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Abstract This paper studies the generation of Tollmien–Schlichting waves by free-stream turbulence in transonic
flow over a half-infinite flat plate with a roughness element using an asymptotic approach. It is assumed that the
Reynolds number (denoted Re) is large, and that the free-stream turbulence is uniform so it can be modelled as
vorticity waves. Close to the plate, a Blasius boundary layer forms at a thickness of O(Re−1/2), and a vorticity
deformation layer is also present with thickness O(Re−1/4). The report shows that there is no mechanism by which
the vorticity waves can penetrate from the vorticity deformation layer into the classical boundary layer; therefore,
a transitional layer is introduced between them in order to prevent a discontinuity in vorticity. The flow in the
interaction region in the vicinity of the roughness element is then analysed using the triple-deck model for transonic
flow. A novel asymptotic expansion is used to analyse the upper deck, which enables a viscous–inviscid interaction
problem to be derived. In order to make analytical progress, the height of the roughness element is assumed to be
small, and from this, we find an explicit formula for the receptivity coefficient of the Tollmien–Schlichting wave
far downstream of the roughness.

Keywords Boundary layer receptivity · Free-stream turbulence · Transonic flow

1 Introduction

Laminar–turbulent transition is a phenomenon which has been studied extensively by researchers for over a century,
beginning with the pioneering experiments of Reynolds in the late nineteenth century. It is an extremely complicated
process, which begins when small perturbations from the free-stream flow penetrate into the boundary layer and
interact with roughness on a body surface, producing Tollmien–Schlichting waves. Tollmien–Schlichting waves are
instability modes that travel downstream of a roughness element; however, they must often travel far downstream
of this roughness before they cause transition to turbulent flow. In quiet flows (such as those seen in aerodynamic
applications), the amplitude of these waves is at first too small to cause transition from laminar to turbulent flow.
However, when the Tollmien–Schlichting waves grow in amplitude in the boundary layer, they eventually produce
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nonlinear effects which are quickly followed by a transition to turbulent flow. The study of laminar–turbulent
transition met a major obstacle when it was found that the transition would not necessarily take place at the same
point in two experiments which used the same principal similarity parameters. For example, a model of an aircraft
wing tested in different wind tunnels, with the same Mach number and Reynolds number of flow, would have
different points at which the flow changed from laminar to turbulent.

Receptivity theory was introduced in order to account for this discrepancy, which is mostly due to the difference
in perturbations present in the oncoming flow. Its aims are to describe the generation and propagation of Tollmien–
Schlichting waves in the boundary layer, as well as to predict the point at which the amplitude becomes large enough
to cause laminar–turbulent transition. In order to do this, it is necessary to identify the external perturbations which
penetrate into the boundary layer and the external perturbations that do not. The objective of experimental works
such as those performed by [1] was to study different types of perturbations and find which respective category
each fell into. Examples of external perturbations that do penetrate into the boundary layer include acoustic waves;
free-stream turbulence; and entropy waves. In this paper, Tollmien–Schlichting waves generated by a combination
of free-stream turbulence and wall roughness are studied.

The effect of external acoustic noise on Tollmien–Schlichting wave generation in the boundary layer has been
extensively studied for the past 40 years, beginning with [2,3]. However, neither of these papers predicted that
Tollmien–Schlichting waves could be effectively produced by acoustic waves. Their work was extended indepen-
dently by [4,5], who demonstrated that the strict resonance conditions, which have to be satisfied in order for
perturbations to penetrate into the boundary layer and, therefore, generate Tollmien–Schlichting waves, of [6] can
be applied to receptivity theory. In simple mechanical systems, resonance conditions are often easy to satisfy; for
example, for a simple spring system, the only resonance condition is that the frequency of external forcing is the
same as the natural frequency. For Tollmien–Schlichting waves, however, we require both the frequency and the
wave number of external perturbations to match those of the natural oscillations in the boundary layer. References
[4,5] considered incompressible flow, and found that in order for both resonance conditions to be satisfied in the
presence of acoustic waves, the frequency of the waves had to be of O(Re−1/4) and that wall roughness had to
be introduced; otherwise, the wavelength of the perturbation was too large. Under these conditions, the amplitude
of Tollmien–Schlichting waves was calculated. More recently, [7] studied the generation of Tollmien–Schlichting
waves by acoustic noise in compressible transonic flows, using the triple-deck model of [8,9].

The effect of free-stream turbulence on instabilities arising in the boundary layer has also been the subject of
investigation. Reference [10] considered how uniform free-stream turbulence, taking the form of vorticity waves,
could penetrate into the boundary layer in incompressible flow. The vorticity waves that form the uniform turbulence
can also be thought of as convective gusts. These do not automatically satisfy the impermeability condition, which
led Hunt and Graham to introduce a new ‘vorticity deformation layer’ of thickness O(Re−1/4). Further work by
[11] analysed the effect of free-stream turbulence on the boundary layer, and concluded that vorticity waves do not
penetrate far enough into the boundary layer to generate Tollmien–Schlichting waves. However, [12] demonstrated
that this is not the case, despite the fact that pressure perturbations do not penetrate into the boundary layer. The
authors introduced vorticity waves to incompressible flow over a half-infinite flat plate with roughness and solved
the resulting viscous–inviscid interaction problem to find the amplitude of Tollmien–Schlichting waves produced.

The scope of the present study is to extend the analysis of [12] to transonic flow. Free-stream turbulence will
be assumed to be uniform and, therefore, modelled by sinusoidal vorticity waves. Solutions to the Navier–Stokes
equations will first be sought upstream of the roughness element where the main regions to be studied are the
unperturbed flow region, the vorticity deformation region, and the classical boundary layer. Due to the lack of
pressure perturbations outside of the boundary layer, it is necessary to introduce a transition layer in which vorticity
waves decay in order to prevent a discontinuity in vorticity. Following this, the flow in the interaction region forming
in the vicinity of the roughness will be studied. To accurately model the flow in the neighbourhood of the roughness,
the triple-deck model with scalings given by [8,9] will be used. The main difficulty is in the upper tier of the triple-
deck structure, where the leading order perturbations equations appear to be degenerate, and in order to deduce the
viscous-interaction problem for pressure higher-order terms have to be considered. To make analytic progress, we
then assume that the roughness height is small, which is justified physically when considering the vertical extent of
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Fig. 1 Schematic of flow regime

roughness elements found on aircraft wings. Solving the resulting linearised equations will enable an expression to
be found for the amplitude of the Tollmien–Schlichting waves generated far downstream of the roughness element,
at which point the objective of the current paper will have been met.

2 Problem formulation

Consider an ideal gas flow over a flat plate aligned with the free stream velocity. We assume that in the flow, there
exist small amplitude vorticity waves (uniform free-stream turbulence). In addition, we shall have a roughness
element on the flat plate a distant L from the leading edge of said plate. Placing the origin of our coordinate axes
at the leading edge of the plate, it is natural to use (x̂ , ŷ) as our coordinates. A schematic of the flow regime can be
found in Fig. 1. We shall assume that the flow is two dimensional and that the body force is negligible. We define
(û, v̂) as the velocity vector, p̂ the pressure, ρ̂ the density, ĥ the enthalpy, and μ̂ the viscosity coefficient. We denote
the free-stream velocity as U∞, and the free-stream pressure, density, and viscosity coefficient as p∞, ρ∞, and μ∞,
respectively. In order to non-dimensionalise the compressible Navier–Stokes equations, we introduce the following
variables:

t̂ = L

U∞
t, x̂ = Lx, ŷ = Ly, û = U∞u, v̂ = U∞v,

ρ̂ = ρ∞ρ, p̂ = p∞ + ρ∞U 2∞ p, μ̂ = μ∞μ.

(2.1)

Substituting these new variables back into our dimensional Navier–Stokes equations gives us the following non-
dimensional set of equations:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ 1

Re

(
∂

∂x

[
μ

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)]
+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)])
, (2.2a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ 1

Re

(
∂

∂y

[
μ

(
4

3

∂v

∂y
− 2

3

∂u

∂x

)]
+ ∂

∂x

[
μ

(
∂u

∂y
+ ∂v

∂x

)])
, (2.2b)

ρ

(
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

)
= ∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ 1

Re

[
1

Pr

(
∂

∂x

(
μ

∂h

∂x

)
+ ∂

∂y

(
μ

∂h

∂y

))

+ μ

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
∂u

∂x
+ μ

(
4

3

∂v

∂y
− 2

3

∂u

∂x

)
∂v

∂y
+ μ

(
∂u

∂y
+ ∂v

∂x

)2 ]
,

(2.2c)
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∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0, (2.2d)

h = 1

(γ − 1)M2∞
1

ρ
+ γ

γ − 1

p

ρ
. (2.2e)

Here, we have defined the Reynolds number (Re) and the free-stream Mach number (M∞) as follows:

Re = ρ∞U∞L

μ∞
, M∞ = U∞

a∞
, (2.3)

respectively, where a∞ = √
(γ p∞)/ρ∞ is the speed of sound in the undisturbed flow upstream of the plate. In the

analysis that follows, we will take the limit Re → ∞ and keep the Mach number as a constant which is close to 1.

3 Flow upstream of the roughness element

3.1 Free-stream flow (region 1)

First, we shall consider the region far away from the plate (and upstream of the roughness). We look for solutions
to the Navier–Stokes equations of the form

u = 1 + εu1(x, y, t), v = εv1(x, y, t), ρ = 1 + ερ1(x, y, t),

p = εp1(x, y, t), h = 1

(γ − 1)M2∞
+ εh1(x, y, t),

(3.1)

where ε is a small parameter. Substituting these asymptotic expansions into the Navier–Stokes equations, we obtain

∂u1

∂t
+ ∂u1

∂x
= −∂p1

∂x
, (3.2a)

∂v1

∂t
+ ∂v1

∂x
= −∂p1

∂y
, (3.2b)

∂h1

∂t
+ ∂h1

∂x
= ∂p1

∂t
+ ∂p1

∂x
, (3.2c)

∂ρ1

∂t
+ ∂ρ1

∂x
+ ∂u1

∂x
+ ∂v1

∂y
= 0, (3.2d)

h1 = − 1

(γ − 1)M2∞
ρ1 + γ

γ − 1
p1. (3.2e)

It is clear that we can immediately eliminate h1 from (3.2c) using (3.2e) giving

∂ρ1

∂t
+ ∂ρ1

∂x
= M2∞

(
∂p1

∂t
+ ∂p1

∂x

)
. (3.3)

We can look for wavelike solutions to this equation and (3.2a, 3.2b, 3.2d) of the form u1(ξ, y), v1(ξ, y), ρ1(ξ, y),
p1(ξ, y) where ξ = x − t . Consequently, we write

u1 = Uei(αξ+βy), v1 = V ei(αξ+βy), ρ1 = Rei(αξ+βy), p1 = Pei(αξ+βy), (3.4)
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where α and β are the wave numbers in the x and y directions, respectively, and U , V , P , and R are constants.
Substituting these representations into our equations results in a eigenvalue problem for c. In order for us to obtain
non-trivial solutions, we require either (i) U = V = P = 0, R arbitrary or (ii) P = R = 0. Vorticity waves
correspond to the case where R = P = 0, so this is the case we shall be concerned with. We will consider the case
of one harmonic, so we define vorticity as follows:

ω = ∂v1

∂x
− ∂u1

∂y
= ω0ei(αξ+βy) (3.5)

where ω0 the amplitude of the wave. Substituting R = P = 0 into our governing equations, we see that the only
equation not automatically satisfied is

∂u1

∂x
+ ∂v1

∂y
= 0. (3.6)

Combining this with our definition of vorticity, and without loss of generality setting ω0 = 1, we obtain the following
solutions for the velocity components:

u1 = iβ

α2 + β2 ei(αξ+βy), (3.7a)

v1 = − iα

α2 + β2 ei(αξ+βy). (3.7b)

Of course due to Eq. (3.2e), we have that h1 ≡ 0.

3.2 Vorticity deformation layer (region 2)

The work of [10] showed that introducing free-stream turbulence to flow over a flat plate causes a new layer of flow
to be formed at y ∼ O(Re−1/4). With that in mind, we begin conducting analysis of this region by introducing the
scaled variables:

x = Re−1/4x, y = Re−1/4y, t = Re−1/4t. (3.8)

We look for perturbed solutions to the Euler equations of the form:

u = 1 + εu2(x, y, t), v = εv2(x, y, t), ρ = 1 + ερ2(x, y, t),

p = εp2(x, y, t), h = 1

(γ − 1)M2∞
+ εh2(x, y, t).

(3.9)

Eliminating pressure we find that

∂

∂t

(
∂v2

∂x
− ∂u2

∂ y

)
+ ∂

∂x

(
∂v2

∂x
− ∂u2

∂ y

)
= 0. (3.10)

Using this in conjunction with the definition of vorticity, we can see that vorticity does not change but is merely
transported downstream with the mean free-stream velocity. As the vorticity upstream of the plate is given by (3.5),
we can write

∂v2

∂x
− ∂u2

∂ y
= ei(αξ+β y), (3.11)
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where ξ = x − t . This equation suggests that u2 and v2 are functions of ξ and y only. Looking for solutions to the
Euler equations of this form, we find

∂ p2

∂ y
= 0. (3.12)

Taking into account that there are no pressure perturbations in the free stream, we see that p2 = 0. Consequently,
the energy equation becomes

∂h2

∂t
+ ∂h2

∂x
= 0. (3.13)

In the previous section, we found that upstream of the leading edge of the plate h1 = 0. By the above equation, we
must, therefore, have h2 ≡ 0 in the entire vorticity deformation layer, from which we can deduce that ρ2 ≡ 0. The
continuity equation is then reduced to
∂u2

∂x
+ ∂v2

∂ y
= 0. (3.14)

Using this, we can introduce a stream function ψ2 which is found to be

ψ2 = eiαξ (Ceαy + De−αy) + 1

α2 + β2 ei(αξ+β y), (3.15)

where C and D are constants of integration. Therefore, we have

u2 = αeiαξ
(
Ceαy − De−αy

)
+ iβ

α2 + β2 ei(αξ+β y), (3.16a)

v2 = −iαeiαξ
(
Ceαy + De−αy

)
− iα

α2 + β2 ei(αξ+β y). (3.16b)

Clearly, we requireC = 0 otherwise u2 will grow exponentially with y. We can calculate D using the impermeability
condition at the plate from which we can deduce that

D = − 1

α2 + β2 . (3.17)

3.3 Steady boundary layer flow (region 3)

When the y coordinate becomes of order (Re−1/2), a viscous boundary layer forms close to the plate. As there are
no leading order pressure perturbations in the vorticity deformation layer, free-stream turbulence does not penetrate
into the boundary layer. Therefore, the flow in the boundary layer is steady. Assuming that that x remains an
O(1) quantity, and that Y = Re1/2y is an O(1) quantity as Re → ∞, we look for solutions to the compressible
Navier–Stokes equations of the form:

u = U0(x,Y ) + · · · , v = Re− 1
2 V0(x,Y ) + · · · , ρ = ρ0(x,Y ) + · · · ,

p = Re− 1
2 P1(x,Y ) + · · · , h = h0(x,Y ) + · · · , μ = μ0(x,Y ) + · · · .

(3.18)

Substituting these representations into the governing equations and letting Re → ∞, we obtain (to leading order)

ρ0U0
∂U0

∂x
+ ρ0V0

∂U0

∂y
= ∂

∂Y

(
μ0

∂U0

∂Y

)
, (3.19a)
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ρ0U0
∂h0

∂x
+ ρ0V0

∂h0

∂y
= 1

Pr

∂

∂Y

(
μ0

∂h0

∂Y

)
+ μ0

(
∂U0

∂Y

)2

, (3.19b)

∂

∂x
(ρ0U0) + ∂

∂Y
(ρ0V0) = 0, (3.19c)

h0 = 1

(γ − 1)M2∞
1

ρ0
. (3.19d)

The boundary conditions of the system are as follows. At the leading edge of the plate, we have

U0 = 1, h0 = 1

(γ − 1)M2∞
at x = 0, Y ∈ [0,∞). (3.20)

On the surface of the plate, we have the no-slip and impermeability conditions, which are expressed as follows:

U0 = V0 = 0 at Y = 0, x ∈ [0, 1]. (3.21)

The matching condition at the outer edge of the boundary is

U0 = 1, h0 = 1

(γ − 1)M2∞
as Y → ∞, x ∈ [0, 1]. (3.22)

We will also choose a thermally insulated wall, which has a constant temperature. We write this condition as follows:

h0 = hw at Y = 0, x ∈ [0, 1]. (3.23)

Self similar solutions to this system of the variable η = Y/
√
x exist. We seek solutions of the form

U0(x,Y ) = U (η), V0(x .Y ) = 1√
x
V (η), ρ0(x,Y ) = ρ(η),

h0(x,Y ) = h(η), μ0(x,Y ) = μ(η).

(3.24)

In the limit η → ∞, we have the solutions:

U = 1 − B

2(η + A)
e− 1

4 (η+A)2
, ρ = 1, V = −1

2
A, h = 1

(γ − 1)M2∞
+ C

2(η + A)
e− Pr

4 (η+A)2
. (3.25)

where A, B, and C are constants.
In the limit η → 0, we consider the flow in the neighbourhood of the roughness element and Taylor expands our

solutions in this limit around x = 1. We find to leading order

u = λY, V = 0, ρ = ρw, h = hw, μ = μw, (3.26)

where λ is the usual Blasius constant.

3.4 Transition layer (region 4)

Outside of the boundary layer, we can see that there are no pressure perturbations to leading order. As a consequence,
there is no mechanism by which our vorticity waves can penetrate into the boundary layer. However, we cannot
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have a discontinuity in vorticity at the outer edge of the boundary layer. This leads us to introduce a transition region
between the classical boundary layer and the vorticity deformation layer, where the vorticity waves decay. We shall
seek the solution to the Navier–Stokes equations in this region in the form:

u = U4(x,Y ) + εu4(x, ξ ,Y ) + · · · , (3.27a)

v = Re−1/2V4(x,Y ) + εv4(x, ξ ,Y ) + · · · , (3.27b)

h = H4(x,Y ) + σh4(x, ξ ,Y ) + · · · , (3.27c)

ρ = R4(x,Y ) + σρ4(x, ξ ,Y ) + · · · , (3.27d)

μ = μ(x,Y ) + σμ4(x, ξ ,Y ) + · · · , (3.27e)

where we assume that the perturbations of pressure are small enough to be neglected. The perturbations of u and v

are assumed to be of the same order as those in the vorticity deformation layer, and the order of σ is to be found.
The coordinates (x,Y ) are the same as those in the boundary layer, and ξ is as in the vorticity deformation layer.
We define Y through

y = Re−1/2 [
�(Re)

√
x − A

√
x + δ(Re)Y

]
, (3.28)

where we have that as Re → ∞, �(Re) → ∞, δ(Re) → 0. Rearranging for Y , we have

Y = y Re1/2 + A
√
x − �(Re)

√
x

δ(Re)
. (3.29)

Substituting the expansions into the Navier–Stokes equations, we find that

U4 − 1 = − B

2�
e− �2

4 e
− �δY

2
√
x . (3.30)

If this is constant, then the periodic solution in ξ would be a superposition of exponential functions to the power
of Y . This would make it impossible to satisfy both boundary conditions for vorticity at each edge of the transition
layer, so in order to prevent this, we set

�δ = 2. (3.31)

In what follows we will take our leading order expansions U4, V4, ρ4, and μ4 from the outer edge of the Blasius
boundary layer studied in the previous section. To avoid degeneration of the first term in the energy equation, we
will set

Re
1
4
B

2�
e− �2

4 = 1

δ2 . (3.32)

This reduces our equations to

− σ

δ2 e
− Y√

x
∂ρ4

∂ξ
+ ε

δ
Re

1
2
∂v4

∂Y
− ε

δ2
√
x

∂u4

∂Y
− σ

δ2
√
x

∂ρ4

∂Y
= 0, (3.33a)

− σ

δ2 e
− Y√

x
∂h4

∂ξ
+ εv4 Re

1
2
∂h4

∂Y
− σ

δ2
√
x

∂h4

∂Y
= 1

Pr

σ

δ2

∂2h4

∂Y
2 + ε2

δ2

[(
∂u4

∂Y

)2

+ 4

3

(
∂v4

∂Y

)2
]

, (3.33b)

− ε

δ2 e
− Y√

x
∂u4

∂ξ
− ε

δ2
√
x

∂u4

∂Y
+ εv4 Re

1
2
∂U4

∂Y
= ε

δ2

∂2u4

∂Y
2 , (3.33c)
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h4 = − ρ4

(γ − 1)M2∞
. (3.33d)

By the principle of least degeneration, we want to keep as many of the terms in these equations as possible. To this
end, we set

δ = Re− 1
2 , (3.34)

which is consistent with δ → 0 as Re → ∞, as well setting σ = ε. Assuming that the solutions are periodic in ξ

and matching with the perturbations in both the Blasius boundary layer and vorticity deformation layer, we find

u4(ξ ,Y ; x) = eiαξ 1

α − iβ
J0

(
2
√

αx i e
− Y

2
√
x

)
, h4 ≡ 0, ρ4 ≡ 0, (3.35)

where J0 is the zeroth-order Bessel function of the first kind.

4 Flow in the interaction region

In order to analyse the flow around the roughness element, we shall use the same triple-deck structure as [8,9]. We
require a time scale of t = O(Re−2/9) in order for the resonance conditions with Tollmien–Schlichting waves to
be satisfied, and we shall further assume that the Mach number is of the form:

M∞ = 1 + Re−1/9Q∞ (4.1)

where Q∞ is the Kármán–Guderley parameter.

4.1 Lower deck (region 5)

The horizontal extent of the roughness element is assumed to be of the order x = O(Re−1/3), and the vertical extent
of the lower deck is y = O(Re−11/18). We shall, therefore, assume that the shape of the roughness is of the form:

y = Re−11/18F

(
x − 1

Re−1/3

)
. (4.2)

It is natural to introduce re-scaled coordinates (x∗,y5) and time t∗ as follows:

x = 1 + Re−1/3x∗, y = Re−11/18y5, t = Re−2/9t∗. (4.3)

We seek solutions to the Navier–Stokes equations in this region in the form:

u = Re− 1
9 u5(x∗, y5) + · · · + εũ5(x∗, y5, t∗) + · · · , (4.4a)

v = Re− 7
18 v5(x∗, y5) + · · · + ε Re− 5

18 ṽ5(x∗, y5, t∗) + · · · , (4.4b)

p = Re− 2
9 p5(x∗, y5) + · · · + ε Re− 1

9 p̃5(x∗, y5, t∗) + · · · , (4.4c)

h = hw + · · · , (4.4d)

ρ = ρw + · · · , (4.4e)

μ = μw + · · · , (4.4f)
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where we assume that close to the roughness element enthalpy, viscosity, and density are constants, and ε << Re−1/9

to prevent the expansion becoming disordered. The first terms in these expansions correspond to the steady flow
solution, whereas those that are O(ε) are due to time-dependent perturbations. Substituting these expansions into
the non-dimensional Navier–Stokes equations yields to O(1):

ρw

(
u5

∂u5

∂x∗
+ v5

∂u5

∂y5

)
= −∂p5

∂x∗
+ μw

∂2u5

∂y2
5

, (4.5a)

∂p5

∂y5
= 0, (4.5b)

∂u5

∂x∗
+ ∂v5

∂y5
= 0. (4.5c)

Our boundary conditions for these equations come from our no-slip conditions on the roughness element, and
matching u with flow upstream of the roughness as x∗ → −∞. These are

u5 = v5 = 0 at y5 = F(x∗), (4.6a)

u5 = λy5 as x∗ → −∞. (4.6b)

Clearly, we can see that the pressure p5 does not change across the lower deck with respect to the y-direction. Using
the continuity equation we find that in the limit y5 → ∞

u5 = λy5 + A∗, v5 = −dA∗
dx∗

y5, (4.7)

where the function A∗ is still to be found. We can perform a similar analysis on the O(ε) terms in our expansions.
The boundary conditions for this new problem are

ũ5 = ṽ5 = 0 at y5 = F(x∗), (4.8a)

ũ5 = 0 as x∗ → −∞. (4.8b)

Substituting into the Navier–Stokes equations, we obtain the O(ε) equations:

ρw

(
∂ ũ5

∂t∗
+ u5

∂ ũ5

∂x∗
+ ũ5

∂u5

∂x∗
+ v5

∂ ũ5

∂y5
+ ṽ5

∂u5

∂y5

)
= −∂ p̃5

∂x∗
+ μw

∂2ũ5

∂y2
5

, (4.9a)

∂ p̃5

∂y5
= 0, (4.9b)

∂ ũ5

∂x∗
+ ∂ṽ5

∂y5
= 0. (4.9c)

In this case, we find that as y5 → ∞

ũ5 = Ã∗(x∗, t∗), ṽ5 = −∂ Ã∗
∂x∗

y5. (4.10)

123



The generation of Tollmien–Schlichting waves Page 11 of 26 1

In order to understand, the physical meanings of A∗ and Ã∗ consider the streamline slope angle θ at the outer edge
of region 5. Taking the limit as y5 → ∞, we have

θ = tan−1 v

u
= tan−1

⎛
⎝−Re− 7

18 dA∗
dx∗ y5 + ε Re− 5

18 ∂ Ã∗
∂x∗ y5

Re− 1
9 (λy5 + A∗) + ε Ã∗

⎞
⎠ ≈ −1

λ

(
Re− 5

18
dA∗
dx∗

+ ε Re− 1
6
∂ Ã∗
∂x∗

)
. (4.11)

Due to this relationship between θ , A∗, and Ã∗ we call A∗ the O(1) displacement function and Ã∗ the O(ε)
displacement function.

4.2 Middle deck (region 6)

The middle deck region is a continuation of the boundary layer upstream of the roughness. As a consequence, it
has vertical extent y = O(Re−1/2) which leads us to re-scale our y-coordinate as follows:

y = Re− 1
2 y6. (4.12)

Relating this to the solution for the lower deck by considering the matching conditions for u and v as y6 → 0, we
can see that in this limit the solution in the middle deck is

u = λy6 + Re− 1
9 A∗(x∗) + · · · + ε Ã∗(x∗, t∗) + · · · , (4.13a)

v = Re− 5
18 y6

dA∗
dx∗

+ · · · + ε Re− 1
6 y6

∂ Ã∗
∂x∗

+ · · · . (4.13b)

Consequently, we shall seek solutions in this region of the form:

u = u6(y6) + Re− 1
9 u∗

6(x∗, y6) + · · · + εũ6(x∗, y6, t∗) + · · · , (4.14a)

v = Re− 5
18 v6(x∗, y6) + · · · ε Re− 1

6 ṽ6(x∗, y6, t∗) + · · · , (4.14b)

p = Re− 2
9 p6(x∗, y6) + · · · ε Re− 1

9 p̃6(x∗, y6, t∗) + · · · , (4.14c)

ρ = ρ60(y6) + Re− 1
9 ρ61(x∗, y6) + · · · + ερ̃6(x∗, y6, t∗) + · · · , (4.14d)

h = h60(y6) + Re− 1
9 h61(x∗, y6) + · · · + εh̃6(x∗, y6, t∗) + · · · , (4.14e)

μ = μ60(y6) + Re− 1
9 μ61(x∗, y6) + · · · + εμ̃6(x∗, y6, t∗) + · · · . (4.14f)

Substituting these expansions into the Navier–Stokes equations and using elimination to find u and v, we find the
streamline slope angle to be

θ = Re− 5
18 K (x∗) + ε Re− 1

6 K̃ (x∗, t∗), (4.15)

where K (x∗), K̃ (x∗, t∗) are unknown functions. As θ has no dependence on y6 we can match this with streamline
slope angle from the lower deck yielding

θ = −1

λ

(
Re− 5

18
dA∗
dx∗

+ ε Re− 1
6
∂ Ã∗
∂x∗

)
. (4.16)
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4.3 Upper deck (region 7)

In order to analyse the upper deck, we are required to re-scale y again. As we have that the vertical extent of the
upper deck is y = O(Re−5/18), we shall introduce a new variable y7 defined as follows:

y = Re− 5
18 y7. (4.17)

We then look for solutions to the Navier–Stokes equations in this region of the form:

u = 1 + Re−2/9ust (x∗, y7) · · · + εuα(t∗) + · · · + εRe−1/9u∗(t∗, x∗, y7) + ε Re−2/9ũ∗(t∗, x∗, y7) + · · · , (4.18a)

v = Re−5/18vst (x∗, y7) + · · · + εRe−1/6v∗(t∗, x∗, y7) + ε Re−5/18ṽ∗(t∗, x∗, y7) + · · · , (4.18b)

p = Re−2/9 pst (x∗, y7) + · · · + εRe−1/9 p∗(t∗, x∗, y7) + ε Re−2/9 p̃∗(t∗, x∗, y7) + · · · , (4.18c)

ρ = 1 + Re−2/9ρst (x∗, y7) + · · · + εRe−1/9ρ∗(t∗, x∗, y7) + εRe−2/9ρ̃∗(t∗, x∗, y7) + · · · , (4.18d)

h = 1

(γ − 1)M2∞
+ Re−2/9hst (x∗, y7) + · · · + εRe−1/9h∗(t∗, x∗, y7) + εRe−2/9h̃∗(t∗, x∗, y∗) + · · · , (4.18e)

where uα is a time-dependent perturbation due to vorticity which is known to be of the form eiαt∗ , and ust , vst , pst ,
ρst , and hst are the solutions in the steady flow. Derivatives of uα will be cancelled out by next order expansions of
the perturbation terms, which have been omitted in the asymptotic expansion of u. Substituting these expansions
into the Navier–Stokes equations, we obtain to O(1):

∂ust
∂x∗

= −∂pst
∂x∗

, (4.19a)

∂vst

∂x∗
= −∂pst

∂y7
, (4.19b)

∂ρst

∂x∗
= ∂pst

∂x∗
, (4.19c)

∂ust
∂x∗

+ ∂ρst

∂x∗
= 0. (4.19d)

Using (4.19c) in (4.19d) and comparing this to (4.19a), we can see that this system is degenerate. It is, therefore,
necessary to retain the next order terms, from which we obtain the equation

2Q∞
∂pst
∂x∗

+ ∂vst

∂y7
= 0. (4.20)

We, therefore, have that the governing equation for pst is given by

2Q∞
∂2 pst
∂x2∗

− ∂2 pst
∂y2

7

= 0. (4.21)

This is accompanied by the boundary condition that the perturbations are expected to decay far away from the
roughness

ust , vst , pst , ρst → 0 as x2∗ + y2
7 → ∞. (4.22)
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We now turn to the unsteady terms in our expansions (4.18). Our O(ε) equations are

∂u∗
∂x∗

= −∂p∗
∂x∗

, (4.23a)

∂v∗
∂x∗

= −∂p∗
∂y7

, (4.23b)

∂p∗
∂x∗

− ∂ρ∗
∂x∗

= 0, (4.23c)

∂u∗
∂x∗

+ ∂ρ∗
∂x∗

= 0. (4.23d)

This system is again degenerate, so it is necessary to consider the next order equations which are

uα

∂ust
∂x∗

+ ∂u∗
∂t∗

+ ∂ ũ∗
∂x∗

= −∂ p̃∗
∂x∗

, (4.24a)

uα

∂vst

∂x∗
+ ∂v∗

∂t∗
+ ∂ṽ∗

∂x∗
= −∂ p̃∗

∂y7
, (4.24b)

uα

∂pst
∂x∗

− uα

∂ρst

∂x∗
+ ∂p∗

∂t∗
− ∂ρ∗

∂t∗
+ ∂ p̃∗

∂x∗
− ∂ρ̃∗

∂x∗
+ 2Q∞

∂ρ∗
∂x∗

+ 2Q∞uα

∂ρst

∂x∗
= 0, (4.24c)

uα

∂ρst

∂x∗
+ ∂ρ∗

∂t∗
+ ∂ρ̃∗

∂x∗
+ ∂ ũ∗

∂x∗
+ ∂v∗

∂y7
= 0. (4.24d)

Making use of Eqs. (4.19) and (4.23), this problem can be reduced to the following equation for the unsteady
pressure perturbation in the upper tier

2Q∞
∂2 p∗
∂x2∗

+ 2
∂2 p∗

∂t∗∂x∗
− ∂2 p∗

∂y2
7

= −2uα

∂2 pst
∂x2∗

(4.25)

and of course, we expect a similar decay of these perturbations as in the O(1) case.
In order to close our viscous-inviscid interaction problem for p∗, we require an additional boundary condition

at y7 = 0 for both steady and unsteady flow. To do this, we consider our streamline slope angle θ for region 6. So
far, we have not considered the continuation of our transition layer into the triple-deck model. However, using a
similar argument to [12], we can see that this is not necessary. The displacement thickness of the boundary layer
has only been affected by the viscous lower deck, where the velocity was of small magnitude in comparison with
other regions. We expect the velocity to be continuous across the transition layer of the triple deck, so it would
be natural for it to be of the same order as the velocity in regions 6 and 7. Therefore, we can reasonably assume
that the streamline slope angle will not be affected by this layer, as it is unaffected by region 6 which has the same
magnitude of velocity and is much thicker. Consequently, the streamline slope angle at the bottom of region 7 is
the same as it is in region 6 so we have

θ = −Re− 5
18

1

λ

(
Re− 5

18
dA∗
dx∗

+ ε Re− 1
6
∂ Ã∗
∂x∗

)
at y7 = 0. (4.26)

From this, we can derive the boundary condition on pst and p∗ at y7 = 0 which are

∂pst
∂y7

= 1

λ

d2A∗
∂x2∗

, (4.27a)
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and
∂p∗
∂y7

= 1

λ

∂2 Ã∗
∂x2∗

at y7 = 0, (4.27b)

respectively. For steady flow, we, therefore, have

2Q∞
∂2 pst
∂x2∗

− ∂2 pst
∂y2

7

= 0, (4.28a)

pst → 0 as x2∗ + y2
7 → ∞, (4.28b)

∂pst
∂y7

= 1

λ

d2A∗
dx2∗

at y7 = 0. (4.28c)

For unsteady perturbations, we have

2Q∞
∂2 p∗
∂x2∗

+ 2
∂2 p∗

∂t∗∂x∗
− ∂2 p∗

∂y2
7

= −2uα

∂2 pst
∂x2∗

., (4.29a)

p∗ → 0 as x2∗ + y2
7 → ∞, (4.29b)

∂p∗
∂y7

= 1

λ

∂2 Ã∗
∂x2∗

at y7 = 0. (4.29c)

5 Linear receptivity

In order to make analytic progress with our systems of equations (both steady and non-steady), we assume that the
height of the roughness is small in comparison to the lower deck. We, therefore, write the equation of the roughness
to be

y = δ f (x) where δ 
 1. (5.1)

Using this assumption, we can linearise our equations for the lower deck. In this region, we, therefore, write the
expansions for our velocities terms and pressure as follows:

u = λy5 + δu′
5(x∗, y5) + · · · + δσ ũ′

5(x∗, y5, t∗) + · · · , (5.2a)

v = δv′
5(x∗, y5) + · · · + δσ ṽ′

5(x∗, y5, t∗) + · · · , (5.2b)

p = hP ′
5(x∗, y5) + · · · + δσ P̃ ′

5(x∗, y5, t∗) + · · · , (5.2c)

where σ is a small parameter. We shall also perform similar expansions for the displacement function A, and upper
deck pressure p of the form:

A = δA′∗(x∗) + · · · + δσ Ã′∗(x∗, t∗) + · · · , (5.3a)

p = δp′
st (x∗, y7) + · · · + δσ p′∗(x∗, t∗) + · · · . (5.3b)

We now substitute these representations into our equations for the lower deck. First, we shall consider the problem
for steady flow.
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5.1 Steady problem

Our linearised equations for steady flow to O(δ) read

ρw

(
λy5

∂u′
5

∂x∗
+ λv′

5

)
= −∂P ′

5

∂x∗
+ μw

∂2u′
5

∂y2
5

, (5.4a)

∂P ′
5

∂y5
= 0, (5.4b)

∂u′
5

∂x∗
+ ∂v′

5

∂y5
= 0. (5.4c)

We also have the boundary conditions:

u′
5 = −λ f (x∗) at y5 = 0, (5.5a)

v′
5 = 0 at y5 = 0, (5.5b)

u′
5 = A′∗ as y5 → ∞, (5.5c)

u′
5 = 0 as x∗ → −∞. (5.5d)

We also need to relate P ′
5 to pst . As the pressure distribution does not change across the middle deck, we can relate

P ′
5 back to the pressure in the lower deck by the equation:

pst |y7=0 = P ′
5. (5.6)

This system of equations will be solved in the usual way of transforming our variables into Fourier space. We define
the Fourier transforms as follows:

(P5, pst ) =
∫ ∞

−∞
e−ikx∗(P ′

5, pst )dx∗. (5.7)

Defining a new variable z = (ik)
1
3 y5, we find the solution for subsonic flow (Q∞ < 0) to be

P5 = |k|√
2|Q∞|

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) − (ik)

1
3 |k|

λμw

√
2|Q∞|

∫ ∞
0 Ai(q

2
3 z′)dz′

, (5.8a)

pst = |k|√
2|Q∞|

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) − (ik)

1
3 |k|

λμw

√
2|Q∞|

∫ ∞
0 Ai(q

2
3 z′)dz′

e−|k|√2|Q∞|y7, (5.8b)

where pst is the Fourier transform of pst , and f is the Fourier transform of the roughness shape. To find the solution
for supersonic flow (Q∞ > 0), we have to take into account the causality condition, which yields the solutions

P5 = ik√
2Q∞

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) + i (ik)

1
3 k

λμw

√
2Q∞

∫ ∞
0 Ai(q

2
3 z′)dz′

, (5.9a)

pst = ik√
2Q∞

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) + i (ik)

1
3 k

λμw

√
2Q∞

∫ ∞
0 Ai(q

2
3 z′)dz′

e−ik
√

2Q∞y7 . (5.9b)
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At this point, we note that the branch cut of (ik)
1
3 in the complex k-plane is chosen in the usual way to be the

positive imaginary semi-axis.

5.2 Unsteady problem

In order to solve our unsteady problem, we consider the terms of O(σδ) in our linearised unsteady lower deck
equations which give

ρw

(
∂ ũ′

5

∂t∗
+ λy5

∂ ũ′
5

∂x∗
+ λṽ′

5

)
= −∂ P̃ ′

5

∂x∗
+ μw

∂2ũ′
5

∂y2
7

, (5.10a)

∂ P̃ ′
5

∂y5
= 0, (5.10b)

∂ ũ′
5

∂x∗
+ ∂ṽ′

5

∂y5
= 0. (5.10c)

The boundary conditions for this problem are

ũ′
5 = ṽ′

5 = 0 at y5 = 0, (5.11a)

ũ′
5 = Ã′∗ as y5 → ∞, (5.11b)

ũ′
5 = 0 as x∗ → −∞. (5.11c)

In order to make analytical progress in finding solutions to these equations, we shall assume that our solutions are
periodic in time, with wavenumber α corresponding to the wavenumber of uα(t). This means we can write them in
the form:

(
ũ′

5, ṽ
′
5, P̃

′
5, p

′∗, Ã′∗
)

= eiαt (uu, vu, Pu, pu, Au) + c·c (5.12)

where the functions on the right-hand side have no time dependence, and c·c denotes the complex conjugate.
Substituting these expressions into (5.10) and (5.11) yields

ρw

(
iαuu + λy5

∂uu
∂x∗

+ λvu

)
= −∂Pu

∂x∗
+ μw

∂2uu
∂y2

7

, (5.13a)

∂Pu
∂y5

= 0, (5.13b)

∂uu
∂x∗

+ ∂vu

∂y5
= 0, (5.13c)

uu = vu = 0 at y5 = 0, (5.13d)

uu = Au as y5 → ∞, (5.13e)

uu = 0 as x∗ → −∞. (5.13f)

Performing the same substitution in the boundary value problem (4.29) derived for the pressure in the upper deck
p∗ gives

2iα
∂pu
∂x∗

+ 2Q∞
∂2 pu
∂x2∗

− ∂2 pu
∂y2

7

= −2
∂2 pst
∂x2∗

, (5.14a)
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pu → 0 as x2∗ + y2
7 → ∞, (5.14b)

∂pu
∂y7

= 1

λ

d2Au

dx2∗
at y7 = 0. (5.14c)

In similar fashion to how we approached the steady problem, we begin by Fourier transforming our variables in x∗,
so that the above problem for pu becomes

d2 pu
dy2

7

+ pu
(

2kα + 2Q∞k2
)

= −2k2 pst , (5.15a)

pu → 0 as y7 → ∞, (5.15b)

dpu
dy7

= −k2

λ
Au at y7 = 0, (5.15c)

where pu and Au are the Fourier transforms of pu and Au , respectively, and pst was found in our analysis of the
steady problem. The solution to this problem of course depends on the nature of flow (i.e. whether it is subsonic or
supersonic) due to the fact that the forcing on the right-hand side of (5.15a) depends on the sign of Q∞. In addition,
as we need to use an inverse Fourier transform to return to physical space, we require a solution for all k. Therefore,
for each sign of Q∞, we have to split our solution into 3 different regions. For Q∞ < 0, we have

1. k < 0, 2kα + 2Q∞k2 < 0;

2. k ∈
(

0,− α
Q∞

)
, 2kα + 2Q∞k2 > 0;

3. k > − α
Q∞ , 2kα + 2Q∞k2 < 0.

For Q∞ > 0, we have

1. k < − α
Q∞ , 2kα + 2Q∞k2 > 0;

2. k ∈
(
− α

Q∞ , 0
)

, 2kα + 2Q∞k2 < 0;

3. k > 0, 2kα + 2Q∞k2 > 0.

We begin by considering the case of subsonic flow.

5.2.1 Subsonic flow

In the case of subsonic flow (Q∞ < 0), the solution to the system (5.15) is

pu =
k2

λ
Au + k

α
K1|k|√2|Q∞|
�

e−�y7 − kK1

α
e−|k|√2|Q∞|y7, (5.16)

where � is

� =

⎧⎪⎪⎨
⎪⎪⎩

i
√

2k2|Q∞| + 2|k|α k < 0,√
2kα − 2k2|Q∞| k ∈

(
0,− α

Q∞

)
,

i
√

2k2|Q∞| − 2kα k > − α
Q∞ ,

(5.17)

and K1 is defined through

K1 = |k|√
2|Q∞|

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) − (ik)

1
3 |k|

λμw

√
2|Q∞|

∫ ∞
0 Ai(q

2
3 z′)dz′

. (5.18)
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Relating Pu to pu using the condition (5.6), we have that

Pu =
k2

λ
Au + k

α
K1|k|√2|Q∞|
�

− k

α
K1. (5.19)

We now return to our linearised lower deck equations. After performing Fourier transforms and eliminating vu
(the Fourier transform of vu) in a similar fashion to the analysis performed for the steady problem, we obtain the
boundary value problem for the linearised lower deck variables in Fourier space

iρw

duu
dy5

(α + λy5k) = μw

d3uu
dy3

5

, (5.20a)

uu = 0 at y5 = 0, (5.20b)

uu = Au as y5 → ∞, (5.20c)

d2uu
dy2

5

= ik

μw

(
k2

λ
Au + k

α
K1|k|√2|Q∞|
�

− k

α
K1

)
at y5 = 0. (5.20d)

We now make the transformations

ζ = λ(ik)
1
3 y5 + ζ0, ζ0 = iα

(ik)
2
3

. (5.21)

At this point, we note that we are required to introduce a branch cut of (ik)
1
3 , which we will again place along the

positive imaginary semi-axis in the k-plane. Our boundary problem for uu is, therefore,

d3uu
dζ 3 − ρw

λμw

ζ
duu
dζ

= 0, (5.22a)

d2uu
dζ 2 = (ik)

1
3

μwλ

(
k2

λ
Au + k

α
K1|k|√2|Q∞|
�

− k

α
K1

)
at ζ = ζ0, (5.22b)

uu = Au as ζ → ∞, (5.22c)

uu = 0 at ζ = ζ0. (5.22d)

The general form of the solution to the ODE above is

duu
dζ

= CAi

(
q

2
3

1 ζ

)
+ DBi

(
q

2
3

1 ζ

)
(5.23)

where q1 =
√

ρw

λμw
, and Ai and Bi are the Airy functions. In order to satisfy (5.22c), we require D = 0; otherwise,

the derivative of uu will be infinite while uu is tending to a finite value which is a contradiction. Differentiating this
solution once and matching it with (5.22b), we have

q
2
3

1 CAi ′
(
q

2
3

1 ζ0

)
= (ik)

1
3

μwλ

(
k2

λ
Au + k

α
K1|k|√2|Q∞|
�

− k

α
K1

)
. (5.24)
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In addition, we can integrate (5.23) and considering (5.22d), we obtain

uu = C
∫ ζ

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′. (5.25)

In the limit ζ → ∞, we can deduce from (5.22c) that

Au = C
∫ ∞

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′. (5.26)

Eliminating C using (5.24), we have that Au can be expressed in the following form:

Au = (ik)
1
3

α

λkK1R1 I1

λ2μwq
2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

, (5.27)

where we have defined the parameters:

R1 = |k|√2|Q∞| − �, I1 =
∫ ∞

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′.

Substituting this into (5.19), we find

Pu =
λ2μwkK1R1q

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
�

α�

(
λ2μwq

2
3

1 Ai ′(q
2
3

1 ζ0)� − (ik)
1
3 k2 I1

) . (5.28)

It is now necessary to return to physical space. Performing an inverse Fourier transform for Pu yields

P̃ ′
5(x∗, t) = eiαt

2π

∫ ∞

−∞

λ2μwkK1R1q
2
3

1 Ai ′
(
q

2
3

1 ζ0

)

α

(
λ2μwq

2
3

1 Ai ′(q
2
3

1 ζ0)� − (ik)
1
3 k2 I1

)eikx∗dk. (5.29)

In order to evaluate this integral, we are going to deform the integration contour into the complex plane. In preparation
for this, we shall evaluate the poles of the integrand. These occur when we have

μwλ2q
2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2

∫ ∞

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′ = 0. (5.30)

This is a dispersion relation for k. In the limit of k → 0, if we assume that ζ0 remains finite (i.e. α ∼ k2/3), then
this equation becomes

Ai ′
(
q

2
3

1 ζ0

)
= 0. (5.31)

It is known that this equation has an infinite number of roots, all lying on the negative real semi-axis of the ζ0-plane.
This suggests that the dispersion relation has an infinite number of roots as well. In order to study the behaviour
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Fig. 2 Behaviour of the first five roots of (5.30) with Q = −1 in both the k-plane and the ζ0-plane

of the first few roots of this equation, it is only necessary to consider the behaviour of roots in the limit k → ∞.
Assuming that ζ0 again remains finite, this is equivalent to solving

∫ ∞

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′ = 0. (5.32)

Similar to Eq. (5.31), this equation has infinite roots. It is known from properties of the Airy function that these
come in complex conjugate pairs and all lie in the negative real half of the ζ0-plane. It can be seen that the first root
of (5.31) behaves differently in the ζ0-plane. As k → ∞, instead of tending to a finite point which is a root of (5.32),
it instead tends to infinity. This root also behaves differently in the k-plane. As α goes from zero to infinity, all other
roots remain in the second quadrant of the k-plane for all α. The first root, however, starts in the second quadrant
and crosses the negative real semi-axis at a critical point k∗ < 0 which has a corresponding critical frequency α∗.
For all α > α∗, this root remains in the third quadrant. This is the root which corresponds to the wavenumber of
the Tollmien–Schlichting wave. Trajectories of the first five roots in both the k and ζ0 planes can be found in Fig.
2, where the root corresponding to the Tollmien–Schlichting wave is in bold.

The process used to calculate the behaviour of the roots as α increased was as follows. First, Eq. (5.30) is written
in terms of ζ0 only, using (5.21). Then, Eq. (5.31) is used to find the position of each root at α = 0. For each
subsequent value of α, the previous value of ζ0 was used as an initial guess, and the dispersion relation was solved
using Newton Iterations.

Returning to (5.29), we deform our contour of integration in the k-plane as shown in Fig. 3. We have had to split
our contours into the regions of k < 0 and k > 0 due to the branch cut we introduced along the positive imaginary
semi-axis. We, therefore, split our integral up in the following way:

P̃ ′
5(x∗, t) = eiαt

2π

(∫ 0

−∞
+

∫ − α
2Q∞

0
+

∫ ∞

− α
2Q∞

) λ2μwkK1R1q
2
3

1 Ai ′
(
q

2
3

1 ζ0

)

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

)eikx∗dk. (5.33)
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Fig. 3 Deformed integration contour for subsonic flow

If we let the radii of the segments shown in Fig. 3 go to infinity then by Jordan’s lemma, we can disregard the
integrals along the arcs. Using Watson’s lemma, we find that

∫
C−

λ2μwkK1R1q
2
3

1 Ai ′
(
q

2
3

1 ζ0

)

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

)eikx∗dk = − 2i f (0)

α
√

2|Q∞|
1

x3∗
, (5.34a)

∫
C+

λ2μwkK1R1q
2
3

1 Ai ′
(
q

2
3

1 ζ0

)
eikx∗

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

)dk = 2i f (0)

α
√

2|Q∞|
1

x3∗
. (5.34b)

As the integrals along Ca and Cb cancel out, by the residue theorem, we find that at large values x , the Tollmien-
Schlichting wave emerges from the perturbation field with

PT S(t, x∗) = �(α, Q∞) f (k1)e
i(αt+k1x) + · · · (5.35)

where � is the receptivity coefficient found to be

�(α, Q∞) =
− 3

α
iλ2μwk1K�R�q

2
3

1 Ai ′
(
q

2
3

1 ζ�

)

2Ai

(
q

2
3

1 ζ�

)
ζ�

k1
C� + 7(ik1)

1
3 k1 I� − 3(2|Q∞|k1+α)

��
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ�

) (5.36)

with the parameters with subscript � defined as follows:

�� =
√

−2k2
1 |Q∞| − 2|k1|α, R� = |k1|

√
2|Q∞| − ��, (5.37)

K� = |k1|√
2|Q∞|

q
2
3 Ai ′(0)

q
2
3 Ai ′(0) − (ik1)

1
3 |k1|

λμw

√
2|Q∞|

∫ ∞
0 Ai(q

2
3 z′)dz′

, (5.38)
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Fig. 4 Subsonic receptivity coefficient modulus and argument

ζ� = (iα)

(ik1)
2
3

, I� =
∫ ∞

ζ�

Ai(q
2
3

1 ζ ′)dζ ′, C�

(
2(ik1)

1
3 k2

1 − λ2μw��q
7
3 ζ�

)
. (5.39)

Here, it is important to note that the receptivity coefficient is a function of the Kármán–Guderley parameter Q∞ and
frequency α only, and does not depend on the roughness shape. Numerical calculations of the receptivity coefficient
can be found in Fig. 4.

5.2.2 Supersonic flow

For supersonic flow, the analysis proceeds in much the same way. The solution to the problem (5.15) in this case is

pu =
k2

λ
Au + i k

2

α
K2

√
2|Q∞|

�
e−�y7 − k

α
K2e−ik

√
2Q∞y7 , (5.40)

where � is now defined to be

� =

⎧⎪⎪⎨
⎪⎪⎩

√
2k2Q∞ − 2|k|α k < − α

Q∞ ,

i
√

2|k|α − 2k2Q∞ k ∈
(
− α

Q∞ , 0
)

,√
2kα + 2k2Q∞ k > 0,

(5.41)

and K2 is

K2 = ik√
2Q∞

f (k)q
2
3 Ai ′(0)

q
2
3 Ai ′(0) + i (ik)

1
3 k

λμw

√
2Q∞

∫ ∞
0 Ai(q

2
3 z′)dz′

. (5.42)

Performing an identical analysis to the subsonic case, we find that for Q∞ > 0

Au = λ(ik)
1
3 kK2R2 I1

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

) , (5.43)
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Fig. 5 Deformed integration contour in the k-plane for supersonic flow

Pu = q
2
3

1 λ2μwAi ′(q
2
3

1 ζ0)kK2R2

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

) , (5.44)

where q1, ζ0, and I1 are the same as in the subsonic case and R2 is defined through

R2 = ik
√

2Q∞ − �. (5.45)

Performing an inverse Fourier transform in order to return back to physical space, we have

P̃ ′
5(t, x∗) = eiαt

2π

∫ ∞

−∞
q

2
3

1 λ2μwAi ′(q
2
3

1 ζ0)kK2R2

α

(
λ2μwq

2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2 I1

)eikx∗dk. (5.46)

This yields the dispersion relation for supersonic flow

λ2μwq
2
3

1 Ai ′
(
q

2
3

1 ζ0

)
� − (ik)

1
3 k2

∫ ∞

ζ0

Ai

(
q

2
3

1 ζ ′
)

dζ ′ = 0. (5.47)

This is nearly identical to the dispersion relation for subsonic flow (see 5.30), except for change in definition of �.
The roots of this equation behave in a similar manner in both the k and ζ0 planes as in the subsonic case. In order to
analyse the integral (5.46), we again split the integral into three regions and deform each line into a contour in the
complex k-plane. The deformed integration contour can be seen in Fig. 5. The behaviour of poles of the integrand
is the same as in the subsonic case. We note that it does not matter which contour contains the root k1. Again, we
can disregard the integral along both arcs in view of Jordan’s Lemma, and making use of Watson’s Lemma, we find
the integrals along C1, C2, and C3 sum to zero at large values of x∗. Therefore, using residue calculus, we have that
for supersonic flow, the Tollmien–Schlichting wave emerges from the perturbation field such that

PT S = �(α, Q∞) f (k1)e
i(αt+k1x∗) + · · · , (5.48)
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Fig. 6 Supersonic receptivity coefficient modulus and argument

where in this case, the receptivity coefficient � is

�(α, Q∞) =
3
α

iλ2μwk1K�R�q
2
3

1 Ai ′(q
2
3

1 ζ�)

2Ai(q
2
3

1 ζ�)
ζ�

k1
C� + 7(ik1)

1
3 k1 I� − 3(2Q∞k1+α)

��
λ2μwq

2
3

1 Ai ′(q
2
3

1 ζ�)

(5.49)

with the coefficients having the subscript � defined through

�� = i
√

2|k1|α − 2k2
1Q∞, R� = ik1

√
2Q∞ − ��, (5.50)

K� = ik1√
2Q∞

q
2
3 Ai ′(0)

q
2
3 Ai ′(0) − i (ik1)

1
3 k1

λμw

√
2Q∞

∫ ∞
0 Ai

(
q

2
3 z′

)
dz′

, (5.51)

ζ� = (iα)

(ik1)
2
3

, I� =
∫ ∞

ζ�

Ai

(
q

2
3

1 ζ ′
)

dζ ′, C� =
(

2(ik1)
1
3 k2

1 − λ2μw��q
7
3 ζ�

)
. (5.52)

While similar to the subsonic case, we note that the receptivity coefficient for supersonic flow is not identical to
(5.36). The results of the numerical calculations for receptivity coefficient in supersonic flow can be found in Fig.
6.

6 Summary

This paper studied the receptivity of the Blasius boundary layer to free-stream turbulence in transonic flow. As the
receptivity analysis is local, it is, therefore, applicable to an arbitrary boundary layer, for example, a wing surface.
We have seen that, unlike acoustic waves, vorticity waves do not produce pressure perturbations to leading order in
the free stream or the vorticity deformation layer. Therefore, the vorticity waves cannot penetrate into the boundary
layer, so the process by which Tollmien–Schlichting waves are generated differs greatly from the acoustic case. In
the present case, Tollmien–Schlichting waves arise due to the interaction between the free-stream turbulence and a
roughness element on the plate surface. In order for this interaction to take place, we required that the strict double
resonance condition associated with Tollmien–Schlichting waves be followed, i.e. the frequency of the vorticity
wave is close to the frequency of the Tollmien–Schlichting wave, and in the Fourier spectrum of the perturbations
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produced by the roughness element is a wave number matching the wave number of the Tollmien–Schlichting wave.
Unlike in the case of the acoustic wave, the interaction of the vorticity wave with steady perturbations (produced
by the roughness element) takes place in the upper tier of the triple-deck structure.

After first non-dimensionalising the governing equations, solutions in the flow upstream of the roughness element
were derived. Due to the lack of leading order pressure perturbations, it was necessary to introduce a transition layer
at the outer edge of the boundary layer in which the velocity perturbations caused by the free-stream turbulence
decayed. The analysis of the boundary layer was, therefore, simple, as there was no need to introduce a Stokes layer
close to the plate as is necessary in the case of acoustic waves.

To analyse the flow around the roughness, we used the scalings corresponding to transonic viscous–invisicid
interaction theory, which enabled equations governing the velocity and pressure distributions in the three regions of
the triple-deck structure to be derived. We note at this point that while the analysis performed on the lower and middle
decks is similar to previous research, the inclusion of free-stream turbulence meant that the asymptotic expansions
of the upper deck were novel. The external perturbations present in this deck interacted with the perturbations
caused by the roughness element to produce the Tollmien–Schlichting wave.

When finding the amplitude of the Tollmien–Schlichting wave, it was necessary to assume that the height of the

roughness element was small compared to LRe− 11
18 in order to make analytic progress. This assumption allowed the

equations for the lower deck of the triple-deck model to be linearised, so the resulting viscous–inviscid interaction
problems could be solved analytically. The behaviour of Tollmien–Schlichting waves far downstream of the rough-
ness element is of primary interest when modelling laminar–turbulent transition as noted in the Introduction. By first
solving the steady problem, and then assuming the unsteady solutions were periodic in time before making use of
Fourier transforms, elementary results from complex analysis, and Watson’s Lemma, a formula for the amplitude of
Tollmien–Schlichting waves in this limit was found, depending only on the frequency of the vorticity wave and the
Kármán–Guderley parameter. It is interesting that unlike the acoustic case studied by [7], the receptivity coefficient
did depend on the sign of the Kármán–Guderley parameter.

To conclude, in this paper, we have derived an explicit equation for the amplitude of Tollmien–Schlichting waves
generated by free-stream turbulence in transonic flow far downstream of roughness. This first required solving the
Navier–Stokes equations in the various regions upstream of the roughness, before introducing the triple-deck model
of [8,9], the use of which allowed the equations governing the flow around the roughness element to be derived. The
receptivity coefficient for both subsonic and supersonic flow were found and calculated numerically, and depended
only on the frequency of the vorticity wave and the Kármán–Guderley parameter.

Of course, the generation of the Tollmien–Schlichting waves can be also studied by means of the direct numerical
simulations of the Navier–Stokes equations. However, a clear advantage of the asymptotic theory presented here
is that it provides an explicit dependence of the amplitude of the Tollmien–Schlichting wave on the shape of the
wall roughness. We see that in order to delay the laminar–turbulent transition, one needs to minimise the Fourier
transform of the wall roughness function at a particular value of the wave number that corresponds to the Tollmien–
Schlichting wave. This result may be directly used to improve the wing design. For example, of particular interest
is a small gap between the nasal retractable section of the wing with the main body of the wing. While it cannot
be avoided without increasing the landing speed of an aircraft, the effect of this gap can be minimised by simply
changing the gap width.
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