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Abstract Starting from the Euler equations governing the flow of two immiscible incompressible fluids in a
horizontal channel, allowing gravity and surface tension, and imposing an electric field across the channel, a
nonlinear long-wave analysis is used to derive a 2 × 2 system of evolution equations describing the interface
position and a modified tangential velocity jump across it. Travelling waves of permanent form are shown to exist
and are constructed in the periodic case producing wave trains and the infinite case yielding novel gravity electro-
capillary solitary waves. Various regimes are analysed including a hydrodynamically passive but electrically active
upper layer, pairs of perfect dielectric fluids and a perfectly conducting lower fluid. In all cases, the presence of
the field produces both depression and elevation waves travelling at the same speed, for given sets of parameters.
The stability of the non-uniform travelling waves is investigated by numerically solving appropriate linearised
eigenvalue problems. It is found that depression waves are neutrally stable whereas elevation ones are unstable
unless the surface tension is large. Stability or instability is shown to be linked mathematically to the type of local
eigenvalues of the nonlinear flux matrix used to obtain travelling and solitary waves; if these are real (hyperbolic flux
matrix), the system is stable, and if they are complex (elliptic), the system is unstable. The latter is a manifestation
of Kelvin–Helmholtz instability in electrified flows.

Keywords Electro-capillary waves · Nonlinear waves · Solitary waves · Two-fluid flows

1 Introduction

Two-fluid immiscible flows can be found in numerous applications and at different scales. On the micro-scale,
inertia is absent, and in addition to viscously dominated dynamics, other physical mechanisms such as surface
tension become dominant. On the other hand at large scales (e.g. geophysical applications), viscosity is absent and
so is surface tension, with large-scale motions underpinned by gravity-driven waves as well as density variations.
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The present work aims to study scales between these two, namely laboratory experiments that have considerable
inertia and for which surface tension and other external fields, such as electric fields are present.

An idealised mathematical model considers two inviscid, immiscible fluids in a channel and seeks to describe the
nonlinear waves that can emerge. In the presence of gravity, asymptotic analysis was used to produce the Miyata–
Choi–Camassa model—see Miyata [1] and Choi and Camassa [2]—a system of reduced-dimension evolution
equations. More recent advances include the presence of three layers and the construction of periodic and solitary
waves, see Lopes-Barros et al. [3] and references therein. It is quite likely that all such waves are susceptible to
Kelvin–Helmholtz instabilities, but water tank experiments by Carr et al. [4] show clearly that the coherent structures
survive and are the dominant essential feature of the flow.

The present study extends the systems described above in two ways: first by including surface tension as a
dispersive regularisation of short-wave Kelvin–Helmholtz instabilities and second, an electric field is imposed
across the channel with the channel walls acting as electrodes that support a voltage potential across it. A seminal
reference in the field of interfacial electrohydrodynamics is Melcher [5], where theory and experiments are used
to describe the effects of electric fields on fluid–fluid interfaces (see also Melcher and Taylor [6], Saville [7]). For
a recent review on nonlinear waves found in electrohydrodynamic multfluid flows, see Papageorgiou [8]. Linear
theory predicts that generally an electric field acting normal to the undisturbed interface provides instability, whereas
tangential ones stabilise the flow (dispersively in the case of ideal fluids). In the latter scenario, recent work by
Zhan and Yang [9] proves local well-posedness of the Kelvin–Helmholtz problem, and in fact for two-dimensional
flows, the presence of a tangential electric field is sufficient even in the absence of surface tension.

Here, we are concerned with vertical electric fields in channel flows as originally formulated by Melcher [5],
and we mention some relevant work. Long-wave models were derived and studied for single-layer flows [10], and
it was shown that the electrically induced instabilities can produce singular behaviour such as blow-up. Weakly
nonlinear Stokes wave analyses, including construction of Wilton ripple travelling waves, as well as fully nonlinear
computations were carried out for single-layer electrified problems in [11], and Gleeson et al. [12] show how
a fifth-order Kortweg–de Vries Benjamin–Ono equation derives from such electrified problems. Wang [13] also
developed a fully nonlinear model from which the governing equations for two-dimensional gravity–capillary
waves under a normal electric field were derived. Gao et al. [14] consider a perfect dielectric fluid of infinite depth
bounded above by a perfectly conducting gas, and construct fully nonlinear gravity–capillary waves and study their
stability—mathematically one region needs to be accounted for and conformal mapping techniques are appropriate.
Doak et al. [15] studied both linear and weakly nonlinear theories of interfacial gravity–capillary waves on the
surface between two dieletric fluids, with the upper fluid being hydrodynamically passive. When multiple regions
are present, the problems are more complicated, and in this work, we begin a study of such systems where the
effects of gravity, surface tension, electric fields and tangential velocity jumps are accounted for. We note that in
the absence of an electric field analogous simpler systems emerge and were studied in [16]; solitary waves were
constructed including some exact solutions for a discrete set of parameters. In the present study, we consider the
stability of such solitary waves and our results indicate that they are linearly stable.

The rest of the paper is organised as follows. Section 2 states the governing equations and boundary conditions
in their general form. Section 3 carries out a long-waves analysis to produce reduced-dimension model equations
that allow the interface to scale with the channel height. Section 4 constructs two-fluid solitary waves for a range of
physical situations, and Sect. 5 constructs finite-period travelling waves. The stability of these non-uniform coherent
structures is considered in Sects. 6 and 7 we provide a discussion.

2 Governing equations

Consider two immiscible irrotational, incompressible, inviscid fluids in a channel of height 2h and infinite horizontal
extent. Using a Cartesian coordinate system (x, y), the smooth and parallel channel walls are located at y = ±h,
and the undisturbed interface is at y = 0, i.e. the fluids have equal mean thickness h. Two-dimensional flows are
also assumed. A schematic is given in Fig. 1 which shows the general situation with a deformed interface given
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by y = S(x, t). Taking the fluids to be perfect dielectrics, we introduce an electric potential V (x, y, t) within the
channel by imposing constant voltages V (x,−h) = 0 and V (x, h) = V0 at the lower and upper wall electrodes,
respectively. In the absence of an electric field, the problem was studied by [16], and in fact, this is equivalent to
having two fluids of equal permittivity. The superscripts + and − are used to denote variables in the upper and lower
fluids, respectively, and the permittivities are denoted by ε0ε± where ε0 is the permittivity of free space—hence,
ε± are dimensionless and in what follows the ratio ε = ε+/ε− will become important. We also note that this
setup was introduced and studied by Melcher [5] in his seminal monograph that established the field of interfacial
electrohydrodynamics (see also Melcher and Taylor, Saville reviews). Our study extends that of [5] by introducing
a physical dispersive regularisation by the inclusion of surface tension—in the absence of a regularisation, the 2×2
system of nonlinear model equations not only is at best hyperbolic, and hence terminates in shocks, but can also
be elliptic (with catastrophic short-wave instabilities) if the electric field is sufficiently strong, a case that was not
studied in [5]. Here, we present a complete study of the regularised system and in particular show the existence of
solitary waves and construct families of them.

The fluids are irrotational and incompressible; hence, the velocity field can be written as u± = ∇φ± where φ±
denote the velocity potential in each region. Incompressibility then implies that φ± are harmonic. The electrostatics
is also governed by Laplace equations for V±. To see this, start with the electrostatic limit of the Maxwell equations
so that ∇ × E± = 0, where E is the electric field, introduce voltage potentials so that E± = −∇V±, and use
Gauss’s law ∇ · (ε0ε± E±) = 0 in each region to obtain the result (the permittivities are constant). The boundary
conditions at the walls are fluid impermeability and fixed voltage potentials. Those at the interface y = S(x, t)
are the kinematic conditions, continuity of the voltage potential, continuity of the electric displacement deriving
from Gauss’s law, and continuity of normal stresses (tangential stresses cannot be prescribed, since the fluids are
inviscid—slip is allowed at the interface). Hence, the governing equations and boundary conditions are

∇2φ± = 0, (2.1a)

∇2V± = 0, (2.1b)

φ−
y |y=−h = φ+

y |y=h = 0, V− = V+ − V0 = 0, (2.1c)

φ±
y = St + φ±

x Sx at y = S, (2.1d)

V+ − V− = 0 at y = S, (2.1e)

ε+ n · ∇V+ − ε− n · ∇V− = 0 at y = S, (2.1f)

n�T + n − n�T − n = −σκ at y = S. (2.1g)

In (2.1f), (2.1g), � is the transpose, n = (−Sx , 1)/
√

1 + S2
x is the unit normal pointing into fluid +, and T is the

combined fluid and Maxwell stress tensor which reads

T ±
i j = −p±δi j + ε0ε±

(
E±
i E±

j − 1

2
|E±|2 δi j

)
. (2.2)

The parameter σ is the constant surface tension between the fluids, and κ = Sxx/(1+ S2
x )

3/2 is the signed curvature
of the interface. Imposition of initial conditions completes the mathematical statement of the problem.

We proceed to non-dimensionalise the problem taking a typical interfacial wavelength to be L , and a typical
dimensional speed to be c. The interface is scaled by the channel height h and the pressure by its inertial scale. We
write

x = LX∗, y = hY ∗, S = hS∗, t = 2L

c
T ∗, φ = cL�∗, V = V 0V

∗, p = ρ−(c)2

2
P∗, (2.3)
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y

x

V + φ+ ρ+
V = V0

h

−h

V − φ− ρ−
V = 0

y = S(x, t)

Fig. 1 A schematic of the incompressible, inviscid two-fluid system

where starred variables are dimensionless. It is convenient to introduce the following dimensionless parameters that
arise from the scalings (2.3):

β = h

L
, ρ = ρ+

ρ− , F = c2

2gh
, σ ∗ = 2σβ

Lρ−c2 , Eb = 2ε0V
2
0

ρ− c2 h2
. (2.4)

These can be identified as a slenderness parameter β, a density ratio ρ, a Froude number F measuring the importance
of gravity, a scaled inverse Weber number σ ∗ that we retain in order to keep surface tension, and an electric Weber
number measuring the ratio of electrostatic to inertial pressures. The scaled inverse Weber number σ ∗ is taken to
be an O

( 1
β

)
parameter to allow the surface tension to compete with gravity and the electric field. In what follows

we also use the Atwood ratio:

α = 1 − ρ

1 + ρ
. (2.5)

Dropping the ∗ from our dimensionless variables, we write the governing equations as follows:

β2�±
XX + �±

YY = 0, (2.6a)

β2V±
XX + V±

YY = 0, (2.6b)

with the boundary conditions for �± at the interface taking the form:

�±
Y = β2

(
1

2
ST + �±

X SX

)
at Y = S, (2.7a)

�−
T + (

�−
X

)2 + 1

β2

(
�−

Y

)2 − ρ

(
�+

T + (
�+

X

)2 + 1

β2

(
�+

Y

)2
)

+ 1 − ρ

F
S = P+ − P− at Y = S. (2.7b)

Equation (2.7b) is the Bernoulli equation at the interface and is derived in the familiar way of integrating the Euler
equations to obtain

�±
t +

((
�±

X

)2 + 1

β2

(
�±

Y

)2
)

+ Y = −ρ−

ρ± P± + constant (2.8)

and evaluating this equation at each side of the interface—see [8] for its use in electrohydrodynamic problems.
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The voltage potential boundary conditions at Y = S(X, T ) become

V+ − V− = 0, (2.9a)

ε+
(
V+
Y − β2SXV

+
X

)
= ε−

(
V−
Y − β2SXV

−
X

)
, (2.9b)

while the conditions at the walls yield

�−
Y |Y=−1 = 0, �+

Y |Y=1 = 0, (2.10a)

V−|Y=−1 = 0, V+|Y=1 = 1. (2.10b)

Using the expression (2.2) in the normal stress balance (2.1g) and non-dimensionalising as described above, yields
the following expression for the pressure jump across the interface

P+ − P− = σ SXX

(1 + β2S2
X )

3
2

− 2Ebε+β2V+
X V+

Y SX
1 + β2S2

X

+ 2Ebε−β2V−
X V−

Y SX
1 + β2S2

X

+ Eb

2

β2S2
X − 1

1 + β2S2
X

[
ε+

(
β2(V+

X )2 − (V+
Y )2

)
− ε−

(
β2(V−

X )2 − (V−
Y )2

)]
, (2.11)

to be used in the Bernoulli equation (2.7b), thus, eliminating the pressure. Our system of equations at this point is
still exact, and a numerical procedure based on the full equations is necessary. In what follows we consider the long
wave limit of β � 1 and make progress asymptotically to derive reduced-dimension nonlinear evolution equations
for the flow.

3 Asymptotic expansions and derivation of the evolution equations

In the limit β → 0, we seek a solution of the problem by the asymptotic expansions

V± = V±
0 + β2V±

1 + · · · , (3.1a)

�± = �±
0 + β2�±

1 + · · · , (3.1b)

S = S0 + β2S1 + · · · . (3.1c)

These expansions are valid as long as gradients, e.g. S0x , remain bounded, and this is confirmed a posteriori by
solving the resulting equations. Substituting expansions (3.1) into the dimensionless system (2.6), we obtain to
leading order

�±
0YY = 0, V±

0YY = 0, (3.2)

which can be readily integrated to give

�±
0 = A±

1 (X, T ) Y + A±
2 (X, T ), V±

0 = B±
1 (X, T ) Y + B±

2 (X, T ), (3.3)

where the functions A±
1,2 and B±

1,2 must be determined. Using the no penetration conditions (2.10a) at the walls

immediately implies that A±
1 ≡ 0, and hence, �±

0 ≡ �±
0 (X, T ), i.e. they are independent of Y . Equation (2.6a) at

order β2 gives

�±
1YY = −�±

0XX , (3.4)

which when integrated once and on use of the no penetration wall conditions yields

�−
1Y = −(Y + 1)�−

0XX , �+
1Y = (1 − Y )�+

0XX . (3.5)
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These expressions will be useful in the first-order kinematic conditions considered below.
The wall voltage conditions (2.10b) yield, in turn,

V−
0 = (Y + 1) B−

2 (X, T ), V+
0 = (1 − Y ) B+

2 (X, T ). (3.6)

The unknown functions in (3.6) can be found from the leading order contributions to the voltage and displacement
field continuity at the interface equations: (2.9a)–(2.9b), i.e. V−

0 = V+
0 and ε−V−

0Y = ε+V+
0Y at Y = S0(X, T ), to

give

V+
0 = Y − 1

ε + 1 + S0(ε − 1)
+ 1, V−

0 = ε(1 + Y )

ε + 1 + S0(ε − 1)
. (3.7)

In order to obtain equations for the remaining unknowns S0 and �±
0 , we use an approach similar to [16]. From the

O(β2) kinematic conditions (2.7a) on either side of the interface, and using the solutions (3.5), we find

1

2
S0T + (

(S0 + 1)�−
0X

)
X = 0, (3.8a)

1

2
S0T + (

(S0 − 1)�+
0X

)
X = 0. (3.8b)

We now define new variables, U and W , representing the average horizontal velocity and half its jump across the
interface,

U = 1

2

(
�+

0X + �−
0X

)
, W = 1

2

(
�+

0X − �−
0X

)
. (3.9)

Subtracting either of the equations in (3.8) from the other and integrating with respect to X gives

U − S0W = χ(T ), (3.10)

where χ(T ) is an arbitrary function of T . Adding equations (3.8a) and (3.8b) and using (3.10) to eliminate U yield

S0T + 2χ S0X + 2
((

S2
0 − 1

)
W

)

X
= 0. (3.11)

A second-evolution equation follows from the Bernoulli equation (2.7b) after its differentiation with respect to X
and use of (3.9) and (3.10). The result is (recall that α is the Atwood number defined in (2.5))

(W − αS0W )T + 2χ(T ) (W − αS0W )X − (
αS2

0W
2 − 2S0W 2 + αW 2

)
X

= α
F S0X − σ

1+ρ
S0XXX − Eb

2(1+ρ)

[
ε+

(
V+

0Y

)2 − ε−
(
V−

0Y

)2
]

X
. (3.12)

Changing to the moving frame (X, T ) → (X − 2
∫

χ(T )dT, T ) eliminates χ(T ) terms, so up to O(β), O(β2)

respectively the coupled system of equations are (we use X for the new spatial variable and drop the subscript 0
from S0, V0)

ST + 2(S2W )X = 2WX , (3.13a)

(W − αSW )T −
(
αS2W 2 − 2SW 2 + αW 2

)

X
= α

F
SX − σ

1 + ρ
SXXX − Eb

2(1 + ρ)

[
ε+

(
V+
Y

)2 − ε−
(
V−
Y

)2
]

X
.

(3.13b)

Defining a new variable

� = W (1 − αS), (3.14)
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allows us to write (3.13) as the following dispersively modified 2 × 2 system of conservation laws

(
S
�

)

T
+

(
Q1 Q2

Q3 Q4

) (
S
�

)

χ

=
(

0
− σ

1+ρ
SXXX

)
, (3.15)

where the matrix entries are

Q1 = 2�

(1 − αS)2

(
2S(1 − αS) + α(S2 − 1)

)
, (3.16a)

Q2 = 2
S2 − 1

1 − αS
, (3.16b)

Q3 = −
(

α

F
+ 2(αS − 1)�2

(1 − αS)2 + �2(αS2 + α − 2S)
2α

(1 − αS)3 − Ebε+
2(1 + ρ)

(1 − ε)2

(ε + 1 + S(ε − 1))3

)
, (3.16c)

Q4 = −2

(
αS2�

(1 − αS)2 + �(α − 2S)

(1 − αS)2

)
. (3.16d)

As we will see below, the electric field has a considerable effect on the flow by introducing complex eigenvalues
for the matrix Q. In the absence of an electric field, most easily recovered by setting ε = 1 in (3.15), we recover
the equations of [16] where the eigenvalues of the analogous matrix Q are now real, and hence, in the absence of
dispersion, the system is hyperbolic.

It is instructive to consider the linear limit of this problem for expanding S, � like

S = ζ S̃0 + ζ 2 S̃1 + · · ·, � = ζ �̃0 + ζ 2�̃1 + · · · (3.17)

where ζ � 1. The system (3.15) can be reduced to a single equation for S̃0

1

2

(
S̃0

)

T T
=

(
α

F
− Ebε+

2(1 + ρ)

(1 − ε)2

(ε + 1)3

)
(S̃0)XX − σ

1 + ρ
(S̃0)XXXX . (3.18)

Looking for a wave-like solution of the form S̃0 = eikX+ωt Ŝ(X, T ) gives the dispersion relation

ω2 = −2k2
(

σ

1 + ρ
k2 + α

F
− Ebε+

2(1 + ρ)

(1 − ε)2

(ε + 1)3

)
. (3.19)

Therefore, if

α

F
− Ebε+

2(1 + ρ)

(1 − ε)2

(ε + 1)3 < 0 (3.20)

we have growth, and if

α

F
− Ebε+

2(1 + ρ)

(1 − ε)2

(ε + 1)3 ≥ 0 (3.21)

the problem is dispersive, so under no circumstances is the linear system dissipative.
The full problem stated in (3.15) is a nonlinear free boundary one with two fluid phases and a large number

of physical parameters. The asymptotic reduction supports analytical progress and in particular allows for the
exploration of nonlinear coherent structures such as travelling wave trains and solitary waves. We explore such
possibilities next.
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4 Solitary waves: existence and construction

4.1 Solitary waves at arbitrary density ratios

We will construct solitary wave solutions of the system (3.13) and find the range of parameters for which they exist.
Looking for travelling wave solutions of (3.13) of the form

S = S(ξ), W = W (ξ), ξ = X + cT, (4.1)

where c is the positive wavespeed, yields the coupled ordinary differential equations

− cSξ + 2(S2W )ξ = 2Wξ , (4.2a)

− c(W − αSW )ξ − (αS2W 2 − 2SW 2 + αW 2)ξ

= α

F
Sξ − σ

1 + ρ
Sξξξ − Eb

2(1 + ρ)

[
ε+

(
V+
Y

)2 − ε−
(
V−
Y

)2
]

ξ
. (4.2b)

where c is the wave-speed. It is trivial to solve the first equation for W in terms of S, thereby eliminating W from
the problem; we find

W = −1

2

D + cS

1 − S2 , (4.3)

where D is a constant of integration. In order to integrate (4.2b), we will need

∫ [
ε+

(
V+
Y

)2 − ε−
(
V−
Y

)2
]

dS = ε+
ε + 1 + S(ε − 1)

+ C1, (4.4)

where C1 is a constant-this follows by use of the expressions (4.3). Next, we integrate (4.2b) with respect to ξ ,
multiply the result by Sξ , carry out an additional ξ integration using (4.4), and yield the following dynamical system
for S:

1

2
γ (Sξ )

2 = α

2F
S2 + GS − 1

4
αc2S + H − 1

8

(D + c)2(1 − α)

1 − S

−1

8

(D − c)2(1 + α)

1 + S
− δ

2

1

ε + 1 + S(ε − 1)
, (4.5)

where G and H are constants and the parameters

γ = σ

1 + ρ
> 0, δ = Ebε+

1 + ρ
, (4.6)

measure surface tension and electric field strength, noting that γ > 0 and δ ≥ 0. By requiring that as |ξ | → ∞, S
and all its derivatives tend to 0 (thus restricting our solutions to solitary waves), we see from (4.3) that D is the jump
in horizontal velocity across the interface, i.e. it is the undisturbed vortex sheet strength. Equation (4.5) becomes,
after appropriate selection of G and H to achieve the desired decay at infinity,

γ (Sξ )
2 = S2

[
α

F
+ αS − 1

2(1 − S2)

(
D2 + c2 − 2cD

S − α

αS − 1

)]
− δ

S2(ε − 1)2

(ε + 1)2(ε + 1 + S(ε − 1))
. (4.7)

Note that for solitary waves, γ can be scaled to unity by a redefinition of ξ . We can see that this equation implies that
α > 0 is a necessary condition for solitary waves to exist, hence excluding Rayleigh–Taylor unstable configurations
as would be expected. Note that this condition is the same as in the non-electrified case considered by [16], consistent
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from the fact that a vertical electric field is destabilising. In order to analyse the properties of the solitary waves that
may be present in the channel, it is useful to rewrite Eq. (4.7) in the form

γ (Sξ )
2 = S2

(1 − S2) [ε + 1 + S(ε − 1)]
p3(S), (4.8)

where p3(S) is a cubic polynomial given by

p3(S) = j S3 + kS2 + l S + m. (4.9)

The constants j , k, l and m are given by

j = α

F
(1 − ε), (4.10a)

k = δ
(ε − 1)2

(ε + 1)2 + α

[
−ε + 1

F
+ 1

2
(ε − 1)

(
D2 + c2 − 2cD

α

)]
, (4.10b)

l = α

2
(ε + 1)

(
D2 + c2 − 2cD

α

)
+ (ε − 1)

(
α

F
− D2 + c2

2
+ cDα

)
, (4.10c)

m = (ε + 1)

(
α

F
− D2 + c2

2
+ αDc

)
− δ

(ε − 1)2

(ε + 1)2 . (4.10d)

Inspection of (4.8) and noting the facts |S| < 1 and ε + 1 + S(ε − 1) > 0, implies that the sign of p3 determines
the existence of solitary waves. First, we must have p3(S) > 0 for small |S| so that S2

ξ is positive. By continuity,
we require p3(0) = m > 0 which gives the following necessary condition for the existence of solitary waves:

(ε + 1)

(
α

F
− D2 + c2

2
+ αDc

)
− δ

(ε − 1)2

(ε + 1)2 > 0. (4.11)

Solitary waves emerge when we can connect S = 0 to another root(s) Sr , say, as long as |Sr | < 1. For this to
happen, we need at least one real root of p3(S) to lie in −1 < S < 1. Now,

p3(−1) = −(α + 1)(D − c)2 < 0, p3(1) = ε(α − 1)(D + c)2 < 0, (4.12)

with p3(1) = 0 when α = 1, i.e. ρ = 0. This is possible when the upper fluid is passive – this is considered in more
detail later—see also [16]. Further special cases arise when D = ±c, in which case p3 has roots at either S = −1
or S = 1, and in both cases, it is possible to have zero, one, or two solitary waves produced depending on the
other parameters—this has been confirmed numerically, but details are not included for brevity. As these cases do
not correspond to a meaningful physical limit since the interface touches the wall, they have not been investigated
further.

From (4.12), we conclude that if it is assumed that p3(S) has real roots in −1 < S < 1 (something that is
necessary for solitary waves to exist), then it must have exactly two roots or a repeated double root; otherwise, it
is impossible to satisfy all the inequalities of (4.11), (4.12). The latter scenario is inadmissible because it forces
S2
ξ < 0 in the vicinity of S = 0 even if the repeated root is at S = 0. The former scenario is again inadmissible

unless the roots have opposite signs, and this is the generic situation for the existence of solitary waves in this
rather general case. Interestingly, we establish that solitary waves come in pairs, an elevation wave corresponding
to 1 > S+

r > 0 and a depression (or dark) solitary wave for the root −1 < S−
r < 0. An illustration of this is

provided in Fig. 2, in which regions where (Sξ )
2 < 0 are shown for mathematical completeness despite this not

being physical. Integration of (4.8) provides integrals for the solutions analogous to (4.19) constructed below.

4.2 Solitary waves with upper fluid of zero density (α = 1)

When the upper fluid has negligible density compared to the lower fluid the Atwood ratio α = 1. The equations
simplify in this case, and in particular are not prone to a Kelvin–Helmholtz instability since the system is one-sided
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Fig. 2 Sketch of the
admissible depression and
elevation solitary wave
trajectories in the phase
plane of the dynamical
system in the range
−1 < S < 1
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for the hydrodynamics. We begin with a general dielectric fluid in the lower region and then consider the additional
limit of a perfectly conducting lower liquid first studied by Melcher [5] (Chapter 7).

4.2.1 Perfect dielectric lower fluid

In order for this model to be physical we will assume that the ratio of permittivities is ε < 1. In this special case,
S = 1 is a root of p3 so we can simplify (4.8) to

γ (Sξ )
2 = S2

(1 + S)(ε + 1 + S(ε − 1))
p2(S), (4.13)

where

p2(S) = S2 1

F
(ε − 1) + S

(
2ε

F
− δ

(ε − 1)2

(ε + 1)2 − 1

2
(ε − 1)(D − c)2

)

− δ
(ε − 1)2

(ε + 1)2 + 1

F
(ε + 1) − 1

2
(ε + 1)(D − c)2. (4.14)

Evaluating p2 at S = 0 and requiring p2(0) > 0, it can be seen that in this case, the necessary condition for solitary
waves to be produced is

2

F
− 2δ

(ε − 1)2

(ε + 1)3 − (D − c)2 > 0. (4.15)

As in the previous section, we have that p2(−1) = −(D − c)2 < 0, so for the existence of solitary waves, we
require one root of p2 is −1 < S < 0. However, the right-hand side of (4.13) is now finite as S → 1 and can take
either a positive or negative value. Assuming that there is one root of p2 in the range −1 < S < 0, if the second root
is in 0 < S < 1, then there will be a second solitary wave produced. This extra condition is equivalent to requiring

p2(1) = 4ε
F − 2δ(ε−1)2

(ε+1)2 − ε(D − c)2 < 0. So given that there is one root in −1 < S < 0, if p2(1) is positive we
have only one depression solitary wave, if it is negative, we have an additional elevation solitary wave. An example
of how the value of p2(1) depends on ε is given in Fig. 3b, with ε = 0.15 0.2 giving p2(1) < 1 so producing two
solitary waves. From (4.15) and the expression for p2(1), we have the explicit condition for the existence of two
solitary waves:

4

F
− 2δ

(ε − 1)2

ε(ε + 1)2 < (D − c)2 <
2

F
− 2δ

(ε − 1)2

(ε + 1)3 . (4.16)
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Fig. 3 Dependence of the number of roots on ε, with α = 1, with c = 2.5, σ = 1, F = 0.1, δ = 10, D = 0.

For one solitary wave, we must have

(D − c)2 <
2

F
− 2δ

(ε − 1)2

(ε + 1)3 and (D − c)2 <
4

F
− 2δ

(ε − 1)2

ε(ε + 1)2 . (4.17)

The dependence on the number of roots on the ratio of permitivitties ε can be seen in Fig. 3a for a typical set of
parameter values given in the caption. These can be found explicitly from (4.14), and they are plotted when they
are real as functions of ε. In region 1, there are no admissible solitary waves since the roots are both negative. For
ε > 0.07 we have one positive and one negative root, admitting two solitary waves. Region 2 terminates at ε ≈ 0.23
since the positive root now equals unity, i.e. touches the wall and must be excluded. Beyond this value we have
region 3 which supports a single depression solitary wave. The region 3 solutions are consistent with the results of
[16] who found only depression solitary waves in the case of no electric field equivalent to the ε = 1 case here.
Example phase planes for certain values of ε are given in Fig. 3b.

We can also numerically solve Eq. (4.13) for S and construct solitary waves. In the present case, we have either
one or two roots of p2(S) in the physical range −1 < S < 1. As discussed above, we require exactly one root,
denoted by S−, to be in the range −1 < S− < 0. Denoting the other root of p2(S) to be S0 (note that we do not
assume 0 < S0 < 1), we can write (4.13) in the form

γ (Sξ )
2 =

(
ε − 1

F

)
S2(S − S−)(S − S0)

(1 + S)(1 + ε + S(ε − 1))
. (4.18)

Separating variables and integrating from the trough S = S− to an elevation height S yields

∫ S

S−

[(
F

ε − 1

)
(1 + z)(1 + ε + z(ε − 1))

(z − S−)(z − S0)

] 1
2 dz

z
= ξ√

γ
. (4.19)

The positive square root was taken in (4.19) to produce half the wave—the negative root gives the other symmetric
half. Numerically solving this equation for varying parameters produces the lower (red) solitary wave depicted in
Fig. 4. A depression solitary wave is always produced if the necessary condition (4.15) for solitary waves is met. If
in addition (4.16) is met so that 0 < S0 < 1, then a second elevation solitary wave is supported having the same
speed as its depression counterpart. In the example of Fig. 4 we also show the elevation wave in blue.
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Fig. 4 Example of a pair of
solitary waves when α = 1,
with c = σ = F = δ =
1, D = 0, ε = 1
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To understand the mathematical structure of the constructed solitary waves we consider the evolution PDEs
(3.15) with α = 1. (Note that in general (3.15) recover the equations in [5] when σ = 0.) The equations are

(
S
�

)

T
+

( −2� −2(1 + S)

− 1
F + 2δ

(1−ε)2

(ε+1+S(ε−1))3 −2�

) (
S
�

)

X
=

(
0

−σ SXXX ,

)
(4.20)

where in this case, we have that for solitary waves,

� = −1

2

(
D + cS

1 + S

)
. (4.21)

If the eigenvalues of the nonlinear flux matrix in (4.20) are denoted by μ(S,�), then we find that they are determined
through the equation:

(μ + 2�)2 + 2(1 + S)

[
2δ(1 − ε)2

(ε + 1 + S(ε − 1))3 − 1

F

]
= 0. (4.22)

We find that complex eigenvalues of the flux matrix in (4.20) arise when

S >
1 + ε − [

2δF(1 − ε)2
]1/3

1 − ε
:= Str . (4.23)

When we have μ is complex for a range of S we call such a region elliptic, and when μ ∈ Re, we refer to the region
as hyperbolic, so Str is the transition point where the system changes from hyperbolic to elliptic or vice versa. An
immediate consequence of (4.23) is that when ε is near 1 we can make Str > 1, i.e. elevation waves can be found
which are what we term hyperbolic; this is in contrast to the ε = 0 case discussed in Sect. 4.2.2. We also note that
the bound (4.23) only makes physical sense when the parameters are such that additionally |S| < 1. In the case of
two solitary waves, we have from the inequality: (4.16)

ε(ε + 1)3

(ε − 1)2 < δF <
(ε + 1)3

(ε − 1)2 . (4.24)
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Using (4.24) in (4.23) provides the following range of values for the transition boundary S = Str :

(1 − 21/3)(1 + ε)

1 − ε
< Str <

(1 + ε)(1 − 21/3ε1/3)

1 − ε
. (4.25)

This inequality in turn predicts that the solitary waves produced when α = 1, 0 < ε < 1, can potentially have
parts where the equations are locally elliptic and other parts where they are locally hyperbolic, in addition to wholly
elliptic or hyperbolic. It is quite easy to check numerically the upper and lower bounds of Str in (4.25) for 0 < ε < 1,
and to confirm that transitions occur for both depression and elevation waves when 0 < ε � 0.587. Such analytical
estimates were used prior to searching for transitional solitary waves like those in Fig. 6.

We note that the classification of solitary waves into elliptic and hyperbolic regions presented here does not take
into account the dispersive term on the right-hand side of (4.20) so strictly speaking only concerns the conservation
laws when σ = 0. However, this diagnostic tool yields useful information because a change from real to complex
eigenvalues of the conservation laws predicts the presence of instabilities that destroy the solitary wave structures,
which enables us to predict instability of nonlinear solitary waves without doing any spectral analysis. Analogous
analyses and classifications have been used in related viscous multifluid interfacial problems where the regularising
terms are diffusive - see for example [17,18].

4.2.2 Lower fluid a perfect conductor

As mentioned earlier this limit was considered in [5] in the absence of surface tension, and hence the solutions
there cannot produce solitary waves. The perfect conductor lower fluid limit is found by sending its permittivity to
infinity, ε− → ∞. Hence, we have ε = ε+/ε− = 0 and Eq. (4.13) reduces to

γ (Sξ )
2 = S2

1 − S2 p
∗
2(S), (4.26)

where p∗
2(S) is

p∗
2(S) = − 1

F
S2 + S

(
1

2
(D − c)2 − δ

)
− δ + 1

F
− 1

2
(D − c)2. (4.27)

Using similar reasoning as before, the necessary condition for solitary waves for this sub-case is p∗
2(0) > 0

0 < (D − c)2 <
2

F
− 2δ, (4.28)

and consequently solitary waves can only exist if F < 1/δ, i.e. for sufficiently small Froude numbers, given an
electric field strength. We also note that p∗

2(−1) = −(D − c)2 < 0, p∗
2(1) = −2δ < 0; hence, a solitary wave of

depression and one of elevation coexist in general. Typical pairs of solitary waves are given in Fig. 5 as F varies.
For completeness, we consider the mathematical structure of the waves constructed in this section. The flux

matrix in this case now reads

(
S
�

)

T
+

(
−2� −2(1 + S)

− 1
F + 2δ 1

(1−S)3 −2�

)(
S
�

)

X
=

(
0

−σ SXXX

)
(4.29)

and we note that for solitary waves (4.21) still holds. Repeating the hyperbolic-elliptic calculation of section 4.2.1,
and now setting ε = 0, we find that complex eigenvalues of the flux matrix in (4.20) arise when

2δF − (1 − S)3 > 0 ⇒ S > 1 − (2δF)1/3 := Sa . (4.30)
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Fig. 5 Pairs of solitary waves with ε = 0, α = 1, δ = 1, σ = 0.01, D = 0, c = 1.5, and F varying

It can be shown that Sa defined above is always smaller than the amplitude of elevation solitary waves given by
the positive root of (4.27). From (4.28), we have δF < 1; combining this with (4.30) and the physical fact that δ

and F are non-negative, we arrive at the following general condition that is necessary for the evolution equations
to become locally elliptic (we exclude the boundaries where (4.22) gives two equal and real eigenvalues)

0 < δF < 1. (4.31)

The inequality (4.30) in turn predicts that any solitary wave satisfying 1 > S > 1 − 21/3 ≈ −0.26, can potentially
have parts where the equations are locally elliptic and other parts where they are locally hyperbolic, in addition to
wholly elliptic or hyperbolic. These properties hold for depression as well as elevation waves, and examples of such
mixed behaviour are given in Fig. 6. Figure 6a has Froude number F = 0.65, while Fig. 6b has F = 0.1, the other
parameters being δ = 1, σ = 0.1 (note that α = 1 and ε = 0 here). For F = 0.65, the depression wave exhibits
mixed behaviour as seen in the figure that depicts the elliptic parts in red and the hyperbolic ones in blue. When
F = 0.1, the elevation wave now supports ellipticity where its amplitude is sufficiently large, as seen in Fig. 6b. We
note that if transition takes place in the elevation wave then the depression wave is wholly hyperbolic, and if it takes
place in the depression wave then the positive wave is wholly elliptic. This can be inferred from the monotonicity
of the sufficient condition for ellipticity 1 > S > 1 − 21/3 ≈ −0.26. Of course, exact diagnostics are calculated
directly from the eigenvalues (4.22).

5 Periodic travelling waves

Section 4 is concerned with solitary waves that decay far away. Here, we construct travelling waves of finite spatial
period governed by equations (3.15). We will concentrate on the physical regime of Sect. 4.2.2, i.e. we take α = 1
and ε− = ∞ (i.e. ε = 0) which restricts our analysis to the case of a hydrodynamically passive upper dielectric
region and a perfectly conducting lower fluid (the general case can be analysed in analogous ways and is excluded
for brevity). Looking for travelling waves in a frame ξ = X − cT as before, casts the system (3.15) into

− cSξ − 2�Sξ − 2(1 + S)�ξ = 0, (5.1a)

− c�ξ +
(

− 1

F
+ δ

1

(1 − S)3

)
Sξ − 2��ξ = −σ Sξξξ . (5.1b)
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Fig. 6 Solitary waves that transition from elliptic behaviour (red) to hyperbolic behaviour (blue). Here δ = 1, α = 1, ε = 0, σ =
0.1, D = 0, c = 1. a F = 0.65; b F = 0.1. (Color figure online)

By inspection, solutions to this system can be even, and in what follows we consider solutions that are even about
ξ = 0 (Galilean invariance allows this). For periodic travelling waves, we further require that S(L) = S(−L),
�(L) = �(−L) where 2L is the wavelength, and note that due to the assumed symmetry, we only need to solve
the system on the half domain 0 ≤ ξ ≤ L .

For a given set of parameters F, σ, δ, to solve (5.1), we require 4 boundary conditions, two of which we impose
on S and two on �, both at the points ξ = 0, L . Integrating each of (5.1a) and (5.1b) between 0 and L yields the
conditions

c = 2
(1 + S(L))�(L) − (1 + S(0))�(0)

S(0) − S(L)
, (5.2a)

− σ(Sξξ (L) − Sξξ (0)) = −c(�(L) − �(0)) − 1

F
(S(L) − S(0))

+ δ

2

(
1

(1 − S(L))2 − 1

(1 − S(0))2

)
− (�(L)2 − �(0)2), (5.2b)

which can be thought of as two equations for the unknowns c and L for given physical parameters F, σ, δ, and given
wave and velocity amplitudes, i.e. the four values S(0), S(L),�(0),�(L). Note that not all sets of parameters and
end conditions give rise to physically admissible solutions. The integrals (5.2a)–(5.2b) allow elimination of c and
derivation of a nonlinear relation between the end conditions which we conveniently state as the following quadratic
equation for �(0):

�(0)2
(

1 + 2(1 + S(0))

S(L) − S(0)

)
+ 2�(0)

(1 + S(L))�(L) + (1 + S(0))�(L)

S(0) − S(L)
−

(
1 + 2(1 + S(L))

S(L) − S(0)

)
�(L)2

− 1

F
(S(L) − S(0)) + δ

2

(
1

(1 − S(L))2 − 1

(1 − S(0))2

)
+ σ(Sξξ (L) − Sξξ (0)) = 0. (5.3)

For numerical purposes, it is simpler to specify the spatial period L and think of �(0) as the unknown quantity
to be found as part of the nonlinear two-point boundary value problem. The present system allows for an exact
evaluation of �(0) from (5.3) in contrast to iterations that would be typically required. For real admissible solutions,
we require that a2

2 − 4a1a3 > 0 where equation (5.3) has been represented as a1�(0)2 + a2�(0) + a3 = 0.
The conditions (5.2) give a relationship between the amplitude A = |S(0) − S(L)| and the wave speed c of

the periodic travelling wave solutions. In general, there are two branches of this relationship, giving two different
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Fig. 7 Relationship
between amplitude and
wave speed of periodic
travelling waves with
L = 0.5,
S(L) = �(L) = 0,
F = 0.1, δ = σ = 0.01
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speeds c1 > c2 for a given amplitude. An example when the two waves have equal and opposite speeds is given in
Fig. 7 for parameter values F = 0.1, δ = σ = 0.01. The two branches in this case are symmetric due to the fact
that the choice �(L) = 0 has been made, which implies from (5.3) that the (real) roots for �(0) have equal and
opposite signs. It follows from expression (5.2a) that c has two equal and opposite values as seen in Fig. 7, where in
addition we have fixed the length to L = 1/2 and also took S(L) = 0. Note that the choices S(L) = �(L) = 0 are
natural for the recovery of solitary waves from periodic ones as we see later. The graph in Fig. 7 has been extended
to the y-axis by using the linear dispersion relation:

c = ±
√

2σ
(π

L

)2 + 2

F
− 2δ (5.4)

if |S(0) − S(L)| � 0, and to the x-axis by noting that as c → 0 we have S(0) → −1, i.e the wave touches the
bottom channel wall for waves with zero speed.

While it is necessary to solve the full nonlinear system (5.1) numerically, it is useful to first obtain the linear
solutions analytically and use them in numerical continuation to larger amplitudes. We look for linear travelling
wave solutions in the form:

S(ξ) = 1

2
[S(0) + S(L)] + [S(0) − S(L)] S̃(ξ), (5.5a)

�(ξ) = 1

2
[�(0) + �(L)] + [S(0) − S(L)] �̃(ξ), (5.5b)

where the amplitude |S(0) − S(L)| � 1. Linearising the equations and looking for solutions S̃, �̃ proportional to
cos(πξ/L) yields (note that having fixed the end conditions, the period 2L is an eigenvalue to be determined):

S = 1

2
(S(0) − S(L))cos (πξ/L) + 1

2

(
S(0) + S(L)

)
, (5.6a)

� = −1

2

c + �(0) + �(L)

1 + S(0) + S(L)

(
S(0) − S(L)

)
cos (πξ/L) + 1

2

(
�(0) + �(L)

)
, (5.6b)

where the frequency is given by

(π

L

)2 = 1

σ

⎛

⎜
⎝

(
c + �(0) + �(L)

)c + �(0) + �(L)

1 + S(0) + S(L)
− 1

F
+ δ

(
1 − 1

2 (S(0) + S(L))
)3

⎞

⎟
⎠ . (5.7)

In the results that follow, we fix S(L) = �(L) = 0 as discussed earlier and then construct periodic waves
numerically for given L and amplitude S(0). Typical results for parameter values F = 0.01, δ = 1 and σ = 1, with
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Fig. 8 Periodic travelling
waves as their amplitude
|S(0)| increases (here
S(L) = �(L) = 0). Blue
curve – S(0) = −0.1; red –
S(0) = −0.2; orange –
S(0) = −0.4; purple –
S(0) = −0.8. Other
parameters are F = 0.01,
δ = 1, σ = 1. (Color figure
online)
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Fig. 9 Comparison of a
depression solitary wave of
amplitude 0.1 calculated as
in Sect. 4, with the
corresponding periodic
travelling wave in the long
wavelength limit. Here,
S(L) = �(L) = 0, and the
other parameters are
F = δ = σ = 0.1
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fixed period equal to 2 (i.e. L = 1) are given in Fig. 8. The waves depicted are those that tend to depression solitons
and are generated by selecting S(0) = − 0.1,− 0.2,− 0.4,− 0.8. The smallest amplitude waves are in agreement
with the linear results described above, but as the amplitude increases, we observe convergence to solitary waves.
Such convergence is corroborated further in Fig. 9 for a slightly different set of parameters F = δ = σ = 0.1 that
superimposes the depression solitary wave found using the analysis of Sect. 4. Agreement is seen to be excellent.

6 Stability of periodic and solitary travelling waves

In this section, we consider a linear stability analysis of both the solitary wave solutions derived in Sect. 4 as well
as the periodic travelling waves of Sect. 5. We shall perform this analysis in the case of a hydrodynamically passive
upper fluid (i.e. α = 0) and the lower fluid a perfect conductor (i.e ε = 0) – the analysis can easily be extended to
arbitrary parameters. The non-uniform travelling wave solutions in this case are governed by the coupled equations
(5.1) with α = 1, ε = 0, and we denote them by S(ξ) and �(ξ), recalling that they travel with speed c and
ξ = X − cT . We perturb these solutions so that

S(ξ, T ) = S(ξ) + S′(ξ, T ), �(ξ, T ) = �(ξ) + �′(ξ, T ), (6.1)

where |S′(ξ, T )|, |�′(ξ, T )| � 1, substitute into the governing equations (3.15) and linearise to find

S′
T − cS′

ξ − 2(�S′ + �′S)ξ − 2�′
ξ = 0, (6.2a)
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Fig. 10 Stability spectra of the travelling waves in Fig. 9: a periodic travelling wave, b solitary wave

�′
T − c�′

ξ − 2(��′)ξ − 1

F
S′
ξ + δ

(1 − S)3

(

S′
ξ + 3Sξ S′

1 − S

)

= −σ S′
ξξξ . (6.2b)

We assume that the perturbed solutions are of the form

S′ = eλT eikξ S̃(ξ), �′ = eλT eikξ �̃(ξ), (6.3)

where S̃(ξ) and �̃(ξ) are 2L periodic and the wavenumber 0 ≤ k ≤ π/L allows perturbations that are longer than
2L , e.g. subharmonic. In what follows we take k = 0, i.e. we consider waves with the same wavelength as the basic
period, and use these results with comparisons with corresponding solitary wave stability later. Substituting (6.3)
into (6.2a)–(6.2b) (with k = 0), yields the following eigenvalue problem to determine λ:

c S̃ξ + 2(�ξ S̃ + � S̃ξ + S �̃ξ + Sξ �̃ + �̃ξ ) = λS̃, (6.4a)

c �̃ξ − σ S̃ξξξ + 2(� �̃ξ + �ξ �̃) + 1

F
S̃ξ − δ

(1 − S)3

(

S̃ξ + 3Sξ

1 − S
S̃

)

= λ�̃. (6.4b)

The eigenvalue problem (6.4) is solved numerically after specifying periodic boundary conditions. Finite difference
methods are used, and the system is cast into a matrix eigenvalue problem of the form Ar = λr where r is the
discretisation of S̃, �̃ on the grid.

We begin with the stability of the depression waves shown in Fig. 9, recalling that we have superimposed a
calculated solitary wave along with its large wavelength analogue. We have carried out the stability by using null
conditions far away for the solitary wave profiles, as well as spatially periodic boundary conditions for large enough
periods. The resulting spectra are the same and shown in Fig. 10. It can be seen that all eigenvalues lie on the
imaginary axis, and hence, the waves are neutrally stable. The vertical extent of the spectrum increases as resolution
increases and higher wave numbers enter into the calculation—this is expected due to the dispersive regularisation
provided by surface tension. We also note that according to the criterion (4.30), the waves in Fig. 10 are what we
termed hyperbolic, i.e. the eigenvalues of the accompanying nonlinear flux matrix are real, and this provides an
explanation for the stability found in our computations. In fact, all wholly hyperbolic depression solitary waves
studied were found to be neutrally stable, and hence, criterion (4.30) can be used as a simple rule of thumb to
determine linear stability (albeit to waves with wavelengths at most 2L—modulational stability will be considered
elsewhere). The converse of this rule of thumb also holds: namely, if the wave is locally elliptic, then the spectrum
contains at least one eigenvalue with positive real part and the system is unstable. As all elevation solitary waves
are proven to be at least locally elliptic, these are found to be unstable.
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Fig. 11 Stability spectra of the periodic travelling waves in Fig. 8: a Smaller amplitude S(0) = −0.1, b larger amplitude S(0) = − 0.8
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Fig. 12 Examples of elevation periodic travelling waves and their stability spectra. Top row: F = 0.1, δ = 5, σ = 1; a the profile,
b its spectrum. Bottom row: F = 0.1, δ = 5, σ = 0.1; c the profile, d its spectrum. The waves are unstable – there is an eigenvalue
λ > 0 in both cases
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Fig. 13 Explicit solitary wave in the absence of an electric field having amplitude −1/4—see formulas (54)–(55) in [16]. a The
depression solitary wave. b Its spectrum showing neutral stability. Parameter values are F = c = σ = 1

The effect of increasing the amplitude of periodic depression waves of permanent form was investigated in Fig. 8
for F = 0.01, δ = 1 and σ = 1. For the stability of those waves, in Fig. 11 we give results for the smallest
amplitude wave having Smin = −0.1, and largest amplitude one having Smin = −0.8. The results show that the
smaller wave is neutrally stable, whereas the larger one has one unstable mode with real part ≈ 0.259. We note
that the number of unstable modes increases as the surface tension σ is decreased (not shown) due to the reduced
dispersive regularisation when surface tension is weaker.

Turning to elevation waves next, in general, we find that these are typically more unstable than depression waves
for a given set of parameters and amplitude. The instability behaviour is analogous to that of depression waves,
in the sense that longer waves appear to be more stable that shorter ones having the same amplitude, and larger
amplitude waves are also more unstable. Typical results are included in Fig. 12 for parameters chosen to give a
long waves of period 14 units (essentially solitary), and a shorter wave of period 2 units, both of relatively large
amplitude equal to 0.4. Panels (a) and (b) show the solitary wave and its spectrum, with panels (c) and (d) depicting
the finite-period wave and its instability characteristics. Both of these waves are wholly elliptic according to the
criterion (4.30), and hence, it is not surprising to observe unstable eigenvalues. We note that as the surface tension
parameter σ is increased, the waves become more sinusoidal and also linearly stable (this was confirmed but not
shown for brevity).

Finally, we consider the stability of the non-electrified solitary waves that were reported in [16]. These were
constructed for different parameters but their stability was not investigated. Our computations indicate that all the
solitary waves in [16] are neutrally stable, and we illustrate this for the case α = 1 (upper layer is hydrodynamically
passive). To switch off the field in our model, it is sufficient to take ε = 1 and δ = 0, construct solitary waves as in
Sect. 4.2.1, and study their stability according to the eigenvalue problem (6.4). As noted in [16], depression solitary
waves alone exist, and calculation of the eigenvalues of the flux matrix gives real values only, hence, the waves are
what we termed of hyperbolic type. Their stability is analogous to the ε = 0 case considered in Sect. 4.2.2. The
profile for one of the exact solutions found in [16] and its spectrum, showing neutral stability, are given in Fig. 13
for the set of parameters F = c = σ = 1. The exact explicit solution used here is given by Eqs. (54)–(55) in [16].

7 Conclusions

In this paper, we considered a two-fluid flow in a horizontal channel and allowing for the effects of gravity, electrical
fields, and surface tension. We derived a 2 × 2 system of nonlinear 1-D evolution equations by carrying out a
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fully nonlinear long-wave asymptotic analysis that describes wave amplitudes scaling with the channel thickness.
The conditions under which solitary wave solutions exist were derived in the case of a lighter upper fluid (i.e. a
Rayleigh–Taylor stable regime), and the role of the electric field was elucidated. In the case when the upper fluid
has negligible density (i.e. is hydrodynamically passive), and the lower fluid is a perfect conductor, it was shown
that two solitary waves are always produced, an elevation and a depression wave, having the same speeds. Using the
eigenvalues of the nonlinear flux matrix of the system, all travelling waves were classified to be locally elliptic or
hyperbolic depending on whether the local eigenvalues are complex or real, respectively. The zero surface tension
limit recovers the equations of [5], and the elliptic/hyperbolic diagnosis was extended to more general dielectric
fluids where ε− �= ∞. Periodic travelling waves were also constructed and the relationship between amplitude
and wave speed was investigated, prior to carrying out a linear stability analysis of both classes of non-uniform
solutions. In general, depression solitary and periodic waves were found to be stable whereas elevation ones can
be unstable if the surface tension parameter is not too large. Our results show, as expected that the presence of
locally elliptic regions in the travelling waves produces instability, and a necessary condition for neutral stability
is that the profiles are locally hyperbolic over the whole spatial period. Future directions include the investigation
of disturbances that are longer than the basic period of travelling waves (modulational instabilities), and a more
complete study of shock type solutions involving heteroclinic connections and their stability.
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