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Abstract Reichenbach’s use of ‘posits’ to defend his frequentistic theory of

probability has been criticized on the grounds that it makes unfalsifiable predictions.

The justice of this criticism has blinded many to Reichenbach’s second use of a

posit, one that can fruitfully be applied to current debates within epistemology. We

show first that Reichenbach’s alternative type of posit creates a difficulty for epi-

stemic foundationalists, and then that its use is equivalent to a particular kind of

Jeffrey conditionalization. We conclude that, under particular circumstances,

Reichenbach’s approach and that of the Bayesians amount to the same thing,

thereby presenting us with a new instance in which chance and credence coincide.

1 Introduction

Many associate the frequency interpretation of probability with Richard von Mises,

despite the fact that several years before he introduced his ideas in von Mises

(1919), Hans Reichenbach had already developed his own frequentistic probability

theory in his inaugural dissertation of 1915 (cf. Reichenbach 1978; Galavotti 2003).

The reason why Reichenbach’s theory was no match for that of von Mises is not

difficult to discern. For while von Mises’ pivotal notion of the Kollektiv has its

difficulties, the objections to Reichenbach’s idea of posits are even more telling.

Suppose that, in n repeated trials, there are m occurrences of a specified kind, so

that the relative frequency of the occurrence in question is m/n. If we let n go to

infinity, then either m/n has a limit or it has not. Reichenbach’s opening gambit
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(Reichenbach 1949) is the claim that, if it has a limit, then this limit, called p, is

expected to be somewhere in the region of m/n. Specifically, for large n, p satisfies

the inequality

m

n
� d\p\

m

n
þ d; ð1Þ

where d is some margin of error. The problem is of course to find a value for d.

What exactly does ‘somewhere in the region of m/n’ mean? If no prior knowledge of

the system is available, Reichenbach argues, we simply guess what d might be, and

then the whole statement (1) becomes a so-called blind or anticipative posit. This

statement can subsequently be made more precise, resulting in an informed or

appraised posit.

One of Reichenbach’s reasons for introducing posits of this kind was no less than

a pragmatic vindication of induction: a practical answer to Hume’s claim that the

uniformity of nature is indemonstrable. We cannot prove that nature will be uniform

with respect to a given sequence of events, but if she is, in the sense that the ratio m/

n has a limit, then this method of the posit will eventually obtain that limit to any

required degree of accuracy (Reichenbach 1949, p. 446, 475; cf. Salmon 1966, p.

86). Although Reichenbach had invoked the principle that nature is uniform as a

synthetic a priori in his 1915 dissertation, he later repudiated this view

(Reichenbach 1951, pp. 246–247). His way of vindicating its use was to throw

everything into the conditional mood, as it were: if a sequence has a limit, then I

have a way of nailing it down. Technically, he was forced to introduce a hierarchy

of levels of probabilities: the second-order probability that the first-order

probability, p, lies in the above interval tends to unity as n tends to infinity

(Reichenbach 1949, p. 442).

Some have called Reichenbach’s theory ‘empirical frequentism’, thus suggesting

that it is falsifiable. The theory has however been justly criticized on the grounds

that, although m/n tends to p in the limit that n goes to infinity (on condition that the

limit exists), the speed at which this limit is attained is unknown. Indeed wild

fluctuations on the way to that limit cannot be ruled out. Moreover, any initial

segment of a sequence of trials is consistent with any limit p: everything depends on

the infinite tail of the sequence, not on a finite initial part of it! In practice then,

since we can only work with a finite number of trials, and no estimate can be given

of how many trials would be needed to come within a given d of p, Reichenbach’s

use of these posits is not falsifiable, a fatal shortcoming for any theory with

empirical pretensions. Even Wesley Salmon, after a working lifetime largely

devoted to the defence of his teacher, admitted defeat: ‘‘Reichenbach’s attempt to

vindicate his rule of induction cannot be considered successful. ... My attempt to

vindicate Reichenbach’s rule of induction cannot be considered successful.’’

(Salmon 1991, p. 105, 107).

These familiar failings have tended to obscure the fact that Reichenbach also

used the concept of a posit in another, and altogether more defensible context,

namely in his debate with the foundationalists of his day such as Bertrand Russell

and Clarence I. Lewis. In Sects. 2 and 3 we will briefly sketch this debate, and then

we will investigate this new role for posits by considering three concrete cases
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(Sects. 4–6). Contrary to Reichenbach’s intuitions, it turns out that in two of these

three cases, posits are not needed at all (Sects. 4, 5), whereas in the third case they

are indispensable (Sect. 6). In each of these cases a simplifying assumption has been

made, namely that the conditional probabilities in question remain constant. In Sect.

7, and later again in the Appendix, we explain how to generalize our argument to

cases where this assumption is dropped. Finally, in Sect. 8, we show that

Reichenbach’s method is identical to Jeffrey conditionalization under a certain

restriction.

2 Reichenbach versus Lewis

From 1930 until his death in 1953, Reichenbach was strenuously engaged in a

debate with Lewis, staunch defender of a ‘strong foundationalist’ program in

epistemology. The debate apparently started with a letter that Reichenbach wrote to

Lewis on July 29, 1930. Although this letter is now lost, we roughly know its

content from Lewis’s answer to it, written one month later, and today kept at the

University of Pittsburgh. Lewis’s letter makes clear that Reichenbach had objected

to the idea, defended in Lewis’s Mind and the World Order of 1929, that an event

can only be probable if we assume other events to be certain; in Lewis’s view, these

other events consist of sense data.1 Reichenbach’s disagreement with this position is

profound. He denies that sense data must be certain, and he disputes that an event

can only be probable if it is ultimately grounded in events that are certain, sense data

or otherwise. In Reichenbach’s opinion there is nothing incoherent in the concept of

an infinite sequence of events, where each event is made probable by its

predecessor, never reaching certain ground.

Lewis in turn fiercely disagreed and re-explained his view with gusto, first in

letters and conversations, later also in journals and at conferences. The dispute

reached its climax at the forty-eighth meeting of the Eastern Division of the

American Philosophical Association in December 1951, where both Lewis and

Reichenbach read papers that were subsequently published in The Philosophical
Review of April 1952.

The essence of the dispute concerns the very existence of a foundation in

epistemology, rather than the specific nature thereof. The central question is not

whether sense data are certain, even though Lewis would give an affirmative

answer, and Reichenbach a negative one. The central question rather is: ‘Can events

be probable without being ultimately connected to a foundation that is certain,

whether this foundation be sensory or not?’.

In the next section we will present this disagreement in a formal and more precise

way. We also explain how Reichenbach invokes a different type of posit to attack

Lewis’s stance.

1 Rather than talking about probable or certain events, one might talk instead about the probability or

certainty of propositions. In Atkinson and Peijnenburg (2006) it has been shown that, in the relevant

modal systems, the two ways of talking are equivalent.
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3 Alternative Posits

Suppose that the occurrence of an event A0 is made probable by that of another

event A1. The probability of A0 is given by the rule of total probability:

PðA0Þ ¼ PðA0jA1ÞPðA1Þ þ PðA0j:A1ÞPð:A1Þ: ð2Þ
If A1 is in turn made probable by A2, the rule must be applied a second time:

PðA1Þ ¼ PðA1jA2ÞPðA2Þ þ PðA1j:A2ÞPð:A2Þ: ð3Þ
Does it make sense to continue this procedure, allowing for events made probable

by other events, made probable by still other events, and so on, ad infinitum? Of

course the question is not whether we can go on applying the rule in practice, but

whether we can do so in principle. Lewis’s answer to this question is that we cannot.

He claims that the iteration must stop eventually. For some finite n, if An is made

probable by An+1, the latter must be certain: P(An+1) = 1. Once we have arrived at

this certain point, the total probability rule has the simple form P(An) = P(An|An+1),

so there is nothing more to iterate. Denying the necessity of such a termination,

Lewis argues, would amount to abnegating the very concept of probability; in the

above case, such a denial would imply that the probability of the event with which

we began, P(A0), is equal to zero (Lewis 1952, p.172).

Reichenbach demurs, claiming that the above sequence not only can, but must go

on indefinitely. This raises the question as to how we might calculate the probability

of A0. If P(A0) is the outcome of an infinite regression, how can we compute its

value? Again, the question is not just a matter of practice, but also of principle. Is

not the calculation of such an infinite regression too complex for us to bring to

completion? After all, insertion of Eq. 3, together with

Pð:A1Þ ¼ Pð:A1jA2ÞPðA2Þ þ Pð:A1j:A2ÞPð:A2Þ ð4Þ

into the right-hand side of Eq. 2 leads to an expression with four terms, namely

PðA0Þ ¼ PðA0jA1ÞPðA1jA2ÞPðA2Þ þ PðA0j:A1ÞPð:A1jA2ÞPðA2Þ
þ PðA0jA1ÞPðA1j:A2ÞPð:A2Þ þ PðA0j:A1ÞPð:A1j:A2ÞPð:A2Þ:

ð5Þ

A repetition of this manoeuvre to express P(A2) and Pð:A2Þ in terms of P(A3) and

Pð:A3Þ produces eight terms, and after n + 1 steps the number of terms is 2n+1.

This yields a lengthy expression that seems at first sight hard to compute in simple

closed form.

Perhaps Reichenbach saw this difficulty. At any rate he does not even attempt to

engage in the task: nowhere does he try to find a usable expression in the limit as n
goes to infinity. Instead, he chooses to make a guess as to what P(An+1) might be for

a given, fixed n. If nothing is known about An+1, this guess is a blind posit. But if, on

the other hand, some empirical information is available that serves to delimit the

possible values of P(An+1), the guess is not a wild one, and the posit becomes

appraised. The idea is that blind posits can become appraised by testing them in

suitable empirical situations. Of course, even appraised posits will never be more

than conjectural: their very nature as posits prevents them from ever becoming
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certain or categorically true. A posit will never be more, so to speak, than the

antecedent in a conditional statement.

It should be noted that the above use of blind and appraised posits is quite

different from the one that we described in the first section. True, here as well as

there, posits are used to determine the probability of an event, and here as well as

there, posits are conjectures and as such subject to further adjustment. Nevertheless

their functions are quite different. In Sect. 1 posits were used to determine the

probability of an event on the basis of relative frequencies, and this use has been

rightly criticized. But the posits that Reichenbach deploys to counter Lewis’s

position determine the probability of an event, P(An), on the basis of the probability

of another event, P(Am), and such a use is perfectly defensible. To keep the

distinction clear, we will call the former ‘posits of the first kind’ and the latter

‘posits of the second kind’ or ‘alternative posits’.

Reichenbach himself does not explicitly distinguish between posits of the first

and second kind. However, that there are indeed two kinds of posit can be clearly

distilled from his multifarious writings. In some of these, he refers merely to posits

of the first kind (e.g. Reichenbach 1951); in others he is solely talking about posits

of the second kind (Reichenbach 1952); and in Reichenbach (1949), which contains

his considered opinions on probability, he uses first the one and then the other

without mentioning the shift. But as we have seen, the two types clearly differ in

character. Moreover, Reichenbach’s motivation for using each type also appears to

be quite different.

Reichenbach’s main motivation for using his posits of the first kind springs from

his adherence to a frequentistic theory of probability. As he sees it, there are two

major philosophical objections to frequentism (Reichenbach 1951, pp. 236–237).

The first is that it assumes inductive inference, and hence presupposes the

unjustifiable principle of the uniformity of nature. The second is that a frequentistic

probability theory cannot handle single cases: how can I ever come to know what

my chances of surviving my cancer are, if these chances are stated in terms of

relative frequencies? Reichenbach was convinced that both objections could be

overcome by bringing his posits of the first kind into play (Reichenbach 1951, p.

241; cf. Reichenbach 1949, pp. vii–viii). We have expressed our reservations

regarding these posits in Sect. 1, and we do not believe that they can resolve either

of the two objections.

Posits of the second kind are mainly used in the context of the debate with Lewis.

Here Reichenbach’s motivation is not to defend a frequentistic theory of probability,

but to attack foundationalism in epistemology, at least in the form in which it occurs

in the writings of Lewis (and also Russell). In the next section we will show that

Reichenbach was correct in criticizing Lewis’s position. For Lewis was indeed

mistaken: it is not true that an infinite sequence of probabilities, supported by

probabilities indefinitely, necessarily converges to zero. However, we will also

show that this does not imply that Reichenbach was right in claiming that we always

need posits (of the second kind) when dealing with infinite sequences. As will

become clear in Sect. 4, we can dispense with such posits when n goes to infinity,

and as we show in Sect. 5, the same holds when n is large but finite. Reichenbach

failed to notice this, perhaps because he did not realise that he had used his posits in
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two essentially different ways. Or perhaps he did realise it, but was daunted by the

exponential explosion of terms that occurs in calculating the outcome of the infinite

regression. However this may be, and whatever philosophical or mathematical

reasons Reichenbach might have had, we will introduce below a minimal but useful

change of notation that enables us to complete the calculations without too much

effort.

4 Dispensing with Posits, Part 1

The complication of the exponentially increasing number of terms, of which Eq. 5

was the first illustration, can be drastically reduced by replacing Pð:A1Þ in Eq. 2 by

1 - P(A1), and then write this equation as

PðA0Þ ¼ PðA0j:A1Þ þ ½PðA0jA1Þ � PðA0j:A1Þ�PðA1Þ: ð6Þ

A similar treatment can be applied to Eq. 3, which then becomes

PðA1Þ ¼ PðA1j:A2Þ þ ½PðA1jA2Þ � PðA1j:A2Þ�PðA2Þ; ð7Þ

and so on. These changes, small as they may be, turn out to have significant

consequences. For they enable us to obtain a closed and usable expression for P(A0)

in all situations, no matter whether the number of steps is finite or infinite. To see

how this works out in detail, let us consider a concrete example.

Imagine colonies of a bacterium growing in a chemical environment known to be

favourable to a particular mutation of practical interest. The bacteria reproduce

asexually, so that only one parent, the ‘mother’, is sufficient to produce a child, the

‘daughter’. The probability that a mutated daughter descends from a normal, not

mutated mother is known to be very small (say 0.02); but the probability that a

mutated daughter descends from a mutated mother is on the other hand high (say

0.99). We are told that each colony, or batch, develops from a different, single

ancestor; but it is not known, for a given batch, whether the ancestor was normal or

mutated. Now we select a bacterium from a random batch. What is the probability

that the selected bacterium is a mutant?

To answer this question, interpret A0 in Eq. 6 as the event or proposition that the

selected bacterium, a0, is a mutant, and A1 as the event that its immediate ancestor,

i.e. its mother, a1, was a mutant. Thus a0 is the selected bacterium, a1 is its

immediate ancestor, and P(A0) is the probability that the selected bacterium is a

mutant.

We know that PðA0jA1Þ ¼ 0:99 and PðA0j:A1Þ ¼ 0:02: In words: the probability

that a0 is a mutant is 0.99 if its mother, a1, was mutated, and it is 0.02 if a1 was

normal, i.e. not a mutant. If we insert

a � PðA0jA1Þ ¼ 0:99 and b � PðA0j:A1Þ ¼ 0:02

into Eq. 6, we get as the probability that a0 is a mutant

PðA0Þ ¼ bþ ða� bÞPðA1Þ: ð8Þ
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However, we can only use Eq. 8 to compute P(A0) if we know the value of P(A1),

i.e. the probability that the mother is a mutant. How do we compute that value? The

answer is of course that we must apply the same procedure to Eq. 7. That is, we

must insert a and b into that equation, thus obtaining as the probability that a1 is a

mutant

PðA1Þ ¼ bþ ða� bÞPðA2Þ: ð9Þ
But the story does not end here. In order to compute P(A2), we must know P(A3),

and so on, ad infinitum (assuming for a moment that each bacterium has infinitely

many ancestors). We have here a case of which the framework has already been

sketched in the previous section, and it is not difficult to imagine how Lewis and

Reichenbach would react to it. Lewis denies that an infinite sequence makes sense,

for either it is incomputable or it will converge to zero. Reichenbach, on the other

hand, believes that such a sequence is useful, although he does agree with Lewis that

its infinite number of terms hinders its computability. As we have seen, he proposes

to truncate the sequence by making a blind posit, and then to compute the

probability on the basis of that.

Our position deviates from both. Against Lewis we claim that infinite sequences

like the one above do make sense. For not only can they be computed, the resulting

outcomes need not be zero either. Against Reichenbach we hold that the

computation can be executed without truncations and without using any posit at

all. The latter possibility arises from the small but significant change that we made

at the beginning of the present section.

To make this clear, let us first generalize Eqs. 6 and 7 to

PðAmÞ ¼ PðAmjAmþ1ÞPðAmþ1Þ þ PðAmj:Amþ1Þ½1� PðAmþ1Þ� ð10Þ

which gives the probability that am is a mutant. With a and b in place Eq. 10 reads

PðAmÞ ¼ bþ ða� bÞPðAmþ1Þ: ð11Þ
It has been assumed here that the conditional probabilities, a and b, are the same

from generation to generation. This assumption is reasonable (although by no means

necessary) in the case of bacteria being grown in controlled laboratory conditions.

In the wild, variations of temperature and nutrient availability could be accommo-

dated by allowing a and b to change from one generation to another. In Sect. 7 and

in the Appendix we shall discuss the generalized case where a and b may vary; in

the present and in the next two sections, however, we suppose a and b to be

constant.

Let us now apply the rule expressed in this equation to m = 0,1,2,3,...,n. The

result is a finite series that can be summed, yielding

PðA0Þ ¼bþ ða� bÞ bþ ða� bÞ bþ ða� bÞ . . .½ �½ �½ �

¼b 1þ ða� bÞ þ ða� bÞ2 þ . . .ða� bÞn
h i

þ ða� bÞnþ1PðAnþ1Þ

¼ b
1� aþ b

þ ða� bÞnþ1 PðAnþ1Þ �
b

1� aþ b

� �
: ð12Þ

Reichenbach’s Posits Reposited 99

123



Here the value of P(A0) is ultimately derived from one single term, the remainder

term ða� bÞnþ1PðAnþ1Þ; containing the probability that the primal mother an+1 of a

certain batch of bacteria is a mutant (see Eq. 8). However, the value of this

remainder term cannot be computed unless we know the value of P(An+1), the

probability that the primal mother of a0 is a mutant. Does this mean that Lewis was

right in claiming that Eq. 12 can only be solved if we assume that P(An+1) = 1? Or

that Reichenbach was right when he argued that we have to make a blind posit

concerning P(An+1), in order to be able to calculate P(A0)?

The answers are ‘no’ and ‘no’. To see this, let us consider the infinite case. The

standard way to investigate the convergence of an infinite series is first to look at a

finite series of, say, n + 1 terms only, with a remainder term, and then to investigate

what happens as n tends to infinity. Applying this procedure to Eq. 12, we observe

that, since 0 \ a - b\ 1, the factor (a - b)n+1 becomes smaller and smaller as n
becomes larger and larger. In the formal limit that n tends to infinity, we find that the

series has an infinite number of terms, and that the terms in the second and third

lines of Eq. 12 that contain the unknown P(An+1) tend to zero, and hence disappear

completely.

In the limit of an infinite number of terms in the series, corresponding to an

indefinite iteration of Eq. 10, we find

PðA0Þ ¼
b

1� aþ b
¼ 0:02

1� 0:99þ 0:02
¼ 2

3
;

with the values given above for the conditional probabilities a and b. Thus we

conclude that, after an infinite number of generations, the batch of bacteria is two

thirds mutated. The series is, although infinite, perfectly computable, yielding a

number that is not zero. Moreover, this conclusion required no truncation or blind

posit at all (cf. Peijnenburg 2007).

5 Dispensing with Posits, Part 2

We have seen how Reichenbach would proceed when confronted with an infinite

series. First he would truncate the series by making a blind posit (in our example:

for the probability that the (n + 1)st ancestor of a0 was a mutant), and then he

would use that posit to compute what he wanted to know (in our example: the

probability that a0 was a mutant). Apparently his philosophical devotion to the

method of posits was so strong that he did not consider the possibility of calculating

the outcome of an infinite number of iterations.

In addition, there is something else that Reichenbach did not mention. Not only

can we generally dispense with posits when n is infinite, sometimes we do not even

need posits when n is finite but large. The difference between the two situations is

slight but subtle. In the infinite case, posits are not needed because the terms

containing the unknown probability dwindle away to nothing. In the finite case,

however, posits can be ignored if we have a satisfactory approximation for the

probability of interest, i.e. as long as we have a value that, although imprecise, is
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acceptable for our purposes, which is so when we can estimate an error or

uncertainty that is sufficiently small.

Take again our batch of bacteria and imagine it to be sampled after, shall we

say, 150 generations. Assuming that no record of the whole history exists, we

need a posit here if we want a precise value for P(A0). However, this would be to

forget that in most scientific contexts an imprecise value is all that is required.

And such a value, with small error estimates, can often easily be supplied without

any posit at all: it certainly can be readily produced in our example. This becomes

clear when we substitute n = 149, a = 0.99 and b = 0.02 in Eq. 12, thereby

obtaining

PðA0Þ ¼ 0:667þ ð0:97Þ150 PðA150Þ � 0:667½ �: ð13Þ

While it is true that we would now need P(A150) in order to find a precise value for

P(A0), in practice we can make an acceptable estimate without a posit. For the

maximum value that P(A0) can have is obtained by replacing P(A150) by 1, and the

minimum by replacing it by 0. Thus P(A0) is certainly not greater than

0.667 + (0.97)150 9 0.333 = 0.670, and it is not less than 0.667 - (0.97)150

9 0.667 = 0.660. After 150 generations of growth, any batch will be within a

percent or so of being two thirds mutated, whether the original mother bacterium

was a mutant or not. This information would presumably be all that an

experimenter, or a supplier of mutant bacteria, would need.

6 Using Posits

In the previous sections we saw how, in a favourable situation, we can get along

without the use of blind posits. Now we will address a problem where, on the

contrary, it is essential to make a blind posit and to replace it subsequently by an

appraised one. As before, we will present our case by giving a concrete example.

Consider the male inhabitants of Northern Ireland, who may or may not be

Anglicans. Let a be the probability that a man is an Anglican, given that his father is

one, and b the probability that he is an Anglican, given that his father is not an

Anglican. We assume again that a and b are the same from generation to generation.

Although this assumption is not as reasonable as it was in the case of the bacteria,

we will make it for reasons of simplicity. A more realistic situation, in which these

conditional probabilities change from generation to generation, could be accom-

modated, but we will not do that in this example.

Let P(A0) be the probability that a man, selected at random in Northern Ireland

today, is an Anglican. Let P(A1) be the probability that his father, and P(A2) that his

grandfather were Anglicans. Finally, going back to the time of the foundation of

Eire and the beginning of what became known as the Irish Troubles, let P(A3) be the

probability that the great-grandfather of our man was baptized in the Anglican

tradition. This situation can be represented as a short finite series, namely as an

equation like (12), which we here rewrite for n = 2:
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PðA0Þ ¼bþ ða� bÞ bþ ða� bÞ bþ ða� bÞPðA3Þ½ �½ �

¼b 1þ ða� bÞ þ ða� bÞ2
h i

þ ða� bÞ3PðA3Þ

¼ b
1� aþ b

þ ða� bÞ3 PðA3Þ �
b

1� aþ b

� �
:

ð14Þ

Suppose that a = 0.8 and b = 0.1. In this case we certainly need to make a guess

for P(A3), the probability that the great-grandfather was an Anglican, in order to find

out the value of P(A0). Moreover, it matters very much which posit is used for

P(A3), because P(A3) = 0 results in P(A0) = 0.219, while P(A3) = 1 yields

P(A0) = 0.562. To obtain an accurate value for P(A0), we evidently need an

accurate posit for P(A3). How are we to obtain it?

One way of doing that is the following. Imagine that we already know, for

example on the basis of an Irish ecclesiastical census, the percentage of males who

at the present time are Anglicans, i.e. we already have an accurate value of P(A0) at

hand. Then of course we do not need P(A3) to compute P(A0), but it might happen

that we wish to know the value of P(A3) for the calculation of other quantities of

interest. If so, we can use our knowledge of P(A0) to compute P(A3), and to do that

we invert Eq. 14:

PðA3Þ ¼
b

1� aþ b
þ PðA0Þ �

b
1� aþ b

� �
=ða� bÞ3: ð15Þ

Here P(A3) plays the role of an appraised posit that is moreover perfectly successful:

it is the value of great-grandfather’s probability that would have yielded precisely the

correct value for P(A0). For example, if one in two males are currently Anglicans in

Northern Ireland, i.e. P(A0) = 0.5, we find from Eq. 15 that P(A3) = 0.82; thus 82% of

the male population in great-grandfather’s day were Anglicans.

This appraised posit, P(A3) = 0.82, cannot of course be employed to determine

P(A0) without circularity; but we could use it to evaluate certain other things we

might wish to know, for example the probable income of the Anglican church in

Northern Ireland shortly after partition, or the degree of emigration to England in

the following generation, and so on.

7 Dispensing with Uniformity

Up to this point, all our arguments have been made under the uniformity assumption

that a and b remain constant throughout the entire chain of reasoning. As we have

seen, this assumption comes naturally in the case of bacteria cultivated in the

laboratory, but it is somewhat artificial when dealing with Anglican Irishmen. More

often than not, the conditional probabilities a and b will change from generation to

generation.

Let us therefore now drop the uniformity assumption, and suppose that a and b
vary with n. We can express this by adding an index:

an ¼ PðAnjAnþ1Þ and bn ¼ PðAnj:Anþ1Þ; ð16Þ
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where an and bn may now depend nontrivially on n. In the limit as n tends to infinity,

the second line of Eq. 12 implies

PðA0Þ ¼ b 1þ ða� bÞ þ ða� bÞ2 þ ða� bÞ3 þ . . .
h i

: ð17Þ

In (17) a and b are constant, and the generalization to non-uniform conditional

probabilities is

PðA0Þ ¼ b0 þ
X1
n¼1

c0c1. . .cn�1bn; ð18Þ

where we have put cn = an - bn for convenience. While it is clear that Eq. 17 is a

special case of Eq. 18, the correctness of the latter equation still needs to be

established. In fact, the proof of (18) requires some computational efforts, and these

are given in the Appendix, notably in Eqs. 26–28.

Equation 18 is only correct under the condition that the series converges. This

condition puts some relatively mild restrictions on the allowable expressions that we

use for bn and cn. However, many examples can be given in which the entire series

is not only convergent, but also explicitly summable. An example is bn ¼ bzn and

cn = a(c + n)/(1 + n), where a, b, c and z are constants, all lying in the interval

(0,1). For then we find

PðA0Þ ¼ bð1� azÞ�c;

with further restrictions to guarantee that P(A0) \ 1. With these formulas for bn and

cn, it is the case that both an ¼ bzn þ aðcþ nÞ=ð1þ nÞ and bn depend on n. As n
tends to infinity, an tends to a and bn to 0, on condition that z \ 1. More

complicated, but still explicitly summable forms for bn and cn can be given that

generate a hypergeometric series. However, we will not give the details, since they

are irrelevant for the main point that we are making, namely that our argument in no

way requires an and bn to be uniform, i.e. to be independent of n.

8 Bayesian Updating and Appraised Posits

It has been known since at least the 19th century, and perhaps even the 17th century,

that the word ‘probable’ is ambiguous: it can be either objective (‘ontological’) or

epistemological (‘subjective’). It is moreover common knowledge that both are

interpretations of Kolmogorov’s axiomatic scheme. However, when it comes to the

question of the relation between the two interpretations, there is much dissent. Are

they basically the same, in the sense that the one can be reduced to the other? Or are

they completely disjunct, and is it merely a coincidence that we use the word

‘probability’ for both? Each view has had its advocates. Whereas Carnap for

example embraced a ‘disparity conception’ of probability, others claimed an

‘identity view’, espousing a reduction in one of the two possible directions.2

2 Frank Ramsey is often ranked with Carnap in this matter. Galavotti however argues that, according to

Ramsey, probability in physics can be accounted for in terms of belief of a special sort. Therefore it would

be a mistake to call Ramsey a dualist (Galavotti 2005, p. 204).
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Today many people realise that neither a disparity nor an identity view is

particularly fruitful, since the former makes it difficult to understand why both

interpretations obey the same ‘syntax’ (Kolmogorov’s axioms), while the latter

neglects their far-reaching differences in the field of semantics. In recent years

several attempts have been made to pave a third way, one that incorporates the

strong and eliminates the weak aspects of both interpretations. The most

promising of these attempts provide bridges between the objective notion of

chance and the subjective concept of credence or degree of belief. Thus David

Lewis’s Principal Principle states that, if the chance that an event e occurs were

known to be r, and no other relevant evidence were available, then your

credence that e occurs had better be r as well (Lewis 1980). And Howson and

Urbach, to mention another example, have deftly clothed von Mises’ objective

theory of chance in subjectivist, Bayesian raiment (Howson and Urbach 1989,

pp. 344–347).

In this section we propose to contribute to the general project of connecting

chance and credence by showing that Reichenbach’s objectivistic approach is

intimately linked to subjectivistic Jeffrey conditionalization. More specifically,

we will prove that, notwithstanding substantial epistemological and methodolog-

ical differences, the two approaches can yield the same result: what we shall call

ideal posits à la Reichenbach are equal to what we shall call invariant Jeffrey

updates.

For simplicity we show this equivalence here for a single step, rather than a

sequence of them. The general proof, for any number of steps, and also without the

assumption of uniformity, is to be found in the Appendix.

If it is not sure whether A1 has occurred or not, we can assign a certain probability

to that occurrence, which we designate Pold(A1). Supposing the conditional

probabilities PðA0jA1Þ ¼ a and PðA0j:A1Þ ¼ b to be known, the Bayesian updating

of Pold(A1) to Pnew(A1) is made by identifying the latter with PðA1jA0Þ; i.e.

PnewðA1Þ � PðA1jA0Þ; where

PðA1jA0Þ ¼
PðA0jA1ÞPoldðA1Þ

PðA0jA1ÞPoldðA1Þ þ PðA0j:A1ÞPoldð:A1Þ

¼ aPoldðA1Þ
bþ ða� bÞPoldðA1Þ

:

ð19Þ

The above classic or Bayesian updating is based on the assumption that there is

no doubt that A0 has indeed occurred. A0 is, as it were, incoming indubitable

evidence that is used to improve the estimate of A1’s probability of occurrence.

Jeffrey’s generalization of this updating starts from the idea that incoming

evidence, A0, will always carry its own modicum of uncertainty. Instead of

PnewðA1Þ � PðA1jA0Þ; we write, following Jeffrey’s lead,

PnewðA1Þ ¼ PoldðA1jA0ÞPnewðA0Þ þ PoldðA1j:A0ÞPnewð:A0Þ; ð20Þ

where PoldðA1jA0Þ is modelled on the Bayesian update (19), namely

104 D. Atkinson, J. Peijnenburg

123



PoldðA1jA0Þ ¼
PðA0jA1ÞPoldðA1Þ

PðA0jA1ÞPoldðA1Þ þ PðA0j:A1ÞPoldð:A1Þ

¼ aPoldðA1Þ
bþ ða� bÞPoldðA1Þ

:

ð21Þ

Similarly, PoldðA1j:A0Þ is defined by the Bayesian update

PoldðA1j:A0Þ ¼
Pð:A0jA1ÞPoldðA1Þ

Pð:A0jA1ÞPoldðA1Þ þ Pð:A0j:A1ÞPoldð:A1Þ

¼ ð1� aÞPoldðA1Þ
1� b� ða� bÞPoldðA1Þ

:

ð22Þ

The suffix ‘old’ on PoldðA1jA0Þ and PoldðA1j:A0Þ is intended to stress the fact that

they are functions of Pold(A1), the old or pre-update value of the probability of A1’s

occurrence. It is supposed that the known conditional probabilities a = PðA0jA1Þ
and b ¼ PðA0j:A1Þ are unequal, a 6¼ b; for otherwise the events A0 and A1 would be

probabilistically independent of one another, and it would be senseless to try to use

knowledge about the one to update knowledge about the other.

With the identifications (21) and (22), the Jeffrey update (20) becomes

PnewðA1Þ ¼
aPoldðA1ÞPnewðA0Þ

bþ ða� bÞPoldðA1Þ
þ ð1� aÞPoldðA1Þ½1� PnewðA0Þ�

1� b� ða� bÞPoldðA1Þ
: ð23Þ

We say that the Jeffrey updating is invariant with respect to A0 if the new value

of the probability of A1’s occurrence is equal to the old value, i.e.

PnewðA1Þ ¼ PoldðA1Þ: ð24Þ
Evidently this is the best possible value of Pold(A1), in the sense that updating it

by means of Pnew(A0) has no effect at all. When this condition of invariance is

satisfied, one can cancel Pold(A1) out from both sides of Eq. 23, on condition of

course that PoldðA1Þ 6¼ 0: After some algebra one finds

ða� bÞ 1� PoldðA1Þ½ � PnewðA0Þ � b� ða� bÞPoldðA1Þ½ � ¼ 0:

Under our assumption that a 6¼ b; and on condition that PoldðA1Þ 6¼ 1; the first

two factors above do not vanish, and so the third factor must be zero, i.e.

PnewðA0Þ ¼ bþ ða� bÞPoldðA1Þ: ð25Þ
For a single step, Eq. 25 is precisely Reichenbach’s formula for the perfectly

successful appraised posit, i.e. the appraised posit Pold(A1) that leads to the exact

probability Pnew(A0) (cf. Eq. 8). Such an appraised posit that leads to the exact

probability we will call an ideal posit. The example of the Irish great-grandfather’s

probability of being an Anglican, which was tailored to the known probability

associated with contemporary Irish males, was an ideal posit in the case of three

steps rather than one.

As to the inverse proposition, i.e. that Eq. 25 implies Eq. 24, this is also readily

proved. If Eq. 25 holds, the denominators in Eq. 23 are respectively Pnew(A0) and

1 - Pnew(A0), so the latter equation degenerates into
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PnewðA1Þ ¼ aPoldðA1Þ þ ð1� aÞPoldðA1Þ ¼ PoldðA1Þ:
Thus if the Reichenbach posit is ideal, then the corresponding Jeffrey update is

invariant, and the converse.

Note that the equivalence between ideal posits and invariant updates also applies

if a = b. In fact, the proof of the equivalence is then completely trivial. For if

a = b, then A0 and A1 are independent, as we remarked. And once we have

independence, the Jeffrey update is trivially invariant and the Reichenbach posit is

trivially ideal: Pnew(A0) is always equal to b. For this reason, we are always

interested in the case where a 6¼ b; so that A0 and A1 are not independent of one

another.

Earlier we remarked that the equivalence between ideal posits and invariant

updates, together with such rules as the Principal Principle, might contribute to a

rapprochement between talk about credence and talk about chance. The equivalence

to which we lay claim is an implication of Reichenbach’s and Jeffrey’s assumptions

(together with an implicit use of the Principal Principle), inasmuch as the former

apply to chance and the latter to credence, receiving its justification from the proof

that has been sketched above and that in its generality is given in the Appendix

below.
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Appendix

It will be shown that if Reichenbach’s ideal posit is imposed, then the corresponding

Jeffrey update for the probability of the occurrence of the event An+1 is invariant;

and, conversely, if the Jeffrey update is invariant, then P(An+1) is given by

Reichenbach’s ideal posit.

Jeffrey’s update of the probability of An+1, from an old value, Pold(An+1), to a new

value, Pnew(An+1), can be written

PnewðAnþ1Þ ¼
PðA0jAnþ1ÞPnewðA0Þ

PoldðA0Þ
þ Pð:A0jAnþ1ÞPnewð:A0Þ

Poldð:A0Þ

� �
PoldðAnþ1Þ: ð26Þ

Here Pold(A0) is not in general equal to Pnew(A0), rather it is the following

function of the conditional probabilities, and of Pold(An+1):

PoldðA0Þ ¼
Xn

m¼0

QmPðAmj:Amþ1Þ þ Qnþ1PoldðAnþ1Þ; ð27Þ
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where Q0 = 1 and

Qn ¼
Yn�1

m¼0

PðAmjjAmþ1Þ;

for nC 1. Here the Jeffrey relevance of Am+1 to Am is defined by

PðAmjjAmþ1Þ ¼ PðAmjAmþ1Þ � PðAmj:Amþ1Þ: ð28Þ
If Pold(An+1) were the correct value for the probability of the occurrence of the

event An+1, then Pold(A0), as defined by Eqs.(27)–(28), would be the correct value

for the probability of the occurrence of the event A0 (see Atkinson and Peijnenburg

(2006) Appendix).

The ideal Reichenbach posit is defined by

IRP : PnewðA0Þ ¼ PoldðA0Þ; ð29Þ

where the right-hand side is to be understood through its definition (27)–(28). The

invariant Jeffrey update is specified by

IJU : PnewðAnþ1Þ ¼ PoldðAnþ1Þ: ð30Þ

We shall show that IRP and IJU are equivalent.

Proof of the implication IRP �! IJU :If Pnew(A0) = Pold(A0), then these proba-

bilities may be cancelled out from the numerators and denominators in Eq. 26,

yielding

PnewðAnþ1Þ ¼ PðA0jAnþ1Þ þ Pnewð:A0jAnþ1Þf gPoldðAnþ1Þ ¼ PoldðAnþ1Þ;

which is IJU: h

Proof of the implication IJU �! IRP :The Jeffrey update (26) can be rewritten

PnewðAnþ1Þ ¼ 1þ ½PnewðA0Þ � PoldðA0Þ�½PðA0jAnþ1Þ � PoldðA0Þ�
PoldðA0ÞPoldð:A0Þ

� �
PoldðAnþ1Þ;

so if Pnew(An+1) = Pold(An+1), then one or other of the factors in the numerator of

the above fraction must vanish. Either Pnew(A0) = Pold(A0), which is IRP; or

PðA0jAnþ1Þ = Pold(A0). In the latter case, since

PoldðA0Þ ¼ PðA0jAnþ1ÞPoldðAnþ1Þ þ PðA0j:Anþ1ÞPoldð:Anþ1Þ;

which can be rewritten

PoldðA0Þ ¼ PðA0jAnþ1Þ �
h
PðA0jAnþ1Þ � PðA0j:Anþ1Þ

i
Poldð:Anþ1Þ;

it follows that Pold(A0) = P(A0|An+1) implies PðA0jAnþ1Þ ¼ PðA0j:Anþ1Þ; since

Poldð:Anþ1Þ 6¼ 0: This means that A0 and An+1 are independent. In this case

Pnew(A0) = PðA0jAnþ1Þ independently of the value of Pold(An+1), so that

Pnew(A0) = Pold(A0), which is again IRP: h
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Summarizing, the Ideal Reichenbach Posit for chances is equivalent to the

Invariant Jeffrey Update for credences, subject only to the constraints that neither

Pold(An+1) nor Pold(A0) have either of the extreme values 0 or 1.
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