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Abstract To each max-stable process with a-Fréchet margins, o € (0,2), a
symmetric «-stable process can be associated in a natural way. Using this
correspondence, we deduce known and new results on spectral representations
of max-stable processes from their a-stable counterparts. We investigate the
connection between the ergodic properties of a stationary max-stable process
and the recurrence properties of the non-singular flow generating its spectral
representation. In particular, we show that a stationary max-stable process is
ergodic iff the flow generating its spectral representation has vanishing positive
recurrent component. We prove that a stationary max-stable process is ergodic
(mixing) iff the associated SaS process is ergodic (mixing). We construct non-
singular flows generating the max-stable processes of Brown and Resnick.

Keywords Symmetric a-stable processes - Max-stable processes -
Spectral representations - Non-singular flows
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1 Introduction

Symmetric -stable (SeS) and max-stable processes form two natural and rich
classes of stochastic processes. For both classes, important role is played by the
notion of spectral representation. Fundamental results on the existence and
uniqueness of the spectral representation are due to Bretagnolle et al. (1966),
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Schreiber (1972), Hardin (1982), Rosinski (1995) in the case of SaS processes
and to de Haan (1984) and de Haan and Pickands (1986) in the case of max-
stable processes.

Although there is similarity between the SaS and max-stable theories,
the methods which were used in the papers cited above are quite different.
In the SaS case, fundamental role is played by the rigidity of L*-spaces,
whereas de Haan (1984) and de Haan and Pickands (1986) use more explicit
constructions. Thus, it is natural to ask whether it is possible to construct
some sort of correspondence between SaS and max-stable processes which
allows to obtain the max-stable results from their SaS counterparts more or
less automatically. It was noted in Stoev and Taqqu (2005) that it is possible to
associate to each SaS process with non-negative spectral representation a max-
stable process with the same spectral representation. Further, it was shown
there that the pointwise maximum of n independent copies of a SaS process
converges in distribution, as n — oo and after normalization, to the associated
max-stable process. Vice versa, in a natural way it is possible to associate to
each max-stable process with a-Fréchet margins, o € (0, 2), a SaS process. We
give a precise definition of this association in Section 2 and show that most
properties of a max-stable process are shared by the associated SaS process.
This will be used in Section 3 to deduce the fundamental theorems of de Haan
(1984) and de Haan and Pickands (1986) from their SaS counterparts.

The uniqueness of the spectral representation allows to establish a link
between stationary SaS and max-stable processes and nonsingular flows on
measure spaces, see Hardin (1982), de Haan and Pickands (1986), Rosinski
(1995). In the SaS case, it was shown that the ergodic properties of a stationary
process are closely related to the recurrence properties of the generating flow.
By Hopf’s theorem, the state space of the generating flow can be decomposed
into conservative (or recurrent) and dissipative (or transient) parts. It was
shown in Rosinski (1995) that stationary SaS processes having only dissipative
part in their spectral representation are mixed moving averages processes (and,
consequently, mixing). The conservative part may be further decomposed
into positive recurrent and null recurrent parts. SaS processes generated by a
flow with non-vanishing positive recurrent part were shown to be non-ergodic
in Samorodnitsky (2005), whereas processes generated by a null recurrent
flow are ergodic and may be both mixing and non-mixing, see Rosinski and
Samorodnitsky (1996), Gross and Robertson (1993). In Sections 4 and 5 we
prove analogous results for max-stable processes. We also prove a max-stable
counterpart of the SaS result of Surgailis et al. (1993) giving a criterion for two
mixed moving averages processes to have the same law.

A class of natural examples of stationary max-stable processes is provided
by Brown-Resnick processes, which were introduced in Brown and Resnick
(1977) in a special case and in Kabluchko et al. (2009) in general form.
In Section 6 we construct explicitly nonsingular flows generating Brown-
Resnick processes. We give sufficient conditions for these flows to be positive
recurrent or dissipative. We also construct SaS counterparts of Brown-Resnick
processes.
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Spectral representations of sum- and max-stable processes 403

We use the following notational conventions. If it is necessary to distinguish
between SaS and max-stable objects (random variables, vectors, spectral
measures, etc.), the former will have a superscript +, whereas the latter
will have a superscript V. Note, however, that the subscript + denotes non-

negativity. By 2 we denote the equality of finite-dimensional distributions;
Plim denotes convergence in probability and Vv stands for the maximum or
supremum. If applied to vectors, the maximum is taken componentwise. If
(£2, A, n) is a measure space and « > 0, then L*(£2, A, ) denotes the space
of measurable functions f : 2 — R such that || f]lo = ([, | f]*dw)'/* < co. All
measure spaces are supposed to be complete. Finally, L% (§2, A, ) denotes the
set of non-negative functions from L*(§2, A, ).

2 SaS processes associated to max-stable processes

We start by recalling necessary facts about multivariate SeeS and max-stable
distributions. For more information, we refer to Samorodnitsky and Taqqu
(1994) and Chapter 5 of Resnick (1987). A random vector X = (X;)"_, whose
distribution is symmetric with respect to the origin is called symmetric «-stable
(SaS), a € (0, 2), if for each r € N the random vector X + ... + X© has the
same distribution as /% X, where XV, ..., XV are independent copies of X.
Equivalently, X is SaS if there is a finite symmetric measure I" on the unit
sphere S” in R” such that the characteristic function of X satisfies

Eexp iZ”fo = exp —/!Za;u]-|ad1’(a) . 1)
=1 & =1

The measure I" is uniquely determined and is called the spectral measure of
X. Note that we always exclude the Gaussian case o = 2.

A fundamental role is played by the notion of SaS stochastic integral.
There are several possible definitions; we need a definition in terms of Poisson
processes. Let (£2, A, 1) be a o-finite measure space. Let {(wx, yi)}je, be an
enumeration of points of a Poisson point process on £2 x R with intensity p x
dy/|y|**!. For f e L*(2, A, ) and for « € (0, 1) the SaS stochastic integral
of fis defined by

+ o0
/Q fAM =by Y yi fwp), )
k=1

where b, > 0 is a normalizing constant. The symbol M is to be understood
as a random SaS measure with control measure p. The above definition
does not work for « > 1 since then the sum on the right-hand side of Eq. 2
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diverges. This difficulty can be overcome by introducing regularizing terms,
see Samorodnitsky and Taqqu (1994).
If fi,..., fu € LY(82, A, w), then, by Samorodnitsky and Taqqu (1994), the

distribution of the vector ( [ fidMg)’_, is SaS and

n + n
E exp iZ (uj/Q f,-dMZ) = exp —/Q|Z f,-(a))uj|adu(a)) . 3)
j=1 j=1

Now, we proceed to the max-stable case. In this paper, a random vector X =
(X)i_, is called max-stable if for every r € N the componentwise maximum
XD v ... v X® has the same distribution as /¢ X, where X, ..., X© are
independent copies of X. Here, the parameter « takes values in (0, co). We
always suppose that the margins of X are non-degenerate, in which case they
are a-Fréchet, that is they have distribution functions of the form FZ (1) =
exp(—(c/H)*)1;~0, ¢ > 0. A random vector X is max-stable iff its distribution

function satisfies

PIX; <uy,..., Xy <u,]l =exp (—/ ViL, (%) dF(a)) (4)
st '

L

for all (ui, ..., u,) €[0,00)"\{0}, where I' is a finite measure on §} =§"N
[0, 00)". Here, 0/0 is interpreted as 0. The measure I” is determined uniquely.

We recall the definition of max-stable stochastic integral introduced
by de Haan (1984). Let (£2, A, 1) be a o-finite measure space. Let {(wk, yi)}72,
be an enumeration of points of a Poisson point process on §2 x R, with
intensity u x dy/y**!. Let a € (0, c0). Then de Haan’s stochastic integral of
a function f e L (82, A, u) is defined by

/Q FAME = e V., i Fl@n). 5)

where ¢, = a~'/* is needed for normalization. If fi,..., f, € L%(£2, A, ),
then the vector ( [ f,-dej)';:l is max-stable and, by de Haan (1984), its
distribution function is given by

IP’[/ f,-dej <u; Vi= 1,...,n:| = exp <—/ = (M) du(w)) (6)
Q 2 Ui

for all (uy, ..., u,) € [0, c0)*\{0}.

Now we are ready to associate to each max-stable vector with @ € (0,2) a
SaS vector. For a finite measure I” on the unit sphere S” define its symmetriza-
tion I by I'"(A) = (I"(A) + I'(— A))/2 for each Borel set A C S".

Definition 1 Let« € (0, 2). A max-stable random vector X (having «-Fréchet
margins) with spectral measure I' and a SaS vector X with spectral measure
't are called associated if I’ = V5™,
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Spectral representations of sum- and max-stable processes 405

The above definition applies to max-stable vectors with « € (0,2) only
(although, for general max-stable vectors, « takes values in (0, c0)). To over-
come this difficulty, we will use the following remark which shows that it is
possible to switch between max-stable vectors with different «’s using simple
transformations. In many situations, it will allow us to assume without loss of
generality that o = 1.

Remark 1 1If XV = (X))I_, is a max-stable vector with a-Fréchet margins,
o > 0, then for B > 0, the vector (XV)? = ((Xiv)ﬂ):l=1 is max-stable with «/g-
Fréchet margins.

Let us also stress that every max-stable vector with « € (0, 2) is associated
to some SaS vector, but not every SaS vector can be associated to a max-stable
one. More precisely, an n-dimensional SaS random vector is associated to
some max-stable vector iff its spectral measure is concentrated on S} U (—S/}).

The next proposition extends the notion of association from random vectors
to random processes. A stochastic process is called SaS, resp. max-stable, if all
of its finite-dimensional distributions are SaS, resp. max-stable.

Proposition 1 Let {n”(¢),t € T} be a max-stable process with « € (0, 2). Then
there is a SaS process {n* (¢), t € T} with the following property: for every n € N
andty, ..., t, € T, the SaS vector (n* (1;))!_, and the max-stable vector (n" (t;)),
are associated.

To prove the above proposition we need to introduce some notation. If a =
(ay, ..., a,) is a vector in R”, and m < n, we define o, ya = (ay, ..., ay). f I
is a finite measure on R"\{0}, and m < n, we define a measure n,, ,,I" on S™ as
follows: for a Borel set B C S™ we let

(tum)(B) = / lowmallSdr (@),
cone(B)

where || - ||, denotes the Euclidian norm, and
cone(B) ={a=(ay,...,a,) €S": opma/lonmal> € B}.
It follows that for every non-negative Borel function f on S,

Opn,ma

lon,mall2

f®)dTnmI)(b) = / f( ) lonmal3dI (). ()

Sm

Note that if I" is symmetric, then so is 7, ,, I'; further, if I" is concentrated on
S%, then 7, ,, I' is concentrated on S'.

Lemmal Let X = (X)), be a max-stable, resp. SasS, vector with spectral
measure I' and let m < n. Then the vector (X;)!L, is max-stable, resp. SaS, and
its spectral measure is 7w, .
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406 Z. Kabluchko

Proof We consider only the max-stable case. We compute the distribution

function of the vector (X))/*,. Fixuy, ..., u, > 0, and let
m (Di\"
f(bh"'?bm):vi:] ; ) bLEO

Since (X;)!_, is max-stable with spectral measure I, its distribution function is

given by Eq. 4. Hence,

P[Xl Sulv"'vxmSum]ZP[(le"'vXn)S(u19"'3umvoos"'soo)]

= exp (—/ v <ﬁ> dF(a))
s U;

= exXp <_/ f(an,ma)dr(a))
st

=exp - / f("—’”“) lowmall2dl (@) | .
st lon.mall2

Applying Eq. 7 and recalling that I" is concentrated on S}, we obtain

PIX) Sup, ..., Xon < U] = exp <_ f(b)d(nnmp)(b)>
s

= exp (—/ \i <E> d(nn,mlﬁ)(b)) .
S Uj

Thus, the spectral measure of (X)), is 7, ,,I". The SaS case can be treated
analogously, by replacing Eq. 4 with Eq. 1 and considering characteristic
functions instead of distribution functions. O

Proof (Proof of Proposition 1) For #1,...,1, € T, let I,/ , be the spectral

Lseees
measure of the max-stable vector (" (4;));_,. Further, let v/ be the distrib-
ution of (n¥(1;))/, and let v;" , be the SaS distribution associated to it, that

is a SaS distribution with spectral measure ;" = (I,Y. )"

We show that the family {v,; , :1....,1, € T, n € N} is a consistent family

of distributions and then apply Kolmogorov’s extension theorem. Thus, we
have to show that for m < n, the distribution of the first m components of
a v, -distributed random vector coincides with v, _, . Now, by the SaS
part of Lemma 1, the spectral measure of the first m components of a v, _, -

distributed vector is 7, ,, I}, . We have

= () = (a0 = (T )" = T

ﬂn,mer Lreens

f,enly

applying Kolmogorov’s extension theorem. O
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Spectral representations of sum- and max-stable processes 407

Remark 2 Above, we described how to associate to each max-stable process
with o € (0,2) a symmetric «-stable process. Similarly, one can also asso-
ciate to each max-stable process with « € (0,2), o # 1, a totally skewed
a-stable process (in this case, no symmetrization in Definition 1 is needed).
However, since the theory of spectral representations is more developed for
SaS processes than for totally skewed a-stable processes (for the latter, see
Rosinski 1994), we prefer to work with SaS processes.

The next two simple lemmas will be often needed in the sequel.

Lemma?2 Let fi,..., f, € L5(2, A, u), a € (0,2). Then the random vectors
Xt =(/[3 fiaMg)'_ and X¥ = ([ fid M), are associated.

Proof We may suppose that there is no w € 2 with fj(w) =0 for all j=
1,...,n. Define a map F: 2 — [0,00)%\{0} by F(w) = (fi(®),..., fulw)).
Define a measure v on [0, 00)?\ {0} as the push-forward of the measure . under
the mapping F. Using Eq. 6, the spectral measure of X" is easily seen to be
7Tn.nv. Analogously, using Eq. 3, the spectral measure of X is (7, ,v)*™. Thus,
X" and XV are associated. |

Lemma 3 Let {nV(t),t € T} be a max-stable process and denote by n* the SaS
process associated to n". Lett,t, € T for k € N. Then

P lim n"(t) =" () iff P lim n* () =n" ().
k— o0 k— 00

Proof Denote by I7Y, resp. I, the spectral measure of the bivariate
max-stable vector X;” = (1" (t), n¥ (1)), resp. the bivariate SaS vector X,” =

(n* @), nT(®). Then I;" = I;"™"™. We will show that
P lim 0" (1) = n" @) (8)

iff the sequence of measures I’ converges weakly to a measure concentrated
on D = {(2712,271/2)}. An analogous statement, with a similar proof, holds
in the SaS case, the limiting measure being concentrated on D U — D, and the
statement of the lemma follows.

First, suppose that I’ converges weakly to a measure I"" concentrated on
D. Tt follows from Eq. 4 that for every u;, u, > 0,

lim P[n"(t) < w1, 0" (6) < uz] = lim exp (—/ Vi, <&> dry(a, az))
k—00 k—o00 s2 u;

T

= exp (‘/ Vi <&> dFV(al,a2)>
s u;
(ceome- (3 32))
=exp|—const- | — V — .
up U
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408 Z. Kabluchko

The latter is the cumulative distribution function of a bivariate max-stable
vector X with a.s. identical components. We will show that this implies Eq. 8.
For ¢ > 0, set A, = {(x, y) € R’ : |x — y| < ¢}. By the portmanteau theorem,
see e.g. (Billingsley 1999, p. 16), we have

limsupP[ X} ¢ A, ] <P[X" ¢ A,] =0.
k— 00

This implies Eq. 8.

Conversely, suppose that the sequence of measures I',’ has a limit point 1"
which is not concentrated on D. Then the sequence of distributions of X" has
as limit point a distribution of some bivariate max-stable vector X" whose
components are non-equal. Again by the portmanteau theorem, for some
e >0,

liminf PLX; ¢ A.] = P[X" ¢ 4,] > 0.

where A, is the closure of A,. This shows that Eq. 8 does not hold. O

3 Spectral representations of max-stable processes

The notion of spectral representation plays a fundamental role in the theory of
SaS and max-stable processes. In this section, we deduce the results of de Haan
(1984) and de Haan and Pickands (1986) on the existence and unique-
ness of the spectral representation of max-stable processes from their SaS
counterparts.

Definition 2 A spectral representation of a SaS process {n*(¢),t € T} is a
collection of functions { f;};,cr C L¥(£2, A, u), defined on some measure space
(82, A, ), such that

+
(n*(0,te T) 2 {/9 fidM2 . t e T}.

Similarly, a collection of functions {f},er C LS (82, A, u) is called a spec-
tral representation of a max-stable process {nV(t),t € T} (with «-Fréchet
margins) if

n"@,1eT) 2 {f fdMe, 1 e T}.
2

The next lemma, complementing Remark 1, will allow us to assume without
loss of generality that « € (0, 2) (or even o = 1) in considering spectral repre-
sentations of max-stable processes.

Lemma 4 If {fi}er C LS(82, A, ) is a spectral representation of a max-stable

process {n¥(t),t € T} with a-Fréchet margins, and B > 0, then {ftﬂ}xer -
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Spectral representations of sum- and max-stable processes 409

Li/ p (82, A, w) is a spectral representation of the max-stable process (n¥)? having
a/B-Fréchet margins.

Proof Take ty,...,t, € T and (uy, ..., u,) € [0,00)"\{0}. Then the fact that
{ fi}ier is a spectral representation of ", and Eq. 6 yield

P[nY ) <w Yi=1,....n] :P[nV(n) <ul’? vi= 1,...,n]
v o« _ B
=P f,fl.dMufui Vi=1,...,n
2

= exp (—f Vi, (ft‘l(/a;)) d,u(w)),
2 u;

Using trivial transformations and Eq. 6, we obtain

B\ /B
P[0 @) <u; Vi=1,...,n] =exp <—/ Vi, (f";w) ) du(w))
5 :

L

\
e[ st cuim].
2

This shows that { f,ﬁ } .7 18 a spectral representation of the process V)P O

By a fundamental theorem of de Haan (1984), any max-stable process
defined on a countable state space T (as well as any stochastically continuous
max-stable process on R) has a spectral representation. We start by proving a
somewhat more general version of this theorem.

Theorem 1 Any max-stable process {n"(t),t € T} has a spectral representation
on some sufficiently rich measure space.

Proof By Lemma 4, we may suppose that « € (0,2). Let {nt(®),t e T} be
the SaS process associated to ¥ as in Proposition 1. By Bretagnolle et al.
(1966) and Schreiber (1972), the process n* has a spectral representation
{ filier on some measure space (§2, A, ). We show that {| f;|};cr is a spectral
representation of n¥. Take #1, ..., , € T. Then the set

A={we2: f(w>0Vi=1,....n}U{we R: f,(w) <0 Yi=1,...,n}
has full u-measure. Indeed, otherwise the spectral measure of the random
vector (n*(t1), ..., n"(t,)) would not be concentrated on S" U (—S"). We

show that the collection {| f;|};cr forms another spectral representation of nt.
To this end, we compute the characteristic function of ( / ;; | ﬁAdej);f:]: using
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Eq. 3 in the first and third equalities, and the fact that u(£2\A) =0 in the
second equality, we obtain

n + n
Bexp (i3 ou [ 1f1aMz | =exp | = [ 3015 @l duco)
=1 % 2 =1
= exp —/\Z f,j(a))uir"du(a))
2 ‘o
n +
= Eexp iZu,-/ Jr,d M3,
=1 7€

n
=Rexp i) un*(t)
j=1

So, the collection {| f;|},er is a spectral representation of n* and thus, by
Lemma 2, it is also a spectral representation of n". O

The spectral representation is generally non-unique. In Hardin (1982) the
notion of minimal spectral representation was introduced and it was shown
that every SaS process satisfying the so-called condition S has a minimal
representation which is moreover unique in some natural sense. For max-
stable processes, an analogous result was proved in de Haan and Pickands
(1986) by a different method. We deduce the result of de Haan and Pickands
(1986) from its SaS counterpart. First we recall some definitions.

Definition 3 A spectral representation { f;},cr, defined on a measure space
(2, A, ), of a SaS (or max-stable) process is called minimal if the following
two conditions are satisfied:

1. thereisnoset B with u(B) > Osuch thatforallz € T we have f; =0 u-a.e.
on B.

2. the o-algebra generated by the extended-valued functions f;/f;, s,t € T,
coincides with A.

A stochastic process {n(), t € T} is said to be separable in probability (or to
satisfy condition S) if there is a countable set Ty C T such that for everyr € T
there is a sequence {f;}72, C T such that n(t) = Plim_, . n(t). For example,
condition S is satisfied if 7 is a separable metric space and the process 7 is
stochastically continuous. Recall, see e.g. de la Rue (1993), that a probability
space is called a Lebesgue space if it is isomorphic, as a measure space, to
an interval [0, a], 0 < a < 1, with the Lebesgue measure, extended by at most
countable number of atoms with total mass 1 — a.
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Spectral representations of sum- and max-stable processes 411

Now we reprove the following result of de Haan and Pickands (1986) (see
also Stoev and Taqqu (2005) for the slightly more general version given below).

Theorem 2 Any max-stable process {n"(t), t € T} satisfying condition S has a
minimal spectral representation defined on a Lebesgue probability space. The
minimal representation is unique in the following sense: if { f Yt and { f*}ier
are two minimal representations of n”, defined on Lebesgue probability spaces
(S1, By, 1) and (83, Ba, o), then there is a non-singular measurable bijection
7 8 — Siand a function h € L% (S, By, u2), h > 0, such that forallt € T,

d(py o) _

h* ae.onS,. 9)
dus

ff=h-(flon) and

Proof Again by Lemma 4, we may assume that « € (0, 2). Let n* be the SaS
process associated to 7V, see Proposition 1. It follows from Lemma 3 that
n™ satisfies condition (S). By Theorem 1.1 of Hardin (1982), n* has a min-
imal spectral representation { f;},cr defined on a Lebesgue probability space
(£2, A, w). As in the proof of Theorem 1, {| f;|}.c7 is a spectral representation of
n". We show that it is minimal. Condition 1 of Definition 3 is satisfied trivially.
To show that Condition 2 holds, recall from the proof of Theorem 1 that for
eachs, t € T the sign of f; coincides with the sign of f; u-a.e. and, consequently,
the o-algebra generated by | f;|/| fs| coincides with the o -algebra generated by
fi/ fs- However, the latter is equal to A since { f;};c was chosen to be a minimal
representation of nt.

We prove the uniqueness part of the theorem. Suppose that { ftl} oy and
{f?},.; are two minimal spectral representations of 5 as described in the
statement of the theorem. Both can be also viewed as minimal representations
of the SaS process n* associated to n¥ (Lemma 2). Thus, by the uniqueness
result of Hardin (1982), there are = and 4 satisfying Eq. 9. ]

Let us note that a minimal representation of an SaS process exists even
if the process does not satisfy condition S, see Hardin (1982). However, the
underlying measure space is not Lebesgue in this case, and uniqueness of the
minimal representation holds in a weaker form. Analogous results for max-
stable processes can be easily obtained by the above method.

The uniqueness of the minimal spectral representation was used in Hardin
(1982) and Rosinski (1995) to obtain a characterization of stationary SaS
processes in terms of non-singular flows on measure spaces. It was shown there
that each stochastically continuous stationary SaS process can be generated by
a non-singular measurable flow on a Lebesgue probability space, an integrable
function on the same space and a +1-valued cocycle. Analogous result for
max-stable processes was obtained in de Haan and Pickands (1986) (note,
however, that in the max-stable case the cocycle is not needed). We are going
to deduce the result of de Haan and Pickands (1986) from its SaS counterpart.
Additionally, we show that the generating flow can be taken to be measurable,
this will be needed in the sequel.
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412 Z.. Kabluchko

First, we need to recall the necessary definitions, see Krengel (1985,
§§1.1, 1.2) for more information. A flow on a measure space (£2, 4, u) is a
one-parameter family {7;},cg of measurable transformations of 2 satisfying the
group property 1y = id, 1,45 = 7; 0 Ty, £, § € R. Note, in particular, that all ¢, are
invertible. A flow {t;},cr is called non-singular if every t; is non-singular, that
isif 7, o u <« p for all # € R, where <« means absolute continuity of measures.
A flow is called measurable if the map (w, ) — 7;(w) is measurable as a map
from (£2 x R, A x B) to (£2, A) (here, B is the Borel o-algebra on R). A non-
singular flow on (£2, A, 1) defines a one-parameter group {U,},cr of positivity
preserving L*(£2, A, u)-isometries by

dpot " N
v = (%) fon rerf@ A, (10)
Theorem 3 Let {nV(t),t € R} be a stationary stochastically continuous max-
stable process. Then there is a non-singular measurable flow {t;};cr, defined on
a Lebesgue probability space (82, A, u), and a function fy € L% (82, A, u) such
that the collection of functions { fi};cr defined by

fi=Ufo (11)

is a minimal spectral representation of n".

Proof By Lemma 4, we suppose that o € (0,2). Let nt be the SaS process
associated to n". It is also stochastically continuous by Lemma 3. By Hardin
(1982) and Theorem 3.1 of Rosinski (1995), n* is generated by a triple
consisting of a measurable nonsingular flow {z;};cg on a Lebesgue probability
space (£2, A, u), a function gy € L*(£2, A, n) and a +1-valued cocycle a,(w)
(see Rosinski 1995, for a definition) such that {g;},cr, where g, = a, - U,(go),
is a spectral representation of n*. Here, U, is as in Eq. 10. Then for f; = |g|,
Eq. 11 holds. Further, as in the proof of Theorem 1, { f;} is a spectral represen-
tation of n”. This completes the proof. O

4 Hopf decomposition and mixed moving maxima

Definition 4 We say that a max-stable process {1 (¢), t € R} is generated by a
non-singular measurable flow {7, };cr On a o-finite measure space (£2, A, ;) and
a function fy € LY (82, A, p) if

1. {U, fo}wer is a spectral representation of ".
2. thereis noset B € A such that for each t € R we have U, fy = 0 a.e. on B.

Here, U, is an isometry of L*($2, A, u) defined by Eq. 10. By Theorem 3,
each stochastically continuous stationary max-stable process is generated by
some flow. A measure space on which a non-singular measurable flow acts
can be decomposed into the so-called dissipative and conservative parts (Hopf
decomposition). Our goal in this section is to study the dissipative part of the
Hopf decomposition.
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First, we recall some definitions, see Krengel (1985, §1.3). Let t be a non-
singular invertible measurable transformation of a measure space (£2, A, ).
A set W e A is called wandering if the sets W, k € Z, are disjoint. The
transformation t is called conservative if there is no wandering set of positive
measure. There is a r-invariant decomposition 2 = CU D, called the Hopf
decomposition, such that the restriction of z to C is conservative and D
can be written as Uez7*W for some wandering set W. Now, if {r;};cr is a
measurable non-singular flow, then the Hopf decomposition of £2 with respect
to 7, does not depend on ¢ # 0 modulo ¢ and is called the Hopf decomposition
generated by the flow {7;},cr, see Krengel (1968, Lemma 2.1). A measurable
non-singular flow {z,};,cg on a measure space (£2, A, ) is called conservative
(resp. dissipative) if C = £2 mod w (resp. D = 2 mod ).

Theorem 4 Let {nV (), t € R} be a stationary max-stable process generated by a
conservative (resp. dissipative) measurable non-singular flow. Then in any other
representation it is generated by conservative (resp. dissipative) flow.

Proof The theorem follows by applying Theorem 4.1 of Rosinski (1995) to the
associated SaS process nt. O

Theorem S Every stationary stochastically continuous max-stable process
{nV(H),t € R} can be written as n" =ng,, vV 0y Where ng,. . and n;. are
independent stationary max-stable processes generated by conservative, resp.
dissipative, flows. This decomposition is unique in distribution.

Proof By Theorem 3 n" is generated by a flow {r;},cg on a measure space
(£2, A, ) and a function fy. Let f; = U, fy. Define

\ \2
0 (6) = /C fAMS and  pi (0 = /D fdMe, .

Then nY = 1y V N4 1S the decomposition having all required properties. The
uniqueness part of the theorem follows by applying Theorem 4.3 of Rosinski
(1995) to the associated SaS process ™. O

Now we are going to show that the class of stationary max-stable processes
generated by dissipative flows coincides with the class of mixed moving max-
ima processes. In the next definition, (R, 5, A) is the real line endowed with the
Borel o-algebra 55 and the Lebesgue measure A.

Definition 5 A stationary max-stable process {n”(f),t € R} is called mixed
moving maxima process if there is a o-finite measure space (W, W, p) and a
function g € LY (W x R, W x B, p x 1) such that

(), te R} 2 {/w Rg(w,s —DdM°, (w, ).t € R} .
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Theorem 6 A stationary max-stable process {n”(t),t € R} is generated by a
dissipative flow iff it has a mixed moving maxima representation.

Proof Analogous to the proof of Theorem 4.4 in Rosinski (1995). O

In the next theorem we give a criterion which allows to decide, whether
two given mixed moving maxima processes are equal in law. We deduce it
from the corresponding SaS result due to Surgailis et al. (1993). Let n¥ be a
mixed moving maxima process as in Definition 5. By Fubini’s theorem, the
map w — g(w, -) is a p-a.e. well-defined map from W to L% (R). We define a
finite measure von S, = {f € LY(R) : || fllo = 1}, endowed with the o-algebra
of Borel sets, by

b(A) = f 1A (ﬂ) lg(w, ) %dp(w).
w A gl

For two functions fi, f, € L*(R) we write f| ~ f, if f] is a translate of f,, that
is if there is an s € R such that fi(-) = fo(- —s) a.e. Let S/ ~ be the quotient
space, endowed with the o-algebra of ~-invariant sets, and let 7 : S, — S,/ ~
be the quotient map.

Theorem 7 Two mixed moving maxima processes 1y and n; are equal in law
iff the corresponding measures vi o' and v, o~ on S,/ ~ are equal.

Proof Let (W, W', p'), i = 1,2, be two o-finite measure spaces and let g; €
LYW xRW x B, pl x &), i=1,2. Let Y, i = 1,2, be the corresponding
mixed moving maxima processes, see Definition 5. Construct the measures
vy, vy as above. Suppose that the laws of 1) and n;" are equal. Then the laws
of the associated SaS processes are equal and it follows from Surgailis et al.
(1993) that v; o m~! = v, o w~!. This proves the “only if” part of the theorem.
The “if” part is easy, see Surgailis et al. (1993). O

5 A characterization of ergodicity

A natural question is how to characterize ergodicity and mixing of a stationary
SaS (or max-stable) process in terms of its generating flow. Characterizations
of ergodicity and mixing for stationary SaS processes were given in Cambanis
et al. (1987), Gross (1994), Gross and Robertson (1993), Samorodnitsky
(2005). In the last paper, ergodicity was characterized in terms of the positive-
null decomposition of the conservative part (see below): a stationary SaS
process generated by a nonsingular measurable flow is ergodic iff the flow has
no positive recurrent component. For max-stable processes, the question was
studied in Stoev (2008). In particular, Stoev (2008) gives an easy verifiable
necessary and sufficient condition for mixing. However, conditions of his
Theorem 3.2 characterizing the ergodicity are difficult to verify. In Theorem 8
below we prove a max-stable counterpart of the result of Samorodnitsky
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(2005). Furthermore, we shall see in Theorem 9 below that ergodicity (resp.
mixing) of a max-stable process is equivalent to the ergodicity (resp. mixing)
of the associated SaS process. It seems that this fact cannot be proved by a
simple argument using the notion of association. Thus, our arguments in this
section differ significantly from that of the previous sections.

The conservative part C of a non-singular measurable flow {z;};cx on
(£2, A, ) can be decomposed into a positive recurrent and null recurrent
parts P and N in a way similar to the decomposition of the set of recurrent
states of a Markov chain into positive recurrent and null recurrent states.
For an exact definition we refer to Krengel (1985, Theorem 4.6 on p.141)
and Samorodnitsky (2005). Here, we need only the following two properties of
the positive-null decomposition. First, on the positive part P, there is a finite
T-invariant measure v such that v ~ u (on P). Second, if fe L'(2, A, ),
then Krengel’s stochastic ergodic theorem, see Krengel (1985, Theorem 4.9 on
p-143), says that for every measurable set B C N of finite measure and every
e >0,

1 T
lim u {a) € B: —/ U, f(w)dt > 8} =0, (12)
T—o0 T 0

where U, is as in Eq. 10. The next theorem is a max-stable counterpart
of Samorodnitsky (2005), although the proof is different.

Theorem 8 Let {n” (), t € R} be a stationary max-stable process generated by
a measurable non-singular flow {t;},cr and a function fy. Then n" is ergodic if
and only if the flow {t;},cr has no positive recurrent component.

Proof First suppose that the positive recurrent component P is non-trivial.
Define U, as in Eq. 10 and let f; = U, fy. By changing a measure on P, we may
suppose that u is invariant on P and that u(P) = 1. Let ¢ be so small that

wlw e P: fo(w) >0} > 2¢ (13)
(the left-hand side is positive by Condition 2 of Definition 4, and by the fact
that P is r-invariant). Define the stationary max-stable processes n}, and ny, by

restricting the spectral representation of ¥ to the positive recurrent, resp. null
recurrent, part. More precisely, set

Vv Vv
() = / fidMg  and 50 = / fdMe, .
P N

Then n¥ = ny Vv n¥. We will show later that for every C > 0,

1 T
0

T—o0
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We claim that this implies that »* is non-ergodic. Indeed, if n* were ergodic,
then Birkhoff’s ergodic theorem would imply that with P-probability 1,

T T

thl}oIz)flT A 1{,];(0<C}dl‘ > Th—>n;o lT/(; 1{,7V(t)<c}dt = P[T}V(O) < (C].

However, this contradicts Eq. 14 if C is so large that P[n¥(0) < C] > 1 — .
So, we concentrate on proving Eq. 14. It follows from Eq. 13 that we can

find a § > 0 such that u(A) > ¢, where A ={w e P: fy(w) > §}. Since the

restriction of 7, to P is measure preserving, we have, by Birkhoff’s ergodic

theorem,

1 [T
lim —/ iz eaydt = g(w) w—a.e.on P
T—oo T 0

for some function g with [, gdu = 1(A) > e. It follows that there is a set
B C P of positive measure such that g|5 > ¢.

Now, from the definition of the extremal stochastic integral, see Eq. 5, we
have

np(t) = co Vien Y fi(wp),

where {(wi, yr)}72, is an enumeration of the points of the Poisson point process
on P x R, with intensity u;p x dy/y**!. Without loss of generality assume that
vy is the largest of all yx. We have

C
P|:y1 > —,w EB:| > 0.
Cod

o

If the event {y; > C/(c,8)} occurs, then for each ¢ with 7,(w;) € A we have

C
np®) = cay1 filwr) = cayi1 fo(r(wr)) > Cas -8§=C,

and thus, if additionally the event {w, € B} occurs,

: Lt 1T
hmsupT/O l{n};([)<c}dl‘ < lim T'/(; 1{Tr(w1)¢A]dt =1—-glw) <1—e

T—00 T—o0

This proves Eq. 14.

Now we prove the “if” part of the theorem. Suppose that n" is generated
by a measurable non-singular flow with vanishing positive recurrent part. For
simplicity we may suppose that @ = 1. By Theorem 3.2 of Stoev (2008), in order
to show that n" is ergodic it suffices to show that for every f € L (£2, A, ),

1 T
lim —f If A UL fllide =0 (15)
Ty

T—o0
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Here, A denotes the minimum. Choose a set A; C £2 of finite measure such
that |, o\a, [ = e Further, let the constant ¢ be so large that Ja, fdi < e where
A, ={we Ay : f>c}.Set A= A\ A,. Then

1f AU 5/ fdu+/(fAsz)du528+/(fAsz)du.
2\A A A

By Krengel’s stochastic ergodic theorem, see Eq. 12, and with the notation

1 T
A5(T) = {weA:T/O U, f(w)dt > ﬁ}

we have limr_ o u(A3(T)) =0. Thus, if T is sufficiently large, then
w(A3(T)) < ¢/c. We are going to show that Eq. 15 holds. If T is large, then

T T
/0 1 f AU flhde < /O (28+ /A (f(w)wtf(w))du(w))dr
T
_oTe + / / (f(@) A U, f@))drdp(e)
A JO
T
<2Te + / / Flw)dtdp(w)
As(T) JO
T
+ / / (f(@) A U, fl)dtdp(o)
A\A3(T) JO

T
< 2T8+/ ch,u(a))+/ — du(w)
As(T) A\Ay(T) M(A)

< 4Te.

This, since ¢ > 0 was arbitrary, proves Eq. 15 and the ergodicity of ". O

Theorem 9 Let n¥ be a stationary max-stable process with « € (0, 2), generated
by a measurable non-singular flow {t;};cr and a function fy. Let n* be the SaS
process associated to n¥. Then 1" is ergodic (resp. mixing) iff n* is ergodic
(resp. mixing).

Proof Let f; = U, fo, where U, is as in Eq. 10. Then {fi},cr is a spectral
representation for both ¥ and n*. By Theorem 8, 5" is ergodic iff the
positive recurrent component of the flow {7;},cr vanishes. Since by Theorem 3.1
of Samorodnitsky (2005) the same is true for n*, the ergodic part of the
theorem is established.

We prove the mixing part of the theorem. For simplicity we suppose that
«a = 1. By Theorem 3.3 of Stoev (2008), " is mixing iff

Tim || fy A il =0. (16)
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On the other hand, by Gross (1994), n* is mixing iff for every compact set
K c0,00)ande >0

ll_lglo wlo: folw) € K, fi(w) > ¢} =0. (17)

We show that Eqs. 16 and 17 are equivalent. Suppose that Eq. 16 holds. Define
8 = min(inf,eg t, €). Then § > 0 and we have

1o fol) € K, filw) > ¢} < plo: folw) > 8, filo) > 8}
= o : (fon f)lw) > 5}
<8 'l foA filli.

Letting t — oo and using Eq. 16, we obtain Eq. 17.
Now suppose that Eq. 17 holds. Find a set A of finite measure and a constant
¢ such that fQ\A fo<eand fy <con A. Let

)
n(A) |-
By taking K =[e¢/n(A), c] and ¢/u(A) instead of ¢ in Eq. 17, we obtain
lim,, o (A(t)) = 0. Thus, for ¢ sufficiently large, we have u(A(¢)) < e/c. We
obtain, for ¢ large,

/ (oA fiydp = / (o A foydp +/ (oA foydp +/ (o foydp
Q 2\A A A

\A(@)

A = {w eA(fon f)@) >

< &+ cu(AWM) + 1(A)e/1(A)

< 3e.

This proves Eq. 16. O

Using the notion of association, it is straightforward to deduce from the SaS
results of Samorodnitsky (2005) that a stationary max-stable process generated
by a positive recurrent (resp. null recurrent) flow in some representation
must be generated by positive recurrent (resp. null recurrent) flow in any
other representation. Further, in the decomposition n¥ =nJ Vv ny of a
stationary stochastically continuous max-stable process n* (Theorem 5 above)
the conservative component 7. can be represented as ny . = 1 V ny, where
np and ny are independent stationary max-stable processes generated by
positive recurrent and null recurrent flow respectively. The positive recurrent
component 7}, can be represented as

np(0) = Vi, yi Xi(0), teR,

where {y;};2, is an enumeration of points of a Poisson point process on
R, with intensity dy/y**! and X, k € N, are independent copies of some
stationary non-negative-valued stochastic process { X (¢), t € R}. Here is a short
proof of this. After changing a measure on P, we may assume that {z;},cg is
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measure preserving on P and that u(P) = 1. By the definition of the extremal
stochastic integral (5) we obtain

np(t) = co Vi, YU fo(wp),

where wy, k € N, are elements from P, chosen independently according to the
measure up. To complete the proof, define independent stationary stochastic
processes { Xi(?),t € R}, k € N, by Xi(t) = c, U, fo(wi). Thus, stationary max-
stable processes generated by positive recurrent flows are exactly those con-
sidered in Theorem 2 of Schlather (2002). The null-recurrent component 7y, is
less tractable.

6 Spectral representations of Brown-Resnick processes

In this section, we find an explicit construction of non-singular flows generating
a class of stationary max-stable processes which will be called Brown-Resnick
processes. These processes arise naturally as limits of pointwise maxima of
large number of suitably normed and spatially rescaled Gaussian processes,
see Brown and Resnick (1977) and Kabluchko et al. (2009). First, we recall the
definition of these processes (note that the processes we are considering have
Fréchet margins).

Let W ={W,,t € R} be a Gaussian process with stationary increments,
defined on some probability space (£2, A, ). We always suppose that W has
zero mean and continuous sample paths. Recall that stationarity of increments
means that the law of the process {W. ., — Wy, t € R} does not depend on
h € R. Let 0} = VarW, be the variance and v, = E[(W, — W;)?] the incremen-
tal variance (or variogram) of W. The covariance function of W is given by

1
Cov(W,, Wy) = 5(0,2 +0} —Yiy)-

Let & = W, — 02/2. The max-stable process {n" (), t € R} defined by

\
0’0 = [ expan, (1)
will be called the Brown-Resnick process associated to W. It is clear that
nY is max-stable with unit Fréchet margins. Using the definition of extremal
stochastic integral (5), the above definition of n* can be reformulated as
follows: Let {Sl(k), t € R}, k € N, be independent copies of {&, € R} and let
{yk};z2, be an enumeration of points of an independent Poisson point process
on R, with intensity dy/y*. Then

nv () = Vi, vk exp( ,(k)).

Although this is by no means evident from the spectral representation Eq. 18,
Brown-Resnick processes turn out to be stationary. This was proved by Brown
and Resnick (1977) for W being a Brownian motion, and in Kabluchko et al.
(2009) in the general case.
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The process 1", being stationary, max-stable and continuous in probability,
must be generated by a non-singular flow by Theorem 3. Our goal will be to
construct this flow explicitly. To do this, we first define the probability space
on which the flow acts. Let Cy(R) be the space of continuous functions on R
vanishing at zero. We endow Cy(R) with the topology of uniform convergence
on compact sets and denote the corresponding Borel o-algebra by B. Let

= {Wt, t € R} be the process defined by W, = W, — W,. Note that W is a
Gau551an process with stationary increments having the same variogram v, as
W. Note also that Wo 0 a.s. and VarW, = v,. Denote by v the law of the
drifted process & = W, —vy,/2 on the space Co(R). Now we define a flow on
the space (Cy(R), B, v) as follows: for t € R we define 7, : Co(R) — Co(R) by

(w)(s) = w(s+1) —w(), e CR).

Theorem 10 {7,},cr is a measurable non-singular flow on the Lebesgue proba-
bility space (Cy(R), B, v), which, together with f, = 1, generates a minimal spec-
tral representation of the Brown-Resnick process n" in the sense of Definition 4.

The proof of Theorem 10 will be based on the following auxiliary result.

Proposition 2 For each h € R the law of the process {§.1n — &n, t € R} under the
probability measure e du is the same as the law of {§,,t € R}.

Proof First note that [, e¥"du = 1 and so ¥ dy is indeed a probability measure
on £2. Take #,...,t, € R. The Laplace transform ¢ of the random vector
(&q+n — En)™, under e dp is given by

wwn¢m=/}mm&w—m+n+%@w—@mwu
2

=/?mmaw+m+%gw+a—m—m—wmww
2

Now, under the probability measure p, the random vector (&, 1p, ..., &,+h, &)
is Gaussian with easily computable expectation and covariance. A calculation
similar to that in the proof of Theorem 10 in Kabluchko et al. (2009) shows
that

p(ar, ..., a,) =exp __ZYI, j + Z(Yr,"‘yt] 'Ytlz)aza] )
l]—

which is exactly the Laplace transform of the vector (é,l, cee §,) This com-
pletes the proof. O

As a byproduct we obtain a result already proved in Kabluchko et al.
(2009).

Corollary 1 The process n"” is stationary. Its law depends only on the variogram
v, of the underlying Gaussian process W.
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Vv n
&t+h—Ei 1
/ eslith ,dMeEhdM> .
2 i=1

Here, the second equality follows from Eq. 6. Applying to the right-hand side
Proposition 2, we obtain

" @G+ ), 2 ( f egffdM,i> : (19)

2 i=1

Proof Take h, t,,...,t, € R. We have

v n
V@ + h)i, D </ eé!ﬁ»hdML) 2 (
2

i=1

Thus, the distribution of (1" (t; + h))!_, does not depend on &, which proves the
stationarity of ". Further, the law of the process £ is completely determined
by the variogram vy,, which proves the second part of the corollary. O

Proof (Proof of Theorem 10) Since v is a Borel probability measure on the
Polish space Cy(R), it follows that (Cy(R), B,v) is a Lebesgue space, see
e.g. (de la Rue 1993, Theorem 2-3). We show that {z;};cg is a measurable non-
singular flow on Cy(R). The measurability is clear. The group property is also
easily verified:

7, (T, w(8)) = 1 (@ (- + 1) — w(fr))].—
(@(+1t+1h)—wl) — ol +0)+ o))
o +hH+b)—owlt +1h)

= Ty 44,0(S).
We show that for each s € R the transformation 7, is non-singular. More
precisely, we claim that
d(v o tp)
dv

Let B C Co(R) be a B-measurable set. It follows from Proposition 2 applied to
W that

(w) = e*®. (20)

~ -~ gl — -~
/1<s[+h<~>—sh<~>>eBe'd“—/ Iz )epdm.
2 2

This may be written as

/ Lyoese” P dv(w) = f Lyesdv(@).
Co(R) Co(R)

It follows that

/ D dv(w) = v(B).
o 'B

h

Writing in this equality 7, B instead of B we obtain

/ D dv(w) = v(zu(B)).
B
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This proves Eq. 20. Now we show that the flow {t;};cr, together with the
function fy =1, generates a spectral representation of the Brown-Resnick
process 1 in the sense of Definition 4. Let f; = U, f;. We have

dv

o dv o
y &) folr(w) =
v

dv

Recall that v is the law of the random process &. Thus

filw) = (@) = e®?.

/ fl@)dM (w) = / ?OdM (w) = / EdM!.
C

o(R) Co(R) 2
Applying to the right-hand side Eq. 19 with & = 0, we obtain

U fl@)dM ().t e R} Z Y@, teRy).
C

o(R)
This shows that {f;},cr is a spectral representation of . Finally, we show
that the representation { f;};cg is minimal. Clearly, the o-algebra generated by
fi/fs, t.s € R, is contained in B. On the other hand, it contains the o-algebra
generated by f;, t € R, (set s = 0 and recall that fy = 1), which coincides with
B. This completes the proof. O

The explicit construction of the spectral representation of the Brown-
Resnick processes nV together with the results of the previous section allows
to say more about the ergodic properties of n".

Theorem 11 Suppose that
lim (W, — 0/2) = —cc a.s. (21)
—00

Then the corresponding process " is generated by a dissipative flow.

Proof Let {t;};,cr be the flow constructed in the proof of Theorem 10. By
Krengel (1968, Lemma 2.1), the flow {t;},cr is dissipative iff t; is dissipative. To
show that ; is dissipative it suffices to construct a countable covering { A;};cy of
Co(R) with the property that for each i € N almost every point from A;, under
the iteration of 7y, returns to A; only finitely many times. We define

Ai={we CyR) : w(t) <0 Vt:|t] > i}.

It follows from Eq. 21 that for v-almost every w € Cy(R) we have lim,_, o, @ () =
—oo and thus UienA; = Co(R) mod v. If € A;, then tjw isnotin A; for j > i
since Tjw(—j) = w(0) — w(j) = —w(j) > 0. Thus, every point from A; returns
to A; only finitely many times. This proves the theorem. O

Using Theorem 6 we obtain the following corollary, proved in Kabluchko et al.
(2009, Theorem 14).

Corollary 2 Iflim,_, (W[ —o?/ 2) = —00 a.s., then the corresponding Brown-
Resnick process n¥ has a mixed moving maxima representation.

Theorem 12 If vy, is bounded, then the corresponding Brown-Resnick process
n" is generated by a positive recurrent flow and, consequently, is non-ergodic.
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Proof To prove the theorem we construct a flow {r/},cx which generates
n¥ (this flow is different from the flow {r,};,cr constructed in the proof of
Theorem 10, but, of course, both flows must be isomorphic by Theorem 2).
It is known that if vy, is bounded, then it is a variogram of a stationary Gaussian
process. Thus, since the law of ¥ depends only on vy, (and not on W) by
Corollary 1, we may assume that W is stationary. We construct a spectral
representation of n" as follows. Let C(R) be the space of continuous functions
on R, endowed with the product o-algebra B. Let the probability measure v be
the law of the process W on C(R). Define the non-singular (in fact, measure
preserving) flow {t,};cgr on (C(R), B, v) by

(T[®)(s) = w(s +1).
Let fo : C(R) — R be defined by fy(w) = exp (w(0) — 04 /2). Then

U, folw) = fo(/(@)) = exp (o) — 04/2) = exp (0 (1) — 67 /2).

Thus, the pair ({t/}.cr, fo) defines a spectral representation of " in the sense
of Definition 4. Since the flow {7/},cr is measure preserving, and since the
measure v is finite, it follows that {z;},cr is positive recurrent, see Krengel
(1985, Theorem 4.6 on p.141). This proves the theorem. O

Remark 3 The above Theorems 11 and 12 do not answer completely, by what
kind of flow a Brown-Resnick process with given variogram is generated.
For example, we do not know, whether there exist a Brown-Resnick process
generated by a null-recurrent flow. We also do not know whether the following
converse to Theorem 12 holds: if vy, is unbounded, then the corresponding
Brown-Resnick process has no positive recurrent component in its spectral
representation. Another open question is whether it is possible to construct
a Brown-Resnick process which is generated by a flow of “mixed” type (e.g.
with both dissipative and conservative components non-vanishing).

Remark 4 1t is possible to define SaS counterparts of Brown-Resnick pro-
cesses. To this end, one may replace the extremal stochastic integral in Eq. 18
by the SaS stochastic integral, that is one may define

i
e = /Q exp(&)dM).
The resulting process n™* is stationary, with S1S (Cauchy) marginal distri-
butions. The class of processes constructed in this way is parametrized by
negative definite functions (variograms) and thus is somewhat similar to the
well-known classes of sub-Gaussian and harmonizable SaS processes which
are parametrized by positive definite functions. However, whereas both sub-
Gaussian and harmonizable processes are non-ergodic by Cambanis et al.
(1987), the S1S Brown-Resnick processes, depending on the variogram -y, can
be both positive recurrent (and thus, non-ergodic) and dissipative (and thus,
mixing). To see this, combine Theorems 12 and 11 with Theorem 9.
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