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Abstract The method of matched asymptotic expansions is applied to the investigation of transitional separa-
tion bubbles. The problem-specific Reynolds number is assumed to be large and acts as the primary perturbation
parameter. Four subsequent stages can be identified as playing key roles in the characterization of the incipient
laminar–turbulent transition process: due to the action of an adverse pressure gradient, a classical laminar bound-
ary layer is forced to separate marginally (I). Taking into account viscous–inviscid interaction then enables the
description of localized, predominantly steady, reverse flow regions (II). However, certain conditions (e.g. imposed
perturbations) may lead to a finite-time breakdown of the underlying reduced set of equations. The ensuing consid-
eration of even shorter spatio-temporal scales results in the flow being governed by another triple-deck interaction.
This model is capable of both resolving the finite-time singularity and reproducing the spike formation (III) that, as
known from experimental observations and direct numerical simulations, sets in prior to vortex shedding at the rear
of the bubble. Usually, the triple-deck stage again terminates in the form of a finite-time blow-up. The study of this
event gives rise to a noninteracting Euler–Prandtl stage (IV) associated with unsteady separation, where the vortex
wind-up and shedding process takes place. The focus of the present paper lies on the triple-deck stage III and is
twofold: firstly, a comprehensive numerical investigation based on a Chebyshev collocation method is presented.
Secondly, a composite asymptotic model for the regularization of the ill-posed Cauchy problem is developed.
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1 Introduction

The present paper is concerned with the investigation of the early stages of laminar–turbulent transition induced by
localized boundary layer separation. Notably in this regard, the analysis will be approached from the perspective
of high Reynolds number (Re) asymptotics. The mentioned type of transition may be observed e.g. in the flow past
the leading-edge suction side of an airfoil. Here, the angle of attack α is kept almost fixed at a relatively small value
(or may change in a quasi-steady fashion) and the main, predominantly inviscid, part of the flow remains steady
and follows the streamlined body contour. This in various practical applications quite common setting is distinct
from the more complex ‘dynamical stall’ flow phenomenon that manifests itself on an airfoil during rapid, transient
motion in which the angle of attack exceeds the static stall limit value [1,2]. Whereas the latter flow situation
is characterized by the formation of large dynamic stall vortices of size comparable with the chord, associated
massive alterations of the aerodynamic loads (e.g. augmented lift) and stall hysteresis effects, vortical structures in
the present context are small-scaled, remain confined to the thin shear layer adjacent to the body surface and lift is
affected insignificantly only.

There are many possible routes to turbulence. In the present context, one may roughly distinguish between
two: In the first, ‘natural’, scenario, initially two-dimensional instabilities, the so-called Tollmien–Schlichting (TS)
waves, develop in a fully attached laminar boundary layer due to the presence of external disturbances (e.g. sound
waves, surface roughnesses, structure vibrations, freestream turbulence, etc.). The downstream travelling TS waves
gradually grow in amplitude until they break down to form three-dimensional vortical structures and, eventually,
turbulent spots appear. Since this transition mechanism typically is triggered by small perturbations, at least the initial
stage can be described by linear stability theory based on the parallel flow assumption, which is well established
in the literature, see e.g. [3]. A rigorous high Re asymptotic analysis of the TS wave generation process, the so-
called receptivity problem, leads to the conventional triple-deck scalings originally discovered by Stewartson [4],
Stewartson and Williams [5], Neiland [6] and Messiter [7] in completely different contexts, see Goldstein [8,9] and
Ruban [10]. However, a thorough theoretical understanding of the evolution towards full transition via this route is
still lacking.

In contrast to this seemingly ‘slowly’ evolving scenario, the second route, i.e. the one we focus on, starts from a
laminar boundary layer, but on the verge of separation. Whereas separation and turbulence are two different things,
it turns out that separation very greatly enhances the propensity towards the formation of turbulence. Due to the
presence of an internal inflection point in the velocity profile of the separated shear layer, the flow is highly unstable
from the very beginning and inherently requires a nonlinear description to fully resolve the underlying physical
mechanisms. Above all, this pathway to turbulence bypasses the development of TS waves (therefore may be called
‘bypass transition’) and runs through a cascade of characteristic stages with distinct length and time scales which
become progressively shorter [11].

The increased use of high-tenacity materials like carbon-fibre-reinforced composites allows the realization of
relatively thin airfoils with the objective to minimize viscous drag. Their lift coefficient is proportional to the
angle of attack α for α � 1. However, they are prone to the occurrence of a laminar separation bubble (LSB) at
their leading-edge suction side when α exceeds a certain value which still is small. Since LSBs may trigger rapid
transition under certain conditions, their development crucially impacts the drag because the transition location then
‘jumps’ from its usual, ‘natural’ position at the mid to rear section to almost the leading edge of the airfoil. A further
increase of α eventually leads to the entire disintegration of the LSB with the consequence of abrupt and complete
loss of lift (stall) and a substantial gain of drag. These circumstances explain the undiminished research interest in
this phenomenon over more than eighty-five years, cf. the paper of Jones [12], who was the first to discover the
phenomenon of shallow separation bubbles on airfoils experimentally in a wind tunnel facility.

As is well known, in practice high Re flows are turbulent, and hence one can expect that there will be a natural
tendency for structures with small length and short time scales to develop. Scientific observations indicate the
formation of well-defined, coherent vortical structures, the so-called Λ-vortices or ‘rollers’, in the rear region of the
bubble that are convected downstream, see e.g. [13–15], and Fig. 1. Therefore, it is obvious that there is an inherent
unsteady behaviour related to LSBs.
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Fig. 1 Colour visualization of a transitional separation bubble at the bottom wall of a laminar water tunnel: successive snapshots during
a full Λ-vortex generation/disintegration cycle (side view, flow from left to right, characteristic Reynolds number Re ≈ 105). Source
U. Rist & M. Lang, Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

The mentioned structures, of size comparable with the laminar boundary layer thickness, convey the early stage of
the turbulent part of the flow and persist a certain distance downstream of the mean reattachment point until they dis-
integrate into small-scale vortices (the ‘cloudy’ pattern at the top right of Fig. 1) characteristic of the developing tur-
bulence. Again, this laminar–turbulent transition scenario generated by a locally detached shear layer is not yet fully
understood, but it is commonly accepted that the repetitive bursting of a LSB, i.e. the (largely) periodic vortex shed-
ding at its rear has to play a key role insofar as it precedes and initiates rather than follows full transition, see e.g. [16].

The genesis of a rigorous high Re asymptotic framework for the description of (steady, planar) laminar sepa-
ration bubbles dates back to the early 1980s in the course of the vibrant development of triple-deck theory and its
application to fundamental flow problems in those days [17–19]. Considerable efforts were undertaken to extend
the promising approaches with regard to time dependence [20,21], and the third spatial dimension (spanwise direc-
tion), e.g. [22–25]. One of the great challenges in dealing with high-Re flows is their susceptibility not only to
separation but also to instability. Specifically, the nonlinear evolution equations which arise from the asymptotic
analysis typically exhibit stiff behaviour and, even when starting from perfectly smooth initial data, their solutions
may eventually develop singularities [26]. In the present context, the progress was hampered by the occurrence of
difficulties in the sense that the simplified mathematical models resulting from the perturbation approach turned
out to be ‘ill-posed’ [27]. Regularization methods in this regard were not yet known and moreover the computing
power available at that time was still insufficient to solve the occasionally delicate nonlinear evolution equations
numerically. Of course, high-end computing power is available now, and as far as the ill-posedness is concerned,
we believe these difficulties can be overcome as well [28].

From the current asymptotic viewpoint, the bursting process of separation bubbles evolves through a sequence
of stages, Fig. 2. Each of them can be posed as a singular perturbation problem to be solved by application of
matched asymptotic expansions. The involved spatial and temporal scales relevant in each stage and, consequently,
the dominating physical mechanisms appear in a natural way. Most important, the perturbation approach leads to
universally valid results in the form of similarity laws independent of the specific flow under consideration, which,
nevertheless, require numerical treatment. As shown below in more detail, the successive passage of these distinct
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Fig. 2 High Reynolds number asymptotic (layer) structure of incipient laminar–turbulent transition in laminar separation bubbles
(schematic, cf. Fig. 1). Classical laminar boundary layer at the verge of separation (black): inviscid outer flow ©1, viscous region ©2.
Consecutive interactive stages of separation (red) and spike formation (blue), followed by self-induced vortex wind-up (magenta, shifted
to the right for better illustration) accompanied by finite-time blow-up events, here modelled up to the Euler–Prandtl stage. Long-term
objective: linkage to the time-mean two-tiered turbulent boundary layer flow description [30,31], (purple)

stages clearly exhibits features of a developing turbulent boundary layer: the shift of viscous effects to a wall layer
of decreasing thickness and the release of vortices into a detached, predominantly inviscid, rotational region of
increasing thickness. During these early stages of the transition process the overall flow structure, comprising an
outer inviscid flow field and a viscous boundary layer adjacent to the solid wall, is retained and not destroyed by
bubble bursting (as for e.g. in the case of massive, break-away separation, not discussed here).

Section 2 serves to present essential preliminary work regarding the high Re asymptotic description of LSBs in
the perspective of the present approach and to motivate the starting point of our study. Readers who are familiar
with marginal separation theory can skip this chapter and start with page 8 or 9. Section 3 examines and extends
the pivotal work of Elliott and Smith [29] as related to a systematic numerical investigation of the spike formation
stage and its finite-time breakdown. Moreover, a composite asymptotic model is presented in Sect. 4 for the purpose
of resolving the ill-posed Cauchy problem associated with the current triple-deck formulation. The noninteractive
Euler–Prandtl stage which is initiated by the finite-time blow-up of the preceding triple-deck stage is outlined in
Sect. 5. The main findings of the present work are briefly summarized and discussed in Sect. 6 and more detailed
descriptions of the asymptotic layer structure of the triple-deck stage and the applied numerical technique are
provided in Appendices A and B, respectively.

2 From classical to interaction boundary layer theory

Here we briefly outline the current status of how the onset of laminar–turbulent transition associated with localized
boundary layer separation can be described by an asymptotic analysis. To this end the most important scalings,
similarity laws (respective leading-order evolution equations), and main characteristics of each subsequent stage are
summarized and discussed. The fundamental perturbation parameter of the present study is the Reynolds number

Re = ũ∞ L̃

ν̃
� 1, (1)

which is assumed to be large. More precisely, we consider the singular limit problem Re → ∞ of the Navier–Stokes
equations applied to incipient separation and, for the sake of clarity and simplicity, restrict the treatment to planar,
incompressible flows. Extensions of the theory to incorporate (quasi-) three-dimensional flow cases may be found
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in [22,25,32,33]. The inclusion of compressibility effects is treated in [19,34,35] for strictly sub- and/or supersonic
flows and in [36] for transonic flow conditions. Here and below the superscript tilde indicates dimensional quantities
and ũ∞, ν̃ and L̃ denote the freestream velocity, the kinematic viscosity of the fluid and a suitable reference length.
The computational results are most conveniently expressed in terms of the elementary boundary layer characteristics
displacement thickness δ∗ and wall shear stress τw,

δ∗ = Re1/2 δ̃∗

L̃
=

∞∫

0

(
1 − U

uw

)
d ȳ, τw = Re1/2 τ̃w

ρ̃ũ2∞
= ∂U

∂ ȳ

∣∣∣∣
ȳ=0

, (2)

where x = x̃/L̃ , ȳ = Re1/2 ỹ/L̃ , ρ̃ = const, uw(x) and U (x, ȳ) denote the arc length measured from the leading
edge, the usual boundary layer wall-normal coordinate, the density, the prescribed inviscid wall velocity and the
boundary layer velocity profile in streamwise direction which satisfies the matching conditionU → uw as ȳ → ∞.

2.1 Prandtl’s steady boundary layer at the verge of separation (stage I)

A comprehensive presentation of the subsequent stages of the early transition process necessarily includes the
solution of Prandtl’s classical boundary layer equations as a starting point. To this end, the practically important
example of the steady flow past the suction side of an airfoil at various small angles of attack α is considered, Fig. 3.
As can be seen from Fig. 3a, an increase of α causes the wall shear distribution, indicated in blue, to form a local
minimum in a region of adverse pressure gradient conditions (at about 3% of the chord of the examined airfoil).

The distinct value of the control parameter α = αc is characterized by vanishing wall shear stress τw = 0 at a
single point x = x0, referred to as the limiting case of marginal separation (indicated in red). The corresponding
kink in the displacement thickness distribution, Fig. 3b, already indicates a local breakdown of Prandtl’s hierarchical
procedure: in this limit, the pressure correction ∝ Re−1/2 ln |x − x0| due to the displacement effect results in the
asymptotic expansion for the flow ceasing to be uniformly valid. For values of α > αc, the numerical computations
lead to a severe breakdown at xb < x0 in the form of the Goldstein square-root singularity (magenta curves), where
the wall-normal velocity component locally behaves like ∝ Re−1/2(xb − x)−1/2 [37,38]. As shown by Stewartson
[39], viscous–inviscid interaction theory typically is not capable of removing (strong) Goldstein singularities (for
a counterexample see e.g. [40]) and later Sychev [41] concluded that a proper flow description must avoid the
appearance of these strong singularities in general. For instance, free streamline (Helmholtz–Kirchhoff) theory and
the concept of self-induced separation is one possible way out to describe massive flow separation from smooth
surfaces in the limit as Re → ∞, see e.g. [42].

2.2 Marginal separation (stage II)

Here, however, we are not concerned with the latter phenomenon, but rather focus on the weaker singularity in the
limit α → αc, x → x0 of incipient separation: if the local flow description enables the displacement and the thereby
induced pressure to strongly interact on the same level of approximation, a self-consistent asymptotic triple-deck
framework, commonly referred to as the theory of marginal separation, can be set up. It was originally introduced
independently by Ruban [17,18] and Stewartson, Smith and Kaups [19] and later generalized to include temporal
dependence [20,21], and also flow control devices. The pivotal outcome of this research is the fundamental equation

A2 − X2 + Γ = λ

∞∫

X

∂2(A − h)/∂ξ2

(ξ − X)1/2 dξ − γ

X∫

−∞

∂A/∂T + vw

(X − ξ)1/4 dξ (3)

for the displacement function A(X, T ), which is related to the boundary layer characteristics (2) through the local
expansions

δ∗ ∼ δ∗
0(x0) − Re−1/5[c1 A(X, T ) + c2 X ] + · · · , τw ∼ Re−1/5c3 A(X, T ) + · · · . (4)
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(a)

(b)

(a)

(b)

Fig. 3 Steady classical boundary layer flow at the leading edge
LE (suction side) of a specific symmetric airfoil with d = d̃/L̃ =
0.1 relative thickness (airfoil data can be found in Supplemen-
tary online materials) in dependence of the angle of attack α: a
wall shear stress τw, b displacement thickness δ∗ according to (2)
downstream of the front stagnation point

Fig. 4 a Steady wall shear distributions according to (3) for
unforced flow h = vw = 0. Dashed lines: local solutions of clas-
sical boundary layer theory A = √

X2 − Γ , cf. Fig. 3a. b Funda-
mental curve of marginal separation; dashed line: local solution of
classical boundary layer theory (asymptote for Γ → −∞), dot-
ted line: parabola approximation in the vicinity of the bifurcation
point Γ = Γc

Here, X ∝ Re1/5(x − x0) is the local coordinate in streamwise direction, Γ ∝ Re2/5(α − αc) a measure for
the deviation of the control parameter from its limiting value and T ∝ Re−1/20ũ∞ t̃/L̃ is the time. The effect of
external disturbances is incorporated by the quantities h(X, T ) and vw(X, T ), representing the shape of a surface
mounted obstacle1 [44], and the velocity distribution in a suction slot [45], respectively. All quantities have been
nondimensionalized and suitably scaled to represent O(1) quantities, see [43,46] for details. Furthermore, λ and
γ are positive constants. In (4), δ∗

0(x0) represents the value of the displacement thickness according to classical
boundary layer theory in the limit α = αc at x = x0. The values of the constants c1 > 0, c2, c3 > 0 as well as all
other constants of proportionality entering the scalings depend on the specific flow problem under consideration.
Representative candidates of flow problems whose theoretical description also can be condensed into a similarity
law of the form (3) include channel flows with a suction slot or a displacement body at the upper wall [13,15,47],

1 During preparation of this manuscript, Servini, at that time PhD student at the University College London, kindly drew the authors’
attention to an erroneous appearance of the obstacle shape function h in the fundamental equation presented in [43], which was corrected
accordingly in (3).
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smooth backward facing step flows [3], retarded boundary layer flows of dense gases [48,49], sub- or supersonic
flows past flared cylinders [50] and viscous wall jets that are forced to deflect [51].

Comprehensive investigations of (3) for steady as well as unsteady, forced and unforced flows led to the following
important conclusions, see Fig. 4: weak Goldstein singularities, represented by Γ > 0, are regularized by means of
the interaction strategy and may result in localized reverse flow zones characterized by A < 0, whereas for Γ → ∞
no (real) solution can be obtained, reflecting Stewartson’s finding [39]. Consequently, there exists an upper bound
Γc for admissible steady solutions: Γ ∈ (−∞, Γc]. Furthermore, the (steady, unforced flow) solutions, most conve-
niently depicted in the ‘parameter space’ A(X = 0) versus Γ , Fig. 4b, bifurcate three times (at points/curves labelled
c, e and g) and therefore are (multiple) nonunique in the range Γ ∈ [0, Γc) [19,52]. A bifurcation analysis based
on the limit process as Γ − Γc → 0± leads to a reduction of (3) to a nonlinear differential equation of Fisher–KPP
type whose specific characteristics indicate a significant change of the stability behaviour at the bifurcation points
[32,53,54]: upper/lower branch solutions are stable/unstable in general and this allows for the distinction between
short and long separation bubbles (grey toned areas in Fig. 4a represent the stable range), in qualitative agreement
with experimental findings. Moreover, the critical value Γc may effectively be altered by means of suitably chosen
passive flow control devices h(X) and/or vw(X), [43,53]. In case of time-harmonic forcing, the theory reveals what
has been observed numerically as well as experimentally, cf. [55,56]: the higher the forcing frequency of the control
device, the higher the stabilizing effect on the separation bubble, see [57] for details.

The solution of the initial value problem for equation (3) induced by unsteady forcing (h, vw) and appropriate ini-
tial conditions shows the following characteristics: subcritical flows Γ < Γc may remain bounded |A(X, T )| < ∞
or blow up, i.e. develop singularities, within finite time (dependent on device location, forcing amplitude and fre-
quency), whereas supercritical flows Γ > Γc invariably lead to finite-time blow-up(s) [21,57]. These observations,
which essentially rest on the nonuniqueness of the steady two-dimensional base flow and its saddle-node bifurcation
atΓc, Fig. 4b, allow the formulation of a precise vortex shedding criterion: subcritical flows require a certain perturba-
tion amplitude to trigger bubble bursting, i.e. the (repeated) release of a vortex, cf. Fig. 1. In sharp contrast, supercrit-
ical conditions are always accompanied by self-sustained vortex shedding, even in the absence of any perturbations.

As pointed out by Ryzhov and Smith [27], the Cauchy problem associated with (3) is ill-posed, i.e. the solution
(scheme) is prone to short-scale instabilities. However, the study by Braun and Scheichl [28] shows that the appli-
cation of a composite asymptotic model which includes higher order effects (such as e.g. the streamline curvature)
successfully leads to a corresponding regularization.

A distinct feature of bubble bursting and likewise an important ingredient of the laminar–turbulent transition
process is the tendency of the flow to develop progressively shorter scales in time and space. In the present context
we consequently focus on solutions which lead to finite-time singularities since it is solely these which enable the
scale transformations necessary for an asymptotic description. Interestingly, any of the above-mentioned blow-up
solutions ultimately approaches a unique, self-similar structure, entirely independently of the choice of initial data,
below or above critical flow conditions (Γ ≶ Γc), and, if present at all, the type of forcing [58]. The finite-difference
scheme used to compute the spatio-temporal evolution, described in [58], turned out to suppress short-scale insta-
bilities without any specific regularization measures. In the final phase of the calculation, the solution develops
large amplitudes, which become more and more pronounced in a region of decreasingly spatial extent. Eventually,
the numerical results suggest the occurrence of a singularity at a single point X = Xs, at the blow-up time T = Ts

in accordance with the predicted scalings of the terminal structure

A(X, T ) ∼ (Ts − T )−2/3 Â1(X̂) + · · · , X − Xs = (Ts − T )4/9 X̂ , (5)

as X − Xs → 0, Ts − T → 0+ [21]. Here the blow-up profile Â1(X̂) is governed by the homogeneous ordinary
nonlinear integro-differential equation

Â2
1 = λ

∞∫

X̂

Â′′
1

(ξ − X̂)1/2
dξ − 2γ

3

X̂∫

−∞

(
Â1 + 2

3
ξ Â′

1

)
dξ

(X̂ − ξ)1/4
. (6)

Its unique nontrivial solution is depicted in Fig. 5, see also [58].
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3 Spike formation (triple-deck stage III)

As shown by Smith [21], and Elliott and Smith [29], the subsequent stage following the finite-time breakdown of
marginal separation characterized by (5) and (6) is a fully nonlinear, unsteady triple-deck interaction. Its essential
equation, formulated in terms of the stream function ψ(x, y, t), reads

∂2ψ

∂y∂t
+ ∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2 = −
(

1 + ∂P

∂x

)
+ ∂3ψ

∂y3 , (7)

see Appendix A for details. The induced pressure P(x, t) ∼ Re2/7( p̃− p̃∞)/(ρ̃ũ2∞) and the displacement function
A (x, t) are related to each other by the Hilbert transform, i.e. the familiar interaction law for incompressible flows,
according to

P = H

(
∂A

∂x

)
:= 1

π

∞∫

−∞

∂A /∂ξ

x − ξ
dξ. (8)

Moreover, the problem is subject to the no-slip boundary conditions ψ = ∂ψ/∂y = 0 at the solid wall y = 0, the
matching conditions with the main part of the boundary layer

ψ ∼ (y + A )3

6
+

x∫

−∞

∂A

∂t
dξ + 2

3

P

y
+ O(y−2) (9)

as y → ∞ and ψ → y3/6, A , P → 0 as |x | → ∞. Here x ∼ Re2/7 x̃/L̃ , y ∼ Re4/7 ỹ/L̃ and t ∼ Re1/7 t̃ ũ∞/L̃ are
the local coordinates in streamwise direction, wall-normal direction and the time. Again, all quantities have been
suitably scaled to be of O(1), see Appendix A. In the triple-deck stage of the bursting event, the length and time
scales are already rather short, and—in contrast to the conditions before—the induced pressure gradient ∂P/∂x
reaches the same order of magnitude as the imposed (adverse) pressure gradient. Moreover, the local displacement
effect and the action of the wall shear stress (2) become intensified,

δ∗ ∼ δ∗
0(x0) − Re−1/14c4 A (x, t) + · · · , τw ∼ Re−1/14c5

∂2ψ

∂y2

∣∣∣
y=0

+ · · · , (10)

cf. (4). Here, c4 > 0 and c5 > 0 again denote problem specific constants.
Most important, the connection of (7) to the terminal structure of (3) is ensured by specification of the initial (or

equivalently matching) condition

ψ ∼ |t |1/3

(
Ŷ 3

6
+ |t |−7/9 Â

Ŷ 2

2
+ |t |−14/9ψ̂

)
(11a)

with the Hilbert pairs

[ Â, P̂] ∼ [ Â1, p̂1](X̂) + |t |−4/9[ê1, p̂e1 ](X̂) + |t |−7/9[ Â2, p̂2](X̂) + |t |−1[ê2, p̂e2 ](X̂) + · · · (11b)

and

ψ̂ ∼
(

ψ̂2(X̂ , Ŷ ) + Â2
1
Ŷ

2

)
+ |t |−4/9

(
ψ̂e1(X̂ , Ŷ ) + ê1 Â1Ŷ

)

+|t |−7/9

(
ψ̂3(X̂ , Ŷ ) + Â1 Â2Ŷ + Â1

∂ψ̂2

∂Ŷ
+ Â3

1

6

)
+ |t |−1

(
ψ̂e2(X̂ , Ŷ ) + ê2 Â1Ŷ

)
+ · · · (11c)

as t → −∞. Here we have used the scalings x = |t |4/9 X̂ , y = |t |1/9Ŷ , A = |t |−6/9 Â and P = |t |−10/9 P̂ .
For details, consult the investigation of Braun and Scheichl [28], but please note that in (11) a slightly different
formulation of the stream function is used for reasons of the numerical implementation. Substitution of (11) into
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(7) recovers the blow-up structure of the preceding stage in form of the staggered set of boundary layer equations
linearized about the sublayer separation profile Ŷ 3/6,

L ψ̂i := ∂3ψ̂i

∂Ŷ 3
− Ŷ 2

2

∂2ψ̂i

∂ X̂∂Ŷ
+ Ŷ

∂ψ̂i

∂ X̂
= bi , i = 1, 2, . . . , (12)

subject to the adapted no-slip boundary conditions and the matching condition determinable from (9). Here the
leading order term ψ̂1 = Â1Ŷ 2/2 represents the nontrivial eigensolution of the singular operator equation L ψ̂1 =
b1 = 0 which meets all the boundary conditions. Application of the adjoint operator approach and Fredholm’s
alternative as described in [28] to the second-order problem L ψ̂2 = 2

3 Ŷ Â1 + 4
9 X̂ Ŷ Â′

1 + p̂′
1 subject to the no-

slip conditions ψ̂2 = 0, ψ̂2Ŷ = − Â2
1/2 at Ŷ = 0 and the interaction law p̂1 = H ( Â′

1) eventually leads to the

solvability condition (6) which determines the unique blow-up profile Â1(X̂), Figs. 5 and 8a. The presence of the
eigenfunctions ê1 = E1 Â′

1, ê2 = E2( Â1 + 2
3 X̂ Â′

1) with the arbitrarily choosable amplitudes E1, E2 (reflecting
the ‘history’ of the flow, or, in other words, which allows the embedding of the local flow description into a global
one) shows that the spatio-temporal evolution of ψ is not uniquely determined by the local analysis of the flow but,
nevertheless, predictable. A proper start of the triple-deck computations requires the setup of an accurate numerical
approximation of the time derivative term in (7) in the limit as t → −∞. To this end, the particular solution ψ̂2

to (12), chosen such that it remains bounded as Ŷ → ∞, and the associated homogeneous part Â2Ŷ 2/2 is also
determined. The latter of course results from the solvability condition for the third-order problem L ψ̂3 = 13

9 Ŷ Â2 +
4
9 X̂ Ŷ Â′

2 + p̂′
2 + 4

3 ψ̂2Ŷ + 1
9 Ŷ ψ̂2Ŷ Ŷ + 4

9 X̂ψ̂2X̂ Ŷ with ψ̂3 = Â3
1/3, ψ̂3Ŷ = − Â1( Â2 +ψ̂2Ŷ Ŷ ) at Ŷ = 0. Within the scope

of the present study, also the higher order terms ψ̂e1 and ψ̂3 were determined (similarly to ψ̂2), see Figs. 5 and 6a, b.
With these prerequisites at hand we turn to the main objective of the present work, namely the presentation of

our numerical approach for solving the initial value problem (7)–(12).

3.1 Numerical treatment of the triple-deck stage

The numerical method for solving the problem (7)–(12) comprises several components and is structured as follows.
Spatial discretization and differentiation. Initial attempts to approximate the spatial derivatives with a finite-

difference scheme proved to be totally unreliable in terms of accuracy, especially regarding the derivatives of
second and third order in the wall-normal direction. A significant increase in accuracy was achieved by the appli-
cation of a spectral collocation method based on Chebyshev polynomials both in wall-normal and streamwise
direction. The use of (pseudo-)spectral methods for the solution of triple-deck problems, especially in the (non-
linear) flow separation regime, originally goes back to the work of Burggraf and Duck [59], see also [33,60]. We
essentially follow the comfortable differentiation matrices approach introduced by Gajjar [61] for the treatment of
viscous–inviscid interaction problems. To this end, the (semi-)infinite physical domains are mapped to the Cheby-
shev domain s ∈ [−1, 1], see [62,63]. Specifically, any (unknown) field variable f is interpolated by a polynomial
p(s) in Lagrange form, where the basis polynomials � j (s) are represented by the barycentric formula, see the very
instructive article by Berrut and Trefethen [64] for details:

p(s) =
n∑
j=0

� j (s) f j , � j (s) = w j

s − s j

[ n∑
k=0

wk

s − sk

]−1

. (13)

Here f j = p(s j ), s j = − cos( jπ/n) and w j = (−1) j [1 − (δ j0 + δ jn)/2] denote the intrinsic unknowns of
the problem, the n + 1 unequally spaced Gauss–Lobatto grid points (nodes) for the interpolation process to be
well conditioned and the weights with indices j = (0, ..., n), respectively. Furthermore, we make use of the usual
Kronecker delta δi j = 1 when i = j and 0 otherwise.
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(a)

(b)

Fig. 5 Various quantities determining the initial condition (11)
of the triple-deck stage and the asymptotic behaviour of A and
τ ∗

w, (34) in the limit as t → −∞

Fig. 6 Contour plots of the perturbation stream functions
(streamlines) according to (12): a ψ̂2(X̂ , Ŷ ), in increments of
−0.5 (black lines); ×—minimum: ψ̂2(1.872, 2.500) ≈ −6.702.
Grey lines and full circles indicate the computational grid with
m × n = 185 × 93 resolution and η̂ = Ŷ/d(X̂) according
to (16), (22); only every seventh grid line is plotted in wall-
normal direction. b ψ̂3(X̂ , Ŷ ), in increments of −5 and +2
(black lines); ×—minimum: ψ̂3(1.522, 2.244) ≈ −62.97, +—
maximum: ψ̂3(2.796, 0.7227) ≈ 5.161

Spatial differentiation of order m then is easily performed via differentiation matrices whose entries D(m)
i j can

be computed analytically [64], e.g. for the differentiation order m = 1

f ′
i = p′(si ) =

n∑
j=0

D(1)
i j f j , D(1)

i j := �′
j (si ),

D(1)
i j = w j/wi

si − s j
for i �= j, D(1)

i i = −
∑
j �=i

D(1)
i j .

(14)

To minimize the effects of roundoff errors, we follow [65] and compute the higher order differentiation matrix
entries iteratively via

D(m)
i j = m

si − s j

(
w j

wi
D(m−1)
i i − D(m−1)

i j

)
for i �= j, D(m)

i i = −
∑
j �=i

D(m)
i j . (15)
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In the context of numerical schemes involving Chebyshev polynomials the interested reader is referred to a variety
of useful references in the open-source software project Chebfun2 [66–68].

The domain mappings {r, s ∈ [−1, 1]} → {x ∈ (−∞,∞), y ∈ [0,∞)} are accomplished by means of the
nonlinear transformations

x(r) = x∗ + B tan
(πr

2

)
, y(s) = y∗ + C tan

[
π(s + 1)

4
+ (s − 1)

2
arctan

(
y∗

C

)]
, (16)

where x∗, y∗ and B,C denote appropriate origin shifts and positive stretching parameters, respectively; see Fig. 7
and Table 1 for the typical numerical parameter settings. As a consequence, the elements of the differentiation
matrices D (m)

i j in the physical space, e.g. for the wall-normal direction, are then given by application of the chain
rule (Faà di Bruno’s formula)

D (1)
i j = sy D

(1)
i j , D (2)

i j = syy D
(1)
i j + s2

y D
(2)
i j ,D (3)

i j = syyy D
(1)
i j + 3sysyy D(2)

i j + s3
y D

(3)
i j . (17)

Here the subscripts on s denote derivatives with respect to y, e.g.

sy = ds

dy
(si ) = 4C/

[
π + 2 arctan(y∗/C)

]
/
[
C2 + (y(si ) − y∗)2

]
, etc.

Spatial integration. In a similar fashion, a matrix–vector notation is also used for integration, albeit the determi-
nation of the integration weights (matrix entries) requires numerical evaluation in general. Here, the aim is to apply
the above introduced polynomial representation (13) of a field quantity to the Weyl fractional integral operators
appearing e.g. in the equation of the blow-up profile (6). To this end, integration by parts is performed in order to
ensure integrability, i.e.

J (xi ) :=
xi∫

−∞

p̂(ξ) dξ

(xi − ξ)σ
= 1

1 − σ

xi∫

−∞
(xi − ξ)1−σ p̂′(ξ) dξ = 1

1 − σ

ri∫

−1

[xi − ξ(r)]1−σ p′(r) dr.

Here 0 < σ < 1 and sufficient decay p̂(x) ∼ o(|x |σ−1) as x → ±∞ is assumed. Using (13) and the convention
of vanishing values of f at the boundaries, f0 = fn = 0, we finally obtain

J (xi ) =
n−1∑
j=1

Ji j f j , Ji j := 1

1 − σ

ri∫

−1

[xi − ξ(r)]1−σ �′
j (r) dr (18)

with ξ(r) = x(r) according to (16). By analogy,

I (xi ) :=
∞∫

xi

p̂(ξ) dξ

(ξ − xi )σ
=

n−1∑
j=1

Ii j f j , Ii j := 1

σ − 1

1∫

ri

[ξ(r) − xi ]1−σ �′
j (r) dr. (19)

For the Hilbert transform one deduces

H(xi ) := 1

π

∞∫

−∞

p̂(ξ) dξ

xi − ξ
=

n−1∑
j=1

Hi j f j , Hi j := 1

π

1∫

−1

ln |xi − ξ(r)| �′
j (r) dr, (20)

with the symmetry property Hn−i,n− j = −Hi j . The determination of the matrix entries Ji j ,Ii j and Hi j is
performed in a preprocessing step by means of numerical integration (quadrature) routines of the NAG C Library
(Mark 26) suitable for highly oscillatory integrands (d01skc) and which allow for (integrable) singularities at the
user-specified break-points ri (d01slc).

2 Chebfun—open-source package for numerical computing with functions (Matlab based), University of Oxford, http://www.chebfun.
org/.
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Singular parts, similarity properties and temporal discretization. In order to capture the singular behaviour of
ψ as y → ∞, (9), and its similarity properties as x → ±∞ and t → −∞, we write

ψ(x, y, t) = (bd)3

[
1

6

(
η + A

b7d

)3

+ g

]
, A = b−6A, P = b−10P, (21)

where x = b4ξ , y = bd η, t = τ and solve for the (bounded) intrinsic unknowns A(ξ, τ ), P(ξ, τ ) and g(ξ, η, τ )

in a fully implicit manner. The thereby used scaling functions

b(τ ) =
(

1 − τ/2 +
√

1 + τ 2/4

)1/9

, d(ξ) =
(

1 + ξ2
)1/8

(22)

have the properties b ∼ |τ |1/9 as τ → −∞, b ∼ O(1) when τ ∼ O(1) and d ∼ |ξ |1/4 as |ξ | → ∞, d ∼ O(1)

when ξ = O(1). Moreover, the time derivative is replaced by a backward finite-difference approximation of second-
or third-order accuracy such that adaptive time stepping on a mapped domain τ ∈ (−∞,∞) → τ̄ ∈ [−1, 1] is
possible [58],

τ(τ̄ ) = D tan

(
πτ̄

2

)
. (23)

Again, here D > 0 denotes a stretching parameter, typically of O(1), table 1. However, for the asymptotic regime of
large negative times −τ � 1 finite differencing, since derived from truncated Taylor series expansions, is inappropri-
ate and hence the time derivative for the first couple of time steps is computed analytically based on the ‘matching-in-
time’ condition (11). Using the relations ξ = |τ |4/9b−4 X̂ , A = |τ |−6/9b6 Â, etc., cf. (11), one obtains e.g. for A(ξ, τ )

∂A

∂τ
∼ b6

|τ |6/9

[
6

(
1

b

db

dτ
− 1

9τ

)(
Â + 2

3
X̂ Â′

)
+ ˙̂A

]
(24)

as τ → −∞. Here Â′ ∼ Â′
1 + |τ |−4/9ê′

1 + · · · , ˙̂A ∼ −τ−1(4|τ |−4/9ê1/9 + · · · ) and the function values of Â1(X̂),
ê1(X̂), etc. at the temporally fixed grid points ξi (cf. Fig. 7) are determined by means of Chebyshev interpolation
in each time step. A similar relation is applied for the time derivative of g(ξ, η, τ ), see [69] for details.

Algebraic decay. The simple application of the above-introduced differentiation and integration matrices in some
way obfuscates the properties of the underlying interpolation polynomials. If the Chebyshev polynomials Tn(r) of
the first kind and degree n = 0, 1, 2, . . . are combined with the transformation (16) for the streamwise coordinate,
then expanding for large |x | yields

Tn(r(x)) ∼ (±1)n
[

1 ∓ 2n2B

πx
+ 2n2B[(n2 − 1)B ∓ 3πx∗]

3π2x2 + O(x−3)

]
, x → ±∞, (25)

i.e. algebraic decay behaviour with negative integer powers of x . The unknown field quantities displacement func-
tion A, pressure P and perturbation stream function g indeed decay algebraically to zero (or a bounded value) in
the far field, but not necessarily with a negative integer power of the respective coordinate. The quantity concerned,
say f (x), therefore is written as a product [70],

f (x) = f p(x) fa(x), (26)

where f p is the unknown part to be interpolated and a weighting function fa to be specified such that the decay of
f p ∼ O(|x |−k±

) as x → ±∞ is sufficiently strong with k± ∈ N
+. In practice, however, the decay of f may not

be known (exactly) or may change with time. In this case, the specific far-field properties of the weighting function
fa are adjusted by numerical experiments such that satisfactory results are obtained.
Boundary conditions and implementation of equations. After application of (21), the modified no-slip boundary

conditions at the solid wall read
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η = 0 : g = − A3

6d3b21 ,
∂g

∂η
= − A2

2d2b14 . (27a,b)

From the far-field condition (9) it follows that g ∼ g0(ξ, τ ) + g1(ξ, τ )/η + · · · as η → ∞, where

− b
∂A

∂τ
+ 6

db

dτ

(
A + 2

3
ξ

∂A

∂ξ

)
+ b6d2

(
3

dd

dξ
g0 + d

∂g0

∂ξ

)
= 0, (28)

and

g1 = 2P

3d4b14 . (29)

On writing ∂g/∂η = (∂g/∂s)(ds/dη) and using the mapping (16) for the wall-normal coordinate η, one obtains
the exact relation

η → ∞ : P = − 6Cd4b14

[π + 2 arctan(η∗/C)]

∂g

∂s

∣∣∣
s=1

= H

(
∂A

∂ξ

)
(30)

for the interaction pressure P . Here we want to point out that for the first derivative the differentiation matrix D(1)
i j

defined by (14) on the original Chebyshev interval has to be used. For more details see Appendix B, in which a
test example (Blasius boundary layer flow) serves to demonstrate the spectral method on an unbounded domain.
Moreover, in (30) the interaction law (8) is used to eliminate the unknown variable P . Since A and g decay to zero
as x → ±∞, and to account for the elliptic character of the Hilbert transform (8), we set

x = −∞ : g = A = 0, x = ∞ : ∂g

∂r

∣∣∣
r=1

= ∂A

∂r

∣∣∣
r=1

= 0. (31a,b)

The assignment of the individual equations to the grid points (ξi , η j ), i = 0, 1, . . . ,m, j = 0, 1, . . . , n of the com-
putational domain for the determination of the (m + 1) × (n + 2) unknowns displacement function Ai = A(ξi , τ )

and stream function gi j = g(ξi , η j , τ ) at each time step can be seen in Fig. 7. The use of m ≈ 2n has proven
advantageous in practice. Obviously, the equation of motion (7)—in its via (21) transformed version—cannot be
evaluated at the upper edge η → ∞, j = n; instead, the far-field condition (30) is prescribed there. In order
to ensure the fulfilment of the boundary condition (27b), the implementation of (7) is omitted at a more or less
arbitrarily selected vertical position j = om. The entire nonlinear algebraic system of equations is solved in a fully
implicit manner with the NAG3 c05qbc routine in each time step. On the computer platform used (Intel® Xeon®

CPU E5-2680 v3 @ 2.50 GHz, up to 16 threads), the computing time for a single time step with a grid resolution
of m × n = 250 × 125 is initially (i.e. for large negative times) about 180 min, towards the end of the computation
(before the suspected singularity occurs and the scheme no longer converges at all) up to about 450 min with a
maximal memory usage of ∼ 14 GB. The full computation (typically ∼ 40 time steps) for the mentioned resolution
takes approximately 1400 hours CPU time (effectively ∼ 125 hours on our server).

Reliability and consistency checks of the numerical solution. The following quantitative criteria are used to eval-
uate and monitor the quality of the solutions found in each time step. An obvious test is to determine the maximum
absolute values of the residuals (res) of the (transformed and) discretized versions of equation (7) omitted at the
vertical position j = om and of (28) at ξ = ξi , i = 1, 2, . . . ,m − 1, respectively:

R1(τ ) := max{|res(7)(ξi , ηom, τ )|}, R2(τ ) := max{|res(28)(ξi , τ )|}. (32)

Typical temporal evolutions of R1 and R2 for different spatial resolutions are depicted in Figs. 10 and 16 . Suffi-
ciently small values of R1 and R2, say less than ≈ 10−2, are required for an acceptable solution, but the decisive
numerical solution acceptance criterion is derived from the assessment of the decay behaviour of the amplitude

3 The NAG C Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom http://www.nag.com (Mark 26).
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Fig. 7 Computational domain, Gauss–Lobatto grid and allocation of the equations of the triple-deck stage

spectrum of relevant quantities at the high wave number regime. The amplitude spectrum f̆k—i.e. the magnitudes
of the Chebyshev expansion coefficients—of the concerning approximated function f is given by

f̆k = 2

ckn

n∑
j=0

f j
c j

cos

(
jπk

n

)
, k = 0, 1, . . . , n, (33)

where ci = 2 for i = {0, n} and ci = 1 else, see e.g. [71]. An alternative method to efficiently compute the coef-
ficients f̆k is to use the discrete cosine transform (DCT). The selected spatial resolution of the numerical method
(maximum polynomial degreesm, n) is considered satisfactory if the amplitudes of the quantities sought, e.g. Ăk(τ ),
P̆k(τ ), etc., decrease sufficiently with increasing ‘wave numbers’ k; the corresponding quantity is then referred to
as ‘fully resolved’. Typical amplitude spectra are displayed in Figs. 11 and 17 : a resolution that at first is sufficient
to compute the spatio-temporal solution behaviour in the initial phase ultimately always proves to be insufficient
when a blow-up event is emerging.

3.2 Numerical results

A representative numerical solution of (7)–(31) based on the proven parameter settings listed in Table 1 is depicted
in Fig. 8: from (4) it is evident that the blow-up profile Â1 is the starting form as τ → −∞ for both the displacement
function A and the (scaled) wall shear stress τ ∗

w, cf. (10),

A ∼ Â1 + |τ |−4/9ê1 + |τ |−7/9 Â2 + · · · , g ∼ |τ |−14/9 ψ̂2

d3 + · · · ,

τ ∗
w := b6 ∂2ψ

∂y2

∣∣∣
y=0

= A + b7d
∂2g

∂η2

∣∣∣
η=0

,

τ ∗
w ∼ Â1 + |τ |−4/9ê1 + |τ |−7/9

(
Â2 + ∂2ψ̂2

∂Ŷ 2

∣∣∣
Ŷ=0

)
+ · · · .

(34)

As time passes, these quantities deviate from each other, grow in amplitude and finally run into yet another finite-time
blow-up scenario. Please notice that according to (10) the correction to the displacement thickness is proportional
to −A. The thus changed presentation of the results in Fig. 8b renders their interpretation considerably easier. In
particular, the close resemblance between the temporal development of the displacement profile with the spike
formation in the separating streamline visible in the third picture from above in Fig. 1 becomes apparent. Figure 9
shows the corresponding development of instantaneous contours of the stream function for the terminal time steps.

It is important to ask whether every prescribed initial condition (11), which is essentially determined by specify-
ing the amplitude values E1 and E2 of the eigenfunctions ê1 and ê2, respectively, must ultimately lead to a blow-up
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(a)

(b)

(c)

Fig. 8 a Evolution of the displacement function A(ξ, τ ) (blue)
and the scaled wall shear stress τ ∗

w(ξ, τ ) (red) according to
(7)–(31) for τ = −(∞, 357, 58.2, 25.4, 17.0, 13.2, 11.1); each
minimum location of A is denoted by a full circle, its asymp-
totic prediction (35) by a dotted line. b Continuation of (a)
for τ = −(11.1, 10.4, 9.75, 9.26, 8.83). Grey lines depict the
results for τ = −(8.50, 8.38, 8.29) where the used resolution
m × n = 230 × 115 fails to meet the imposed accuracy require-
ments, cf. Figs. 10 and 11. c Corresponding interaction pressure
P(ξ, τ ) (magenta) for τ of (a) and (b)

Fig. 9 Instantaneous contour lines of the stream function
ψ(x, y, t) according to (7) at tl = −(9.75, 9.26, 8.83, 8.50), l =
1, 2, 3, 4, cf. Fig. 8b, c (see the Supplementary material for a video
file). Spatial resolution m × n = 230 × 115; for t4 = −8.50, the
solution no longer meets the accuracy requirements. Isolines:ψ =
(−3,−2,−1,−0.5,−0.2,−0.1,−0.05,−0.01, 0, 1, 2, 5, 10, 20,

50, 100). ×—location (xm , ym) of minimum ψm of ψ at
tl :(xm , ym; ψm) ≈ {(2.10, 3.24 − 2.52), ; (2.06, 3.38; −2.94), ;
(2.02, 3.50; −3.38), (2.36, 3.08; −4.06)}
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Table 1 Standard specification of the numerical parameters (unless otherwise stated)

m n ≈ m/2 om B x∗ C y∗ D E1 E2

100 . . . 250 50 . . . 125 3n/4 0.65 0.9 0.7 0. 1. 1. 1.

Fig. 10 Error indicators R1(τ ) (red) and R2(τ ) (blue) according to (32) for various spatial resolutionsm×n: ♦—120×60, ◦—180×90,
�—230 × 115. Full symbols indicate the upper limit of reliable solutions. Adaptive time step distribution Δτ (green). By means of
(36) estimated blow-up point: xs ≈ 0.34, τs = ts ≈ −7.9 (black dashed line)

Fig. 11 Modulus of the amplitude spectrum (33) of A(ξ, τ ) and P(ξ, τ ) for various spatial resolutions m × n = (120 × 60, 180 ×
90, 230 × 115) and specific time steps τl = −(6366, 566, 17.0, 8.83, 8.65, 8.50, 8.38, 8.29), l = 1, . . . , 8. For better readability, the
lower wavenumber range has been left out for the higher resolutions
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event. To put it the other way round: is it possible to choose E1 and E2 such that the evolution of ψ , A and P
governed by (7) and (8) converges to the trivial (steady) solution ψ = y3/6, A = P = 0 without the occurrence
of any finite-time singularity? In order to gain some insight into this matter, we examine the development of the
minimum of the displacement function Âmin and its location X̂min over time. We start with large negative values of
time τ when (11) is valid. Setting ∂ Â/∂ X̂ = 0 in (11) we find

X̂min ∼ X̂0 − E1|τ |−4/9 − Â′
2(X̂0)

Â′′
1(X̂0)

|τ |−7/9 + E2
1 Â

′′′
1 (X̂0)

2 Â′′
1(X̂0)

|τ |−8/9 − 2E2 X̂0

3
|τ |−9/9 + · · · ,

Âmin ∼ Â1(X̂0) + Â2(X̂0)|τ |−7/9 − E2
1 Â

′′
1(X̂0)

2
|τ |−8/9 + E2 Â1(X̂0)|τ |−9/9 + · · · ,

(35)

as τ → −∞. Here the specific numerical values of the involved quantities are X̂0 ≈ 1.4819, Â1(X̂0) ≈ −3.9662,
Â′

1(X̂0) = 0, Â′′
1(X̂0) ≈ 4.287, Â′′′

1 (X̂0) ≈ 4.8, Â2(X̂0) ≈ −18.660 and Â′
2(X̂0) ≈ 20.10, cf. Figs. 5 and 8a. The

inspection of (35) shows that all expansion coefficients for Âmin up to O(|τ |−8/9) are negative regardless of the
sign of E1. It, therefore, seems impossible that even large negative values of E2 at O(|τ |−1) can change anything
in the pronounced focussing tendency of the displacement function which is dominated by the leading order terms.

Eventually, one can ask whether the inclusion of properly chosen flow control measures (e.g. surface mounted
obstacles of height of O(Re−4/7) and/or suction slots with wall-normal velocity component of O(Re−3/7)) can
avoid the otherwise (most likely) inevitable finite-time breakdown of the triple-deck formulation (7). This task has
not yet been investigated.

3.3 Finite-time blow-up

The currently manageable maximum resolution in space is a limiting factor. It causes the computation to terminate
prior to the entry into the asymptotic blow-up regime, described below, due to the occurrence of spurious oscil-
lations (‘wiggles’). They can definitely be ruled out as being a result of short-scale instabilities, their appearance
has to be attributed to the limited spatial resolution. The finer the grid is chosen, the later the numerical solution
starts to oscillate, in case of short-scale instabilities, the reverse would happen. In particular, inspection of the
modulus of the amplitude spectrum |Ak(τ )|, Fig. 11, shows that the individual three different spatial resolutions
m×n = (120×60, 180×90, 230×115) yield reliable solutions up to τ3. However, up to time τ4 it is only possible
to find an acceptable solution with the finest grid m × n = 230 × 115. To accurately predict the solution behaviour
for τ > τ4 even the finest resolution is no longer sufficient.

Nevertheless, the present results heavily underpin the similarity structure put forward in [29],

ψ(x, y, t) ∼ (ts − t)−3/5ψ̂(x̂, ŷ) + · · · ,

A (x, t) ∼ (ts − t)−1/5 ˆA (x̂) + · · · , P(x, t) ∼ (ts − t)−4/5P̂(x̂) + · · ·
x − xs = (ts − t)3/5 x̂, y = (ts − t)−1/5 ŷ, (36)

as the blow-up point x − xs → 0, ts − t → 0+ is approached. The interaction relation between ˆA and P̂ reads as
in (8) and the blow-up profiles ψ̂, ˆA and P̂ are governed by

2

5

∂ψ̂

∂ ŷ
+ 3

5
x̂

∂2ψ̂

∂ ŷ∂ x̂
− 1

5
ŷ
∂2ψ̂

∂ ŷ2 + ∂ψ̂

∂ ŷ

∂2ψ̂

∂ ŷ∂ x̂
− ∂ψ̂

∂ x̂

∂2ψ̂

∂ ŷ2 = −dP̂

dx̂
, P̂ = H

(
d ˆA

dx̂

)
(37)

subject to ψ̂ ∼ B̂(x̂)ŷ + · · · as ŷ → 0, ψ̂ ∼ (ŷ + ˆA )3/6 + · · · as ŷ → ∞. Interestingly, this terminal structure is
inviscid in nature and therefore a (passive) viscous sublayer is required such that the no-slip condition at the solid
wall can be fulfilled [29]. Introducing the sublayer scalings

ψ(x, y, t) ∼ (ts − t)1/10Ψ̂ (x̂, η̂) + · · · , y ∼ (ts − t)1/2η̂, (38)

one obtains the modified boundary layer equation

2

5

∂Ψ̂

∂η̂
+ 3

5
x̂

∂2Ψ̂

∂η̂∂ x̂
+ 1

2
η̂
∂2Ψ̂

∂η̂2 + ∂Ψ̂

∂η̂

∂2Ψ̂

∂η̂∂ x̂
− ∂Ψ̂

∂ x̂

∂2Ψ̂

∂η̂2 = −dP̂

dx̂
+ ∂3Ψ̂

∂η̂3 (39)
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Fig. 12 Triple-deck blow-up profiles, (37), (39): displacement
function ˆA (x̂), pressure P̂(x̂), slip velocity B̂(x̂) and wall shear
stress τ̂w(x̂) = ∂2Ψ̂ /∂η̂2

∣∣
η̂=0. Two-parameter solution with pre-

scribed values ˆA (0) = 0.6 and ˆA ′(0) = 1.238 [70]

Fig. 13 Triple-deck blow-up profiles: contour lines of a ψ̂(x̂, ŷ)
according to (37); resolution m × n = 80 × 40, isolines
ψ̂ = (−0.5,−0.2,−0.1, 0, 0.1, 0.5, 1, 2, 5, 10, 20), ×... min-
imum (x̂m , ŷm; ψ̂m) ≈ (−1.08, 1.22; −0.873) and b Ψ̂ (x̂, η̂)

according to (39); resolution m × n = 140 × 70, isolines Ψ̂ =
(−0.5,−0.2,−0.1,−0.05,−0.01, 0, 0.05, 0.1, 0.2, 0.5, 1, 2, 3).
Two-parameter solutions with prescribed values ˆA (0) = 0.6 and

ˆA ′(0) = 1.238 [70]

subject to Ψ̂ = Ψ̂η̂ = 0 at η̂ = 0, Ψ̂ ∼ B̂(x̂)η̂ + · · · as η̂ → ∞ [70]. Here the slip velocity B̂ and the pressure P̂

are imposed and related to each other by Bernoulli’s equation −P̂ ′ = 2B̂/5 + 3x̂B̂′/5 + B̂B̂′.
A detailed numerical analysis of (37) and (39) based on a method similar to that described above showed that

the solution to (37) is not unique, but depends on two parameters, say, ˆA (0) and ˆA ′(0) [70]. For each set of the
two parameters for which a solution to (37) could be found, the discretized version of (39) proved to be solvable as
well, see Figs. 12 and 13 for a typical example. Without doubt, the solution depicted in Fig. 12 resembles features
already seen in the final development of the corresponding quantities in Fig. 8b and therefore justifies the scalings
(36). From a physical point of view, the terminal form (36)–(39) of the triple-deck stage indicates the emergence of
a predominantly inviscid region where the crucial dynamics of the bursting process take place. Viscous effects are
then confined to a narrow region adjacent to the solid wall. Nonetheless, a proper overall flow description requires
a compatible viscous sublayer solution to exist.

4 Treatment of the ill-posed Cauchy problem (stage III)

Worth mentioning is the fact that some inconsistencies associated with the proposed Cauchy problem (7), (11) were
discovered in [29], and their repercussions on the solvability in general necessitate a comprehensive discussion. In
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that paper, the occurrence of instabilities was put in the context of an ill-posed Cauchy problem. More precisely,
it was shown that the instability of the velocity field against short-scale disturbances and, entailed by that, the
incorrectness of the problem are a direct consequence of the abnormal dispersion relation governing the linearized
problem in the limit of very high wave numbers k.

To reconsider this issue, we start from the assumption that the solution to (7) near a position x0 and for a short
time interval t − t0 � 1 might be expanded as

ψ = ψ0(y) + ∂ψ

∂x

∣∣∣
x0,t0

(x − x0) + ∂ψ

∂t

∣∣∣
x0,t0

(t − t0) + δψ ψ1(x − x0, y, t − t0) + · · · ,

A = A0 + ∂A

∂x

∣∣∣
x0,t0

(x − x0) + ∂A

∂t

∣∣∣
x0,t0

(t − t0) + δA A1(x − x0, t − t0) + · · · ,

P = P0 + ∂P

∂x

∣∣∣
x0,t0

(x − x0) + ∂P

∂t

∣∣∣
x0,t0

(t − t0) + δP P1(x − x0, t − t0) + · · · ,

(40)

where ψ0(y), A0 and P0 denote the concerning function values at the sampling point (x0, t0). The additional terms
ψ1, A1 and P1 supplementing the Taylor series expansions of the background flow account for the emergence of
possibly unstable waves with amplitudes δψ , δA and δP , respectively, the sizes of which are defined below. For the
description of these short-scale instabilities the distinguished limit is chosen in which a balance between pressure
gradient, local time derivative and convective terms exists. Therefore the necessary scalings

t − t0 = α t1, x − x0 = α3/5 x1, y = α−1/5y1, with α � 1, (41)

can be readily obtained from (36). Here, however, the disturbances are assumed to occur prior to the blow-up
structure and to be smaller in magnitude, implying the order-of-magnitude relationship

δψ = δA α−2/5 = δP α1/5 � α−3/5. (42)

Recalling that ψ0(y) → y3/6 as y → ∞, one then obtains from (7) together with (40) and (41) the linear
leading-order equation

∂2ψ1

∂y1∂t1
+ 1

2
y2

1
∂2ψ1

∂y1∂x1
− y1

∂2ψ1

∂y2
1

= −∂P1

∂x1
, (43)

subject to the conditions ψ1 = B1 y1 as y1 → 0, ψ1 → A1 y2
1/2 as y1 → ∞ and P1 = H (∂A1/∂x1). The

viscous sublayer necessary to bring the slip velocity B1 satisfying ∂B1/∂t1 = −∂P1/∂x1 at rest is of thickness
O(α1/2). However, the latter problem will not be investigated in the following.

Using a Fourier approach in the sense of a stability analysis such that each quantity f is expressed as

f (x1, y1, t1) = eiω1t1F−1
(
f̃ (k1, y1, ω1)

)
= eiω1t1 1√

2π

∫ ∞

−∞
f̃ (k1, y1, ω1) eik1x1 dk1, (44)

where k1 is real, and solving the ordinary differential equation resulting from (43) then yields

ψ̃1 = −
[
z2 arctan(z) + arctan(z) + z

]√
2 ω1 k1

2 ω1
P̃1, z = y1 k1√

2 ω1 k1
, (45)

with
√· understood as the principal value. In the limit as y1 → ∞, ψ̃1 behaves as

ψ̃1 → −π y2
1 |k1|√2 ω1 k1

8 ω2
1

P̃1. (46)

Application of the constraint P1 = H (∂A1/∂x1), i.e. P̃1 = |k1| ˜A1 and the far-field condition stated above gives
4 ω2

1 + πk2
1

√
2 ω1k1 = 0, which, when ω1 and k1 are replaced by their unscaled counterparts ω = α−1ω1 and

k = α−3/5k1, reads
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k → ±∞ : 4 ω2 + π k2
√

2 ωk ∼ 0. (47)

This local dispersion relation for the high-wave-number limit has two complex roots, one is associated with stable
and the other with unstable modes. However, as also pointed out in [29], the growth rates of the thus occurring
short-scale instabilities obey −Im(ω) ∝ |k|5/3 and are therefore not bounded from above. Consequently, the given
Cauchy problem (7), (11) turns out to be ill-posed and has to be regularized. It should be noted that the above
analysis is similar to the triple-deck study of the Blasius boundary layer with respect to the so-called upper-branch
stability, see [72], insofar as, to leading order, viscosity does not enter the dispersion relation. However, for the case
of an attached boundary layer, the leading-order dispersion relation for high wave numbers leads to neutral modes
only, whereas here the situation is obviously completely different.

4.1 Composite asymptotic model

The essence of the above result is that higher order terms in Re−1 not included so far must play a distinctive
role in the evolution of the separation process, given the bounded spectrum the unsteady Navier–Stokes equations
are assumed to have, but which the leading order problem fails to deliver. However, to the authors’ knowledge,
there does not exist a rigorous asymptotic theory for the regularization of otherwise ill-posed Cauchy problems.
In other words, the filtering process entailed by the temporal and spatial scales the asymptotic analysis is based
on may lead to the undesired result that the terms needed for regularizing the Cauchy problem at a certain level
of approximation cannot be incorporated into it. They will thus enter the equations of higher order and, by that,
form the higher order forcing terms. Consequently, the only way to regularize the original problem is to set up a
composite asymptotic model, where these corrections are taken as part of the leading order problem such that they
can effectively contribute to stabilizing its homogeneous solution against short-scale disturbances.

This method has been proven very successful in the past, see e.g. [73] and [74] as well as [75] and the ref-
erences therein, and, in particular, for studying the unsteady marginal separation stage preceding the triple-deck
stage discussed here, see [28]. As revealed in these studies, for higher order asymptotic terms to play the role of
regularization terms, they must at least generate derivatives with respect to t and x of orders that are higher than
those already present in the system. Furthermore, in [28] it was shown that the induced streamwise pressure gradient
in the lower deck which replaces the original one in order to form a composite model equation has to include the
effects of the streamline curvature in the main part of the boundary layer. Surprisingly, a second correction term,
which is due to the unsteady nature of the main deck, was found. Whereas both appear naturally in many triple-deck
problems as higher order contributions to the leading-order pressure gradient, see e.g. [72,76,77], only the one
stemming from the streamline curvature is usually used as regularization term, [73–75,78]. The following analysis
of the triple-deck problem considered here will show that, in principle, the regularization presented in [28] can be
taken over almost unchanged.

Inspection of the far-field condition of the lower-deck solution as y → ∞, see (9), shows that in the main-deck
region MD, where ȳ = O(1), the expansion of the stream function assumes the form

ψ(x̌, ȳ, ť) ∼ ε7ψ00(ȳ) + ε8ψ̄1 + ε9 ψ̄2 + ε10 ψ̄3 + ε11 ψ̄4 + · · · , ε := Re−1/14. (48)

Please notice that in the following, we will use the unscaled versions of the field quantities and length scales,
i.e. those before the affine transformations (72) were applied. Substitution of (48) into the streamwise momentum
equation yields to leading order

L ψ̄1 := ψ ′
00

∂2ψ̄1

∂ x̌∂ ȳ
− ψ ′′

00
∂ψ̄1

∂ x̌
= 0, (49)

and additionally,
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L ψ̄2 = −∂ψ̄1

∂ ȳ

∂2ψ̄1

∂ x̌∂ ȳ
+ ∂2ψ̄1

∂ ȳ2

∂ψ̄1

∂ x̌
,

L ψ̄3 = −∂ψ̄1

∂ ȳ

∂2ψ̄2

∂ x̌∂ ȳ
+ ∂2ψ̄1

∂ ȳ2

∂ψ̄2

∂ x̌
− ∂ψ̄2

∂ ȳ

∂2ψ̄1

∂ x̌∂ ȳ
+ ∂2ψ̄2

∂ ȳ2

∂ψ̄1

∂ x̌
− ∂2ψ̄1

∂ ȳ∂ ť
,

L ψ̄4 = −∂ψ̄1

∂ ȳ

∂2ψ̄3

∂ x̌∂ ȳ
+ ∂2ψ̄1

∂ ȳ2

∂ψ̄3

∂ x̌
− ∂ψ̄2

∂ ȳ

∂2ψ̄2

∂ x̌∂ ȳ
+ ∂2ψ̄2

∂ ȳ2

∂ψ̄2

∂ x̌

−∂ψ̄3

∂ ȳ

∂2ψ̄1

∂ x̌∂ ȳ
+ ∂2ψ̄3

∂ ȳ2

∂ψ̄1

∂ x̌
− p00 + ψ ′′′

00 − ∂P̄

∂ x̌
− ∂2ψ̄2

∂ ȳ∂ ť
.

(50)

The last equation in (50) is interesting insofar in that here, the induced pressure component of leading order enters.
Furthermore, the pressure generated by ψ̄4 in the upper deck and acting in the lower deck will form the component
of O(ε7) in the pressure expansion. This fact suggests a pressure variation in transverse direction to come into play,
since the normal gradient of precisely this term of O(ε7) is comparable in size with the leading-order convective
term in the transverse momentum equation. Consequently, the extended version of the streamwise pressure gradient
in the main deck is given by

∂p

∂ x̌
∼ ε4

(
p00 + ∂P̄

∂ x̌

)
+ ε5 ∂P̄2

∂ x̌
+ ε6 ∂P̄3

∂ x̌
+ ε7 ∂P̄4(x̌, ȳ, ť)

∂ x̌
+ · · · , (51)

where all terms, except for P̄4(x̌, ȳ, ť), are identical to the corresponding components in the lower deck. As already
indicated by the above order-of-magnitude argument, the asymptotic expansion of the transverse momentum equa-
tion then leads to the relationship

ψ ′
00

∂2ψ̄1

∂ x̌2 = ∂P̄4

∂ ȳ
, (52)

revealing the intrusion of a normal pressure gradient in the MD. As will be shown in the following, the last equation
in (50) together with (52) will induce a pressure response in the lower deck that is proportional to the curvature of
the streamlines, i.e. the second derivative of the displacement function ¯A with respect to the streamwise coordinate.

After applying the rules for matching with the lower deck and extracting the singular parts of the resulting
integral, one can write the solutions to (49) and (50) as

∂ψ̄1

∂ x̌
= ψ ′

00

p00

∂ ¯A

∂ x̌
,

∂ψ̄2

∂ x̌
= ψ ′′

00

p2
00

¯A
∂ ¯A

∂ x̌
,

∂ψ̄3

∂ x̌
= ψ ′′′

00

2 p3
00

¯A 2 ∂ ¯A

∂ x̌
+ 1

p00

∂ ¯A

∂ ť
,

∂ψ̄4

∂ x̌
= ψ ′′′′

00

6 p4
00

¯A 3 ∂ ¯A

∂ x̌
+ ψ ′

00

[∫ ȳ

0

(
ψ ′′′

00 − p00

(ψ ′
00)

2 + p00

U 2
00

)
dη − p00

U 2
00

ȳ

]

+ψ ′
00

∂P̄

∂ x̌

[∫ ȳ

0

(
− 1

(ψ ′
00)

2 + 4

p2
00η

4
+ 1

U 2
00

)
dη + 4

3p2
00 ȳ

3
− ȳ

U 2
00

]
. (53)

Please note that for the derivation of these expressions, the expansions ȳ → 0 : ψ00 = p00 ȳ3/6+(2p00 p01/7!)ȳ7 +
· · · and ȳ → ∞ : ψ00 = U00 ȳ+· · · have been used (see e.g. [42]). In addition, the equation for the normal pressure
gradient (52) results in the expression

∂P̄4

∂ x̌
= ∂P̌4(x̌, ť)

∂ x̌
+ 1

p00

∂3 ¯A

∂ x̌3

[∫ ȳ

0

(
(ψ ′

00)
2 −U 2

00

)
dη +U 2

00 ȳ

]
. (54)

Here, P̌4 denotes the induced pressure of order O(ε7) acting in the lower deck, which remains to be determined later.
As mentioned above, the purpose of the analysis presented here is the identification of those pressure terms that

are promising candidates for regularizing the Cauchy problem stated in (7) and (11). Hence, they have to be related
directly to the leading order effects represented by ¯A . For simplicity, therefore, lower-deck displacement functions
of higher order, such as ¯A2, ¯A3 and ¯A4, have been omitted in the main-deck solutions.
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The upper deck (UD) expansions, with the appropriate coordinate normal to the wall now being ŷ = ε−3 ȳ, are

ψ(x̌, ŷ, ť) ∼ ε4 U00 ŷ + ε8 ψ̂1 + ε9 ψ̂2 + ε10 ψ̂3 + ε11 ψ̂4 + · · · , (55)

and

p(x̌, ŷ, ť) ∼ (1 −U 2
00)/2 + ε4 (p00 x̌ + p̂1) + ε5 p̂2 + ε6 p̂3 + ε7 p̂4 + · · · (56)

Here, the quantities p̂ j , j = 1, 2, 3, 4 represent the induced pressure fields, which decay for large distances from the
origin. Through substitution into the momentum equations, it is easy to verify that the terms in the stream function
and the pressure expansions satisfy the linearized Euler equations

Δ p̂1 = 0 with
∂ p̂1

∂ ŷ
= U00

∂2ψ̂1

∂ x̌2 , Δ p̂2 = 0 with
∂ p̂2

∂ ŷ
= U00

∂2ψ̂2

∂ x̌2 ,

Δ p̂3 = 0 with
∂ p̂3

∂ ŷ
= ∂2ψ̂1

∂ x̌∂ ť
+U00

∂2ψ̂3

∂ x̌2 , Δ p̂4 = 0 with
∂ p̂4

∂ ŷ
= ∂2ψ̂2

∂ x̌∂ ť
+U00

∂2ψ̂4

∂ x̌2 ,

(57)

where Δ is the Laplacian ∂2/∂ x̌2 + ∂2/∂ ŷ2.
In general, the solutions for the pressure fields are sought in the semi-infinite half-plane ŷ ≥ 0 with the the

relations for the wall-normal pressure gradients taken as Neumann boundary conditions at ŷ = 0. For the calcu-
lation of the streamwise pressure gradient at ŷ = 0, a simplified approach is possible by exploiting the fact that
the derivatives ∂ p̂ j/∂ ŷ and ∂ p̂ j/∂ x̌ , j = 1, 2, 3, 4 satisfy the Cauchy–Riemann equations such that the complex
functions ∂ p̂ j/∂ ŷ + i ∂ p̂ j/∂ x̌ are analytic. As a consequence, the imaginary part of each function at ŷ = 0 is given
by the Hilbert transform (8) of the real part. Relying on the matching principles and taking into account that apart
from P̄4 the MD pressure terms do not depend on ȳ, one then obtains from (57) and (53)

∂P̄

∂ x̌
= U 2

00

p00
H

(
∂2 ¯A

∂ x̌2

)
,

∂P̄2

∂ x̌
= 0 and

∂P̄3

∂ x̌
= 2

U00

p00
H

(
∂2 ¯A

∂ x̌∂ ť

)
. (58)

As expected, the well-known leading order result for P̄ is recovered. Moreover, the last equations in (57) and (53),
respectively, together with (54) lead to

∂ p̂4

∂ x̌
(x̌, ŷ = 0, ť) = −H

(
∂2P̄

∂ x̌2

)
I1 = ∂P̌4(x̌, ť)

∂ x̌
− U 2

00

p00

∂3 ¯A

∂ x̌3 I2,

I1 =
∫ ∞

0

(
U 2

00

(ψ ′
00)

2 − 4U 2
00

p2
00η

4
− 1

)
dη, I2 =

∫ ∞

0

(
1 − (ψ ′

00)
2

U 2
00

)
dη.

(59)

By invoking the relation H 2
(
f (x̌)

) = − f (x̌), one can infer from (58) and (59) that the fourth component of the
lower-deck pressure gradient is given by

∂P̌4

∂ x̌
= U 2

00

p00

∂3 ¯A

∂ x̌3 (I1 + I2). (60)

Furthermore, it should be noted here that as a matter of course, the singular parts of the solutions (53) and (54) as
ȳ → 0 and ȳ → ∞ match seamlessly with the corresponding counterparts in the lower and upper deck, respectively.

As a consequence, when the terms from (58) and (60) are combined, the affine transformations (72) are reapplied
and ε → p−1/14

00 U 3/14
00 ε is redefined, the induced pressure gradient replacing ∂P/∂x in the lower-deck triple-deck

problem (7) in order to form a composite model equation can be written as

∂Pc

∂x
= H

(
∂2A

∂x2

)
+ 2 ε2 H

(
∂2A

∂x∂t

)
+ ε3 ∂3A

∂x3 C, C = (I1 + I2)

√
p00

U00
> 0. (61)

The constant C has to be calculated from the unperturbed boundary layer separation profile ψ ′
00(ȳ) = U (x0, ȳ)

with ψ ′
00(ȳ → ∞) → U00 and the prescribed pressure gradient p00 > 0 at x = x0. It turns out to be positive in

all cases investigated, e.g. for the Falkner–Skan similarity separation profile characterized by the critical Hartree
parameter β ≈ −0.19884 one obtains C ≈ 0.4170.
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On substituting ∂Pc/∂x into (45) and rescaling k and the angular frequency ω in a very similar way as in (41)
but now with respect to Re such that k = ε−3K and ω = ε−5 Ω/2, we obtain the modified and perturbation
parameter-free dispersion relation for the compound model

Ω2 + πK 2
√

ΩK + πKΩ
√

ΩK − Cπ |K |3√ΩK = 0, (62)

with the last two terms on the left-hand side resulting from the higher order terms in (61). Inspection shows that for
|K | ≥ C−1, the modes associated with both roots become neutral, see Fig. 14, and thus the growth rates −Im(Ω)

are bounded from above. This, in turn, gives good reason to assume that the nonlinear Cauchy problem based on
this corrected model is well posed. Given the fact that all terms in (62) are of the same order of magnitude, one
can furthermore conclude that as soon as the temporal and spatial scales become so small that x ∼ ε3 and t ∼ ε5

the problem will be well posed by itself, i.e. without the necessity to include additional regularization terms. This
occurs when x̃/L̃ ∝ ε4x ∼ O(Re−1/2) and t̃ ũ∞/L̃ ∝ ε2 t ∼ O(Re−1/2), which are precisely the scalings of the
Eulerian stage assumed to follow the present one, see Sect. 5.

4.2 Numerical evidence of regularization

Detailed investigations of the numerical experiments that led to the results presented in Sect. 3.1 indicate that for
the spatio-temporal ranges and resolutions used so far, the small but, nonetheless, always present terms resulting
from the discretization based on Chebyshev polynomials are very effective in suppressing short-scale instabilities
with unbounded growth rates. However, the computation of solutions that blow up in finite time is not feasible with
standard methods, due to the required fine resolution of the domains in the neighbourhood of the singularity. In
particular, approximations based on polynomial representations are known not to be well suited in this regard. Con-
sequently, the apparently inherent numerical regularization cannot be taken for granted when the solutions approach
their assumed finite-time breakdown and grid refinements are necessary. In order to investigate the predicted regu-
larization effect of the modified interaction law (61) according to the composite model derived above, the numerical
scheme already developed for the analysis of the two-dimensional triple-deck problem (7) was extended appropri-
ately. Above all, care has to be taken that the damping of small-wavelength disturbances by incorporating higher
order terms is not overdone as this could give rise to nonphysical delays in the development of the blow-up solution
or nonphysical results at all. The crucial points to be considered in this respect are, first, to quantify the regularization
mechanisms already contributed by the numerical scheme. Secondly, then the size of the higher order corrections as
given in (61) have to be adjusted in an adaptive way in order for the problem to remain well posed in each time step.

Numerical experiments with ε = 0.001 and ε = 0.01 showed practically no differences to the case ε = 0 and
therefore indicate an (unintentional) intrinsic regularization of the numerical scheme used. An additional filtering
is observed when ε is raised above about 0.01...0.05 (depending on the resolution). A concrete sample calculation
demonstrating the effect of regularization is depicted in Figs. 15–17. The results for the time steps shown clearly
indicate the effective suppression of grid oscillations, i.e. the expected low-pass filter behaviour of the extended
interaction law (61). Since the value selected here for the regularization parameter ε = 0.1 is relatively large, there
is certainly cause for concern as to whether the solutions in question can still be classified as physically correct. For
obvious reasons, ε should not be larger than absolutely necessary.
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Fig. 14 The two roots of the dispersion relations (47) and (62).
Solid lines: Ω1(K ) (unstable) and Ω2(K ) (stable) for the com-
posite model with C = 1/4; Im(Ω) = 0 if |K | ≥ 4, origin:
|K | = (0, 4). Dashed lines: asymptotes corresponding to the orig-
inal relation (47)

Fig. 15 Effect of regularization, (61), with ε = 0.1 on the
evolution of A(ξ, τ ) and P(ξ, τ ) at τ = −(1383, 88.5, 22.7,

16.0, 12.2, 10.3, 9.25, 8.50). Grey lines display the corres-
ponding results for ε = 0 at τ = −(1383, 88.5, 22.5, 15.8,

12.0, 10.4, 9.26, 8.46). Spatial resolution m × n = 180 × 90

Fig. 16 Effect of regularization, (61), on the error indicators R1(τ ) (red) and R2(τ ) (blue) according to (32) for a spatial resolution of
m × n = 180 × 90: ◦—ε = 0, �—ε = 0.1. Full symbols indicate the upper limit of reliable solutions; predicted blow-up time τs

5 Outlook: Vortex wind up (Euler–Prandtl stage IV)

The theory, outlined in Sects. 2 and 3, so far appears to agree with experimental observations regarding the early
stages of the laminar–turbulent transition in separation bubbles (cf. Figs. 1 and 2 ), in the sense that it shows how
an initially slender, nearly steady, reverse flow eddy of length scale much greater than the boundary layer thickness
changes dynamically, through viscous–inviscid interaction mechanisms, into a thick blunt eddy spanning the whole
boundary layer in the noninteracting, incompressible, fully nonlinear Euler–Prandtl stage formulated below.

Following the lines of reasoning put forward in [29], one can show that, in the triple-deck stage, the evolution
of the flow towards the finite-time blow-up as t → ts is accompanied by a growth of the (originally viscous)
sublayer at such a rate that ỹ/L̃ ∼ Re−4/7(ts − t)−1/5, until its thickness is indistinguishable from the majority of
the boundary layer, i.e. ỹ/L̃ ∼ Re−1/2, cf. Fig. 2. This breakdown implies a new, predominantly inviscid, struc-
ture and occurs when the time interval (ts − t) reduces to O(Re−5/14). With new (local) scalings then given by
(x̄, ȳ, t̄) ∼ Re1/2(x̃, ỹ, t̃ ũ∞)/L̃ , the relevant velocity components (u, v) ∼ (ψ ′

00 + ψȳ,−ψx̄ ) + · · · as well as the
pressure p(x̄, ȳ, t̄) become O(1) quantities and are subjected to a fully nonlinear evolution where u2 ∼ v2 ∼ p.
The governing equations of this new stage in terms of the stream function ψ(x̄, ȳ, t̄) simplify to the Euler equations
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Fig. 17 Effect of regularization: modulus of the amplitude spectra (33) of A(ξ, τ ) and P(ξ, τ ) for fixed grid resolutionm×n = 180×90
at various time steps. ε = 0.1 (coloured), τl = −(1384, 22.8, 9.25, 8.49); ε = 0 (grey), τl = −(1384, 22.5, 9.26, 8.46), l = 1, 2, 3, 4

∂2ψ

∂ ȳ∂ t̄
+

(
ψ ′

00 + ∂ψ

∂ ȳ

)
∂2ψ

∂ ȳ∂ x̄
− ∂ψ

∂ x̄

(
ψ ′′

00 + ∂2ψ

∂ ȳ2

)
= −∂p

∂ x̄
,

− ∂2ψ

∂ x̄∂ t̄
−

(
ψ ′

00 + ∂ψ

∂ ȳ

)
∂2ψ

∂ x̄2 + ∂ψ

∂ x̄

∂2ψ

∂ x̄∂ ȳ
= −∂p

∂ ȳ
(63)

subject to the boundary conditions ψ = 0 at ȳ = 0, ψ → O(1) as ȳ → ∞. Here, the classical boundary layer
separation profile ψ ′

00(ȳ) = U (x0, ȳ) at the point of marginal separation x0 acts as a rotational ‘convective back-
ground’ to the inviscid main flow. Again, a viscous sublayer is necessary to bring the slip at the bottom to rest:
introducing the appropriate wall-normal coordinate η = Re3/4 ỹ/L̃ results in the spatio-temporal evolution of the
stream function Ψ (x̄, η, t̄) and the velocities u ∼ Ψη ∼ O(1), v ∼ −Re−1/4Ψx̄ being determined by Prandtl’s
boundary layer equation

∂2Ψ

∂η∂ t̄
+ ∂Ψ

∂η

∂2Ψ

∂η∂ x̄
− ∂Ψ

∂ x̄

∂2Ψ

∂η2 = −∂P

∂ x̄
+ ∂3Ψ

∂η3 (64)

subject to Ψ = Ψη = 0 at η = 0. Furthermore, Ψ ∼ B(x̄, t̄)η + · · · as η → ∞, where B denotes the slip velocity
which is related to the imposed pressure P(x̄, t̄) = p(x̄, ȳ = 0, t̄) via Bernoulli’s equation −Px̄ = Bt̄ + BBx̄ . The
initial (matching) conditions of (63), (64) as t̄ → −∞ are fixed by

ψ ∼ |t̄ |−3/5
[
ψ̂(x̂, ŷ) + · · ·

]
, p ∼ |t̄ |−4/5

[
P̂(x̂) + · · ·

]
, Ψ ∼ |t̄ |1/10

[
Ψ̂ (x̂, η̂) + · · ·

]
(65)
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and the similarity variables x̄ = |t̄ |3/5 x̂ , ȳ = |t̄ |−1/5 ŷ, and η = |t̄ |1/2η̂. Here, the leading order terms are deter-
mined by the triple-deck blow-up profiles ψ̂(x̂, ŷ), P̂(x̂), and Ψ̂ (x̂, η̂), which satisfy (37) and (39), respectively,
see Figs. 12 and 13 . More precisely, the explicit quotation of ψ00 in (63) leads to a slightly modified formulation
of the blow-up profiles, but without loss of generality.

Current efforts aim, at first, to compute (at least) the next-order corrections in (65) in order for the associated
initial value problems to be defined properly, and, secondly, to construct a suitable numerical scheme able to capture
the vortex wind-up process governed by (63) and (64). As in the triple-deck stage, the infinite spatial and temporal
domains and the initial similarity structure require special treatment, cf. (21). According to the local expansions of
the boundary layer characteristics (2) in the Euler–Prandtl stage

δ∗ ∼ δ∗(x0) −U−1
00 lim

ȳ→∞ ψ + · · · , τw ∼ Re1/4Ψηη

∣∣∣
η=0

+ · · · (66)

we expect O(1) corrections to the original displacement thickness and a substantially enhanced action of the wall
shear stress.

Although we started the investigation of transitional separation bubbles with the analysis of formally steady clas-
sical boundary layer flows on the verge of separation, rather weak unsteady forcing (blowing) in the first, large-scale,
interaction stage of marginal separation eventually led us (via a second, shorter-scale triple-deck interaction) to a
scenario that in literature is commonly referred to as unsteady separation, see the reviews [79,80] and references
therein. In sharp contrast to the usual setting underlying the model problems studied in the context of unsteady sepa-
ration, the outer inviscid flow field is not given in advance in the current formulation (63), (64). The spatio-temporal
evolution of the flow is entirely self-induced once kicked by the initial condition (65). Nevertheless, from solving
the Cauchy problems (63)–(65) we expect the occurrence of the generic behaviour known from the investigation of
unsteady boundary layer flows with prescribed pressure gradient: the abrupt eruption of near-wall fluid (vorticity)
out of the viscous boundary layer in form of a finite-time blow-up. The existence of this singular behaviour was
first reported by Blasius [81] in his study of an impulsively started circular cylinder. Another example was given
by Walker [82] who studied the finite-time singularity in the boundary layer exposed to a rectilinear vortex. Then
these results were re-examined numerically and analytically by various authors, including [83–89] and [90].

As pointed out in [79], however, a Rayleigh-type instability may arise in the Euler region well before a singularity
develops in the noninteractive boundary layer evolution (64), see also [91]. From a computational point of view, a
Lagrangian-type scheme might be advantageous compared to the more conventional Eulerian formulations [87,92],
although more recently the latter approach also proved suitable [93].

6 Concluding remarks

The present paper essentially is a revision of the fundamental work of Elliott and Smith [29]. A spectral collocation
method based on Chebyshev polynomials has been developed for treating the second—shorter—interactive (triple
deck) stage of marginally separated flows. Special emphasis was placed on solutions that blow up within finite
time. The predicted blow-up structure could be confirmed with a high level of evidence. To this end, the high wave
number behaviour of the amplitude spectrum of relevant quantities proved to be particularly suitable for assessing
the reliability of the numerical solutions. The numerical scheme implemented turned out to regularize the proven
ill-posedness of the underlying Cauchy problem, i.e. the tendency of solutions to unbounded growth of short-scale
disturbances is sufficiently suppressed. Additionally, we have shown that a suitable modification of the usual inter-
action law by means of a so-called composite asymptotic model again contributes to a successful suppression of
the predicted short-scale instability.

Although the asymptotic theory of marginal separation and its extension to a triple-deck stage is established for
more than three decades, we believe it is a key approach able to unveil the secrets of the laminar–turbulent transition
process in separation bubbles. Still, its potential is by far not exploited and important issues still remain open, which
keeps this research area in a state of excitement. From our current perspective, these points comprise the following:
(i) Treatment of ill-posed Cauchy problems associated with the asymptotic theory of separated flows, (ii) tracing
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Table 2 Order of magnitude alterations of selected quantities during the early stages of bypass transition triggered by incipient separation
in the limit as Re → ∞ (x → x0, α → αc), cf. Fig. 2

Stage I II III IV Final†

Time scale, t̃ ũ∞/L̃ – Re+1/20 Re−1/7 Re−1/2 –

Length scale, x̃/L̃ Re0 Re−1/5 Re−2/7 Re−1/2 Re0

Viscous layer thickness, ỹ/L̃ Re−1/2 Re−11/20 Re−4/7 Re−3/4 Re−1 ln Re

Pressure, ( p̃ − p̃∞)/(ρ̃ũ2∞) Re0 Re−1/2 Re−2/7 Re0 Re0

Wall friction velocity, uτ Re−1/4 Re−7/20 Re−2/7 Re−1/8 ln−1 Re

I—steady classical boundary layer, II—marginal separation, III—triple deck stage (spike formation), IV—Euler–Prandtl stage (vortex
wind-up), †Time-averaged, fully developed wall-bounded turbulence, see e.g. [30]

the breakdown cascade further: vortex wind-up and shedding in the Euler–Prandtl stage, (iii) Providing tools for
transition detection and control.

In order to keep track of the big picture and, at the same time, to shed light on the achievements of the asymptotic
theory, we inspect the Re-dependence of typical quantities characterizing the status of the boundary layer with
respect to laminar–turbulent transition. Such an approach may also serve as source of suggestions and reference
points for laboratory experiments and computational fluid dynamics. For example, the theory of marginal separation
(stage II) predicts a separation bubble length of O(Re−1/5), an initial (‘steady’) bubble height of O(Re−7/10) and
the slope of the (almost) steady separation streamline to be of O(Re−1/2), which are facts that still do not seem to
be commonly known, cf. the comments in [94]. From the triple-deck model (stage III), a length of O(Re−2/7) and
a height of O(Re−4/7) can be estimated for the emerging spike at the rear of the bubble, which is consequently still
characterized as a slender phenomenon. In the Euler–Prandtl stage IV, both the length and height of the shedding
vortex then reach O(Re−1/2), comparable to the thickness of the original boundary layer. Table 2 illustrates the
successive order-of-magnitude reductions of the relevant time scales, the streamwise length scales, the viscous wall
layer thickness and the enhancement of the wall friction velocity uτ = [τ̃w/(ρ̃ũ2∞)]1/2 during incipient transition.
Our admittedly ambitious long-term objective is to fully bridge the gap between the established concepts of both
the laminar boundary layer and the time-averaged (fully developed, attached) two-tiered turbulent boundary layer,
[30,31] (and the references therein), via a correct asymptotic description of the whole transition process.
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Appendix A: A brief formulation of the triple-deck stage

The following description supplement the pivotal work of [29] with asymptotic expansions for the different spatial
regions of the triple-deck stage (see Fig. 2) and affine transformations. Dimensionless quantities are introduced in
the form
(x, y) = (x̃, ỹ)

L̃
, t = ũ∞ t̃

L̃
, (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
= (ũ, ṽ)

ũ∞
, p = p̃ − p̃∞

ρ̃ũ2∞
, (67)

where x , y, and u(x, y, t), v(x, y, t) denote the coordinates and velocity components in the streamwise direction
and normal to the wall, t the time, ψ(x, y, t) the stream function and p(x, y, t) the pressure, respectively. The unper-
turbed free stream values ũ∞, p̃∞, density ρ̃ and a characteristic length L̃ are used as (dimensional) reference quanti-
ties. The corresponding spatio-temporal scalings and expansions of the relevant field quantities were read as follows.
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A.1 Lower deck LD

In this viscous sublayer, the crucial dynamics of the spike formation process takes place after being initiated through
a blow-up event in the preceding marginal separation stage. Local coordinates in streamwise and wall-normal direc-
tion and the time are given by

x̌ = Re2/7
(
x − x0 − Re−1/5Xs

)
, y̌ = Re4/7y, ť = Re1/7

(
t − Re1/20Ts

)
. (68)

Asymptotic expansions for the stream function and the pressure read

ψ ∼ Re−5/7ψ̌(x̌, y̌, ť) + · · · ,

p ∼ (1 −U 2
00)/2 + p00

(
Re−1/5Xs + Re−2/7 x̌

) + · · · + Re−2/7P̌(x̌, ť) + · · · .
(69)

Here x0 denotes the (marginal) separation point according to classical boundary layer theory in the limit as the
control parameter α attains its critical value αc and (Xs, Ts) the blow-up location/time of the marginal separation
stage II. Furthermore, U00 = uw(x0) > 0 represents the wall velocity of the steady outer inviscid flow and p00 > 0
the imposed adverse pressure gradient at x0 which enter the Taylor series expansion of the Bernoulli equation
pw(x) = [1 − u2

w(x)]/2 for the wall streamline in the limit as x − x0 → 0.

A.2 Main deck MD

This predominantly inviscid, rotational region passively shifts the displacement effect generated in the lower deck
to the upper deck. Likewise, the pressure response induced in the upper deck is transmitted back to the lower deck
via this layer. The relevant wall normal coordinate is the usual Prandtl boundary layer coordinate

ȳ = Re1/2y,

and the corresponding expansions are

ψ ∼ Re−1/2
[
ψ00(ȳ) + ψ01(ȳ)

(
Re−1/5Xs + Re−2/7 x̌

) + · · · ] + Re−4/7 ¯A (x̌, ť)ψ ′
00 + · · · ,

p ∼ (1 −U 2
00)/2 + p00

(
Re−1/5Xs + Re−2/7 x̌

) + · · · + Re−2/7P̄(x̌, ť) + · · · .
(70)

Here ψ ′
00(ȳ) and ψ ′

01(ȳ) denote the boundary layer separation (velocity) profile and the first Taylor term (see e.g.
[42], p. 149 et seq., and p. 160) with the properties ψ ′

00 → U00, ψ ′
01 → −p00/U00 as ȳ → ∞.

A.3 Upper deck UD

The streamwise (x̌) and wall-normal coordinate

ŷ = Re2/7y

are equally scaled in this potential flow region with the concerning expansions

u ∼ U00 − p00

U00

(
Re−1/5Xs + Re−2/7 x̌

)
+ · · · + Re−2/7û(x̌, ŷ, ť) + · · · ,

v ∼ Re−2/7 p00

U00
ŷ + · · · + Re−2/7v̂(x̌, ŷ, ť) + · · · ,

p ∼ (1 −U 2
00)/2 + p00

(
Re−1/5Xs + Re−2/7 x̌

) + · · · + Re−2/7 p̂(x̌, ŷ, ť) + · · ·
(71)

containing the perturbation velocity components û, v̂ and the induced pressure p̂ (= p̂1 of Sect. 4).

A.4 Affine transformations and fundamental triple-deck formulation

From the individual substitution of (69)–(71) into the Navier–Stokes equations and the application of the matching
principle one obtains p̂(x̌, ŷ = 0, ť) = P̄(x̌, ť) = P̌(x̌, ť) and, on further using the affine transformations
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x̌ → p−5/7
00 U 8/7

00 x, y̌ → p−3/7
00 U 2/7

00 y, ť → p−6/7
00 U 4/7

00 t,

ψ̌ → p−2/7
00 U 6/7

00 ψ, P̄ → p2/7
00 U 8/7

00 P, ¯A → p4/7
00 U 2/7

00 A ,
(72)

the lower-deck equation (7) and the interaction law (8) from the upper deck problem.

Appendix B: Chebyshev collocation method for unbounded domains: Blasius flow test problem

The well-known and rather simple flat plate (Blasius) similarity boundary layer flow problem is used as an applica-
tion example to demonstrate the power and essence of the Chebyshev collocation method representing the heart of
Sect. 3. At first, the semi-infinite physical domain (in wall-normal direction) is mapped onto the finite computational
(Chebyshev) domain. Furthermore, the sought stream function is split into two parts such that the intrinsic unknown,
to be represented by Chebyshev polynomials, is strictly bounded.

In the following we want to solve the nonlinear two-point boundary value problem

f ′′′ + f f ′′ = 0, f (0) = f ′(0) = 0, f ′(η → ∞) → 1, (73)

where the usual boundary layer stream function ψ(x, ȳ) = √
2x f (η) is reduced to the similarity form f (η) with

the similarity variable η = ȳ/
√

2x . As is well known, see e.g. [95], its far-field behaviour is given by

f (η → ∞) ∼ ζ + O(e−ζ 2/2/ζ 2), (74)

where we have used the abbreviation ζ = η−β1. The value of the constant β1 = limη→∞(η− f ) to be determined
in the course of the numerical solution procedure, fixes the displacement thickness (2) to δ∗(x) = √

2x β1. In order
to capture the singular behaviour of f as η → ∞, we therefore may write

f (η) = g(η) + η2

β1 + η
(75)

to obtain

g′′′ − 6β2
1

(β1 + η)4 +
(

η2

β1 + η
+ g

)(
2β2

1

(β1 + η)3 + g′′
)

= 0 (76)

for the bounded auxiliary function g: g(0) = g′(0) = g(∞) = 0. Taking into account the mapping (16)
for the wall-normal direction, η = η(s) with no shift η∗ = 0, we equate dg/ds = (dg/dη)(dη/ds) using
dη/ds = π(η2/C + C)/4 and dg/dη ∼ β2

1/η2 + O(η−3) as η → ∞ to deduce the exact result

dg

ds

∣∣∣∣
s=1

= β2
1π

4C
. (77)

To compute the (n + 1) unknowns (g0, g1, . . . , gn−1, β1), at the collocation points si , (76) is discretized with the
help of the differentiation matrices (17) for the η-domain and (77) is implemented via (14),
n−1∑
j=1

D(1)
nj g j − β2

1π

4C
= 0. (78)

The whole nonlinear algebraic system of equations then is solved by means of the NAG c05qbc routine. The
corresponding results are plotted in Fig. 18.

To check the accuracy/reliability of the obtained results, it is useful to monitor the residuals of the dis-
cretized equations (76) omitted at the two interior locations which are used to implement the boundary conditions
g(0) = g′(0) = 0 (represented by the full circles in Fig. 18). Furthermore, alternative accuracy and consistency
checks on β1 may be performed via the relations∫ ∞

0
g′ dη = 0, g′′′(0) = 6

β2
1

. (79)

Here the integration is preferably carried out with the Clenshaw–Curtis quadrature, whose weights can be com-
puted analytically, see e.g. [67]. In our experience, the technique described above already gives 4-digit accuracy
for n ≈ 20, impressively demonstrating the superiority of Chebyshev spectral methods, table 3.
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Fig. 18 Flat plate laminar boundary layer (Blasius flow) test case: solutions for the bounded auxiliary function g, stream function f ,
velocity profile f ′ and shear stress (vorticity) f ′′. Gauss–Lobatto Chebyshev nodes s j , here demonstrated for n = 10 (left ordinate):
open and full circles denote the collocation points where equation (76) and the boundary conditions g(0) = g′(0) = 0, as well as (77)
are evaluated, respectively. Chosen mapping parameters: C = 3, η∗ = 0, see (16)

Table 3 Blasius flow characteristics displacement thickness δ∗(x) = √
2xβ1 and wall shear stress τw(x) = f ′′(0)/

√
2x in dependence

of the number of Chebyshev collocation points n with C = 3

n 10 20 40 80 Reference value [96]

β1 1.2 1.2165 1.216776 1.216780622 1.216780621614862

f ′′(0) 0.52 0.46957 0.4696001 0.4695999884 0.4695999883610133
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