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Abstract The high-speed impact of a droplet onto a flexible substrate is a highly non-linear process of practical
importance, which poses formidable modelling challenges in the context of fluid–structure interaction. We present
two approaches aimed at investigating the canonical system of a droplet impacting onto a rigid plate supported by
a spring and a dashpot: matched asymptotic expansions and direct numerical simulation (DNS). In the former, we
derive a generalisation of inviscid Wagner theory to approximate the flow behaviour during the early stages of the
impact. In the latter, we perform detailed DNS designed to validate the analytical framework, as well as provide
insight into later times beyond the reach of the proposed analytical model. Drawing from both methods, we observe
the strong influence that the mass of the plate, resistance of the dashpot, and stiffness of the spring have on the
motion of the solid, which undergo forced damped oscillations. Furthermore, we examine how the plate motion
affects the dynamics of the droplet, predominantly through altering its internal hydrodynamic pressure distribution.
We build on the interplay between these techniques, demonstrating that a hybrid approach leads to improved model
and computational development, as well as result interpretation, across multiple length and time scales.

Keywords Asymptotic analysis · Direct numerical simulation · Droplets · Fluid–structure interaction · Impact ·
Interfacial flows

1 Introduction

Droplet impacts are a rich and ubiquitous phenomenon in both nature and industry, from inkjet printing [1] to
pesticide spray deposition [2] and estimating the early stages of oily aerosol dispersal in the atmosphere after large-
scale spills [3]. The dynamics of these processes are governed by the complex flow physics of the droplet and the
surrounding gas, as well as the properties of the substrate, such as wettability [4] and roughness [5]. An additional
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layer of complexity is added to the system if the substrate is deformable, meaning that the force of the impactor
causes the substrate to move or change shape. A common example of droplet impact onto deformable substrates is
that of rainfall onto leaves [6]. Previous theoretical and experimental studies of this class of systems include droplet
impact onto cantilever beams [7], silicone gels [8] and elastic membranes [9].

Recent developments in experimental imaging techniques, improving in both frame rate and spatial resolution,
have reinvigorated investigative efforts in high-speed impact [10], revealing previously inaccessible features due
to the small, rapidly developing regions upon impact, such as the impingement of micro-drops [11] and early
azimuthal instabilities of the ejecta [12]. Similarly, the increase in high-performance computing resources has
allowed increasingly efficient direct numerical simulations (DNS) of these systems to be performed [13–15], which
are intensive due to the rapidly evolving interfaces, multi-scale flow features and high density and viscosity ratios
present. These experimental and computational difficulties mean that rigorous mathematical modelling of such
flows is of key importance to any comprehensive investigation, as analytical approximations to the flow can provide
insight into the underlying physical processes, greatly enhance predictive capabilities in regimes otherwise difficult
to examine, and save computational resources required for numerical simulations. In all cases, the deformability of
the substrate makes studying these systems even more complex, from the difficulty in observing small deformations
experimentally to the additional degrees of freedom required for numerical study.

Studies of droplet impact usually focus on a specific timescale, as examining the rapidly evolving interfaces
makes universal investigations challenging. Shortly before impact, the cushioning effect of the gas layer between
the droplet and the substrate leads to high pressures which cause the bottom of the droplet to dimple. This interfacial
deformation results in a gas bubble being entrapped inside the droplet upon impact, which has been widely observed
experimentally [16], as well as reproduced in numerical studies [15], and modelled analytically [17]. At early stages
of the impact, close to the points of contact, the free surface rapidly turns over and begins to spread across the
substrate. During this timescale, instabilities in the free surface can cause micro-droplets to be rapidly expelled,
which has been observed experimentally using high-speed photography [18]. Numerical schemes with adaptive
mesh refinement [19,20] allow for the computational study of this early timescale by concentrating resources in
the small region close to the substrate [13,15,21]. Analytical approaches adapt Wagner theory [22–25], an inviscid
fluid model for solid–liquid impact inspired by the study of aircraft landing on water and ship slamming. Later in
the impact process, once the droplet begins to fully spread across the substrate, viscosity and surface tension, as
well as the chemistry of the substrate, tend to play a more significant role. Various physical parameters determine
whether the droplet retracts, rebounds or splashes; see [10] for an extensive review on the experimental studies on
late impact. Quantities of interest at this timescale include the minimum thickness and the maximum diameter of the
droplet as it spreads, and in particular, how these depend on the physical properties of the liquid and the substrate
have been the focus of previous theoretical studies [26,27].

Experimental work focused on droplet impact onto elastic substrates is much less common. Recent investigations
have examined the impact of droplets onto the end of cantilever beams [7,28], drawing close parallels to the impact
onto leaves. In both cases, the impact of the droplet excited oscillations at the end of the beam, with characteristic
time periods of the order of the late impact timescale. Different length beams were considered in order to show
how stiffer beams resulted in oscillations with higher frequencies. Other studies concerning droplet impact onto
elastic membranes [9] and silicone gels [8] show that the compliance of the substrate strongly affects the splashing
threshold (regarded here as the minimum velocity necessary to observe splashing), which is significantly increased
when the stiffness of the substrate is reduced.

Fluid–structure interaction problems are notoriously difficult to study numerically and allowing the substrate to
deform only exacerbates this. If the substrate only exhibits translational motion (without accounting for bending),
then the problem can be simplified by considering a moving frame of reference, centred on the substrate [29], whereas
substrates which exhibit bending need to be considered using more complex techniques such as the immersed
boundary method [30]. Two-phase flow systems with immersed boundaries have not been studied extensively,
with only a few noticeable exceptions [31,32]. Despite considering complex moving boundaries (such as a twin
screw kneader), the motion of the boundaries was prescribed rather than resulting from fluid–structure interaction,
although the proposed methods could in principle be extended to consider this. More recently, the impact of droplets
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in capillary-dominated regimes onto a flexible substrate has been modelled using the Lattice-Boltzmann method
[33], focusing on the spreading and rebound of the droplets and how the contact time is affected by the bending
stiffness. The late-time spreading and rebound dynamics of an undamped plate-spring system have recently been
studied numerically [34], inspired by the feathers of kingfishers. It was found that springs with certain stiffness
values can shorten the length of time the droplet is in contact with the substrate, as well as increase the speed the
droplet rebounds after impact.

Analytical models for a liquid impacting a deformable substrate (or vice versa), on the other hand, have been
proposed for over half a century. One of the earliest models investigated a droplet impacting onto an elastic half-
space by imposing a constant uniform pressure over a circle whose radius increased in proportion to the square root
of time [35]. The full hydroelastic problem of the impact of a two-dimensional wave onto an Euler-Bernoulli beam
has previously been studied using Wagner theory [36], and more recently this analytical model has been extended
to study the axisymmetric impact of a droplet onto an elastic plate, where the elastic plate has a radius much smaller
than the droplet and its deflection governed by thin-plate theory [37]. A thorough parameter study was conducted
for different types of plate, and regimes where the elasticity of the plate could cause splashing of the droplet at early
times, defined as the detachment of the splash sheet from the surface of the plate, have been identified.

To the best of our knowledge, a comprehensive study considering the fluid–structure interaction between an
impacting droplet and a compliant substrate that systematically compares accurate numerical results to analytical or
experimental counterparts has yet to materialise. One of the simplest types of deformable substrate systems which
exhibits both elastic and damping effects is a rigid plate suspended by a Hookean spring and a linear dashpot, where
the force of the impacting droplet causes the spring to compress, with the dashpot damping the motion. Here, we
present both a new analytical model extended from Wagner theory, as well as a direct numerical simulation platform
for a droplet impacting onto a rigid plate supported by a spring and a dashpot. Our focus is on scenarios in which the
inertial effects of the impact are dominant, and hence, the derived analytical model neglects the effects of viscosity,
surface tension, gravity, and surrounding gas, while these effects are retained in the DNS. Our comprehensive
investigation, thus, benefits from a dual-method approach, where the assumptions behind the analytical model are
rigorously tested by directly comparing its predictions for a variety of relevant parameters with the results from the
numerical simulations. The system is used as a validation testbed for the two approaches, as well as a framework
for an extensive parametric study focused on the effect of surface compliance on the ensuing drop dynamics in
this challenging regime. We observe systematically how the influence of the substrate properties (mass, spring
stiffness and damping factor) affects the fluid–structure interaction, emphasising how the resulting motion of the
plate substantially alters the pressure field of the droplet, and, in turn, the hydrodynamic force exerted onto the
plate, revealing a rich coupling of the different forces at play in the system.

The rest of this paper is structured as follows. We outline the system geometry and general mathematical
framework, as well as discuss assumptions at the level of the analytical and numerical models in Sect. 2. In Sect. 3,
we present the analytical model, deriving the leading-order composite solution for the pressure along the plate and
the resulting hydrodynamic force. We describe the computational setup required for the direct numerical simulations
and the specific algorithm we use to model the fluid–structure interaction in Sect. 4. The solutions from the analytical
and numerical models are presented in Sect. 5, where they are compared for a range of parameters of the plate-
spring-dashpot system. We conclude by summarising our results and discussing the implications of this study and
possible future extensions in Sect. 6.

2 Problem formulation

We consider the vertical impact of a droplet of incompressible, Newtonian liquid onto a rigid, planar, circular plate
supported by a Hookean spring and linear dashpot. The droplet is initially spherical with radius R∗

d and travelling
uniformly downwards with speed V ∗, surrounded by an incompressible gas. Throughout this study, dimensional
quantities are denoted with a superscript ∗. The plate has radius R∗

p, and the plate-spring-dashpot system is initially
in equilibrium. The bottom of the droplet is introduced at a height δ∗ > 0 above the plate. A Cartesian coordinate
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Fig. 1 Schematic diagram
of a spherical droplet of
radius R∗

d impacting with
initial velocity V ∗ onto a
circular plate of radius R∗

p
and mass M∗. The plate is
supported by a spring with
spring constant k∗ and a
dashpot with damping
factor c∗

system (x∗, y∗, z∗) is defined such that the surface of the plate lies in the z∗ = 0 plane, the droplet falls along the
z∗ > 0 axis, and the bottom of the droplet is given by (x∗, y∗, z∗) = (0, 0, δ∗) at the onset of the dynamics, as
illustrated in Fig. 1.

The system is initialised at a time t∗ = t∗0 = −δ∗/V ∗. If the gas was absent, then the plate would experience a
zero net force until the droplet makes contact and would, therefore, remain in equilibrium. In this case, the droplet
would make contact with the plate at t∗ = 0 with the plate stationary for t∗ < 0. However, the presence of the gas
means that there will be a pressure build-up prior to the impact [17,38], resulting in a net force that causes the plate
to accelerate downwards so the droplet will make contact at a time t∗c > 0.

The liquid comprising the droplet and the surrounding gas have densities ρ∗
l , ρ∗

g and viscosities μ∗
l , μ∗

g , respec-
tively. The surface tension coefficient between the liquid and the gas is denoted by σ ∗ (taken to be constant), and
the acceleration due to gravity is g∗ = g∗n̂z , where n̂z is the unit vector in the z∗ direction. The vertical position of
the plate at time t∗ is z∗ = −s∗(t∗), where s∗(t∗) is referred to as the plate displacement.

Denoting the variables in the liquid and gas with a subscript l and g, respectively, the Navier–Stokes equations
are assumed to hold in each fluid,

ρ∗
i

(
∂u∗

i

∂t∗
+ (u∗

i · ∇)u∗
i

)
= −∇p∗

i + μ∗
i ∇2u∗

i − ρ∗
i g

∗, (1)

∇ · u∗
i = 0, (2)

where i = l, g, u∗
i is the velocity vector and p∗

i represents the pressure in each fluid.
The impermeability condition on the plate states that the fluid velocity must match the velocity of the plate along

its surface:

u∗
i · n̂z = −ṡ∗(t∗) for ∗ = −s∗(t∗), x∗2 + y∗2

< R∗
p

2
, (3)

where the overdot denotes differentiation with respect to time.
The kinematic condition at the multivalued free surface z∗ = h∗(x∗, y∗, t∗) is

v∗
n = u∗

l · n̂ on z∗ = h∗(x∗, y∗, t∗), (4)

where n̂ is the unit outward-pointing normal vector to the free surface and v∗
n is the normal speed of the free surface.

Continuity of velocity and normal stress across the free surface are given by

u∗
g = u∗

l , n̂ · [T ∗
g − T ∗

l ] = −σ ∗κ∗n̂ on z∗ = h∗(x∗, y∗, t∗), (5)

where T ∗
i is the Cauchy stress tensor in each fluid and κ∗ = −∇ · n̂ is the curvature of the free surface.
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Initially, at t∗ = t∗0 , the liquid has a uniform downwards velocity V ∗,

u∗
l ≡ −V ∗n̂z, (6)

while the centre of the droplet is initially at z∗ = δ∗ + R∗
d , meaning that the free surface h∗(x∗, y∗, t∗0 ) satisfies

x∗2 + y∗2 + (h∗(x∗, y∗, t∗0 ) − δ∗ − R∗
d)

2 = R∗
d

2
. (7)

The pressure p∗
i is initially hydrostatic in each fluid, equal to p∗

i = p∗
atm −ρ∗

i g
∗z∗, where p∗

atm denotes atmospheric
pressure. The gas far from the impact remains undisturbed for all times, so that

u∗
g ∼ 0, p∗

g ∼ p∗
atm − ρ∗

gg
∗z∗ as x∗2 + y∗2 + z∗2 → ∞. (8)

The plate, which has total mass M∗, is supported by a Hookean spring with spring constant k∗, and a dashpot
with damping factor c∗. At t∗ = t∗0 , the plate is in equilibrium. Hence by Newton’s third law, the force due to the
compression of the spring balances the weight of the plate. Denoting the net hydrodynamic force applied to the
plate in the downwards direction −n̂z as F∗(t∗), the displacement of the plate from this equilibrium is governed by

M∗s̈∗(t∗) = F∗(t∗) − c∗ṡ∗(t∗) − k∗s∗(t∗). (9)

The net hydrodynamic force F∗(t∗) is equal to the sum of the contributions from the hydrodynamic pressure
and viscous stress above and below the plate. Assuming that the gas below the plate is at a constant pressure p∗

atm
and exerts a negligible amount of force due to viscous stress, then

F∗(t∗) =
∫∫

√
x∗2+y∗2≤R∗

p

z∗=0+

(p∗ − p∗
atm) − 2μ∗ ∂u∗

z

∂z∗
dx∗ dy∗, (10)

where p∗ = p∗
l , μ∗ = μ∗

l , u∗
z = u∗

l,z where the plate is wetted and p∗ = p∗
g , μ∗ = μ∗

g , u∗
z = u∗

g,z where the plate
is unwetted.

2.1 Non-dimensionalisation

We take the initial droplet radius, R∗
d , and speed, V ∗, as the characteristic length and velocity scales, respectively.

Then, choosing the advective and inertial time and pressure scales, we non-dimensionalise by setting

t∗ = R∗
d

V ∗ t, (x∗, y∗, z∗, h∗, s∗, R∗
p) = R∗

d(x, y, z, h, s, Rp),

u∗ = V ∗u, p∗ = p∗
atm + ρ∗

l V
∗2 p, F∗(t∗) = ρ∗

l V
∗2R∗

d
2F(t),

(11)

where Rp is referred to as the dimensionless plate radius.
Under these scalings, the plate displacement equation (9) becomes

αs̈(t) + β ṡ(t) + γ s(t) = F(t), (12)
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where

α = M∗

ρ∗
l R

∗
d

3 , β = c∗

ρ∗
l V

∗R∗
d

2 , γ = k∗

ρ∗
l V

∗2R∗
d

. (13)

The ratio between the mass of the plate and the mass of the droplet is equal to 3α/4π , hence α is referred to as the
mass ratio. The damping factor, β, measures the strength of the resistance to motion due to the damping from the
dashpot, and the stiffness factor, γ , measures the strength of the restoring force due to elastic compression of the
spring.

The relevant dimensionless parameters describing the flow dynamics are the Reynolds, Weber and Froude
numbers, defined respectively by

Re = ρ∗
l R

∗
dV

∗

μ∗
l

, We = ρ∗
l R

∗
dV

∗2

σ ∗ , Fr2 = V ∗2

g∗R∗
d
. (14)

Finally, the ratios between the densities and the viscosities of the gas and the liquid are given by

ρR = ρ∗
g

ρ∗
l
, μR = μ∗

g

μ∗
l
. (15)

2.2 Modelling assumptions

In both Sects. 3 and 4, scenarios where the inertial effects of the impact are more significant than the effects of
viscosity, surface tension and gravity are considered. Hence, we assume throughout that the values of Re, We and
Fr2 are large. As an illustrative example, consider the impact of a droplet of water with radius R∗

d = 1 mm and
velocity V ∗ = 5 m/s, surrounded by air under atmospheric conditions. This gives

Re ≈ 4990, We ≈ 342, Fr2 ≈ 2550, (16)

and we make the assumption that they remain large throughout the early stages of impact. Furthermore, the density
and viscosity ratios for the air-water scenario are

ρR ≈ 1.20 × 10−3, μR ≈ 1.83 × 10−2, (17)

which provides support for neglecting the effects of the gas phase in the analytical model (but not in the DNS).
As the system is initially radially symmetric about the z-axis, we assume that this symmetry remains in place

throughout the impact and consider an axisymmetric coordinate system (r, z), where r2 = x2 + y2. This assumption
restricts the applicability of the model away from systems that involve fully three-dimensional effects, such as prompt
splashing [18] and azimuthal instabilities of the ejecta sheet [12].

3 Analytical model

The analytical model focuses on the dynamics shortly after the time of impact. The model follows the structure of
previous works on axisymmetric Wagner theory, and the reader is directed to [21–23,39,40] for more details on the
general methodology for impact involving stationary substrates. Based on the assumptions made in Sect. 2.2, the
analytical model neglects the influence of the liquid viscosity, surface tension, gravity and the surrounding gas. As
the gas phase is ignored, all expressed quantities are in the liquid, and the subscript l is dropped for brevity. In this
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context, the droplet impacts the plate at t = 0, where the displacement and velocity of the plate are both zero at
t = 0.

3.1 Governing equations

Under these assumptions, the flow is irrotational for t < 0 and hence by Kelvin’s circulation theorem will remain
irrotational for t > 0. Therefore, a velocity potential φ can be introduced, such that u = ∇φ. The dimensional
continuity equation (2) transforms to Laplace’s equation for φ,

∇2φ = ∂2φ

∂r2 + 1

r

∂φ

∂r
+ ∂2φ

∂z2 = 0, (18)

and the dimensional momentum equation (1) results in the unsteady Bernoulli equation for φ and p,

p + ∂φ

∂t
+ 1

2
|∇φ|2 = C(t) (19)

for some C(t). The absence of viscosity and surface tension means that the continuity of normal stress boundary
condition (5) reduces to specifying that p = 0 at the free surface. Finally, by neglecting the gas phase and liquid
viscosity, the net hydrodynamic force (10) is just equal to the integral of the pressure p across the wetted part of
the plate. Hence, the governing equations are a set of non-linear equations for the velocity potential φ, pressure p,
free surface location h and plate displacement s.

3.2 Asymptotic structure

Following the structure of previous analytical models for droplet impact [22], we identify that for t � 1, the radial
extent of the penetration region (where the droplet would be below the r axis were the plate not present) is O(

√
t).

Given this, we introduce an arbitrarily small parameter 0 < ε � 1 and rescale time

t = ε2 t̂, (20)

where t̂ = O(1) as ε → 0. With the plate present, the free surface is violently displaced and the liquid is ejected
along the plate in a splash sheet. The curve at which the free surface is vertical is called the turnover curve, and for
small times, we assume that its radial extent is close to that of the penetration region, meaning that

r = εd̂(t̂), d̂(0) = 0, (21)

where the turnover curve d̂(t̂) = O(1) as ε → 0. The bottom of the penetration region is at z = −ε2 t̂ , so if we
assume that the plate acts to decelerate the vertical motion of the droplet at early times, then the plate position
z = −s(t) > −ε2 t̂ , which motivates the rescaling

s(t) = ε2ŝ(t̂), (22)

where ŝ(t̂) = O(1) as ε → 0. For brevity, the hat notation for t̂, d̂ and ŝ is dropped for the rest of Sect. 3.
As ε → 0, the problem breaks down into four distinct spatial regions, as depicted in Fig. 2. In the outer–outer

region, for which (r, z) = O(1) × O(1), the bulk of the droplet is unaffected by the plate to leading order and is
hence spherical and moving downwards with unit speed. This is sufficient to give us C(t) = 1/2 to leading order in
the Bernoulli equation (19), and we shall not need to consider its higher-order corrections in the present analysis.
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Fig. 2 Schematic of the
asymptotic structure of the
system. The displacement
of the plate −ε2s(t) has
been exaggerated for
improved visualisation

The O(ε)×O(ε) region close to the centre of the plate is referred to as the outer region, and here, the splash sheet is
neglected and the boundary conditions are linearised onto the undisturbed plate location. This solution breaks down
close to the turnover curve where the velocity and pressure become singular, which is corrected by introducing an
inner region of size O(ε3) × O(ε3) in which the free surface turns over, ejecting fluid into the splash sheet. The
thin, fast-moving splash sheet region is of size O(ε) × O(ε3), emanating across the surface of the plate from the
inner region. In the following derivation, we assume that the splash jet does not detach from the plate.

In the present analysis, we shall consider the outer, inner and splash sheet regions in detail; however, we forgo an
analysis for the outer–outer region as it does not contribute to the leading-order hydrodynamic force on the plate.

3.3 Outer region

Guided by a well-known scaling argument [22], in the outer region, we set

r = εr̂ , z = ε ẑ, φ = εφ̂, h = ε2ĥ, p = 1

ε
p̂,

and expand (φ̂, ĥ, p̂, d, s) = (φ̂0, ĥ0, p̂0, d0, s0) + o(1) as ε → 0. The resulting governing equations in the
outer region are

∂2φ̂0

∂ r̂2 + 1

r̂

∂φ̂0

∂ r̂
+ ∂2φ̂0

∂ ẑ2 = 0 for ẑ > 0, (23)

∂φ̂0

∂ ẑ
= −ṡ0(t) on ẑ = 0, r̂ < d0(t), (24)

∂φ̂0

∂ ẑ
= ∂ ĥ0

∂t
on ẑ = 0, r̂ > d0(t), (25)

φ̂0 = 0 on ẑ = 0, r̂ > d0(t), (26)

where (23) is Laplace’s equation for φ̂0, (24) is the kinematic boundary condition on the plate, (25) is the kinematic
boundary condition at the free surface and (26) is the dynamic boundary condition at the free surface, where (26) is
found by integrating the leading-order Bernoulli equation (19) with respect to time and applying the initial condition
for φ̂0.

The far-field conditions as we tend towards the outer–outer region state that, to leading order, the flow is travelling
downwards with unit speed and the free surface is parabolic in r̂ , such that

φ̂0(r̂ , ẑ, t) ∼ −ẑ as
√
r̂2 + ẑ2 → ∞ and ĥ0(r̂ , t) ∼ 1

2
r̂2 − t as r̂ → ∞, (27)
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with subsequent initial conditions

ĥ0(r̂ , 0) = 1

2
r̂2, s0(0) = ṡ0(0) = 0, d0(0) = 0. (28)

In addition, the so-called Wagner condition is needed in order to match to the inner solution:

ĥ(d0(t), t) = −s0(t), (29)

which states that, at leading order, the free surface meets the plate at the turnover curve [23]. Finally, matching with
the inner region reveals that φ̂0 = O(

√
d0(t) − r̂) as r̂ → d0(t)−, as in the classical Wagner regime [23].

Following [41], it is useful to consider the variational formulation of the axisymmetric problem by introducing
the leading-order displacement potential, Υ0, as follows:

Υ0(r̂ , ẑ, t) = ẑt +
∫ t

0
φ̂0(r̂ , ẑ, τ )dτ, (30)

which is governed by the equations

∂2Υ0

∂ r̂2 + 1

r̂

∂Υ0

∂ r̂
+ ∂2Υ0

∂ ẑ2 = 0 for ẑ > 0, (31)

∂Υ0

∂ ẑ
= (t − s0(t)) − 1

2
r̂2 on ẑ = 0, r̂ < d0(t), (32)

∂Υ0

∂ ẑ
= t + ĥ0(r̂ , t) − 1

2
r̂2 on ẑ = 0, r̂ > d0(t), (33)

Υ0 = 0 on ẑ = 0, r̂ > d0(t), (34)

such that the displacement potential is Υ0 = O((d0(t) − r̂))3/2) as r̂ → d0(t)−. The far-field condition for φ̂0 (27)
implies that Υ0 is bounded as

√
r̂2 + ẑ2 → ∞, which means a separable solution for Υ0 can be found via

Υ0 =
∫ ∞

0
ν(λ, t)e−λẑ J0(λr̂)dλ, (35)

where J0 is a Bessel function of the first kind and ν(λ, t) is a coefficient function found by solving the dual-integral
equations necessary to satisfy (32) and (34), namely

ν(λ, t) = 2

π

∫ d0(t)

0
σ

[
1

3
σ 2 − (t − s0(t))

]
sin(λσ)dσ. (36)

We refer to previous studies [39,42] for further details.
Evaluating (35) along the plate and expanding as r̂ → d0(t)−, we find

Υ0(r̂ , 0, t) = 2

π

√
2d0(t)

(
1

3
d0(t)

2 − (t − s0(t))

)√
d0(t) − r̂

− 8
√

2d0(t)3/2

9π
(d0(t) − r̂)3/2 + O((d0(t) − r̂)5/2).

(37)
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Hence, to enforce Υ0 = O((d0(t) − r̂)3/2) as r̂ → d0(t)− means that we must have

d0(t) = √
3(t − s0(t)). (38)

Note that if the plate is stationary, s0(t) ≡ 0 and we recover the classical Wagner solution d0(t) = √
3t [43].

Clearly, when the plate is compliant, the displacement of the plate is expected to slow down the spreading of the
droplet, at least for times early enough that s0(t) > 0. It is well known that the Wagner problem is unstable under
time reversal [23], which means the solution breaks down if ḋ0(t) ≤ 0. We, therefore, assume that ṡ0(t) < 1 in
order for the velocity of the turnover curve, ḋ0(t) = √

3(1 − ṡ0(t))/(2
√
t − s0(t)), to remain positive.

Finally, since it is necessary to calculate the hydrodynamic force on the plate F(t), we use the leading-order
form of the Bernoulli equation (19) to find the pressure on the plate

p̂0(r̂ , 0, t) = −∂2Υ0

∂t2 = 4

9π

d2

dt2

[
(d0(t)

2 − r̂2)3/2
]

for r̂ < d0(t), (39)

where d0(t) is given in terms of s0(t) in (38). Note that this solution diverges as r̂ → d0(t).

3.4 Inner region

Since the pressure is locally singular, there is an inner region moving with the turnover curve at r = εd(t) and the
surface of the plate at z = −ε2s(t). The appropriate scalings are given by [23]

r = εd(t) + ε3r̃ , z = −ε2s(t) + ε3 z̃,

φ = ε2
[
ḋ(t)r̃ − εṡ(t)z̃ + φ̃

]
, h = −ε2s(t) + ε3h̃, p = 1

ε2 p̃.
(40)

Under these scalings, it is straightforward to show that to leading-order, the plate is stationary in the inner region.
Hence, as described in detail in [39], the leading-order inner problem is quasi-two-dimensional in each plane
perpendicular to it, and is given by

∂2φ̃0

∂ r̃2 + ∂2φ̃0

∂ z̃2 = 0 for z̃ > 0, (41)

∂φ̃0

∂ z̃
= 0 on z̃ = 0, (42)

∂φ̃0

∂ z̃
= ∂φ̃0

∂ r̃

∂ h̃0

∂ r̃
on z̃ = h̃0(r̃ , t), (43)

(
∂φ̃0

∂ r̃

)2

+
(

∂φ̃0

∂ z̃

)2

= ḋ0(t)
2 on z̃ = h̃0(r̃ , t), (44)

subject to appropriate matching conditions into the outer region,

φ̃0 ∼ −ḋ0(t)r̃ + O(
√
r̃2 + z̃2) as

√
r̂2 + ẑ2 → ∞, (45)

and towards the splash sheet

h̃0(r̃ , t) → J (t) as r̂ → ∞, (46)

123



Droplet impact onto a spring-supported plate: analysis and simulations Page 11 of 27 3

where J (t) is referred to as the asymptotic sheet thickness.
The solution to this problem is well known [25], and given parametrically by

φ̃0 = a(t) − ḋ0(t)J (t)

π
(1 + R[ζ + log(ζ )]),

r̃ + iz̃ = J (t)

π

[
ζ + 4i

√
ζ − log(ζ ) + iπ − 1

]
,

(47)

where ζ ∈ C, I(ζ ) > 0, a(t) ∈ C is an arbitrary function of time, the branch cuts for log(ζ ) and
√

ζ are taken
along R(ζ ) < 0,I(ζ ) = 0 and R, I denote the real and imaginary parts of a complex number.

To match with the leading-order outer solution, we take |ζ | → ∞ in (47), which yields

φ̃0 ∼ −ḋ0(t)r̃ + 4ḋ0(t)
J (t)

π
R

[
i
√
r̃ + iz̃

]
. (48)

Thus, comparing (48) with (37) gives the leading-order sheet thickness

J (t) = 2d0(t)3

9π
= 2√

3π
(t − s0(t))

3/2. (49)

Again note that as d0(t) = √
3(t − s0(t)), the displacement of the plate slows the spreading of the droplet, which

leads to a thinner splash sheet. This is consistent with the findings of [8], who showed that soft substrates inhibit
splashing. Note that the derivative of the sheet thickness J̇ (t) = √

3(1 − ṡ0(t))
√
t − s0(t)/π is positive for all t ,

so the sheet thickness will still increase for all time within the Wagner model.
The leading-order pressure in the inner region is

p̃0 = −1

2

⎡
⎣

(
∂φ̃0

∂ r̃

)2

+
(

∂φ̃0

∂ z̃

)2

− ḋ0(t)
2

⎤
⎦ . (50)

Along the surface of the plate, where z̃ = 0, this solution is given parametrically by

p̃0(r̃ , 0, t) = 2ḋ0(t)2eη

(1 + eη)2 , r̃ = −J (t)

π

[
e2η + 4eη + 2η + 1

]
for − ∞ < η < ∞, (51)

where d0(t) and J (t) are given in terms of s0(t) in (38) and (49), respectively.

3.5 Splash sheet region

Upon impact, the fluid is ejected from the inner region into a thin, fast-moving sheet of fluid attached to the plate.
In this region, we rescale

r = εr̄ , z = −ε2s(t) + ε3 z̄, h = −ε2s(t) + ε3h̄, φ = −ε2ṡ(t)z̄ + φ̄, p = ε p̄. (52)

As described in detail by [40], the leading-order splash sheet problem for the radial velocity ū0 = ∂φ̄0/∂ r̄ and
free surface height h̄0 reduces to the zero-gravity shallow-water equations. These equations can be solved using the
method of characteristics, and the solution is, as derived in [39,40],
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r̄ = 2ḋ0(τ )(t − τ) + d0(τ ), ū0 = 2ḋ0(τ ), h̄0 = ḋ0(τ )J (τ )

ḋ0(τ ) − 2d̈0(τ )(t − τ)
, (53)

where 0 < τ < t .
The subsequent solution for the pressure in the splash sheet region is found by differentiating the Bernoulli

equation (19) with respect to z, expressing in the splash sheet variables, and expanding to leading-order, such that

∂ p̄0

∂ z̄
= s̈0(t) − ṡ0(t)

∂ ū0

∂ r̄
. (54)

Integrating with respect to z̄ and noting that p̄0 = 0 at z̄ = h̄0 means the leading-order pressure along the plate is

p̄0(r̄ , 0, t) =
(
ṡ0(t)

∂ ū0

∂ r̄
− s̈0(t)

)
h̄0(r̄ , t). (55)

It is worth noting that in the classical case of a stationary plate, where s0(t) ≡ 0, the leading-order pressure (55)
would be zero and instead p̄ = O(ε2). Therefore, the velocity ṡ0(t) and acceleration s̈0(t) of the plate increase
the magnitude of the pressure in the splash sheet region. In particular, if ṡ0(t)∂ ū0/∂ r̄ − s̈0(t) < 0, the leading-
order pressure would be below atmospheric pressure, which could provide a possible mechanism for splash sheet
detachment. However, the contribution the pressure in the splash sheet region makes to the leading-order force is
still O(ε3), which is lower in magnitude than the contributions from the outer and inner regions, so we shall neglect
it henceforth in this analysis.

3.6 Composite pressure

Classically, the hydrodynamic force is determined by integrating only the outer pressure (39) for 0 ≤ r̂ < d0(t)
[40]. However, as will be discussed in Sect. 6, we find better agreement with the numerical simulations at later
times by using the composite expansion between the outer and inner regions. Van Dyke’s matching principle [44]
is used to find the overlap function between the outer and inner solutions for r < εd0(t). By evaluating the time
derivatives in (39), the one-term-outer pressure is

(1.t.o)p(r, 0, t) = 1

ε

[
−4(r̂2 − 2d0(t)2)ḋ0(t)2

3π
√
d0(t)2 − r̂2

+ 4d0(t)d̈0(t)

3π

√
d0(t)2 − r̂2

]
. (56)

Expressing this in the inner variables and expanding to leading order give the overlap pressure

poverlap(r, 0, t) = (1.t.i)(1.t.o)p(r, 0, t) = 2
√

2d0(t)3/2ḋ0(t)2

3πε2
√−r̃

= 2
√

2d0(t)3/2ḋ0(t)2

3π
√

ε
√

εd0(t) − r
. (57)

Therefore, the composite expansion for p(r, 0, t) is

pcomp(r, t) = H(εd0(t) − r)

[
1

ε
p̂0(r/ε, 0, t) − poverlap(r, 0, t)

]
+ 1

ε2 p̃0(r/ε
3 − d0(t)/ε

2, 0, t), (58)

where H is the Heaviside step function, p̂0 is given by (39) and p̃0 by (51).
The composite pressure profile (58) depends on the plate displacement s0(t), which is solved for in Sect. 3.8

once the hydrodynamic force is determined. However, in order to illustrate the effects of a moving substrate on the
pressure, we compare its value in the case where the plate is stationary (s0(t) ≡ 0) to that of a prescribed moving
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Fig. 3 Analytical solutions for the pressure for ε = 0.1 at t = 5, with the left-hand side black lines showing the stationary plate case,
s0(t) = 0 (mirrored about the line r = 0), and the right-hand side grey lines the moving plate case, s0(t) = 0.02t2. The outer solution
for the pressure (39) is shown by the dashed lines, the inner solution (51) by the dotted lines and the composite solution (58) by the
solid lines. The thin vertical dashed lines show the location of the turnover curve r = εd0(t)

plate case where s0(t) = 0.02t2. Note that this value for s0(t) is chosen for illustrative purposes and is not a solution
to (12) and only satisfies the assumption that ṡ0(t) < 1 for t < 25.

We compare the solutions at t = 5 in Fig. 3, where the left-hand-side black lines show the outer, inner and
composite solutions to the pressure for the stationary plate case (mirrored about the line r = 0), and the right-hand
side grey lines show the corresponding values for the moving plate case. The vertical dashed lines show the location
of the turnover curve at r = εd0(t), and it can be seen that that the turnover curve in the moving plate case has
advanced less than in the stationary plate case, as according to (38). The pressure in the moving plate case is
significantly lower overall than in the stationary plate case. This shows how the downwards motion of the plate does
not only slow the spreading, but also decreases the hydrodynamic pressure inside the droplet. Also noteworthy is
that the inner solution under-estimates the solution away from the turnover curve in the stationary plate case, but
over-estimates it in the moving plate case.

3.7 Hydrodynamic force

In order to solve (12) for the displacement of the plate s(t), the value of the hydrodynamic force, F(t), needs to be
determined to leading order. We approximate the force by integrating the composite expansion to the pressure (58)
across the outer and inner regions. The composite expansion for the force is, hence,

Fcomp(t) = 8

9
εd0(t)

3((4 − 2
√

2)ḋ0(t)
2 + d̈0(t)d0(t))

+ 8ε4ḋ0(t)2 J (t)2

π
eη0(t)

[
πd0(t)

ε2 J (t)
+ 1 − 1

3
e2η0(t) − 2eη0(t) − 2η0(t)

]
,

(59)

where η0(t) is defined implicitly by

e2η0(t) + 4eη0(t) + 2η0(t) + 1 = πd0(t)

ε2 J (t)
, (60)

where the detailed derivation can be found in Appendix A.
We highlight that the composite force Fcomp(t) differs from the force on a stationary plate if and only if the

turnover curve d0(t) or sheet thickness J (t) differs from their corresponding stationary plate values.
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3.8 Plate displacement solution

The remaining unknown from Sect. 3.3 to 3.7 is the leading-order plate displacement s0(t), where s0(t) appears
in the solution (38) for the turnover curve d0(t) and in the solution (49) for the jet thickness J (t). The plate
displacement is found by solving the second-order ordinary differential equation (12), approximating the force
term F(t) by the composite force Fcomp(t) (59). The resulting equation is non-linear and implicit and is solved
using MATLAB’s ode15i solver in conjunction with the fsolve solver to find η0(t) via (60) at each timestep. As
the value of ḋ0(t) diverges at t = 0, the numerical scheme is initialised at a time t = ti = 10−9, with zero initial
guesses for s0(ti ) = ṡ0(ti ) = s̈0(ti ) = 0. A small-time asymptotic analysis of the plate displacement reveals that
s0(t) = O(t5/2) as t → 0, so the problem is regular and we are hence justified in taking zero initial guesses. The
results will be discussed in comparison to the full DNS in Sect. 5.

For ε = 0.1, the numerical solution for s0(t) is found for 0 ≤ t ≤ 100 on 1 CPU in approximately 10 s. In
comparison, the DNS results in Sect. 5 required approximately 24 CPU hours for the same dimensionless timescale,
hence finding a numerical approximation to the analytical solution is significantly less computationally expensive
than the DNS and a valuable first incursion into the parameter space, providing much-needed direction for the
heavier numerical machinery.

4 Direct numerical simulations

We build on the open-source, volume-of-fluid package Basilisk [20] to implement this complex multi-phase
system, retaining effects due to viscosity and density in both the liquid and the gas, as well as surface tension and
gravity. Basilisk, and its predecessor Gerris [19], have been used extensively to study interfacial flows, and in
particular droplet impact, with great success over the past two decades, cross-fertilising investigative efforts within
experimental, analytical and computational communities alike [13–15,21,27].

4.1 Moving frame coordinates

In order to avoid including an embedded boundary in the quadtree-structured computational domain, we transfer the
flow into a frame moving with the plate, fixing the plate along the bottom computational boundary. The dimensionless
moving frame coordinates are defined by x′ = (x ′, y′, z′) = x + s(t), u′ = u + ṡ(t), where s(t) = (0, 0, s(t)), and
the prime ′ decorates all quantities in the moving frame. Introducing the dimensionless variable density ρ′(x′, t)
and viscosity μ′(x′, t), such that, following notation from Sect. 2.1, ρ′ = 1, μ′ = 1 in the liquid and ρ′ = ρR ,
μ′ = μR in the gas, the dimensionless governing equations in the moving frame are given by

ρ′
(

∂u′

∂t
+ (u′ · ∇′)u′

)
= −∇′ p′ + μ′

Re
(∇′)2u′ + κ ′δ′

s

We
n̂′ + ρ′s̈(t) − ρ′

Fr2 n̂
′
z, (61)

∇′ · u′ = 0, (62)

u′
z′ = 0 for z′ = 0, x ′2 + y′2 < R2

p, (63)

where κ ′ is the radius of curvature of the free surface, δ′
s is a Dirac distribution centred on the liquid-gas free surface

and n̂′ is the unit normal to the interface. Note that the kinematic condition (63) is that of a stationary plate, and the
problem in the moving frame is equivalent to a droplet impacting onto a stationary plate, with the liquid and gas
under additional forcing equal to ρ′s̈(t). In the far field, we assume that the pressure tends to 0 (neglecting variations
due to gravity) and the vertical velocity tends to u′ → ṡ(t). The prime notation is dropped for the remainder of this
section for brevity.

123



Droplet impact onto a spring-supported plate: analysis and simulations Page 15 of 27 3

Fig. 4 Direct numerical simulation setup at t = t0 = −0.125, for a droplet of (non-dimensional) unit radius, separated from the plate
by a distance of 0.125 and travelling with a vertical velocity − 1. The inset shows a snapshot of a simulation at t = 0.045 close to the
surface, in the region indicated by the grey rectangle. The colour map illustrates the adaptive mesh refinement strategy, while the black
line depicts the location of the interface

4.2 Computational setup

In all our simulations, we consider a droplet with dimensional radius R∗
d = 1 mm initially travelling vertically

downwards at speed V ∗ = 5 m/s, where the values of Re, We and Fr2, ρR , μR , are given in Sect. 2.2. The radius of
the plate is taken to be twice the initial radius of the droplet, so that Rp = 2, and the initial separation between the
bottom of the droplet and top of the plate is δ∗ = 0.125R∗

d = 0.125 mm. The values of the mass ratio α, damping
factor β and stiffness factor γ are varied across different parametric studies.

The dimensionless governing equations (61)–(62) are solved using Basilisk within an axisymmetric domain,
where the droplet initially has unit dimensionless radius, travelling with uniform vertical velocity −1. The axisym-
metric computational domain for the simulations is shown in Fig. 4. The domain is given by a square box, with the
r axis along the bottom boundary and the z axis along the left boundary. The side length of the domain is set to
L = 6, which is sufficiently large so that far-field conditions do not artificially alter the target dynamics. Neumann
conditions ∂nu = 0 are specified along the top and right boundaries, where ∂n is the partial derivative in the normal
direction to the boundary. The vertical velocity along the right boundary is specified as uz = ṡ(t), to reflect the
far-field velocity condition. The appropriate symmetry conditions are applied along the left boundary. A mixed
boundary condition is specified along z = 0, with uz = 0 for r ≤ Rp and uz = ṡ(t) for r > Rp, the former
representing the kinematic condition along the plate (63) and the latter representing the far-field condition. The
no-slip condition ur = 0 and a 90◦ contact angle are applied along the bottom boundary. Finally, the pressure p in
the gas is set to to be zero along the top and right boundaries in line with the far-field condition (8).

The quadtree grid construction features in Basilisk allow for a high grid resolution in areas of interest, varying
from levels 5 to 13, where level n corresponds to 2n square cells per dimension, if the grid was uniform. In this case,
the largest cell has side length 6/25, corresponding to 0.188 mm in dimensional terms. The smallest cell has side
length 6/213, corresponding to 0.732µm. In order to accurately calculate the force on the plate, a region along the
bottom boundary for 0 ≤ r ≤ Rp of height 24/213 (≈2.93µm in dimensional terms) is held at level 13, such that
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the bottom four grid cells in this region are at maximum level. This avoids numerical errors induced by multi-grid
interpolation in a region which requires particular care due to the delicate fluid–structure interaction calculations
outlined below. Adaptive mesh refinement is also used to refine the domain in regions where the velocities and
interface location are rapidly changing. An example of the typical grid structure is shown in the inset of Fig. 4.

At regular timesteps Δt = 10−4 (corresponding to 20 ns in dimensional terms), the hydrodynamic force applied
to the surface of the plate, F(t), is determined by numerically integrating the pressure, p, and the viscous stress,
−2μ∂uz/∂z, along the bottom boundary for 0 ≤ r ≤ Rp. This value of the force is then used to solve the
dimensionless plate displacement equation (12) using a second-order finite difference scheme, giving s(t), ṡ(t) and
s̈(t). The boundary conditions are then updated with the new value of ṡ(t), and the vertical acceleration in all of the
cells is incremented by ρ s̈(t).

Several computational details are noteworthy in terms of ensuring a robust fluid–structure interaction calculation
procedure. As observed in other studies on droplet impact [21], numerical instabilities in the projection solver used
for the resulting Poisson equation within Basilisk may cause the calculated pressure values to fluctuate between
timesteps, thus, causing the resulting force values to vary artificially. These pressure spikes lead to artefacts in the
finite difference scheme, which can ultimately result in the simulation breaking down due to diverging acceleration
terms. To prevent this, we use a peak-detection algorithm [45] to identify numerical spikes and smooth out the
resulting force. Spatial filtering is also used to manage the contrast in density and viscosity between the liquid and
gas phases. Furthermore, any small gas bubbles or liquid drops that have a diameter smaller than sixteen level 13
cells (corresponding to ≈10μm in dimensional terms) are deemed unphysical and dynamically removed, with the
exception of the entrapped gas bubble centred at r = z = 0.

The simulations span 0.8 dimensionless time units, corresponding to 0.2 ms in dimensional time. During this
timescale, the end of the splash sheet typically reaches r ≈ 1.9, close to the edge of the plate, and the turnover
curve reaches r ≈ 1.3. The early impact stage can be considered over long before the turnover curve surpasses the
initial droplet radius; hence, we also capture timescales beyond when we expect the analytical results to be valid.
Each individual simulation consisted in approximately 60, 000 (dynamically adapted) degrees of freedom and was
executed in parallel on 4–8 CPUs, for approximately 24 CPU hours on local high-performance computing facilities.

4.3 Numerical validation

As will be demonstrated in the following section, the excellent agreement between analytical and numerical results
gives us encouragement that the simulations are converging to the correct solution. However, in order to ensure
computational robustness, we have also conducted a comprehensive validation study, confirming that the results
in Sect. 5 are mesh independent at the selected refinement level, as well as insensitive to further increases in the
computational domain size, adjustment of the initial droplet height or width of the plate, where the reader is directed
to Appendix B for details. We concluded that taking a maximum level of 13 was sufficient and insensitive to further
refinement. We are, thus, confident in proceeding with a comprehensive parametric study, exploring the solution
space with both analytical and computational approaches.

5 Results and comparisons

The aim of this section is twofold: first, to systematically compare the predictions of the analytical model from Sect.
3 to the results of the numerical simulations from Sect. 4, identifying timescales during which good agreement is
observed and, second, to provide insight into the physical mechanisms introduced once substrate motion is allowed,
systematically showing how the mass ratio α, damping factor β and stiffness factor γ affect the dynamics of the
system. To facilitate the comparison of the analytical and numerical results, we re-express all quantities into the
original non-dimensional variables from Sect. 2.1, transforming from the asymptotic variables t = ε2 t̂ in Sect. 3.1
and the primed moving frame variables in Sect. 4.1. All simulations were conducted for − 0.125 ≤ t ≤ 0.675.
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Fig. 5 (Top) Comparison of the hydrodynamic force F(t) between the stationary plate case (black) and a moving plate (grey) with mass
ratio α = 2, damping factor β = 0, stiffness factor γ = 500, with a dashed line for the analytical solution from (59) and a solid line for
the corresponding numerical value. (Middle) Displacement of the moving plate case s(t), with the dashed line showing the analytical
solution to (12) and the solid line depicting the corresponding numerical results. (Lower panels) DNS-calculated pressure p comparison
between the stationary plate case (left) and the moving plate case (right) at times labelled 1–4 in the plots above. An animation of
the pressure fields shown in the lower panels is provided as electronic supplementary material, shown alongside the corresponding
analytical results for the pressure along the plate p(r,−s(t), t) and plate displacement s(t)

5.1 Stationary plate comparison

In order to understand the influence the motion of the plate has on the system, we must compare to the case where
the plate is held in a stationary position. In particular, we wish to find where the hydrodynamic force on the plate
F(t) differs from the corresponding value for the stationary plate case, allowing us to identify where the plate
motion has a strong influence on the dynamics of the droplet.

The analytical and numerical predictions for the hydrodynamic force F(t) and the plate displacement s(t) for
α = 2, β = 0, γ = 500 are shown in Fig. 5, alongside the corresponding analytical and numerical predictions for

123



3 Page 18 of 27 M. J. Negus et al.

the stationary plate case. Under no damping or hydrodynamic forcing, the plate displacement s(t) in (12) would
oscillate about s(t) = 0 with a natural time period T = 2π

√
α/γ ≈ 0.397. The parameters α and γ are chosen

so T is of the same order of magnitude as the timescale of the simulation −0.125 ≤ t ≤ 0.675. In dimensional
terms, this system corresponds to an aluminium plate of radius 2 mm, thickness ≈0.06 mm and spring constant
k∗ ≈ 12.5 N/m. In Fig. 5, snapshots of the simulations at the points in time labelled 1–4 in the graphs are shown in
the panels, with the left-hand panels showing the stationary plate case, the right-hand panels showing the moving
plate case and the colour map showing the pressure distribution in each. The computed value of the viscous stress
along the plate in the DNS was typically <0.1% of the pressure; hence, the dominant contribution to the numerical
results for the force F(t) was due to the pressure itself. Supplementary video material depicting both analytical and
computational results for this test case has also been made available.

Point 1 (t = 0.015) in Fig. 5 is shortly after the impact of the droplet. Here, the value of F(t) for the moving
plate is close to that of the stationary plate, as the plate has only deformed to within a distance of O(10−3) of its
initial location, and it can be seen in the panels in Fig. 5 that the pressure distribution for both cases is similar. The
plate displaces downwards until around t = 0.25, at which point the strength of the elastic restoring force, γ s(t),
causes the plate to recoil. Shortly after this, at point 2 (t = 0.295), the graphs in Fig. 5 show that the hydrodynamic
force in the moving plate case is greater than the stationary plate case, due to the stronger pressure that can be seen
in the panels. The plate subsequently moves upwards into the droplet until around t = 0.5, when the elastic force
balances with the hydrodynamic force and the plate begins to accelerate downwards again. The hydrodynamic force
reaches a local minimum at point 3 (t = 0.535). Point 4 (t = 0.675) marks the end point of the simulations, but it
can be extrapolated from the graphs in Fig. 5 that this oscillatory behaviour would continue for later times.

The analytical solutions in Fig. 5 show excellent agreement with the numerical results up until close to point 2
at t = 0.295. This is remarkable, as the analytical model makes the assumption that t � 1, and that the radius of
the turnover curve remains small compared to the droplet radius; however, the panels show that the turnover curve
at point 2 is close to r = 0.75.

Both the value of the plate displacement s(t) and the difference in the location of the fluid interfaces in the
graphs and snapshots shown in Fig. 5 are small in comparison to the size of the droplet. Hence, upon experimental
observation, the physical system may not appear different to the stationary plate case. However, the oscillations
in the hydrodynamic force and the pressure differences in the snapshots show that flow inside the droplet is being
significantly affected by the motion of the plate. This shows that just introducing substrate motion due to linear
elasticity results in a substantial change in the dynamics of the droplet.

5.2 Plate parameter comparisons

In Sect. 5.1, we showed in detail how the system behaves for specific values of the mass ratio α, damping factor
β and stiffness factor γ . In the following, we aim to study physical mechanisms represented by these parameters
individually.

In order to systematically observe the effects of these physical mechanisms, we conducted a series of simulations
for −0.125 ≤ t ≤ 0.675 with varying values of α, β and γ . The hydrodynamic force F(t) was calculated regularly
and is shown by the solid grey-scale lines in Fig. 6, where darker lines correspond to higher values of α, β or γ . For
comparison, the solid black line and dashed line correspond to the numerical and analytical hydrodynamic force for
the stationary plate case. Analytical solutions for the rest of the cases are not shown for visual clarity on the plots;
however, an analysis similar to that presented in Sect. 5.1 could be conducted for all each value of α, β and γ .

The mass ratio α = M∗/ρ∗
l R

∗
d

3 represents (up to a constant) the ratio between the mass of the plate M∗ and
the mass of the droplet 4πρ∗

l R
∗
d

3/3. Upon impact, the pressure of the droplet exerts a hydrodynamic force onto the
plate, causing it to accelerate downwards. The downwards motion of the plate causes the pressure at the surface
of the plate to decrease, in turn decreasing the hydrodynamic force. For lighter plates (smaller α), this downwards
motion will be faster, and hence, we expect that the hydrodynamic force will be lower in lighter plates than for
heavier ones. The mass ratio α is varied from 1 to 100 in Fig. 6a, with β = γ = 0. In these cases, the only force
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Fig. 6 Numerical results for the hydrodynamic force on the plate F(t) computed via DNS, with solid grey lines showing moving plate
cases with varying values of the mass ratio α, damping factor β and stiffness factor γ , and solid black lines showing the stationary plate
case. The black dashed lines indicate the analytical solution to F(t) for a stationary plate given by (59). a β = γ = 0, and α ranges from
1 to 100. b α = 2, γ = 100 and β = 0, 0.25βc, βc and 5βc, with critical damping value βc = 2

√
αγ ≈ 28.28. c α = 2, β = 0 and γ

ranges from 0 to 1000

acting on the plate is the hydrodynamic force of the droplet from above; hence, the plate accelerates downwards at a
rate depending on the mass ratio α. It can be seen from Fig. 6a that increasing α causes the overall force to increase,
tending towards the stationary plate value for large values of α. In addition, the time at which the hydrodynamic
force reaches a maximum increases as α increases, which happens once the plate has accelerated to its maximum
velocity, resulting in a lower hydrodynamic force. It takes longer for this to happen the heavier the plate is; hence,
the time at which the maximum is reached increases as α increases.

The damping factor β determines the amount of resistance to motion the dashpot exerts. We note that the ODE
for the plate displacement (12) under no external forcing has a critical damping value of β = βc = 2

√
αγ . If this

unforced system was displaced from its equilibrium position and released, the undamped system (β = 0) would
experience oscillations of a fixed amplitude about the equilibrium point. For 0 < β < βc, the system would be
underdamped, and the amplitude of the oscillations would decay at a rate increasing with β. If β > βc, the system
would be overdamped and would exponentially return to equilibrium, returning more slowly with increasing β.
Finally, if β = βc, the system would be critically damped and would return to the equilibrium in the fastest time.
However, inclusion of the hydrodynamic forcing will alter these dynamics, and, in particular, we expect that higher
values of β would lead to smaller displacements from equilibrium due to the resistance to motion. In Fig. 6b, the mass
ratio and stiffness factor are fixed at α = 2, γ = 100 such that the critical damping value is βc = 20

√
2 ≈ 28.28.

The grey-scale lines show the values of force for β = 0, 0.25βc, βc and 5βc. For β = 0, we can clearly see
oscillations in the force, and the amplitude of these oscillations decreases when the system is underdamped for
β = 0.25βc. These oscillations are suppressed in the case of critical damping β = βc, where the force follows a
trend that is initially lower than the stationary plate value, whereas the force approaches the stationary plate value
for the overdamped case β = 5βc. Since the force depends predominantly on the hydrodynamic pressure in the
droplet, the fact that the force follows the same behaviour of under-, over- and critical damping shows the strong
influence the dashpot has on the behaviour of the droplet.

The strength of the elastic force from the compression of the spring is represented by the stiffness factor γ . In
the absence of damping and external forcing, the solution of (12) for s(t) would oscillate with a dimensionless
time period T = 2π

√
α/γ ; hence, an increase in the stiffness factor results in the oscillations having a shorter time

period. The spring does work on the droplet via a vertical force equal to γ s(t), so the droplet loses kinetic energy
depending on how far below the z axis the plate is displaced. Unlike damping, the elastic force is conservative,
meaning the loss of kinetic energy from the droplet due to the elasticity is converted into potential energy in the
spring, which is then in turn converted into kinetic energy via oscillations. Figure 6c shows the hydrodynamic forces
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in systems for mass ratio and damping factor α = 2 and β = 0, with stiffness factor γ varying from 0 to 1000. As
expected, we observe that the time periods of the oscillations decrease as γ increases in Fig. 6c. For the two highest
γ values (500 and 1000), it can be seen that the values of F(t) oscillate centred on the force value for the stationary
plate case. This suggests that as γ increases, although the frequency of oscillations increases, the amplitude of the
oscillations would decrease and eventually the force would tend to the stationary plate value.

Although the analytical solution was only shown for the stationary plate case in Fig. 6, it is worth noting the good
agreement that this solution has with the numerical values at early times for the majority of the moving plate cases
shown. At early times, the velocity of the plate is still small; hence, it does not significantly alter the hydrodynamic
force. It is only once the plate has been accelerated that its motion affects the hydrodynamic force by doing work
on the liquid.

5.3 Pressure along the plate

In the previous subsections, we highlighted how the dominant contribution to the force on the plate F(t) in the
simulations shown in Fig. 6 was from the pressure along the plate p(r,−s(t), t), with the viscous stress only
contributing ≈ 1%. Hence, in order to better understand the contributing factors to the force, we now focus on the
dynamics of the pressure along the plate.

As mentioned in Sect. 4, the projection solver used byBasilisk to determine the pressure is prone to numerical
instabilities localised in time, making it occasionally difficult to accurately represent certain quantities such as the
pressure at a particular point in the domain over long periods of time without noise, a behaviour also noted in
previous studies of droplet impact (see, e.g. the appendix of [21]). Other quantities that are used extensively in the
analytical solution, such as the turnover curve d(t) and jet thickness J (t), are also difficult to extract at early times
when the contract region spans a small number of computational grid cells. These quantities are readily solved for
using the analytical model; hence, we will use the analytical solutions derived in Sect. 3 in the following subsection
to study quantities that would otherwise be difficult to obtain from the DNS at very early times.

As an example, we select three sets of parameters shown in Fig. 6 with α = 2: (β, γ ) = (0, 0), (β, γ ) = (0, 100)

and (β, γ ) = (28.28, 100), with the first representing a case without elasticity or damping, the second an oscillatory
case without damping and finally a critically damped case. To gain insight into the evolution of the pressure, we use
the composite expansion (58) to determine the pressure at the centre of the plate p(0,−s(t), t) and the maximum
pressure along the plate pmax(t), and plot these alongside the plate displacement s(t) from (12) and the turnover
curve d(t) from (38) in Fig. 7a for the three parameter cases and the stationary plate case. It can be seen that the
pressure evolution is substantially different between the cases, with a notable reduction in pressure for the case
(β, γ ) = (0, 0), as well as clear oscillations in the pressure at the centre of the plate for the case (β, γ ) = (0, 100).

From the comparison between the analytical and numerical solutions in Fig. 5, we expect the analytical solution
to be most accurate for early times, and in particular for t � 0.1. The differences between the cases shown in Fig. 7a
are most apparent after this time, so we now instead focus on a set of parameters where the differences are visible
on this early timescale. To achieve this, we choose a small value of the mass ratio α = 0.1 with (β, γ ) = (0, 0),
(β, γ ) = (0, 25) and (β, γ ) = (3.16, 25), which again correspond to a case without elasticity or damping, an
oscillatory case without damping and a critically damped case. The same quantities as before are plotted for these
cases in Fig. 7b. The smaller mass ratio results in the pressure being significantly reduced in all cases, with it even
becoming less than zero for the (β, γ ) = 0 case. This results in a substantial plate displacement s(t), which is again
most pronounced in the (β, γ ) = (0, 0) case. In all three cases, the turnover curve at r = d(t) evolves more slowly
when compared to its stationary plate counterpart, showing that the plate motion hinders the spread of the droplet.

The grey boxes on the p(0,−s(t), t) and pmax(t) graphs of Fig. 7b show the timescale from t = 0 to t = 0.1.
The full pressure along the plate, p(r,−s(t), t) from (58) for this timescale for all the α = 0.1 cases is shown in
Fig. 8. The lines are plotted at regular time intervals from t = 0.001 to 0.1, with the left-hand sides showing the
stationary plate case mirrored about r = 0 and the right-hand sides showing the (β, γ ) = (0, 0), (β, γ ) = (0, 25)

and (β, γ ) = (3.16, 25) cases. The vertical dashed lines indicate the position of the turnover curve at r = d(t)
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Fig. 7 Analytical predictions for the pressure at the centre of the plate p(0,−s(t), t), the maximum pressure pmax(t), the plate
displacement s(t) and the turnover curve d(t) according to (58), (12) and (38) for various parameter values. The stationary plate case
is plotted in solid lines, cases with mass ratio α = 2 are plotted in row (a) and cases with mass ratio α = 0.1 are plotted in row (b). The
grey boxes in (b) indicate the temporal region shown in Fig. 8

and the arrow indicates increasing time. The figure shows that the reduction in pressure due to plate motion occurs
across the whole plate, not just at the origin and the maximum point as shown in Fig. 7b. It is also clearly visible
how much the droplet spreading is slowed in comparison to the stationary plate case, most pronounced for the
(β, γ ) = (0, 0) case.

We observe in Figs. 7 and 8 that the motion of the plate can cause a significant reduction in the pressure in the
droplet. Not only this, but it can also slow down the spreading of the droplet, as seen by a decrease in the value of
d(t). The combination of these factors gives insight into the evolution of the value of the computationally determined
force F(t) shown for various parameters in Fig. 6, as the dominant contribution to F(t) in the simulations was
the integral of p(r,−s(t), t) across the plate surface. In particular, small values of F(t) could either be due to a
reduction of the pressure, a slowing of the turnover curve d(t), or a combination of both.

We underline that in all of the investigated cases, the evolution of the turnover curve at r = d(t) was slower than
the corresponding stationary plate scenario. The consequence of this fact is that the plate motion always acts to slow
the spread of the droplet, as opposed to accelerating the spread. This means any case shown in Fig. 6 where the the
value of F(t) was greater than the stationary plate case would be due to an increase in the pressure, as opposed to
a faster spread across the surface of the plate.

In this section, we have shown the rich variety in behaviours that the system exhibits as a result of the individual
physical contributions due to the mass of the plate, strength of the dashpot and stiffness of the spring. These physical
mechanisms result in previously unreported changes in the droplet dynamics, such as pressure oscillations which
can be suppressed by energy losses due to damping, a reduction in the overall pressure along the plate and a slowing
of the droplet spreading. Although the magnitude of the plate displacement is small in comparison to the length scale
of the droplet in all cases, the strong coupling observed between the plate displacement s(t) and the hydrodynamic
force F(t) justify making use of models where the fluid–structure interaction is retained in order to accurately
predict the dynamics of the droplet over these timescales.
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Fig. 8 Analytical predictions for the pressure along the plate p(r,−s(t), t) according to (58), plotted at regular time intervals from
t = 0.001 to 0.1, with the arrow indicating increasing time and the vertical dashed lines showing the location of the turnover curve at
r = d(t), given by (38). Left-hand sides: Predictions for the stationary plate case where s(t) ≡ 0, mirrored about r = 0. Right-hand
sides: Predictions for mass ratio α = 0.1 and a selection of values for damping factor β and stiffness factor γ

6 Summary and discussion

In this paper, we have presented two models for the vertical impact of a droplet onto a plate supported by a spring
and a dashpot: an analytical model using matched asymptotic expansions and a full computational framework based
on DNS. Although droplet impact onto elastic beams has been considered previously [37], the analytical model we
present is the first to consider the Wagner theory formulation where the substrate experiences both elastic forcing
and damping. As opposed to previous axisymmetric models [37,40], we approximate the hydrodynamic force on
the substrate using the leading-order composite expansion of the pressure between the outer and inner region (rather
than just the outer region). Significantly, we found that the composite force shown in Fig. 5 is within 10% of the
numerical solution up to t ≈ 0.2, in contrast to the force contribution due to the outer region only remains within
10% of the numerical solution up to t ≈ 0.04, which justifies considering the contributions from the inner region
in order to extend the timescale in which such analytical models are valid more generally. Previous numerical
investigations involving a plate-spring system [34] do not take into account forcing due to damping, and focus on
the late-time dynamics of spreading and rebound, whereas we focus on the influence the plate motion has on the
delicate early stages of impact in a high-speed context. Finally, the response of an elastic substrate on an impacting
droplet has very recently been modelled using an effective boundary condition on the pressure in order to consider a
stationary computational domain [8]. By contrast, in our model, the substrate motion is resolved by using a moving
frame of reference centred on the surface of the substrate, fully representing the fluid–structure interaction.

The two proposed methodologies are distinct in their approach to understanding the system, and yet they are
stronger in combination. In a problem with such violent topological changes over short scales, it is vital to have
analytical results to both validate and inform our DNS platform. The analytical model provides guidance into key
quantities, such as the location of the turnover curve, which can be used as a prediction for the simulation duration and
refinement strategy. In addition, the analytical model can be used to rapidly search for parameters where interesting
coupling between the droplet and plate can be observed, rather than spending considerable computational resources
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searching for these regimes numerically. However, the analytical model relies on a series of assumptions, such as
neglecting viscosity, surface tension and gravity, and is limited to early impact times. On its own, it is impossible
to assess the consequence of these assumptions, and where they break down. By systematically comparing the
analytical predictions to the numerical model, we can identify the regimes where these assumptions are valid and
support the use of the analytical model as opposed to the costly DNS. If desired, the DNS can then be used to go
beyond those regimes and study timescales inaccessible to the analytical model. It is only when used in conjunction
that the predictive power and robustness of these models reach their full potential.

Not only have the methods presented in this paper extended existing analytical and numerical models, but they
have also allowed us to provide physical insight into the dynamics of a novel, complex multi-phase system. We
recognise that the displacement of the plate and perturbation of the free surface of the droplet are small; hence, these
models provide insight into a physical regime that would otherwise be very difficult to study experimentally. In
particular, in Fig. 5, 7 and 8 we observed significant alterations of the pressure inside the droplet due to the motion
of the plate both numerically and analytically – a quantity which would be difficult to measure experimentally.
Through an extensive parameter study, we identified the influence that the mass ratio α, damping factor β and
stiffness factor γ have on the hydrodynamic force exerted by the droplet. In particular, we found that lighter plates
(smaller α) result in a lower value of the force; stiffer springs (higher γ ) result in oscillations of higher frequency
and that resistive dashpots (higher β) suppress the oscillations due to the elasticity from the spring.

The plate-spring-dashpot system is one of the simplest models for a flexible substrate, as it only allows for
vertical motion. Droplet impact onto the end of a cantilever, such as a leaf, is more complex as the bending of
the beam breaks the axisymmetry. However, as considered in [7], the deflection of the end of the beam can be
modelled using the second-order differential equation (12) when the deflection is small (hence negligible bending).
Therefore, the model for the substrate motion considered in this paper could provide insight into the early time
dynamics of droplet impact onto the end of cantilever beams. In addition, there is much scope to extend these
models to more complex substrates, such as elastic membranes under tension, as previously studied experimentally
[9], further guided by recent analytical [37] and computational [31,32] progress. In conclusion, we believe that
the proposed mathematical framework embodies productive co-development and investigative interplay between
rigorous state-of-the-art methodologies, providing a general and highly efficient route to studying complex systems
involving fluid–structure interaction in the future.
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Appendix A: Composite hydrodynamic force

For the analytical model, the hydrodynamic force is determined by integrating the pressure p across the surface of
the plate. As the leading-order solution in the outer region (39) diverges at the turnover curve, the force contribution
close to the turnover curve must be an over-estimate. Hence, the leading-order composite pressure between the
outer and the inner regions was found in Sect. 3.6 in order to determine the resulting composite force, where the
force contribution from the splash sheet region was determined to be negligible. When viscosity is neglected, the
dimensionless hydrodynamic force on the plate (10) is given by
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F(t) = 2π

∫ Rp

0
rp(r,−ε2s(t), t)dr. (64)

The composite force is found by integrating the composite pressure (58) along the surface of the plate, which is
determined by splitting the range of the integral across the respective asymptotic regions,

Fcomp(t) = Fouter(t) + Finner(t) − Foverlap(t), (65)

where Fouter(t) and Finner(t) are the result of integrating the leading-order outer pressure (39) and inner pressure
(51), respectively, and Foverlap(t) is the result of integrating the overlap pressure (57). The resulting force due to the
outer region is, hence,

Fouter(t) = 2π

∫ εd0(t)

0
r

1

ε
p̂0(r/ε, 0, t)dr = 8

9
ε

∫ d0(t)

0

d2

dt2

[
r̂(d0(t)

2 − r̂2)3/2
]

dr̂

= 8

9
ε

d2

dt2

∫ d0(t)

0
r̂(d0(t)

2 − r̂2)3/2dr̂ = 8

45
ε

d2

dt2

[
d0(t)

5
]

= 8

9
εd0(t)

3(4ḋ0(t)
2 + d̈0(t)d0(t)).

(66)

For Finner(t), the integration variable is changed to the parameter η from (51). Then, η0(t) is defined such that
r = 0 for η = η0(t), i.e.

e2η0(t) + 4eη0(t) + 2η0(t) + 1 = πd0(t)

ε2 J (t)
, (67)

where η0(t) must be solved for numerically for each t . Note that η → −∞ as r → ∞, where p̃0 decays
exponentially. Hence, we take the upper limit of the integral to be r = ∞, which introduces exponentially small
errors. The resulting force due to the inner region is, hence,

Finner(t) = 2π

∫ ∞

0
r

1

ε2 p̃0(r/ε
3 − d0(t)/ε

2, 0, t)dr

= 2επ

∫ ∞

−d0(t)/ε2
(εd0(t) + ε3r̃) p̃0(r̃ , 0, t)dr̃

= 8εḋ0(t)
2 J (t)

∫ η0

−∞

(
εd0(t) − ε3 J (t)

π
(e2η + 4eη + 2η + 1)

)
eηdη

= 8ε4ḋ0(t)2 J (t)2

π
eη0(t)

[
πd0(t)

ε2 J (t)
+ 1 − 1

3
e2η0(t) − 2eη0(t) − 2η0(t)

]
.

(68)

Finally the overlap force is

Foverlap(t) = 2π
2
√

2d0(t)3/2ḋ0(t)2

3π
√

ε

∫ εd0(t)

0

r√
εd0(t) − r

dr = 16
√

2

9
εd0(t)

3ḋ0(t)
2. (69)
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Combining (66), (68) and (69), the composite force is

Fcomp(t) = 8

9
εd0(t)

3((4 − 2
√

2)ḋ0(t)
2 + d̈0(t)d0(t))

+ 8ε4ḋ0(t)2 J (t)2

π
eη0(t)

[
πd0(t)

ε2 J (t)
+ 1 − 1

3
e2η0(t) − 2eη0(t) − 2η0(t)

]
,

(70)

where d0(t) and J (t) are given by (38) and (49), respectively.

Appendix B: Direct numerical simulation validation

Given the complexity of our computational framework, prior to the comparisons and excellent agreement between
the analytical and numerical results shown in Sect. 5, we have made significant efforts to ensure the robustness and
mesh independence of our output. This is particularly important in the context of the numerical approach retaining
effects that are neglected in the analytical model, such as the action of the surrounding gas.

A key quantity in our analysis is the force on the plate, F(t), and here, we show the convergence of the results
as the maximum grid refinement level is varied. We discuss two specific parametric cases: the stationary plate case
(where s(t) ≡ 0), and a representative moving plate case where α = 2, β = 7.07 and γ = 100. For all cases, the
force F(t) was extracted at regular intervals of Δt = 10−4, running from non-dimensional t = −0.125 to t = 0.675,
giving a total of 8001 data points. We recall that a cell at spatial refinement level m has width equal to Δr = L/2m ,
where L = 6 is the width of the computational domain. For each case, five simulations were studied, varying the
maximum refinement level from m = 10 (with Δr ≈ 5.86 × 10−3) to m = 14 (with Δr ≈ 3.66 × 10−4). For
reference, if the grids were uniform at level m, then m = 10 would introduce ≈ 171 cells per droplet radius, whereas
m = 14 would have ≈ 2731 cells per droplet radius. Thus, even our lowest level setting contains considerable detail,
while the most stringent grid refinement scenario ensures significant resources are deployed to capture the target
impact dynamics. The associated results are summarised in Fig. 9a and b, respectively.

Due to the complexity of these scenarios and the absence of an analytical solution incorporating full non-linearity,
the influence of the surrounding gas and topological changes such as entrapped bubble formation, we measure how

Fig. 9 Numerical solutions for the force on the plate Fm(t) at maximum refinement levelm varied between 10 and 14 for two cases: (left)
stationary plate and (right) a moving plate setup. The insets illustrate the L2-norm of the difference between solutions with maximum
level m and the reference maximum level 14 results across the entire simulation timescale, with the discrete L2-norm is defined in (71)
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close the results of the simulations align to the most refined case with maximum level 14 as a benchmark. Hence,
we define the discrete L2-norm of the difference between cases with maximum level m and the reference level 14
scenario across the full simulation timescale to be

‖Fm − F14‖2 =
√√√√ 1

N

N∑
n=0

(Fm(tn) − F14(tn))2, (71)

where tn is the discretised time value and N = 8001 is the total number of timesteps, such that tN = tmax. The
L2-norm for each case is shown in the insets of Fig. 9a and b. As can be seen, the L2-norm rapidly decreases, with
diminishing returns after a maximum level of 12. We are hence confident that the scheme has converged and opted
to keep the a maximum level of 13 throughout Sect. 5, which includes a variety of parametric studies. We believe
this to be a viable balance between the capability to explore our problem space in detail and computational cost.
For context, each level increase in the maximum allowed refinement level results in a roughly fourfold increase in
the number of degrees of freedom (roughly due to the advantages of using mesh adaptivity), as well as a halving of
the associated timestep in order to ensure stability of the underlying numerical scheme.

We have have also conducted similar analyses for the width of the computational domain, initial height of the
droplet and width of the plate, and concluded that the scheme is insensitive to further changes in these values. These
studies ultimately contributed to a systematically constructed and thoroughly validated numerical framework, which
was essential to furthering our understanding of this challenging fluid–structure interaction problem.
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