the six RCMs. The return values are reported in units mm/day. All six RCMs show
higher return levels along the Pacific Coast and also in the southeast United States
and all show lower values for the 100 year return level for central Canada and the
north-central United States. Additionally, all show isolated areas of higher return
levels in the Rocky Mountain Region.

The posterior standard deviations of the 100 year precipitation events for the win-
ter season for the six RCMs are shown in Fig. 3. These standard deviations are not

250

150

100

Fig. 2 Mean of the posterior distribution of 100 year return levels for daily winter precipitation (in mm)
for each of the six RCMs. All show a pattern of higher return levels for the Pacific Northwest and the
Southeast United States and a much lower 100 year return level for central Canada. Precipitation is given
in mm/day.
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CRCM ECPC
LA T 0,

Fig. 3 Standard deviations of the posterior distribution of 100 year return levels for daily winter precipita-
tion for each of the six RCMs. Locations of high variation correspond to locations that show higher mean
precipitations in Fig. 2. Values were cut off at 15 to better contrast the lower values.

obtained from asymptotic theory but rather directly from the posterior draws of the
return level distributions. Each of the six RCMs reports larger standard deviations
for locations with greater posterior means as seen in Fig. 2. Therefore the underlying
patterns of the 100 year return levels for precipitation are similar for the posterior
means and standard deviations.

Despite the general similarities in patterns, it is clear that each RCM tells a slightly
different story about extreme precipitation. The RCMs differ as to their return level
point estimates; for instance, the CRCM model estimates the 100 year return level
for the southeast US to be in the range of 75-120 mm, whereas the HRM3 model has
estimates for the same region of over 150 mm. The RCMs also differ as to where they
set their boundaries for the increased return levels for the Southeast United States;
the ECPC model extends the increased levels up to include the state of Michigan and
the Great Lakes while most of the other RCMs do not show higher levels this far
north. The RCMs differ considerably about the level of extreme precipitation for the
west coast of Mexico and the Pacific Ocean in the extreme southwest of the study
region. The isolated areas in the Rockies are a bit more broadly defined in the WRFP
model than in the MMS5I or the CRCM models. Quite interestingly, the HRM3 model
seems to have a less smooth surface for its estimate of the 100 year return level than
do the other RCMs, even though all the RCMs are analyzed using the same spatial
statistical model.

To more easily compare the differences, Fig. 4 shows the difference between each
RCM’s posterior mean and the grand mean calculated across RCMs (i.e., the mean of
the posterior means). From these plots it is quite clear that despite the similar patterns,
there are substantial differences between the return level estimates of the six RCMs.
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30

Fig. 4 Difference between the posterior mean of 100 year return levels for each model and the overall
posterior mean of return levels across models. Despite the similar patterns shown in Fig. 2, this shows that
there are considerable differences in the estimated return levels from model to model. The difference in
values are given in mm/day. Values were cut off at —30 and 30 to better present the values near 0.

The CRCM model appears to generally have lower estimates for the 100-year return
level across most of the study region. The RCM3 model has lower estimates for the
Southeast United States. The ECPC and the HRM3 models generally have higher
return level estimates, particularly in the Southeast.

As Figs. 2 and 4 only give point estimates and do not quantify the uncertainty
associated with the return level estimates, we wanted to assess the significance of
the differences. Figure 5 gives an admittedly crude way of assessing significance.

Plotted in the left panel is the ratio of between-RCM variance s]2., prwn t0 Within-RCM

variance sjz.’wi of the posterior return level estimates. The between-RCM variance was
calculated in the usual way, sjz.) prwn = 1/5 21'6:1 (rij—r. j)2, where r;; is the posterior
mean for the ith RCM at the jth location and r.; is the grand mean. The within-RCM
variance sjz., wi 18 @ pooled variance among the six RCMs at each location. One can
view Fig. 5 as a pointwise F-statistic as would be calculated in an ANOVA test. The
0.95 quantile of a Fs 5995 distribution is 2.22, so locations above this level might be
viewed as indicating a significant difference between RCMs. One should be cautious
treating this as a hypothesis test however, as one would need to account for the mul-
tiple testing issues of performing nearly 12000 ANOVA tests as well as the spatial
dependence in the return level estimates. These issues are non-trivial, and we do not
attempt to address them here, for reference please see Ventura et al. (2004). Nev-
ertheless, as much of the region has a value for this ratio greater than 2.22, there is
pretty strong evidence for significant differences in the return level estimates between
the RCMs.
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Fig. 5 Left Panel: The pointwise F-statistic for the return level comparison, the between-model variance
divided by the within-model variance. The nominal 95% quantile of the F5 5995 is 2.22. As many loca-
tions show an F-statistic larger than this value, one can see that the differences found in Fig. 4 appear to
be significant, although performing an actual hypothesis test is complicated due to both multiple testing
concerns and spatial dependence. Values were cut off at 10 so as to better contrast the lower values of the
scale. Right panel: The pointwise F-statistic for the model-to-model comparison for &. Despite the differ-
ences seen in the point estimates in Fig. 6, few areas show an F-statistic greater than the 95% quantile of
2.22 due to the considerable uncertainty associated with the estimation of &.

Of particular interest in extremes is the shape parameter £. Figure 6 gives the
posterior mean for this parameter for each of the six RCMs. A brief inspection of
these plots reveals that aside from some general patterns of high values for the shape
parameter in the southern and central areas of the study region and low values along
the Pacific Coast, the patterns for the point estimate of this parameter differ consider-
ably. For example, all six of the RCMs have an area of higher values of £ somewhere
in south-central to southeast Canada, but the location for this area with an appar-
ent heavier tail varies in location, extent, and intensity for all RCMs. However, an
inspection of the F-statistic plot for this parameter reveals that things might not dif-
fer as much as they first appear in Fig. 6. The right panel of Fig. 5 gives the same
between-RCM to within-RCM variance ratio as was discussed earlier, but now for
the extreme value index £. Notice that only in an area of Mexico and off its Pacific
coast and perhaps a small area in the extreme southeast of our study region is this
ratio clearly above the 0.95 quantile of 2.22. It is well known that there is consider-
able uncertainty when estimating the GEV shape parameter, and it appears that the
differences in the estimates that appear in Fig. 6 are not so great when the uncertainty
is taken into account.

Figure 7 shows what is gained by the hierarchical approach. Penalized maximum
likelihood estimates were obtained for the GEV parameters u, o, £ for the WRFP
model output using the approach of Martins and Stedinger (2000). These estimates
were used to produce maps of the 100-year return level point estimate and also the
point estimate for the shape parameter £. Comparing these plots to Figs. 2 and 6
shows that the point-by-point approach yields estimates that are less smooth, partic-
ularly for £. Comparison of the scales also shows a difference. The return level point
estimates now exceed 300 mm/day in some locations, whereas the maximum under
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the hierarchical model was around 250 mm/day. This is likely due to a localized
extreme event which occurred during the 20 year simulation, causing the point-by-
point method to over-estimate the 100 year return level at these locations. Likewise,
the point estimates for £ take range of values from (—0.1, 0.3) which is much larger
than the range given by the hierarchical approach. Typically extreme value index val-
ues of (0, 0.2) are found for precipitation measurements, but it is not unusual to have
poor estimates of the tail parameter (even using the penalized likelihood approach)
with such short data records.

Finally, we summarize information about the parameter estimates for 8 and 7T
which appear in the process level of the statistical model. We found that the esti-
mates for the § parameters were consistent between the different RCMs. The 95%
credible intervals for the 8,,, B, and Bg corresponding to longitude and latitude did
not include zero indicating that these coefficients were significant. However, it is
clear from the point estimate maps for u, o, and & that a simple trend surface would
be inadequate to explain the complex spatial behavior of these parameters and that
the spatial random effects U,,, U, and U are necessary.

The estimates for 7" were also quite consistent across RCMs. Since T is a precision
matrix, it is difficult to interpret, so we invert and standardize to create a correlation
matrix R. For the WRFP model,

A 1.00 073 —0.19
Rwrrp=| 073 1.00 —0.11
~0.19 —0.11 1.00

Fig. 6 Mean of the posterior distribution for the extreme value index &. While there are some general
similarities in the point estimates such as heavier tails in the center of the continent, there is considerable
variability in the patterns of the point estimates from model to model.
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Fig.7 Left panel shows the estimated 100-year return level for the WRFP model as obtained via maximum
likelihood estimates for ., o, & done via a point-by-point analysis. Right panel shows the estimated shape
parameter £ as obtained via penalized maximum likelihood using the Stedinger prior, also done via a point-
by-point analysis. In addition to being less smooth, both show an increased range of values compared to
Figs. 2 and 6.

In extreme value analyses, it is typical to find that the scale and shape parameters are
negatively correlated, and we see a negative correlation between the vectors U, and
Us. Additionally, we see a strong positive correlation between U, and Uy, and this
results from the fact that locations that had higher estimates for i also tended to have
larger estimates for o.

4.2 Sensitivity analysis

To assess the sensitivity to the priors and the Martins and Stedinger (2000) penalty,
we ran several additional MCMC simulations on the WRFP model output. In runs
where we doubled the variance of the normal distributions that serve as the priors
for the regression coefficients, we saw no substantive change in the posterior dis-
tributions for the B nor for the GEV parameter estimates. Likewise, in runs where
the mean of the Wishart prior for the precision matrix 7 was halved, we saw no
substantive change in its posterior distribution nor for the GEV estimates.

The assumption that is probably most suspect is the penalty term applied to the
shape parameter in the data level of the model. Martins and Stedinger (2000) pro-
pose the penalty specifically for precipitation studies, as most studies find the shape
parameter (as it is parameterized here) as slightly positive, and usually taking on val-
ues in the range of [0.0, 0.2]. Taken in this context, having (in effect) a beta prior
with support on [—0.5, 0.5] does not seem overly informative. However, one should
keep in mind that we are not analyzing observed precipitation data, but RCM output
of precipitation.

To assess sensitivity to the penalty term, we replaced the Martins and Stedinger
penalty with three alternatives: (1) no penalty term, (2) a uniform distribution on
[—0.5,0.5], and (3) a normal distribution with mean 0.1 and variance 0.16. Maps,
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Fig. 8 Describes the sensitivity of & to the (Martins and Stedinger 2000) penalty. The left plot summarizes
the posterior distributions for a location in the Pacific Ocean near the extreme southwest corner of the
study region. Here the penalty greatly affects the point estimate for & with less informative priors yielding
estimates for & greater than 1. The right plot shows a location where the point estimate is largely unaffected,
but its uncertainty is greatly reduced by using the Martins and Stedinger penalty.

similar to Fig. 6, were produced for the posterior mean of £ for each of these runs.!

For the most part, the point estimates were very similar, with the notable excep-
tion that for both the runs with no penalty and with a normal-distribution penalty,
point estimates for & were much higher in the extreme southwest portion of the study
region which corresponds Pacific locations west of Baja California. In some of these
locations, the shape parameter is estimated to be greater than 1, implying that that
distribution would not have a finite mean. Whether such an estimate is sensible, even
for RCM output, is questionable. Figure 8 gives boxplots summarizing the posterior
distribution of £ at two locations: one off the coast of Baja California and the other
for a location in Eastern Nebraska. The figure clearly shows the effect of the different
penalties applied to the model. For the Nebraska location, although the point estimate
for & is largely unaffected, the uncertainty associated with this estimate is reduced by
applying the Martins and Stedinger penalty. Whether this reduction is appropriate is
also questionable.

It is not surprising that the penalty has a significant affect on the posterior distri-
bution of £ (and consequently the return level), especially given that we have only 20
seasonal maxima with which to estimate this difficult-to-estimate parameter. Other
hierarchical model studies in extremes (e.g., Cooley et al. 2007) have found that for
data with longer records, no penalty is needed to obtain sensible estimates. Although
& is obviously sensitive to the type of penalty imposed, we do not feel that this affects

1 www.stat.colostate.edu/~cooleyd/Papers/additional Fig.pdf
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our conclusions in Section 4.1 regarding the differences found between the extreme
precipitation as modeled by the six RCMs

In summary, given a data record of short length, it may be necessary to incorporate
a penalty to obtain sensible estimates for £ when employing a likelihood method.
However, the researcher should recognize that this a priori information will have a
large effect on estimation of the shape parameter.

5 Conclusions and discussion

There are two natural audiences for this work. The first are statisticians. This work
occurs at an interesting intersection of extreme value analysis, spatial statistics, and
computational methods. Although this project is applied in the sense that it was moti-
vated by a particular data set, the methods developed herein are novel. Furthermore,
statisticians working in extremes are rarely given multiple data sets that are so closely
related as the data from the six RCMs that are analyzed in this work. These data gives
us a unique opportunity to compare estimates of the extreme value index £ and return
levels and assess, in some sense, their sensitivity.

The other audience for this work are climate modelers. As shown in Fig. 2, the
characteristic pattern of the winter extreme precipitation produced by the six RCMs
is remarkably consistent. However, as shown in Figs. 4 and 5, there appear to be
significant differences between the RCMs in how they characterize extreme precipi-
tation. The differences in return level estimates in Fig. 4 was not known or expected.
In future work, we intend to apply the model to the other three seasons for these RCM
runs and make similar comparisons. As the NARCCAP project continues and RCM
runs are produced which are driven by different GCMs as opposed to reanalysis data,
it will be important to characterize which effects are due to the GCMs and which are
due to the RCMs.

Extreme events are likely to impact more than an isolated location, making the
conditional independence assumption in the data level of our model incorrect. Once
the marginal effects have been accounted for, one can still find residual/local depen-
dence in the annual maxima for a given year. This residual dependence should be
accounted for in the data level of the model; however, how to incorporate depen-
dence at this level is not clear. Ideally, our data level would consist of a likelihood
based in extreme value theory which modeled the dependence at all of our locations.
Parametric and non-parametric multivariate extreme models thus far have been lim-
ited to a small number of dimensions (e.g., Cooley et al. 2009) which would be
inadequate for most any spatial application. Max-stable process models have been
suggested (e.g., Schlather 2002) but thus far, the distribution function of such models
is known in closed form only for the bivariate case, and thus a likelihood relating all
locations is not yet available. Alternatively, copula approaches have been suggested
by Sang and Gelfand (2009) which do allow one to model residual dependence in the
data. The copula approach is promising, however new difficulties arise if one wishes
to reconcile a particular copula model (e.g. Gaussian) with the theory of multivari-
ate extremes. We and many other researchers are investigating how best to capture
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dependence in the data level of a hierarchical model for extremes. Although our
model here does not account for this residual dependence, our aim is to only charac-
terize the marginal effects. We believe our model is more than adequate to compare
the extreme precipitation from these six RCMs.

A natural extension of this work would be to combine the multiple runs into one
model with a multivariate response, rather than model them separately as we do
here. Doing so might allow more detailed comparison between RCMs. This of course
would bring new computational challenges. To address these, one approach might be
to employ an additional matrix (6 x 6 in this case) and apply it via a Kronecker
product to our current precision matrix Q. It is unclear if simultaneous modeling
warrants the increased complexity of such a model. One wonders if a simple parallel
computing strategy could be employed as the draws of the parameters (u;;, 0ij, &)
which are the current bottleneck in our Gibbs sampler might be done at the same time
for the different model runs.
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