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Abstract This paper deals with the computational aspect of the investigation of the relaxation properties of
viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with
a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is
derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the
Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation
is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
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1 Introduction

The concept of fractional-order differentiation and integration is not new in mathematics. Its history is quite long
and was initiated at least in the late seventeenth century. According to the research conducted in [1], de l’Hospital
and Leibnitz considered differential operators with non-integral order in their correspondence dated 30 September
1695. The nineteenth century was a period of intense prosperity for the theory of fractional derivatives. The series
of papers (1832–1892) published by Liouville and Riemann gave a solid foundation in fractional calculus. Over the
next century, many mathematicians, physicists and engineers, motivated by the needs of industrial problems, were
developing the theory of fractional derivatives in the context of their applications. It has been proven immediately
that the fractional derivative is a significant tool applicable in many areas including diffusive transport, fluid flow
and especially in rheology, where fractional derivative models are effective to describe the dynamic behaviour of
real viscoelastic materials [2–11].
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The theory of viscoelasticity is crucial in describing materials, such as rubber or polymers, which exhibit time-
dependent stress–strain behaviour. Inmany industry applications, like tyres, shock absorbers or other rubber compo-
nents, a reliable constitutive equation must be established in order to describe all the relevant effects in the material
response under small harmonic vibrations. The classical model of finite viscoelasticity is based on a finite series of
Maxwell elements in parallel, which leads to a relaxation function given by a sum of decreasing exponentials (Prony
series) (see [12]). Experimental investigations into the time-dependent relaxation behaviour of such materials are
characterised by a very fast decrease of the stress at the beginning of the relaxation process and an extremely slow
decay for large times. It can even take a long time before a constant asymptotic value is reached. Therefore, a lot
of Maxwell elements are required to describe relaxation behaviour with sufficient accuracy. This ends in a difficult
optimisation problem in order to identify a large number of material parameters. On the other hand, over the years,
the concept of fractional derivatives has been introduced to the theory of viscoelasticity [13–16]. Among these
models, the fractional Zener model was found to be very effective to predict the dynamic nature of rubber-like
materials with only a small number of material parameters [17–20]. The solution of the corresponding constitutive
equation leads to a relaxation function of the Mittag-Leffler type. It is defined by the power series with negative
arguments. This function represents all essential properties of relaxation process under the influence of an arbitrary
and continuous signal with a jump at the origin. However, from the numerical point of view, it is inconvenient to
calculate the numerical values of the Mittag-Leffler function for large negative arguments. Our motivation is to
discuss and solve this computational difficulty against a background of physical and application interest.

The paper is organized in the following way. In the first part (Sect. 2), we recall the main properties of theMittag-
Leffler function and introduce the linear operators of fractional differentiation. In the second part (Sect. 3), we
consider differential equation of fractional order, which model the constitutive relation for viscoelastic materials.
For this equation, we derive its analytical solution by applying the technique of Laplace transforms. It is given
in the terms of the Mittag-Leffler function. We present the method of calculating numerical values of Mittag-
Leffler function for arbitrary negative arguments, which is based on its integral representation. Finally, a numerical
simulation is given to illustrate the effectiveness of the proposed approach. Section 4 contains some concluding
remarks.

2 Preliminaries and notations

We start our considerations by introducing several special functions, fractional operators and their properties that
will be useful in the second part of this work. Some definitions in this section are very common, and we write them
just for reference. Others are far from being common but are still quite often used in the literature [1,21,22].

2.1 Laplace transform

Definition 2.1 Let f : R+ → R be a locally integrable function on the interval [0,∞) and s be a complex number.
If the improper integral

L[ f (t)](s) :=
∫ ∞

0
f (t)e−stdt, (2.1)

exists, then we call it the Laplace transform of f at s.

Definition 2.2 Let f : R+ → R be a real function and suppose that F(s) = L[ f (t)](s) is well defined for some
s = γ + iθ . Then, we have

f (t) = 1

2π i

∫ γ+i∞

γ−i∞
F(s)estds, (2.2)
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and it is called the inverse Laplace transform of F .

Property 2.1 Let f and g be any functions and c1 and c2 be any constants for which the needed operations are
defined. Then, we can write the following properties of the Laplace transform

(i) Linearity

L[(c1 f + c2g)(t)](s) = c1L[ f (t)](s) + c2L[g(t)](s),

(ii) Differentiation

L
[
d

dt
f (t)

]
(s) = sL[ f (t)](s) − f (0),

(iii) Convolution

L[( f ∗ g)(t)](s) = L[ f (t)](s)L[g(t)](s).

Here the convolution is defined by

f (t) ∗ g(t) =
∫ t

0
f (t − τ)g(τ )dτ. (2.3)

2.2 Special functions

Definition 2.3 The Heaviside step function H : R → R is a discontinuous function with discontinuity at zero,
namely

H(t) =
{
0 if t ≤ 0,

1 if t > 0.
(2.4)

The Heaviside step function may be defined equivalently as the integral of the Dirac delta function, that is

H(t) =
∫ t

−∞
δ(τ )dτ. (2.5)

Definition 2.4 The Gamma function is defined by the integral

Γ (t) =
∫ ∞

0
xt−1e−xdx . (2.6)

It can be proved by integrating by parts that the Gamma function satisfies the following functional equation

Γ (x + 1) = xΓ (x), (2.7)

for arbitrary x > 0.
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Definition 2.5 Let α > 0 and β > 0 be two real but arbitrary numbers. The two-parameter Mittag-Leffler function
Eα,β is defined by

Eα,β(t) =
∞∑
k=0

tk

Γ (αk + β)
, (2.8)

whenever the series converges.

Since

E1,1(t) =
∞∑
k=0

tk

Γ (k + 1)
=

∞∑
k=0

tk

k! = et , (2.9)

is the well known exponential function, the Mittag-Leffler function is also known as the fractional exponential
function.

Theorem 2.1 Let Eα,β be the two-parameter Mittag-Leffler function for some α > 0 and β > 0. The power series
defining Eα,β(t) is convergent for all t ∈ R.

Theorem 2.2 Let α > 0, β > 0 and t ∈ R. Then

Eα,β(t) = t Eα,α+β(t) + 1

Γ (β)
. (2.10)

Definition 2.6 Let α > 0, β > 0 and a ∈ R. We define the function Zα,β(· ; a) in the form

Zα,β(t; a) = tβ−1Eα,β(atα). (2.11)

Lemma 2.1 The Laplace transform of Zα,β(· ; a) is well defined and

L[Zα,β(t; a)](s) = sα−β

sα − a
, (2.12)

for all complex numbers s satisfying the condition |a/sα| < 1.

2.3 Fractional derivatives

In the following subsection,we shall show themost popular definitions of the fractional-order derivative and describe
their properties. We also present some similarities, differences and relations between them (see [1,21,22]). Let us
start with the most popular definition of fractional derivative being a result of Liouville’s and Riemann’s work. It is
based on a generalization of the Cauchy formula for n-fold integration. To be more precise, let f be a sufficiently
regular function on the interval [a, b] ⊂ R and I denote the integral operator over [a, b]. The Cauchy integral
formula is

I n f (t) = 1

(n − 1)!
∫ t

a
(t − τ)n−1 f (τ )dτ, (2.13)
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for t ∈ [a, b] and n ∈ N. Replacing the factorial operator with the Gamma function, being its natural generalization,
Liouville and Riemann have created an integral operator in the following form

a I
α
t f (t) := 1

Γ (α)

∫ t

a
(t − τ)α−1 f (τ )dτ, (2.14)

for any real number α > 0 and t ∈ [a, b].
Definition 2.7 Let f : [a, b] → R be an arbitrary function and α ∈ (0, 1). If the value

aD
α
t f (t) := d

dt
a I

1−α
t f (t), (2.15)

is finite, then we call it the Riemann–Liouville fractional derivative with order α of function f .

In 1967, an Italian mathematician Michele Caputo [23] gave a different definition of fractional derivative, which
has turned to be very useful in industrial problems.

Definition 2.8 Let α be an arbitrary real number in the interval (0, 1) and f ∈ C1([a, b]). Then for every t ∈ [a, b]
there exists a finite value

C
a D

α
t f (t) := 1

Γ (1 − α)

∫ t

a

f ′(τ )

(t − τ)α
dτ, (2.16)

which is called the Caputo fractional derivative with order α of function f .

Let us investigate some basic properties of these differential operators of fractional order. First of all, we notice that
Definitions 2.7 and 2.8 are consistent with the classical integer order derivative, i.e.

lim
α→1

C
a D

α
t f (t) = f ′(t) = lim

α→1
aD

α
t f (t). (2.17)

Property 2.2 Let f, g be arbitrary functions and c1, c2, α, a be real constants for which the needed operations are
defined. Then the linearity of the Riemann–Liouville and Caputo fractional derivatives can be expressed by

1. aDα
t (c1 f + c2g)(t) = c1 aDα

t f (t) + c2 aDα
t g(t),

2. C
a D

α
t (c1 f + c2g)(t) = c1 C

a D
α
t f (t) + c2 C

a D
α
t g(t).

Property 2.3 Let f be a constant function, i.e. f (t) = c, c ∈ R. Then, we have

aD
α
t c = c

Γ (1 − α)(t − a)α
	= 0, α ∈ (0, 1), (2.18)

and

C
a D

α
t c = 0, c ∈ R, α ∈ (0, 1), (2.19)

in the case of Riemann–Liouville and Caputo type, respectively.

Looking for the relationship between the Caputo and Riemann–Liouville fractional differential operators, we can
present the following result.

Theorem 2.3 Let f : [a, b] → R be a differentiable function with order α ∈ (0, 1) in the sense of Definitions 2.7
and 2.8. Then

aD
α
t f (t) = C

a D
α
t f (t) + f (a)

Γ (1 − α)(t − a)α
. (2.20)
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Proposition 2.1 Let f be arbitrary functions and α be a real constant for which the needed operations are defined.
Then the Laplace transform of the Riemann–Liouville and Caputo fractional derivatives satisfy

1. L[0Dα
t f (t)](s) = sαL[ f (t)](s) −

[
0 I

1−α
t f (t)

∣∣∣
t=0

,

2. L[C0 Dα
t f (t)](s) = sαL[ f (t)](s) − sα−1 f (0).

Practical applicability of the Laplace transform of the Riemann–Liouville fractional derivative is limited by the
absence of the physical interpretation of the limit values of fractional derivative at t = 0. Since there is no such
problem in the case of Caputo fractional derivative, it can be useful for solving applied problems leading to linear
fractional differential equations.

3 Fractional viscoelastic constitutive model

In this section, we present the application of fractional derivatives in the constitutive model of viscoelasticity. To
be more precise, we formulate the Caputo type fractional differential constitutive equation and solve it, applying
the Laplace transformation technique for an arbitrary signal with a jump at t = 0. Furthermore, we discuss the
inconvenience of numerical calculations of the relaxation function derived in terms of the Mittag-Leffler function.

3.1 Generalized Zener model of viscoelastic materials

The fractional Zener model is the generalization of the well-known standard linear solid model consisting of an
ideal elastic spring and Maxwell element connected in parallel. The qualitative behaviour of the conventional
model is improved by replacing the integer order time derivatives of stress and with fractional-order derivatives.
The constitutive equation for the fractional Zener model is

dα

dtα
σ (t) + A0σ(t) = B1

dα

dtα
ε(t) + B0ε(t), (3.1)

where σ is the stress, ε is the, A0, B0, B1 and α ∈ (0, 1) are material constants,-order and the α-th-order fractional
derivative is defined by the Caputo operator (2.16). This model has been proved to be efficient in describing the
stress–strain relation of real viscoelastic materials.

3.2 Analytical solution of the fractional-order differential constitutive equation

Let us consider the viscoelastic material subjected to an imposed arbitrary continuous deformation ε(t)with a jump
at t = 0. We assume that the stress is zero before the is loaded, i.e. the material is in equilibrium. According to
the Boltzmann superposition principle in viscoelasticity, we can express the signal as the sum of constant ε1 and
continuous ε2 functions (see Fig.1). Then, we have

ε(t) = ε1(t) + ε2(t) = ε0H(t) + ε2(t), t ≥ 0, (3.2)

where H denotes the Heaviside step function. Linearity of the constitutive equation (3.1) and linearity of the Caputo
fractional operator (Property 2.2) allows us to measure the corresponding stress response which can be expressed
as

σ(t) = σ1(t) + σ2(t), (3.3)
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where σ1(t) and σ2(t) are the stress histories corresponding to ε1(t) and ε2(t) seperately. Let us start with the
equation

dα

dtα
σ1(t) + A0σ1(t) = B1

dα

dtα
ε1(t) + B0ε1(t). (3.4)

Inserting ε1(t) = ε0H(t), applying the Laplace transform, using Property 2.1 and doing simple transformations,
we get

L[σ1(t)](s) = ε0

(
B1

sα−1

sα + A0
+ B0

s−1

sα + A0

)
. (3.5)

Coming back to the time domain with the use of Proposition 2.1, we obtain

σ1(t) = ε0
(
B1Zα,1(t;−A0) + B0Zα,1+α(t;−A0)

)
. (3.6)

Next we proceed with the second term ε2 of the signal; thus, we have

dα

dtα
σ2(t) + A0σ2(t) = B1

dα

dtα
ε2(t) + B0ε2(t). (3.7)

Keeping in mind that ε2 vanishes at t = 0, we get now

L[σ2(t)](s) =
(
B1

sα−1

sα + A0
+ B0

s−1

sα + A0

)
sL[ε2(t)](s). (3.8)

Applying the inverse Laplace transform and using Borel’s theorem for the Laplace transform of a convolution leads
to

σ2(t) =
∫ t

0
B1Zα,1(t − τ ;−A0)ε

′
2(τ )dτ +

∫ t

0
B0Zα,1+α(t − τ ;−A0)ε

′
2(τ )dτ. (3.9)

Since the only part of ε that is responsible for changes is ε2, we have ε′(t) = ε′
2(t) for t > 0. Then, we get the final

stress–strain relationship on the basis of (3.6) and (3.9)

σ(t) = ε0k(t) +
∫ t

0
k(t − τ)ε′(τ )dτ, (3.10)

with the kernel k given in the form

k(t) = B1Zα,1(t;−A0) + B0Zα,1+α(t;−A0) = B1Eα,1(−A0t
α) + B0t

αEα,α+1(−A0t
α). (3.11)

Using Eq. (2.10), we can rewrite it in a more compact way:

k(t) =
(
B1 − B0

A0

)
Eα,1(−A0t

α) + B0

A0
. (3.12)

Then, we have

σ(t) = μ0ε(t) + ε0G(t) +
∫ t

0
G(t − τ)ε′(τ )dτ, (3.13)
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0

0

ε (
t)

t

ε = ε(t)

ε1(t) = ε0

ε2(t)

Fig. 1 The input signal ε(t) and its decomposition into constant part ε1(t) and continuous part ε2(t)

where μ0 = B0/A0 and G is the so-called viscoelastic relaxation function defined as

G(t) = μ1Eα,1(−A0t
α) = μ1

∞∑
k=0

(−A0tα)k

Γ (αk + 1)
, (3.14)

with parameter μ1 = B1 − μ0. The asymptotic behaviour of the Mittag-Leffler function for arbitrary negative
argument with 0 < α < 1 can be described in the following way [12,21]

Eα,1 (−x) = 1 − x

Γ (1 + α)
+ O(x2), (3.15)

for x → 0, and

Eα,1 (−x) = O
(
1

x

)
, (3.16)

for x → +∞. Thus, it follows that the relaxation functionG defined by (3.14) is able to represent physical properties
of relaxation behaviour (i.e. a rapid decrease for small times and a very slow decay for large times) on the basis
of only four material parameters A0, B0, B1 and α, which define the so-called continuous relaxation spectrum.
The plots of G for different values of parameter α are illustrated in Fig. 2. The function G has a finite value and
a vertical tangent at t = 0. Its decrease becomes extremely slow for large values of t if α is small. However, we
have noticed computational difficulty in the numerical evaluation of the relaxation function (3.14) for large negative
arguments. This problem arises as a result of summing series of terms with alternating signs using floating-point
arithmetic. Therefore, we present another method of calculation for the Mittag-Leffler function, which is based on
the continuous relaxation spectrum.

3.3 Integral representation of the Mittag-Leffler function

The concept of a general relation between the complex modulus of a linear viscoelastic system and its spectrum
is well-known in the literature. We follow [24] and relate the relaxation function G to the continuous relaxation
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Fig. 2 Relaxation function G defined by (3.14) and plotted for parameters A0 = 0.5, μ1 = 8 and different values of α

spectrum h via

G(t) =
∫ ∞

0
h(v)e−vtdv. (3.17)

In practical applications, where the function G must be calculated numerically, it is more convenient to introduce
the so-called cumulative relaxation spectrum:

hc(v) =
∫ v

0
h(z)dz, (3.18)

which is monotonically an increasing function such that hc(0) = 0 and hc(∞) < ∞. Then, integrating by parts
(3.17), we obtain an alternative representation of the relaxation function:

G(t) =
∫ ∞

0
hc

(v

t

)
e−vdv. (3.19)

However, to take advantage of this formula, we have to first answer the question how to determine hc corresponding
to the fractional Zener model and its analytical solution (3.13), which specifies the one-dimensional stress–strain
relation.

In order to describe the relaxation properties of viscoelastic material, the dynamical tests are performed in which
the harmonic oscillations are applied to a material specimen, and the resulting stress is measured until a steady-state
value is reached. It is common practice in engineering to use complex variables to present the harmonic response.
To this end, we assume the complex harmonic function

f (t) = Δ f · eiωt H(t), (3.20)

whereω is the angular frequency,Δ f is the amplitude and H is the Heaviside function. Applying the Caputo integral
operator (2.16) and calculating the fractional derivative of the function f in the stationary case, i.e. for large values
of t (for details see [1,4,22]), we have

dα f (t)

dtα
= (iω)α f (t). (3.21)
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Without loss of generality, we assume ε0 = 0 and consider the complex and stress as

ε(t) = Δε · eiωt H(t), σ (t) = Δσ · eiωt H(t). (3.22)

Then, by inserting a complex-valued deformation process ε into Eq. (3.13), we have

σ(t) = G∗(iω) ε(t), (3.23)

with the quantity

G∗(iω) = μ0 + iω
∫ ∞

0
G(τ )e−iωτdτ, (3.24)

which defines the so-called complex dynamic modulus for a stationary stress response. Taking into account the
representation (3.17) of the relaxation function G and carrying out the integration with respect to the variable τ

yields

G∗(iω) = μ0 + iω
∫ ∞

0

h(v)

v + iω
dv. (3.25)

The formula (3.25) shows that the complex modulus G∗ and relaxation spectrum h are related to each other. If a
relaxation spectrum is given, the complex dynamic modulus is determined. On the other hand, we notice that the
function (G∗(iω) − μ0)/ iω is the Stieltjes transformation of the relaxation spectrum h, i.e.

Sh(iω) = G∗(iω) − μ0

iω
=

∫ ∞

0

h(v)

v + iω
dv. (3.26)

Assuming that h is an absolutely integrable function on [0, R], for every finite R > 0, one may calculate the inverse
of the Stieltjes transformation using the formula

h(v) = 1

2π i
lim

ξ→0+ (Sh(−v − iξ) − Sh(−v + iξ))

= 1

2π i
lim

ξ→0+

[
G∗(−v − iξ)

−v − iξ
− G∗(−v + iξ)

−v + iξ
+ μ0

(
1

−v + iξ
− 1

−v − iξ

)]
, (3.27)

where v is a positive value for which the function h is defined. It is convenient to express the complex arguments
−v ± iξ in the form of the complex exponential functions

−v ± iξ =
√

v2 + ξ2 e±(π−arctan(ξ/v)). (3.28)

Then, calculating the limit ξ → 0+, we obtain the general formula

h(v) = 1

2π i

(
G∗(ve−iπ )

ve−iπ − G∗(veiπ )

veiπ

)
= 1

2vπ i

(
G∗(veiπ ) − G∗(ve−iπ )

)
, (3.29)

which can be used to compute the continuous relaxation spectrum if the complex dynamic modulus is known.
Moreover, bearing in mind (3.21) and inserting the harmonic deformation ε in combination with the harmonic

stress σ into (3.1), we transform the fractional Zener model into the frequency domain. Thus, we obtain again the
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expression (3.23), where the complex dynamic modulus has a form

G∗(iω) = B0 + B1(iω)α

A0 + (iω)α
. (3.30)

The formula (3.29) in combination with (3.30) can be applied to calculate the relaxation spectrum h of the function
G given by the Mittag-Leffler function (3.14). We obtain

h(v) = 1

2πvi

(
B0 + B1 vαeiαπ

A0 + vαeiαπ
− B0 + B1 vαe−iαπ

A0 + vαe−iαπ

)
, (3.31)

which finally leads to

h(v) = A0μ1 sin(απ)vα

πv
(
A2
0 + 2A0 cos(απ)vα + v2α

) . (3.32)

For further calculations, it is useful to consider the cumulative relaxation spectrum hc given by (3.18). Then,
analytical integration of function (3.32) yields the following formula

hc(v) = μ1

απ

[
arctan

(
vα

A0 sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)]
. (3.33)

This result provides an interesting formula for the efficient numerical calculation of the Mittag-Leffler function
Eα,1 for large negative arguments. Indeed, in combination with (3.19) and (3.33), we can formulate the following
corollary.

Corollary 3.1 Under the conditions x < 0 and 0 < α < 1, the Mittag-Leffler function Eα,1, which occurs as
the relaxation function (3.14) in the analytical solution (3.13) of the fractional Zener model (3.1), has the integral
representation

Eα,1(x) = 1

απ

∫ ∞

0

[
arctan

(
vα

−x sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)]
e−vdv. (3.34)

3.4 Numerical evaluation of the Mittag-Leffler function

In order to describe the relaxation behaviour of the viscoelastic constitutive model (3.1), we have to evaluate the
Mittag-Leffler function Eα,1 for arbitrary negative arguments with 0 < α < 1. It can be represented either by
formula (3.14) or (3.34). In each case, the computation of the Mittag-Leffler function with the prescribed accuracy
ε > 0 is proved in the following theorems.

Theorem 3.1 Under the conditions x < 0, |x | < 1 and 0 < α < 1, the Mittag-Leffler function Eα,1 can be
computed with accuracy ε > 0 by the formula

Eα,1(x) =
N∑

k=0

xk

Γ (αk + 1)
+ E(x, N ), (3.35)

where
∣∣E(x, N )

∣∣ ≤ ε and

N = max

{
1,

⌈
ln (ε(1 − |x |))

ln(|x |)
⌉

− 1

}
. (3.36)
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Proof Let x < 0 and 0 < α < 1. On the basis of (3.14), we write

Eα,1(x) =
n∑

k=0

xk

Γ (αk + 1)
+

∞∑
k=n+1

xk

Γ (αk + 1)
=

n∑
k=0

xk

Γ (αk + 1)
+ E(x, n), (3.37)

for n ≥ 1. Since Γ (kα + 1) ≥ 1 for all k ≥ 1, we have

∣∣E(x, n)
∣∣ =

∣∣∣∣∣
∞∑

k=n+1

xk

Γ (αk + 1)

∣∣∣∣∣ ≤
∞∑

k=n+1

|x |k = |x |n+1 1

1 − |x | , (3.38)

for |x | < 1. Thus, the estimate
∣∣E(x, n)

∣∣ ≤ ε follows from the inequality

n ≥
⌈
ln (ε(1 − |x |))

ln(|x |)
⌉

− 1, (3.39)

and 0 < |x | ≤ q < 1. ��
Theorem 3.2 Under the conditions x < 0 and 0 < α < 1, the Mittag-Leffler function Eα,1 can be computed with
accuracy ε > 0 by the formula

Eα,1(x) = 1

απ

∫ M

0

[
arctan

(
vα

−x sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)]
e−vdv + E(x, M), (3.40)

where
∣∣E(x, M)

∣∣ ≤ ε and

M =
{
max

{
1, ln

( 1
ε

)}
, 0.5 ≤ α < 1,

max
{
1, ln

( 1−α
αε

)}
, 0 < α < 0.5.

(3.41)

Proof Let x < 0 and 0 < α < 1. On the basis of (3.34), we have

Eα,1(x) = 1

απ

∫ m

0

[
arctan

(
vα

−x sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)]
e−vdv + E(x,m), (3.42)

where

E(x,m) = 1

απ

∫ ∞

m

[
arctan

(
vα

−x sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)]
e−vdv, (3.43)

for m > 0. Since

∣∣∣∣arctan
(

vα

−x sin(απ)
+ cot(απ)

)
+ π

(
α − 1

2

)∣∣∣∣ ≤ π

2
+ π

∣∣∣∣α − 1

2

∣∣∣∣ , (3.44)

we notice that

∣∣E(x,m)
∣∣ ≤ 1

α

∫ ∞

m

(
1

2
+

∣∣∣∣α − 1

2

∣∣∣∣
)
e−vdv =

{
e−m, 0.5 ≤ α < 1( 1−α

α

)
e−m, 0 < α < 0.5.

(3.45)
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Fig. 3 Relaxation functionG definedby (3.14) (Mittag-Leffler function Eα,1) and evaluated according to (3.35) and (3.40) for parameters
q = 0.8, A0 = 0.5, μ1 = 8, different values of α and accuracy ε = 2.2204 × 10−16

Table 1 Number of terms N in the numerical evaluation of the function G using formula (3.35) with parameters q = 0.8, A0 = 0.5,
μ1 = 8, α = 0.1 and accuracy ε = 2.2204 × 10−16

t 10−5 10−4 10−3 10−2 10−1 1 10 100

x = | − A0tα | 0.1581 0.1991 0.2506 0.3155 0.3972 0.5 0.6295 0.7924

N 19 22 26 31 39 52 80 161

Thus, the estimate
∣∣E(x,m)

∣∣ ≤ ε follows from the inequality

m ≥
{
ln

( 1
ε

)
, 0.5 ≤ α < 1,

ln
( 1−α

αε

)
, 0 < α < 0.5.

(3.46)

and the need to ensure the positive value of parameter m. ��
From a practical and applicable point of view, we distinguish two cases for the numerical computation of Eα,1(x)
with the prescribed accuracy ε > 0:

(i) x < 0, |x | ≤ q < 1,
(ii) x < 0, |x | > q, q < 1,

whereq is a fixednumber. In case (i),we apply the series (3.35),whereas in case (ii),weuse the integral representation
(3.40). Since the number of terms in the sum of formula (3.35) in Theorem 3.1 depends on x , it is recommended
to take a number q not very close to 1. Indeed, on the basis of (3.36), we can notice that the smaller value of q is
taken, the smaller number of terms N is used in formula (3.35).

Using the above approach, we can quite easily evaluate the value of the relaxation function G given by the
relation

G(t) = μ1Eα,1(−A0t
α). (3.47)

Defining T = (q/A0)
1/α for given q < 1, the Mittag-Leffler function is numerically calculated by formula (3.35)

for 0 < t ≤ T and (3.40) for t > T , respectively. Our numerical results for arbitrary values of t , with parameters
q = 0.8, A0 = 0.5, μ1 = 8, different values of α and accuracy ε = 2.2204 × 10−16 (= machine epsilon), are
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plotted in Fig. 3. We have produced them using the programming software Matlab. Moreover, the illustrative values
of N corresponding to given times t (and x = | − A0tα|) are placed in Table 1.

4 Conclusions

In this paper, we present the computational aspects of the investigation of relaxation properties of viscoelastic
materials. The constitutive Zener model is formulated by means of fractional-order derivatives and subjected to
arbitrary and continuous signals with a jump at the origin. The corresponding relaxation function is described by
the Mittag-Leffler function in terms of a power series. The relaxation function is defined for negative arguments
and preserves stretched exponential behaviour in time. For the numerical point of view, the computational problem
arises during numerical evaluation of this function for large negative arguments. We propose a method which allows
us to avoid this difficulty. Our approach is based on the integral representation of the Mittag-Leffler function which
is easier to handle numerically in such a case. The appropriate formulas for numerical computation of the Mittag-
Leffler function with the prescribed accuracy are proved. Finally, a numerical example is demonstrated to illustrate
the effectiveness of the presented method.
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