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Abstract Climate-related scientific analyses of meteoro-
logical–marine systems are often based on numerical long-
term simulations at high spatial and temporal detail. Such
comprehensive data sets require much resources and
specific evaluation tools, which sometimes hampers their
use within interdisciplinary projects. In the present study,
we propose the use of a Bayesian network to represent
simulated transports in the North Sea depending on variable
external forcing in terms of conditional probabilities.
Eliciting probability tables from multi-decadal numerical
simulations ensures that all realistic weather and resulting
sea state conditions are covered in agreement with the
frequency of their occurrence. The probabilistic representa-
tion conveniently allows for conditioning numerical simu-
lations on either external forcing (weather conditions) or
observed transports. In the latter case, the Bayesian
inversion formula becomes involved to transfer information
in a direction opposite to causal dependencies encoded in
the underlying mechanistic model. We show that simulated
travel time distributions even allow for taking into account
a substance’s specific half-life, although this was not an
issue in the original passive tracer simulations.
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1 Introduction

Prevailing weather conditions are decisive for the degree to
which different coastal stretches are exposed to pollution by oil
and other contaminants released on the open sea. For oil spill
response planning, for instance, it is important to know
characteristic drift paths and times of oil slicks. A thorough
contingency analysis, however, needs more than a description
of mean conditions. The information basis should include
details of variability, the frequency of extreme events, and the
coincidence of adverse conditions with regard to wind
direction, season, wave heights, and drift times, for instance.
A state-of-the-art approach for the provision of such consistent
information is the long-term (multi-decadal) reconstruction of
past conditions based on numerical model simulations.

Weisse et al. [29] describe the database coastDat (www.
coastdat.de) which compiles model-based reconstructions
of atmospheric and oceanic parameters. Realistic numerical
simulations of marine currents were produced using wind
forcing obtained by dynamic downscaling of reanalyses of
the global atmosphere. The detailed information encoded in
a vast amount of numerical model outputs far exceeds an
aggregate statistical description in terms of means and
standard deviations, for instance. Chronic oil pollution
along the German North Sea coast is just one application
example among many other analyses of recent and possible
future changes the data have already been used for [29]. As
any oil discharge in the North Sea is prohibited [13], the
control of marine oil pollution gains more and more in
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importance (i.e., [4, 5, 12, 13, 31]). Despite regular aerial
surveillances, however, in many cases, illegal washing of
oil tanks or discharge of bilge oil goes undetected [26].
Chrastansky et al. [7] used the information from coastDat to
support the interpretation of the numbers of beached oil-
contaminated sea birds collected along the coasts of Germany
as a proxy for a changing general level of pollution and most
probable locations of illegal oil spills.

Chrastansky and Callies [6] used the reconstructed
hydrodynamic fields from coastDat for an estimate of
weather-driven variability of chronic oil pollution along the
German North Sea coast. Within a period of several
decades, Lagrangian particle drift simulations (particle
tracking) were started every 28 h, each simulation com-
prising the movements of hundreds of particles released
within different source regions. In the model, each particle
represents a hypothetical oil spill on the water surface and
moves in agreement with North Sea currents and atmo-
spheric wind conditions provided from the coastDat
database as a function of space and time. The resulting
manifold of drift trajectories covers the whole spectrum of
possible developments and represents both the most
frequent conditions and the occurrence of rare events.
Model-based long-term reconstructions of past conditions
are nowadays the state-of-the-art approach to consistently
generate such information on variability for extended areas
(cf. Weisse et al. [29]). The large amount of detailed
information, however, comes at a price. Very large data sets
necessitate specialized and time-consuming scientific
programming for data use and interpretation. This is compu-
tationally demanding and becomes particularly tedious when
the database must be accessed repeatedly to perform different
types of analyses. For many practical applications, however, a
full analysis of the raw data is neither feasible nor necessary.
Instead, the essence of the detailed long-term data in terms of
probability distributions of events and related parameters,
including coincidences and causal interactions, would be
needed in a more compact format. Users might also wish to
link information from the database to information about a
specific pollutant’s behavior. External information may result
from expert knowledge elicitation and be connected with
some range of uncertainty.

In this study, we propose a probabilistic data description
based on Bayesian network (BN) technology to conve-
niently summarizing the essence of the ensemble drift
simulations investigated by Chrastansky et al. [6, 7]. In
BNs, causal relations are modeled based on probabilistic
relationships among the variables of interest [14]. In our
example, probability tables are calculated from the vast
amount of numerical simulations. The graphical represen-
tation of the BN encodes marginal and conditional
independence relations that reflect the causal structure
underlying these deterministic simulations. Most published

applications of BNs in environmental studies rather deal
with a combination of expert knowledge, partly formalized
in model equations and empirical data. They also often
involve presentations of uncertainties that arise from the
fact that some relevant pieces of information are missing.
Examples are the prediction of fish and wildlife response to
land management strategies [19], the investigation of
suspended sediment concentrations in alpine catchments
as a function of air temperature [21], and the intensive
analysis of eutrophication processes using diverse judgment
methods [1]. Unlike in these studies, in our example, the
BN reflects a well-defined causal structure based on
physical principles. Instead of filling in missing informa-
tion, the idea is to properly representing general patterns of
interaction within the simulated data. Such aggregated
representation may prove itself valuable as an interface
between extensive physically based simulations on the one
hand and more uncertain consequences on the other. Two
previous papers (Chrastansky et al. [6, 7]) related to our
example problem illustrate the need for such an interface.
We expect that the methodology we present would be
adaptable to a range of problems in climate research, for
instance.

BNs offer several advantages, although the model
construction is challenging and nontrivial [16]. A BN with
its intuitive graphical user interface fits the needs of
practical decision makers, but may also be useful for
training and education purposes. Among others, questions
of the following type would be treatable semi-quantitatively
without access to the full original database: In which
regions are hypothetical pollutions most hazardous for
specific coastal stretches? How does a threat depend on
the strength of evaporation or other weathering processes
implying a shorter half-life of oil or other polluting
substances? Are there major seasonal differences? These
and other similar questions can be answered by conditioning
the BN with regard to certain variables. The BN with a
graphical structure encoded in a set of (conditional) probability
tables can easily be stored on any PC. It makes essential
information available without a link to the detailed original
data sets the BN was derived from. Different software
packages, both commercial and free of charge (a list of
software may be found, i.e., in Korb and Nicholson [17]) allow
for the interactive and flexible exploration of a BN’s
information content and implications.

The paper is structured in the following way: Initially,
Section 2 gives an illustration of the hydrodynamic drift
simulations (Section 2.1) on which the variables’ probability
elicitation is based. Section 2.2 describes the atmospheric
parameters employed for representing atmospheric forcing in
the BN. A general description of BN technology is given in
Section 2.3. Construction of our specific BN is explained in
Section 3, addressing model structure (Section 3.1) and
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elicitation of model parameters (Section 3.2) and a concluding
summary of the information content of the BN (Section 3.3).
Section 4 presents two detailed examples of how the BN can
be used for answering specific questions. After a discussion
of the BN and its practical utilization (Section 5), conclusions
are drawn in Section 6.

2 Material and Methods

2.1 Hydrodynamic Drift Simulations

The objective of our previous study [6] was to establish a
realistic drift climatology of assumed oil spills in the
southern North Sea, focusing on chronic oil pollution in the
German Bight. As shipping is considered to be the main
source of chronic oil pollution [2, 3, 8, 9, 25], regions
where oil spills are supposed to occur were defined along
the main shipping lanes. Within each of these source
regions, 100 randomly distributed tracer particles represent-
ing single hypothetical oil spills were released every 28 h
within the years 1958–2003. Subsequently, they were
tracked for 60 days by means of a tracer transport model
based on simulated winds and two-dimensional currents.
Resulting particle trajectories with hourly resolution cover
the whole spectrum of possible drift paths including
implicit information about their probability of occurrence.
For the present study, we confined ourselves to the
consideration of nine source regions (labeled S1–S9 in

Fig. 1) located within the German Bight. The basic
information extracted from each individual numerical
simulation consists of (a) the numbers of particles from
each source region that arrive at five different target regions
along the German North Sea coast (labeled T1–T5 in
Fig. 1) and (b) the drift times they need.

Drift simulations were based on pre-calculated hourly
hydrodynamic fields stored in the database coastDat (www.
coastdat.de). CoastDat contains high-resolution state-of-the-
art reanalyses of past atmospheric and sea state conditions,
which have already been employed in various case studies
[29]. Two-dimensional hindcasts of marine currents on an
unstructured triangular grid, with spatial resolution varying
between about 100 m near the coast and a couple of
kilometers in offshore regions [24], were produced by
running the finite element tide surge model TELEMAC-2D
[11]. At its upper boundary, the marine model was forced
by hourly NCEP/NCAR reanalyzed wind fields [15],
regionalized via dynamical downscaling with the nested
regional climate model SN-REMO [20]. Spatial resolution
of the atmospheric forcing being used is 50 km.

Wind-induced drift components (1.8% of the 10 m wind
velocity) were superimposed to the movements induced by
currents. According to Dick and Soetje [10], this is a proper
parameterization for oil slick movements on the water
surface. A random vertical particle motion was included to
allow for reduced wind forcing when the tracer particles
submerge. Additionally, a random velocity component was
used to simulate effects of horizontal diffusion.

Fig. 1 Particle source and target
regions considered in the study.
Source regions along the shipping
routes are labeled with S1–S9,
target regions with T1–T5.
Pollutions that originate from
more remote sectors of the
shipping lanes (light gray
shaded) are not taken into
account in our study
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2.2 Representation of Atmospheric Forcing

As simulations are started every 28 h within the years 1958–
2003, Lagrangian tracer particles experience an exhaustive
spectrum of realistic time-dependent weather conditions. In
the BN, however, this complexity of atmospheric forcing
cannot be represented. In particular, one must somehow
aggregate non-constant weather conditions during each
particle cloud’s journey. It should be stressed that such
simplifications were not used in the numerical drift
simulations themselves. For the simplified representation
of weather conditions in the BN, we used two different
approaches.

In our first approach, we dealt with the variables wind
direction and wind speed. For each drift simulation, we
referred to corresponding time series of simulated wind
conditions at the island of Heligoland located in the center
of the German Bight (54°11′ N, 7°53′ E). The strength of
relationship between certain wind conditions and simulated
coastal pollution was assumed proportional to the time span
the wind conditions prevailed. To concentrate on dominant
signals, we confined the analysis to the three longest lasting
weather conditions within the first 3 weeks of each
individual simulation.

Our second approach borrowed from Chrastansky and
Callies [6] is a bit more involved. To identify weather
patterns that are most influential for the spatial distribution
of coastal pollution, we subjected atmospheric conditions
and the resulting outcomes of drift simulations to canonical
correlation analysis (CCA) [28]. Again, we confined the
analysis to atmospheric states during the first 3 weeks of
each particle cloud’s drift time, now represented, however,
by three consecutive weekly mean sea level pressure (SLP)
fields taken from the NCEP/NCAR reanalysis data set [15].
Then, each pair of correlated anomaly patterns obtained
from CCA (the two most correlated pairs are shown in
Fig. 2, each pair displayed in one line) consists of (a) one
pattern of particle advection toward the five target regions
and (b) one pattern split into three panels related to three
consecutive SLP fields.

According to the upper panels in Fig. 2, a simultaneous
increase (or decrease) of pollution in all coastal regions is
strongly correlated (r=0.73) with SLP fields characterized
by relatively high (or low) values in the west/southwest and
relatively low (or high) values in the east/northeast. Such
pressure distributions imply intensified (or weakened)
northwesterly wind components associated with increased
(or decreased) particle drifts toward the German North Sea

Fig. 2 Anomaly patterns of SLP and simulated pollution of the
German North Sea coast, respectively, as obtained from CCA. In each
row, the left panel depicts pollution anomalies that are connected with

the triplet of consecutive weekly mean SLP anomalies shown to its
right. Correlations are 0.73 and 0.52 for the upper and bottom rows,
respectively
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coast. Unlike the first anomaly pattern of pollution, the
second one (first panel in the bottom row of Fig. 2) has
opposite signs in the northern and southern regions,
respectively. The corresponding SLP anomaly (correlation
0.52) is associated with changing strengths of westerly
wind components.

Variables included in the BN will be wind direction and
wind speed at Heligoland and the CCA time coefficients
that represent the changing relevance of the SLP anomaly
patterns shown in Fig. 2. The CCA time coefficients of SLP
are able to explain 32% (first CCA pattern) and 42%
(second CCA pattern) of advection variability.

2.3 BN Technology

A BN is a probabilistic, directed acyclic graph consisting of
a set of random variables and a set of directed links
between them. Graphically, nodes represent the variables
while directed edges encode causal dependencies [16]. In
our study, we employ nodes that describe the degrees of
freedom each variable has in terms of a number of discrete
states which can be either be numbered, labeled, or
represent intervals. Theymust, however, always be exhaustive
and mutually exclusive [14]. Unless any current evidence
exists (e.g., observations), the probability of a variable being
in a given state will generally be smaller than 1. In case a
variable (node) is influenced by other variables, edges from
the influencing parent nodes point to the dependent child
node [16]. The child node’s state probabilities will then be
affected by information on the parent nodes’ states as
specified in a conditional probability table (CPT) associated
with the child node.

A most simple example BN made up by only two variables
might represent the relationship between the time of the year
(season SN) and prevailing wind speed (WS). The graphical
model SN→WS would correspond with the factorization
PðWS ; SNÞ ¼ PðWSjSNÞPðSNÞ of the joint probability
distribution P(WS, SN) [23]. The alternative graphical model
WS→SN corresponding with the factorization PðWS; SNÞ ¼

PðSN jWSÞPðWSÞ would be mathematically equivalent, but
specification of the conditional probability PðWSjSNÞ
appears to be a more natural option.

Given the CPT PðWS jSNÞ, the marginal probability of
wind conditions disregarding their seasonal variations can
be obtained as:

PðWSÞ ¼
X

j

PðWS jSN ¼ snjÞPðSN ¼ snjÞ

with snj denoting discrete states of the variable SN. Our
simple example BN would be made up by the two nodes WS
and SN and the CPT associated with WS. In the context of
our study, the CPT would represent likelihoods extracted
from the results of extensive numerical simulations.

Complete graphs of realistic BNs contain very large
numbers of edges, which makes full graphs neither
informative nor manageable. Model simplification can be
achieved by elimination of edges in the graph. Missing
edges, however, imply independence statements that need
to agree with either causal reasoning or experience [22].
The kind of implied independence statements depends on
the orientations of remaining edges. We will illustrate this
point by the inclusion of the atmospheric sea level pressure
(SLP) as a third variable into the above example.

Figure 3a shows a complete graph with edge directions
in agreement with causal reasoning. Three simplified
graphs that arise from Fig. 3a by omission of one edge at
a time are shown in Fig. 3b–d. Implications of the three
simplified graphs are profoundly different: Graph (b) states
that a priori season (SN) is uninformative about air pressure
(SLP), which is obviously not a valid assumption. Only
after evidence about the current state of variable WS was
entered would any evidence on season (SN), for instance,
improve existing knowledge about pressure (SLP; condi-
tional dependence, Kjaerulff and Madsen [16]). Graph (c)
states that dependence between the physical variables WS
and SLP can be modeled by changing seasons alone. Given
evidence on the current season, any further dependence
between SLP and WS is neglected. This does not

Fig. 3 Example of a three-node
BN: complete graph (a) and
simplified graphs with one edge
being discarded (b–d)
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correspond with the natural system in which sea level
pressure and wind fields are coupled. Graph (d) retains this
physical link between the variables SLP and WS. At the
same time, it allows for a seasonal variation of both of the
two variables. The seasonal effect on wind (WS), however,
is modeled as being channeled through pressure (SLP),
which means that wind variations being unrelated with
pressure show no seasonal dependence. We conclude that
graph (d) can be considered as a reasonable model.
Likewise, one could choose graph (b) after inversion of
the edge connecting SLP and WS. In either case, informa-
tion between season (SN) and a physical variable (WS or
SLP) at the end of a serial connection will be transmitted as
long as we do not have definite knowledge about the state
of the physical variable represented by the middle node.

Using the so-called chain rule (e.g., [22]), the
factorized trivariat probability distribution reads
P ðWS ; SLP; SNÞ ¼ P ðWS jSLP; SNÞP ðSLPjSNÞP ðSN Þ
a c c o r d i n g t o t h e c omp l e t e g r a p h ( a ) a n d
PðWS ; SLP; SNÞ ¼ PðWS jSLPÞPðSLPjSNÞPðSNÞ accord-
ing to the simplified graph (d). The effect of graph simplification
is that instead of a three-dimensional CPT PðWSjSLP; SNÞ,
now only the two-dimensional CPT PðWSjSLPÞ needs to be
elicited. In our study below, time coefficients of two
characteristic atmospheric pressure patterns (cf. Section 2.2)
will take the part of sea level pressure in Fig. 3.

The need for a BN structure that properly mirrors causal
relationships has been emphasized by Kjaerulff and Madsen
[16]. Another example (Fig. 4) extracted from our full study
shall illustrate the implications of incorrect independence
properties that may be encountered when a BN contains
arrows pointing from symptoms to causes. The objective of
our study was to represent the risk of coastal oil pollution
depending on the locations of hypothetical oil spills and the

distribution of prevailing winds. Given that pollution was
observed in some target region (T), information about past
wind conditions (i.e., wind directions, WD) obviously
allows for narrowing down the location where the oil spill
most probably occurred (source regions, S). Hence, at first
sight, the structure of graph (a) in Fig. 4 seems to be in line
with the practical aim to locate possible contaminators.

The deficiency of graph (a) is, however, that pollution
observed in a specific coastal area and knowledge about
past wind directions are assumed to be mutually
independent pieces of information. Offshore winds in
the past would lower our expectation of coastal pollution.
Conversely, prevailingness of offshore winds would be
disconfirmed by the observation of coastal pollution.
Posterior probabilities derived from BN in Fig. 4a will
therefore be incorrect. For graph (b) with directions of
arrows properly representing cause–effect relations, the
situation is different. In graph (b), knowledge about the
location of an oil spill is assumed non-informative about
wind conditions and vice versa. The converging connec-
tions in graph (b) allow, however, for a transmission of
information between S and WD whenever evidence on the
middle variable target (T) is available [16]; S and WD are
conditionally dependent. After pollution in some target
region was reported, knowledge about past wind directions
is informative about possible source regions.

More examples about the functionality and construction
of BNs can be found in Jensen [14], Kjaerulff and Madsen
[16], Pearl [22, 23], and Shipley [27].

3 Model Construction

BN model construction always proceeds in two consecutive
steps (e.g., Kjaerulff and Madsen [16]): identification of the
probabilistic network’s structure and elicitation of model
parameters. We used the software tool Hugin Researcher TM

[18] for model construction and evaluation. Similar tools
can be found in Korb and Nicholson [17], for example.

3.1 Specification of BN Structure

The first step, structure specification, includes the choice
of variables. The two variables that are central for our
problem are located on the left of the BN in Fig. 5: the
partition of total oil pollution among specified source
regions (variable ‘source’ labeled S) and the percentages
of simulated passive tracer particles that arrive in specified
target regions (variable ‘target’ labeled T). Note that the
overall amount of pollutant discharge from all source
regions is assumed to stay on an unspecified constant
level. Both of the nodes S and T are chance nodes that
represent random or uncertain variables.Fig. 4 Two BNs that imply different conditional dependences
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The drift model underlying our BN assumes that the
water pollutant behaves like a passive tracer. This is
obviously not realistic. The chance node “drift time”
(DT), however, implemented as a child of S and T, provides
a probability distribution of particle travel times. This
information allows the user to reweigh passive tracer
advection according to some specified half-life time, τ.
Assuming exponential decay processes, modified estimates
(T*) of the pollutant’s arrival rate in various target regions
can be calculated. Note that specification of τ was not an
issue in the underlying tracer simulations. Therefore, the
node τ establishes an interface between the pre-calculated
transport climatology and specific information in the
context of practical applications.

Motivated by the study of Chrastansky and Callies [6],
we introduced time coefficients of CCA patterns for SLP,
obtained from correlating SLP fields with simulated particle
advection rates (cf. Section 2.2) as the primary representa-
tives of atmospheric forcing. The nodes SLP1 and SLP2
correspond with the time coefficients of the two SLP
anomaly patterns shown in Fig. 2.

Additional nodes “wind speed” (WS) and “wind direction”
(WD) correspond with local conditions at Heligoland (see
Section 2.2). According to the BN in Fig. 5, however,

acquiring evidence on local winds does not modify estimates
of particle advection or corresponding travel times (condi-
tional independence of T and WS, for instance) given that
evidence for both SLP1 and SLP2 already exists. Another
consequence of the selected BN structure is that WS and WD
are conditionally independent given values of SLP1 and
SLP2. This assumption appears justified if the CCA time
coefficients are proper surrogates for large-scale wind fields
and local wind speed components do not depend much on
wind direction.

Entering evidence for nodes in the BN’s right-hand side
subdomain (SN, SLP1, SLP2, WS, WD) enables a user to
study both particle advection and corresponding drift times
as functions of prevailing wind conditions, for instance.
Alternatively, a user might be interested in seasonal
variations of coastal pollution. In keeping with causal
relationships, information on the choice of a specific season
(SN) is always transmitted through changing probability
distributions of CCA time coefficients for SLP.

We conclude this section with a short summary of the
BN’s structure (Fig. 5). At its root, there is node S in which
different source regions for oil spills may be selected.
Considering a maximum integration period of 60 days, any
oil spill will either hit some sector of the German North Sea

Fig. 5 A BN to represent the climatology and spatial distribution of weather-driven coastal pollution from assumed oil spills. Probability
distributions shown are results from the assumption of a pollutant’s half-life of τ=20 days

Using a Bayesian Network to Summarize Variability in Numerical Long-Term Simulations 7



shoreline (states in node T) or move elsewhere (state
“none” of T). For each pair of source and target regions, a
characteristic distribution of drift times (DT) is obtained
from the underlying ensemble of numerical simulations.
Distributions of both variables, T and DT, however, will
change when focusing on certain weather conditions
represented by nodes in the right-hand side subdomain
(see also discussion of Fig. 4 in Section 2.3). Sea level
pressure (SLP1 and SLP2) is modeled as a function of
season (SN). The influence of SN on wind conditions (WD
and WS) is assumed to be channeled through SLP patterns.
The nodes SLP1 and SLP2 remain unconnected as the
CCA time coefficients they represent are uncorrelated by
construction. Finally, T* is a duplicate of T, introduced to
allow for reweighing the distribution of T according to
drift time (DT) in case that a finite half-life (τ) was
specified. T always refers to passive tracers regardless of
the choice of τ.

3.2 Definition of States and Elicitation of Model Parameters

For each node in the BN, a set of discrete states must be
defined the corresponding variable may attain. For source
node S, these states are labeled S1–S9 according to the nine
source regions tracer particles may be released from (cf.
Fig. 1). States of target nodes T and T* refer to the five
target regions (T1–T5) shown in Fig. 1. Additional states
“none” are applicable when oil spills do not affect the
German coast.

Travel time DT is resolved with six intervals of non-
uniform lengths (0–5, 5–10, 10–15, 15–20, 20–30, and 30–
60 days). An additional state “infinite” covers the case that
no oil hits the German coast within the maximum
simulation time of 60 days. This state corresponds with
the state “none” in variable T. Possible values of half-life τ
are 5, 10, 20, 30, and 50 days.

States of the nodes SLP1 and SLP2 were defined in
terms of multiples of the standard deviation of the
corresponding time series (note that CCA time coefficients
are related to SLP anomalies and therefore have zero
means): State “o” comprises values within ±0.5, state “+”
(“−”) values between 0.5 and 1.5 (−0.5 and −1.5), and state
“++” (“−−”) values that exceed 1.5 (−1.5) standard
deviations. Wind direction, WD, is resolved by the eight
states SW, W, NW, N, NE, E, SE, and S. States 2–8 of wind
speed, WS, follow the Beaufort (bft) classification [30]. The
season node SN differentiates between four seasons “spring”
(Mar–May), “summer” (Jun–Aug), “fall” (Sep–Nov), and
“winter” (Dec–Feb).

With regard to possible source regions (chance node S),
we assumed a non-informative uniform prior distribution.
Alternatively, we might have chosen a prior distribution
obtained from German aerial surveillance data [5, 31].

For chance nodes T and DT, both marginal probabilities
and CPTs were elicited from pre-calculated drift simulations
and corresponding atmospheric forcing. For this purpose,
extensive data tables made up by values for the node itself
and each of its parent nodes were imported into the software
tools of Hugin ResearcherTM [18].

Marginal probabilities of the node SN reflect the number
of simulations that were initialized in different seasons of
the year. The distribution is very close to uniform.

For specification of the CPTs for WS and WD, the
procedure based on data tables was slightly extended.
Following the approaches described in Section 2.2, each
numerical drift simulation is associated with sharp values
for SLP1 and SLP2, but triples of values for WS and WD.
Weighting factors reflect relative frequencies of occurrence
of three different wind conditions during a given drift
simulation. To deal with this type of information, we
replicated samples in the data table with replacement of the
wind-related values. Different numbers of auxiliary samples
with identical wind values were introduced in accordance
with the relative importance of each of the three wind
conditions.

Parameter elicitation for the rescaled target node T*
needs no recourse to the database of numerical simulations.
Instead, a simple data table was generated based on an
exponential decay formula.

For the marginal node τ, the basic assumption is a non-
informative (i.e., uniform) prior distribution. Given infor-
mation on both T and T*, for instance, this prior would be
changed into a posterior estimate of τ (conditional
dependence of T and τ given T*). In the examples discussed
below, however, we will always assume a fixed value for τ
(cf. Fig. 5, for instance).

3.3 The BN’s Information Content and Validity

The BN summarizes dominant patterns of dependence
between variables in an already existing database of
extensive numerical drift simulations with high resolution
in both space and time (cf. Section 2.1). It is important to
note that probability distributions in the BN do not reflect
inaccuracies of the underlying numerical simulations.
Instead, the majority of chance nodes represents the
spectrum of weather conditions and corresponding impli-
cations for drift paths and times within a 46-year period.
Exceptions are the two nodes S (source regions) and τ (the
substance’s half-life) which represent external assumptions
to be specified in user-defined scenarios.

Validation of the hydrodynamic drift simulations already
discussed in two previous studies [6, 7] is not subject of
consideration in the present paper. Chrastansky et al. [7])
showed that variations in the annual mean numbers of oil-
contaminated bird corpses beached along the German North
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Sea shoreline correspond reasonably well with modeled
advection rates. We take that as an indicator that the model
provides a useful description of drift behavior in the
German Bight. Generally, validation of long-distance drift
simulations is difficult as relevant data are rare.

The structure of a BN mirroring the outcomes of
deterministic simulations does not need sophisticated
techniques of expert judgment. In this regard, the situation
in this paper differs substantially from dealing with systems
where parameter interactions are unclear. Hydrodynamic
currents and resulting drift paths depend on time-dependent
atmospheric wind fields, and conditional independence
relationships encoded in the graph must be consistent with
such cause effect relationships (cf. Section 2.3). Generally,
the description would become much more uncertain if non-
conservative tracers with a complex behavior were includ-
ed. We confined ourselves, however, to a treatment of
simple tracer particles with a user-defined half-life. Again,
coupling of this half-life to the BN follows logical rules,
considering that simulated travel times are available from
the numerical simulations.

The graph in Fig. 5 involves, however, also substantial
simplifications that have effects on calculated conditional (not
marginal!) probabilities. Just two SLP patterns are obviously
insufficient to fully resolving atmospheric variability includ-
ing seasonal cycles. Hence, a BN completed by additional
links SN→T and SN→DT that allow for information transfer
from season SN to T and DT not being channeled through the
two SLP nodes would improve the representation of seasonal
effects. Table 1 compares conditional probabilities obtained
from such a complete BN with those obtained from the
simplified version in Fig. 5, assuming that variable SN is in
the state “summer.” In spite of clear differences, the general
patterns of change with regard to the unconditional distribu-
tions in Fig. 5 are similar. This indicates that the two SLP
patterns indeed cover main effects of seasonal variability.
The disadvantage of using the BN with additional links is
that it improves the representation in a merely descriptive
way that does not allow for explaining effects in terms of
changing atmospheric forcing.

In the following examples, we will adhere to the
simplified graph shown in Fig. 5.

4 Two Example Studies Using the BN

Figure 5 shows the basic state of the BN. Bar charts
represent probability distributions for all variables in terms
of percentages. Most distributions are marginal distribu-
tions of variables in the underlying numerical simulation
results. The only exceptions are an assumed half-life of τ=
20 days and the resulting posterior distribution of T*
conditioned by this value. Unless any evidence is entered
for other variables, T* remains the only variable affected by
the specification of τ.

According to the distribution of T, about 46% of passive
tracer particles from any source region do not reach the
coast within the simulation period of 60 days. For the
remaining 54% of passive tracer particles, drift times vary
substantially. In most cases, the assumed half-life τ=20 days
is exceeded. Hence, when the passive tracer assumption is
relaxed, even about 80% (instead of 46%) of the pollutant
is estimated to not hitting the shoreline (cf. node T*). All
percentages mentioned are averages over the whole
spectrum of possible weather conditions throughout the
year (season SN remains unspecified).

4.1 Example 1: Effects of Releases from Source Region S4

Assume now that we are interested in the consequences of
an oil spill in source region S4. S4 in the interior German
Bight is located close to the shoreline so that the percentage
of passive tracer particles that hit the German coast
increases from 54% for unspecified source regions (cf. T
in Fig. 5) to about 76%. In particular, for target regions T2–
T4, pollution increases, whereas regions T1 and T5 are
found to be less threatened than on average by all source
regions (not shown).

Probabilities for coastal pollution may substantially vary
for different seasons. Referring again to hypothetical

T DT

States Complete BN Simplified BN States Complete BN Simplified BN

None 27 34 Infinite 27 34

T1 17 16 ]00,05[ 2 2

T2 23 19 [05,10[ 8 8

T3 14 12 [10,15[ 11 10

T4 13 12 [15,20[ 11 10

T5 6 6 [20,30[ 18 16

[30,60] 23 20

Table 1 Conditional probability
distributions of T and DT for
SN=summer

Comparing values from a complete
BN containing all edges and the
simplified BN shown in Fig. 5

Using a Bayesian Network to Summarize Variability in Numerical Long-Term Simulations 9



releases in source region S4, Fig. 6a, b shows posterior
distributions of T for summer and winter, respectively. The
overall threat of coastal pollution along the German North
Sea coast is more pronounced in summer (88%) than in
winter (68%). For target regions T3 and T4, the importance
of summer is most pronounced. In contrast, target region T1
experiences an opposite seasonal trend with a maximum
risk in winter (21%) and a minimum risk in summer (9%).
The differences can be attributed to different orientations of
coastal stretches relative to prevailing wind directions. In
fall and in winter, westerly and southwesterly wind
component preponderate. In spring and summer, on the
other hand, southerly winds become less and northerly
winds more frequent.

This dependence is well illustrated by conditioning
target variable T on pressure pattern SLP1 (while setting
SLP2 to its neutral value “0”). Observing SLP1=“+” makes
summer the most probable season (55%, not shown).
According to Fig. 6c, however, the focus of coastal
pollution on target regions T2, T3, and T4 becomes even
more pronounced than for the mean summer conditions
(Fig. 6a) due to enhanced northwesterly winds (cf. Fig. 6d).

On the other hand, such wind conditions shield target
region T1 from pollution from the more southern source
region S4. The overall probability that under the assumed
weather conditions oil from region S4 reaches any part of
the German North Sea coast is 98%, assuming passive
tracers, or 50% and 13%, assuming a half-life of 20 and
5 days, respectively (not shown).

Choosing instead state “−” for SLP1 makes summer
season very unlikely (only about 6%); the most probable
seasons are now winter and fall (not shown). Southerly
winds (cf. Fig. 6f) imply the highest risks for target T1 (cf.
Fig. 6e), while risks for the southern target regions T3–T5
are very low. The situation resembles the winter situation
shown in Fig. 6b. The overall threat for the German coast is
much smaller than for SLP1=“+” (44% assuming passive
tracers; 15% assuming a substance half-life of 20 days) as
travel times are clearly longer (not shown).

4.2 Example 2: Risk of Pollution in Coastal Area T3

The numerical simulations underlying our BN are made up
of trajectories integrated forward in time. For addressing the

Fig. 6 Conditional probability
distributions for target region
(T) and wind direction (WD)
assuming that a hypothetical oil
spill took place in source region
S4. Additional assumptions on
season or atmospheric pressure
patterns are listed in the headers
of individual panels
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question of to which extent different source regions of a
hypothetical pollutant pose a threat to particular coastal
stretches, backward trajectory simulations would be an
option. In a probabilistic framework, however, the Bayesian
inversion formula allows for deriving the same type of
information also from ensembles of forward simulations.

The probability of particle advection toward some
specific target region depends on both the source region,
where the oil spill takes place, and prevailing wind
conditions. Figure 7 shows how the selection of T*=T3
produces a non-uniform (conditional) probability distribu-
tion for possible sources of the pollution. Instantiation of T*
instead of T brings the assumed substance half-life of
20 days into play. Due to the conditional dependence of DT
and τ given T*, the distribution of drift times shifts toward
values much smaller than when evidence was provided for
passive tracer particles (i.e., for T instead of T*, not shown).
The probability of coastal pollution arising from the nearby
source region S4 increases from 22% for passive tracers to
30% (Fig. 7) for τ=20 days. Choosing a substance half-life
of only 5 days raises the probability of pollution stemming
from source S4 to even 47% (not shown). Instantiation of
T* (i.e., assuming that coastal pollution was observed) also
affects probability distributions of meteorological variables.

According to Fig. 7, the posterior probability of SLP1 being in
state “+”, for instance, is 54% (unconditional value is 28%).

Another important aspect is that specification of target
regions makes source regions and atmospheric conditions
conditionally dependent. Given evidence on pollution in
any target region, wind conditions become informative
about the distribution of possible source regions and vice
versa. Assume that we are interested in exploring possible
impacts of the distant source region S1 on target region T3.
Figure 8 shows a selection of panels from Fig. 7 that
substantially change when setting S to state S1. The two
lines of panels in Fig. 8 differ with regard to the choice of τ.

Choosing S=S1 (and keeping τ=20 days) shifts the
distribution of drift times to higher values (cf. Figs. 7 and
8a), which is due to the relatively long distance to be
covered between source S1 and target T3. The
corresponding drift processes primarily occur for states
“o” or “+” of node SLP2. A smaller substance half-life of
only 5 days (Fig. 8b) makes possible drift times shrink;
probabilities of states “+” and even “++” of node SLP2
further increase. The preferred season for such atmospheric
conditions associated with strong westerly winds is now
clearly winter (probability 42%) instead of summer in the
event that source regions are unspecified (Fig. 7).

Fig. 7 BN with evidence for coastal pollution in target region T3 and a pollutant’s half-life τ=20 days
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5 Discussion

The BN we discussed represents the essentials of numerical
Lagrangian drift simulations. The underlying mechanistic
model made it easy to define the BN’s structure in line with
causal reasoning. Parameter elicitation, the second step of
model construction, could be based on a large ensemble of
numerical simulations covering the full spectrum of realistic
weather conditions that occurred during a time span of
several decades.

The probabilistic representation in a BN allows for
conditioning variables on either weather conditions or the
resulting simulated coastal pollution, for instance. In the
latter case, the Bayesian inversion formula is the basis for
information transfer in directions opposite to causal
dependences. Different software packages (e.g., Korb and
Nicholson [17]) allow for fast propagation of any combination
of evidence throughout the whole network.

Our numerical simulations were confined to advective
transports. Corresponding nodes in the basic BN may be
linked, however, to nodes that represent parameters not
treated in the simulations. We chose substance half-life τ as
an example. Another example we explored (not shown) was
a wind-dependent probability for illegal oil dumping, taking
into account that contaminators supposedly try to remain
undetected. It turned out, however, that conditioning on
wind speed at the time of discharge did not substantially
change the climatology of subsequent drifts and resulting
coastal pollution. The two examples illustrate how sensi-
tivities with regard to uncertain parameters may be
estimated from a BN without repeating time-consuming
numerical simulations.

There are many different ways our prototypical network
could be modified or extended for other applications.
Weathering processes now represented by the half-life τ
might be modeled in more detail as functions of prevailing
weather conditions. For the hydrodynamic simulations, we

assumed movements induced by currents to be super-
imposed by an extra drift component amounting to 1.8% of
the 10-m wind velocity. In a more general BN, wind drift
might be established as an additional parent node of T and
DT. Recalibration of conditional probability tables for the
latter two nodes would need, however, extended numerical
ensemble simulations.

The season node SN in the network provides an
important interface for the inclusion of biologically oriented
aspects. Vulnerability of a bird species depends on its
habitat and on its seasonal molding and breeding behavior.
One may ask to which degree, under which circumstances,
and from which primary sources of pollution a given bird
species is most endangered. Chrastansky et al. [7] showed
that the interpretation of beached bird survey programs
benefits from detailed numerical drift simulations.

Another type of observation to be combined with the
results of numerical modeling is aerial surveillance data. In
Section 4.2, prior probabilities for oil discharge were
assumed to be the same in each source region (cf. Fig. 5).
Accordingly, the posterior distribution for S (Fig. 7) given
pollution in target region T3 should be read as the
sensitivity of region T3 with regard to hypothetical
pollutions in different source regions. A more realistic
estimate of the posterior probability that a given pollution
stems from a certain source region could be obtained when
data from aerial surveillances were introduced as prior
probability distributions.

6 Conclusions

Long-term simulations with process-based numerical mod-
els have become a state-of-the-art tool for the assessment of
changing natural environments. In climate research, com-
plex models are used for both the reconstruction of past
climate variability and the construction of possible future

Fig. 8 Conditional probabilities
for drift time (DT), season (SN)
and pressure field (SLP2). First
line Given pollution in coastal
region T3, substance half-life
τ=20 days, oil released in source
S1. Second line As before, but
for τ = 20
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scenarios. Model-based reconstructions providing kind of
laboratory for risk assessment studies have also been used
as a surrogate for natural conditions [29].

Traditionally, the essentials of long-term simulations and
corresponding scientific analyses are made available in the
form of written papers. Such static presentations naturally
focus on a specific perspective chosen by the author. A
modified view at the simulated data will usually need direct
access to the full database. For many studies, e.g., studies with
a wider interdisciplinary scope, this will often be beyond the
means. Nevertheless, even for the design of more in-depth
analyses, it is often desirable to get a quick overview of
relevant features and relations represented in comprehensive
simulations. Our study has shown how the technique of
Bayesian networks might be employed to meet such demands.

In a first step, a BN will always reflect its designer’s
scientific interests, focusing on specific variables or aspects
of co-variability in a data set. Our example illustrated,
however, the modular structure a BN representing numer-
ical simulations usually will have. Elicitation of the
conditional probability table for any given node remains
local in the sense that data tables just need to contain
information on those variables that directly influence the
node of interest. As a result, an existing BN can often be
extended without recalibration of most of its already
existing components.

We introduced a half-life τ of the drifting substance to give
a practical example of how generic passive tracer simulations
under realistic weather conditions can be linked with a
specific substance’s properties. This very efficient approach
avoids repetition of computationally demanding numerical
simulations and might be useful particularly in the context of
contingency planning where substance properties are only
vaguely defined. Another issue would be the combination of
numerical simulations with monitoring data, e.g., by using
aerial surveillance data for defining the prior probabilities for
sources of pollution (node S). A BN, however, might also
encompass more qualitative expert knowledge.

A crucial problem to be solved for a successful
representation of detailed simulations in a BN is the
reduction of dimensionality. In the present study, we
utilized the results of canonical correlation analysis adapted
from a previous study for a simplified description of
weather conditions in terms of weekly mean sea level
pressure patterns. One might also use different techniques,
employ different variables, and refer to different scales in
space or time. The BN approach we proposed for the
description of output from large numerical simulation
models, however, does not substitute the use of common
multivariate statistical tools.

We expect a BN fitted to an existing set of long-term
numerical simulations to be subject to permanent develop-
ment. Extensions and improvements of the BNmay arise from

new scientific analyses and subsequent applications of the data.
On the other hand, an evermore detailed BN might inspire the
conception of new investigations or help to promote the
database. The BN’s intuitive graphical presentation helps make
a database accessible even for non-scientific users. Furthermore,
the data representation based on the BN technology is fast and
flexible enough to be run in the background of web applications.
BN manipulations based on libraries written in Fortran, C, or
Java can be blended with common Internet programming
languages. For a more intuitive display of calculated probabil-
ities and regions they refer to, the BN output might be combined
with GIS items such as geographical maps.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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