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Abstract Environmental sciences have an important role

in informing sustainable management of built environ-

ments by providing insights about the drivers and poten-

tially negative impacts of global environmental change.

Here, we discuss panarchy theory, a multi-scale hierar-

chical concept that accounts for the dynamism of complex

socio-ecological systems, especially for those systems with

strong cross-scale feedbacks. The idea of panarchy under-

lies much of system resilience, focusing on how systems

respond to known and unknown threats. Panarchy theory

can provide a framework for qualitative and quantitative

research and application in the environmental sciences,

which can in turn inform the ongoing efforts in socio-

technical resilience thinking and adaptive and transforma-

tive approaches to management.
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Society currently faces a range of challenges that derive

from swiftly changing environmental and social baselines,

including an increased probability of rapid and unforeseen

loss of natural capital, loss of biodiversity and risks to

public health. The extent of human influence over global

systems has resulted in challenges for which the scale and

complexity are generally unprecedented. The complex

interdependencies of environmental problems, for example

those deriving from climate change, transcend local (e.g.,

methane emission from a lake) to regional (hurricanes) to

global (sea level rise) scales and result in a ‘‘wicked

problem’’ that seriously challenges our ability to sustain

human welfare and healthy ecosystems (Rittel and Webber

1973). Inherent to contemporary wicked problems are at

least four fundamental characteristics: (1) socio-ecological

system interdependencies (e.g., relationship between fish-

eries, ecosystem service provisioning, resource overex-

ploitation and aquatic resource degradation), (2) temporal

and spatial cross-scale interdependence of impacts (e.g.,

relationship between global warming and methane emis-

sion from a lake), (3) dynamic and nonlinear changes

including regime shifts (e.g., shift from a clear-water lake

to a turbid lake, or coral-dominated to algal-dominated

reefs) and (4) high uncertainty of environmental change

outcomes (e.g., complex and multi-dimensional interac-

tions between biophysical factors limiting prediction of

change). Environmental science has an important role to

play in contributing to human understanding the dynamics,

drivers and solutions of wicked problems. Coping with and

managing the challenges at hand requires integrative

models that account for this complexity and complement

traditional approaches for dealing with change and its

associated risks.

Panarchy, a theory pioneered by Gunderson and Holling

(2002) to account for the complex dynamics of systems of
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people and nature, can provide quantitative and qualitative

underpinning for risk management and vulnerability and

risk assessments. It aims to capture the structures envi-

sioned in hierarchy theory (Allen and Starr 1982), as well

as acknowledge top-down and bottom-up processes that

account for many observed dynamics in nature (Fig. 1).

Panarchy theory encompasses complex system dynamics

such as adaptation, conservatism, collapse and reorgani-

zation (Fig. 1) that are intrinsic to environmental change

and critically linked to important and interconnected phe-

nomena such as novelty, innovation and regime shifts in

complex systems (Allen et al. 2014). The theory can pro-

vide a heuristic to conceptualize different aspects of system

organization (Allen et al. 2014) or can be formulated into

hypotheses for individual premises and empirically tested

(Angeler et al. 2015).

A panarchy can be regarded as a nested set of adaptive

cycles (Gunderson and Holling 2002), which may be a

particularly apt heuristic for framing environmental phe-

nomena that are characterized by complexity and that are

inherent in wicked problems. The theory explicitly

accounts for discrete spatial and temporal domains at

which ecological patterns manifest and processes unfold

(Fig. 1). Panarchy theory recognizes both processes that

percolate up from lower to higher scales (Fig. 1), such as

methane emission in a single lake that contributes to the

global carbon balance in the atmosphere, and top-down

control, for example, when further atmospheric carbon

enrichment boosts local emission of methane from lakes. In

the above climate context, adaptive cycling is manifested

in carbon emissions that vary seasonally in a lake, as well

as large-scale weather patterns that vary inter-annually due

to warming associated with atmospheric carbon increase

(e.g., North Atlantic Oscillation or El Niño Southern

Oscillation). These dynamic patterns are linked across

scales (from local, to regional, to global), making patterns

at one scale dependent on those at other scales.

There is increasing recognition that from wicked prob-

lems emerges a myriad of new and uncharacterized risks.

Resilience thinking, which focuses on the ability of sys-

tems to prepare for, absorb and recover from an adverse

event and crucially adapt to new conditions (Linkov et al.

2014; Larkin et al. 2015), offers a new way of living with

these risks. In panarchy theory, resilience is a primary

variable that controls the adaptive cycling of nested sys-

tems, where resilience is measured by the magnitude of

disturbance that can be absorbed before the system changes

its structure, functions and feedbacks (Holling 1973). The

interconnectedness of hierarchical scales in a panarchy

contributes to system resilience because disturbances at

one scale can be absorbed by other scales in the system

(Nash et al. 2014). That is, panarchy theory accounts for

feedbacks that can stabilize or destabilize system configu-

rations due to cross-scale interactions. Imagine a severe

winter in which lakes in a region are solidly frozen,

inhibiting the emission of carbon to the atmosphere. The

concentration of carbon in the atmosphere will be mar-

ginally affected. Carbon-enriched conditions in the atmo-

sphere will be maintained and patterns of global warming

will not be disrupted, affecting ecological structures and

functions across scales (local extinctions of cold-adapted

species; regionally and globally changing species

Fig. 1 Diagram of a panarchy

showing complex system

dynamics such as adaptation,

conservatism, collapse and

reorganization (adaptive

cycles), and their relationship

between spatiotemporal scales.

Three scales of pattern–process

relationships (for convenience

only) and their cross-scale

interactions from lower to

higher levels and vice versa in

the panarchy are shown
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distribution patterns) and ultimately environmental

sustainability.

There have been diverse and successful applications of

panarchy in ecological (Angeler et al. 2016) and social

analyses (Berkes and Ross 2016; DeWitte et al. 2016;

Green et al. 2015). Because the interplay of systems has

implications for how we manage for resilience, it is

important that these analyses be extended to physical and

environmental mathematical models in the engineering

sciences. Whereas natural and social systems have the

capacity to self-organize, engineered systems require

human intervention to adapt to changing conditions

(Schultz et al. 2012) and therefore require a flow of

information about how the dynamics of the larger system is

changing.

Panarchy theory can provide a framework for qualitative

and quantitative research and application in the environ-

mental sciences, which can in turn inform the ongoing

efforts in socio-technical resilience thinking (Linkov et al.

2013) and adaptive and transformative approaches to

management (Allen and Garmestani 2015; Chaffin et al.

2016). However, research is needed to facilitate the

application of panarchy to environmental science; data

limitations and insufficient information regarding mecha-

nisms, critical processes and feedbacks for many systems

currently limit its broader implementation. To ensure effi-

cient use of limited resources necessary for implementation

of panarchy theory and to address crucial data gaps, we

suggest:

1. Using quantitative decision analytical tools to focus

modeling and monitoring on important environmental

management needs and scientific gaps;

2. Increasing monitoring efforts for identifying key

variables in systems under study to assess patterns,

processes and feedbacks within and across scales;

3. Targeting mechanisms associated with change using

replicated field experiments. Such experiments can be

designed to manipulate intrinsic and/or extrinsic con-

trolling factors (akin to pressures deriving from

multiple stressors in current environmental change

scenarios), for assessing how manifestations of panar-

chy theory (adaptation, conservatism, collapse, reor-

ganization) vary.

In these and potentially other areas of information need,

tools and methods from systems science, systems analysis,

systems engineering, regime theory, dynamic similarity,

classical dynamics, chaos theory and discrete event simu-

lation could be used for studying environmental change

uncertainties applying panarchy theory.
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