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I. M. Machyshyn · P. H. M. Bovendeerd ·
A. A. F. van de Ven · P. M. J. Rongen ·
F. N. van de Vosse

Received: 17 March 2008 / Accepted: 17 September 2009 / Published online: 4 October 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Geometry and structure of the arterial wall are maintained through continuous growth and remodeling
(G&R). To understand these processes, mathematical models have been proposed in which the outcome of G&R
depends on a mechanical stimulus through evolution equations. Rate parameters in these equations cannot be
determined easily from experimental data. Assuming that the healthy artery is stable against remodeling, a physi-
ologically acceptable range for the two rate parameters in the framework of an existing model of arterial G&R is
determined here. The model is explicitly evaluated for the example of a cylindrical blood vessel, both thick-walled
and thin-walled. For the thin-walled vessel a criterion for stability against remodeling is derived by means of a linear
stability approach, and is expressed in terms of the ratio of the rates of remodeling parameters. It is shown that this
criterion is equivalent to the condition that the physiological healthy state of the artery can be reached, implying
that if the healthy state exists then it is stable. Explicit numerical results are presented for a typical cerebral artery
and an abdominal aorta.

Keywords Artery · Collagen · Homeostatic state · Remodeling · Stability

1 Introduction

Mechanoregulation mechanisms of arteries are activated in response to persistent changes of mechanical loading
conditions of the arteries, initiating adaptation of the tissue. Long-term adaptation is realized through growth and
remodeling (G&R). Growth is defined as an increase in mass, and remodeling as a structural change of the tissue.
G&R is striving to resume a homeostatic state of the artery, which, in a mechanical sense, can be related to either
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176 I. M. Machyshyn et al.

stress or strain criteria [1]. For instance, the arterial wall thickens because of persisting overpressure, leading to
restoration of transmural stress [2, Chap. 13], whereas the inner diameter of an artery increases due to increased
blood flow in order to restore normotensive shear stresses.

Apart from maintaining homeostasis of the healthy artery, G&R is also involved in pathological formation of
aneurysms. An aneurysm is a vascular disorder revealing itself by localized dilation or bulging of the artery. The
most common locations of aneurysms are the abdominal aorta and the cerebral arteries. Aneurysms can rupture and
then cause bleeding into the surrounding tissue. This is associated with serious medical complications and even
death. Little is known about why aneurysms appear, how they grow, and what the criteria for their rupture are [3].

Mathematical models have been developed to describe arterial G&R under normal and pathological circum-
stances. A framework for modeling growth, presented by Skalak et al. [4] and Rodriguez et al. [5] has been further
developed and applied for the growth of arteries by, among others, Taber and Eggers [6], Taber and Humphrey
[7], and Kuhl et al. [8]. An alternative growth model was introduced by Rachev et al. [9]. Other models have
focused on cardiovascular-tissue remodeling, taking into account the microstructural composition of the tissue.
Special attention has been paid to the description of remodeling of collagen, one of the most important load-bearing
components. Driessen et al. [10–12] suggest models of collagen architecture and remodeling with application to
arteries and heart valves. Gleason et al. [13] and Gleason and Humphrey [14] study arterial remodeling in response
to altered mechanical loading, while Watton et al. [15] and Watton and Hill [16] describe collagen remodeling with
application to abdominal aneurysms. Baek et al. [17,18], Kroon and Holzapfel [19], Watton et al. [20], and Watton
and Ventikos [21] model development of cerebral aneurysms. In all these studies, the G&R outcome depends on the
G&R stimulus via evolution equations. Characteristic parameters for these evolution equations are the rate constants
of G&R. Unfortunately, these rates cannot be determined easily from experimental data.

The aim of this study is to provide a method to determine a physiologically acceptable range of values for the rate
constants by means of a stability analysis. We use the natural assumption that the equilibrium state of the healthy
artery is stable against remodeling, which means that, if the tissue does not experience any pathological changes,
small changes of the mechanical properties of the tissue will cause remodeling of the tissue to a neighboring healthy
state. This stability criterion narrows the range of candidate values for rate constants.

In our study we analyze the remodeling model of Watton et al. [15], which is one of the first structurally based
models applied to aneurysm development. In [15] they assumed that the homeostatic state, which the artery always
tends to maintain, is related to collagen stretch. At homeostasis collagen fibers are assumed to be stretched by a
constant homeostatic stretch, λhom

c , independent of the position and the orientation of the fibers. This stretch is also
independent of the actual state of the artery. If due to geometrical or structural changes the homeostatic state is
violated and collagen stretch exceeds the homeostatic stretch, collagen acts to restore the equilibrium via two mech-
anisms. Firstly, by increasing the recruitment stretch of collagen, i.e., the tissue stretch at which initially undulated
collagen fibers get straightened. In this way the onset of collagen recruitment shifts towards a larger tissue stretch,
thus weakening the tissue. The restoration of the homeostatic collagen stretch is achieved through shifting a part
of the load borne by collagen to elastin, another load-bearing component of the tissue. This mechanism is called
remodeling of the recruitment stretch. Secondly, collagen can thicken so as to supplement the first mechanism in
restoring homeostasis. Thickening is attributed to an increase in the density of collagen fibers, and is therefore
called remodeling of collagen density. In contrast to the first mechanism, the second one stiffens the tissue. The
remodeling of the recruitment stretch and the collagen density is governed by a set of two evolution equations,
containing two rate constants.

In our stability analysis we consider the homeostatic equilibrium state as an intermediate state G I and we super-
impose a small dynamic perturbation on this state. The perturbed state is out of equilibrium because the collagen
stretch deviates from λhom

c . Whether, via dynamic remodeling, the artery will recover its intermediate equilibrium
state depends on the rate constants. Thus, the condition of stability of the healthy state against remodeling limits
the range of physiologically acceptable values of the rate constants.

In Sect. 2, we recapitulate the model of [15] and list the relations for deformations and stresses in the tissue. In
Sect. 3, we consider a pressurized healthy artery and present an analytical solution in the homeostatic equilibrium
state G I for both a thick-walled and a thin-walled artery. The linear stability analysis of the evolution equations
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Stability against dynamic remodeling of an arterial tissue 177

is presented in Sect. 4 and the result in terms of an explicit stability criterion is derived in Sect. 5. Finally, some
conclusions are given in Sect. 6.

2 Tissue mechanics and remodeling

2.1 Deformations and stresses in the tissue

In this section we present the mechanics part of the model. The membrane formulation of [15] is replaced here by
a general 3D description of tissue mechanics.

The tissue is represented by a continuous material body B occupying at the initial moment of time, at which
the body is in its undeformed stress-free state, a three-dimensional region of Euclidean space R

3 referred to as the
reference configuration GR . During its motion, the body occupies time-dependent actual configurations G = G(t).
The reference position vector of a material point P ∈ B in configuration GR is denoted as X. The actual position
vector x ∈ G is described by a bijective function x = x(X, t), and the associated deformation is described by the
deformation gradient

F = ∂x
∂X

. (1)

The tissue is assumed to be incompressible, and composed of an isotropic matrix and collagen fibers, represented
by two fiber directions at each material point.

The tissue stretch λ = λ(x, t) in the direction e0 is defined by

λ2 = Fe0 · Fe0 = e0 · Ce0, (2)

where e0 is an arbitrary unit vector in the tissue in the undeformed state GR , and C = FT F is the right Cauchy–
Green deformation tensor. The introduced tissue stretch λ refers to the stretch of the matrix. The deformation of
collagen fibers is described by the stretches λc,i = λc,i (x, t) in the directions ec,i,0, i = 1, 2, where ec,i,0 is a unit
vector in the direction of the i th collagen fiber in the reference configuration. Assuming that the collagen fibers
deform together with the matrix, we infer that the actual direction of this collagen fiber is given by the unit vector
ec,i = ec,i (x, t), defined as

ec,i = 1

λ f,i
Fec,i,0, (3)

where λ f,i = λ f,i (x, t) is the tissue stretch in the direction of this fiber. The collagen stretch is different from
the tissue stretch because collagen fibers may remain undulated, and therefore unstretched, while tissue is already
stretched. The amount of undulation is quantified by the recruitment stretch λrec, which is the stretch of the tissue
in the direction of the collagen fiber needed to make the fiber straight but unstretched. Any further increase of the
stretch of the tissue in the direction of the fiber would result in stretching of the collagen as well. The recruitment
stretch λrec is defined as the ratio between the tissue and the collagen stretch. During the deformation λrec can
change due to remodeling. Therefore, the actual recruitment stretch is a field variable: λrec,i = λrec,i (x, t). The
collagen stretch is thus governed by (i = 1, 2)

λc,i =

⎧
⎪⎨

⎪⎩

1, λ f,i ≤ λrec,i ,

λ f,i
λrec,i

, λ f,i > λrec,i ,

(4)

where both the collagen stretch λc,i = λc,i (x, t) and the tissue stretch λ f,i (x, t) are in the direction of the i th
collagen fiber ec, 0, i .

Following [15], the strain-energy-density function (SEDF) w of the tissue is given by

w = 1

2
cm

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+
2∑

i=1

nc,i
k1

k2

[
ek2(λ

2
c,i −1)2 − 1

]
, (5)
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where cm is the shear modulus of the matrix, λi are the principal tissue stretches, λc,i the collagen stretch along the
current collagen fiber direction ec, i , which is related to the reference fiber direction ec, i, 0 via (3), nc,i = nc,i (x, t)
the collagen fiber density relative to the density in the reference state, and k1 and k2 are material parameters of the
collagen fibers. Here we deviate slightly from [15] in that we scale nc,i with respect to its value in GR , whereas
Watton et al. [15] scale to the value of nc,i in the healthy state. This has some repercussions on the value of k1, but we
will take care of it further on. In (5), the first term on the right-hand side corresponds to an isotropic neo-Hookean
material, simulating the contribution of the matrix. The second term describes the highly nonlinear mechanical
response of the two collagen fibers. The fibers display a non-zero stress response only to tensile stretch in the
direction of the fibers, provided that they are not undulated.

The Cauchy stress, derived from (5) is given by

T = −p I + cm (B − I) +
N∑

i=1

nc, i τ f, i ec, i ⊗ ec, i , (6)

where p = p(x, t) is the pressure term, originating from the incompressibility of the tissue, B = FFT is the left
Cauchy–Green deformation tensor, I is the second-order unit tensor, and τ f, i is the stress in the collagen fiber
defined by

τ f, i = 2 k1 λ2
c, i

(
λ2

c, i − 1
)

e
k2

(
λ2

c, i −1
)2

. (7)

We assume the problem to be quasi-stationary, and the body forces negligibly small. Under these assumptions,
the mechanics of the problem is governed by the equilibrium equation

div T = 0. (8)

The incompressibility of the tissue dictates

det F = 1, (9)

which can be regarded as a relation for the unknown p in (6).
An equilibrium equation must be provided with the appropriate boundary conditions. In general, they will consist

of the kinematic boundary conditions

u(x, t) = up(x, t), (10)

on one part of the boundary of the tissue, and the dynamic or natural boundary conditions on the other

T n = t(x, t), (11)

where u = x − X is the displacement vector; up and t are prescribed displacements and tractions at the boundary,
respectively, and n is the unit outward normal to the boundary.

2.2 Remodeling of the arterial tissue

Collagen experiences constant turnover: old fibers decay and are replaced by newly deposited fibers. In the homeo-
static state, properties of the collagen and its total mass remain constant. When the artery is not in an equilibrium
state, turnover aims not only to renew the collagen, but also to restore the homeostasis. The deposited collagen fibers
attach to the tissue with the constant pre-stretch λhom

c , which we call the homeostatic collagen stretch (Watton et al.
[15] call it attachment stretch). The stretch of existing fibers may differ from λhom

c , meaning that their recruitment
stretch differs from that of the new fibers as well. Watton et al. [15] capture this effect of deposition and degradation
by remodeling the recruitment stretch λrec,i. In addition, they consider thickening of collagen and model it through
a change in collagen density nc,i . The rates of change of the recruitment stretch and collagen density depend on
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the stretch of collagen fibers with respect to the attachment value λhom
c , as simulated by the following two linear

evolution equations1:

∂λrec,i

∂t
= α

(
λc,i − λhom

c

)
,

(12)
∂nc,i

∂t
= β

(
λc,i − λhom

c

)
, α, β ≥ 0,

where λrec,i and nc,i are the recruitment stretch and the density of collagen in the i th fiber direction, respectively,
and α and β are rate constants. The initial conditions for these evolution equations are

λrec,i (x, 0) = λrec,0,i, nc,i (x, 0) = nc,0,i . (13)

With this, the recapitulation of the remodeling part of the model of [15] is complete. Next, we derive some trivial
relations needed for our further analysis.

By dividing the first equation of (12) by α, and the second by β, and subtracting the resulting equations, we
obtain
∂

∂t

[
1

α
λrec,i − 1

β
nc,i

]

= 0. (14)

Integrating this result with respect to time, using the initial conditions (13), we arrive at the first integral of the
evolution equations (or conservation equation)

λrec,i

α
− nc,i

β
= λrec,0,i

α
− nc,0,i

β
, (15)

which enables us to directly express nc,i in terms of λrec,i , according to

nc,i = β

α

(
λrec,i − λrec,0,i

) + nc,0,i . (16)

In the following section, we will use the equations introduced in this and the preceding section to describe the
inflation of a healthy blood vessel under internal pressure, taking account of the remodeling of the tissue.

3 Mechanics of the pressurized healthy artery

In this section, we formulate and solve the problem of static equilibrium of a pressurized healthy artery.
The reference configuration GR of the artery is a cylindrical tube of inner and outer radii Ri and Ro, respectively.

The tissue is described by the constitutive equation (6) and the incompressibility condition (9), while mechanical
equilibrium is governed by (8).

Watton et al. [15] model the media and the adventitia (the two mechanically relevant layers of an artery) as
separate layers with different material coefficients for each layer. However, for their mechanics model they use
a membrane model, in which the SEDF is the sum of the SEDFs of the two layers, leading to an elastic model
the stiffness of which is a weighted average of that of the two layers. In our study we simplify this structure by
considering one layer only with material parameters equal to weighted-average parameters of the media and the
adventitia. In this respect, our one-layer model corresponds with the membrane model of [15]. This layer consists
of the matrix with embedded two sets of collagen fibers, arranged symmetrically with respect to the circumferential
direction with an angle 2γ between them; see Fig. 1. Therefore, the coefficients of the SEDF (5) are related to the
coefficients of the SEDFs introduced in [15, Eqs. 30, 31] as follows

k2 = ax

4
, k1 = ax

4

(
2

3
kM + 1

3
kA

)

, cm = kg + 2

3
kE , (17)

1 Watton et al. [15] introduce in their Eq. 32 the evolution equations in a slightly different form, in so far that they use the strains (ε)
instead of the stretches (λ). However, in a linear formulation (assuming ε � 1 and λ = 1 + O(ε) ≈ 1) these two formulations become
identical up to O(ε2).
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Fig. 1 Schematic
representation of the artery,
consisting of the matrix with
embedded collagen fibers,
arranged in two helices with
the angle 2γ between them

with ax , kM , kA, kg and kE the material parameters in [15]. We note that the stiffness of a collagen fiber is governed
by nck1 (see (6) and (7)). In [15], the relative collagen density nc is defined with respect to the healthy state, thus
nc,H = 1, where the subscript H denotes the healthy state. In our approach we do not know the healthy state
beforehand, and we define nc with respect to the initial state, setting nc,0 = 1. In order to keep the stiffness at the
healthy state the same as in [15] we divide k1, obtained from (17), by an estimate for nc,H .

Neglecting the influence of the surrounding tissue, we assume that the outer surface of the artery is traction-free.
The inner surface is loaded by a prescribed blood pressure pI. This leads us to the boundary conditions

σrr
∣
∣

R=Ri
= −pI, σrr

∣
∣

R=Ro
= 0, (18)

with σrr the radial normal-stress component of the stress tensor T . In addition to that, the artery is stretched in the
axial direction by a prescribed uniform stretch λz .

Since the artery is uniformly stretched in the axial direction and uniformly loaded by the internal pressure, the
collagen fiber directions remain symmetric, and as the matrix is isotropic, the resulting problem is rotationally
symmetric. Moreover, all the parameters and variables associated with the two fiber directions are the same for both
fibers, i.e.,

nc,0,1 = nc,0,2 ≡ nc,0, λrec,0,1 = λrec,0,2 ≡ λrec,0,

nc,1 = nc,2 ≡ nc, λrec,1 = λrec,2 ≡ λrec,

λ f, 1 = λ f, 2 ≡ λ f , τ f,1 = τ f,2 = τ f .

(19)

Consequently, Eq. 12 is reduced to two equations on nc and λrec, and each of the relations (14)–(16) is reduced to
one equation.

3.1 Thick-walled artery

The position of a material point in the stress-free undeformed reference state GR is given by the cylindrical coor-
dinates (R,
, Z), while the position of the same point in the intermediate pressurized and deformed state G I is
given by (r, θ, z). Due to the symmetry of the problem we have r = r(R), θ = 
, and z = λz Z . Since there are
no shears involved, we have {er , eθ , ez} = {eR, e
, eZ }. Taking this into account, we obtain for the deformation
gradient

F = λr eR ⊗ eR + λθ e
 ⊗ e
 + λzeZ ⊗ eZ = dr

dR
eR ⊗ eR + r

R
e
 ⊗ e
 + λzeZ ⊗ eZ , (20)

with λr and λθ the radial and the circumferential components of the deformation gradient, respectively.
The unit vectors ec, 1, 0 and ec, 2, 0, coinciding with the original (reference) directions of collagen fibers are given

by

ec, 1, 0 = cos γ e
 + sin γ eZ , ec, 2, 0 = cos γ e
 − sin γ eZ . (21)
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Taking the Euclidian norm of both sides of (3) and using (19), we find the tissue stretch in the direction of the
fibers as

λ f = ‖Fec, 1, 0‖ ≡ ‖Fec, 2, 0‖, i = 1, 2, (22)

or with (21) and (20),

λ f =
√

λ2
θ cos2 γ + λ2

z sin2 γ . (23)

Substituting (21) and (20) in (3), we find the unit vectors of the collagen fibers in the actual configuration as

ec, 1 = λθ

λ f
cos γ e
 + λz

λ f
sin γ eZ , ec, 2 = λθ

λ f
cos γ e
 − λz

λ f
sin γ eZ . (24)

The incompressibility condition (9) yields

λz
r

R

dr

dR
= 1, (25)

having the solution

r(R) =
√

R2 + k R2
i

λz
, k > 0, (26)

which determines the current radial coordinate r of a material point of the cylinder wall as a function of the reference
coordinate R and an unknown dimensionless constant k. This constant will be determined from the equilibrium
equation (8) and the boundary conditions (18). For this, we need the equilibrium equation (8) in cylindrical coor-
dinates. Taking into account that all shear stresses are zero and the only relevant components of T are the normal
stresses σrr and σθθ , which are functions of r only (also σzz 
= 0, but not relevant here), the equilibrium equation
in cylindrical coordinates reads

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0. (27)

With the boundary conditions (18) we can integrate (27) over the wall thickness of the artery to obtain (ri,o =
r(Ri,o))

ro∫

ri

dσrr

dr
dr = pI = −

ro∫

ri

(σrr (r) − σθθ (r))
dr

r
=

Ro∫

Ri

(σ̃θθ (R) − σ̃rr (R))
R

R2 + k R2
i

dR, (28)

where σ̃ (R) = σ(r(R)), according to (26).
The left Cauchy–Green strain tensor follows from (20) and (26) as

B = FFT = λ2
r eR ⊗ eR + λ2

θ e
 ⊗ e
 + λ2
z eZ ⊗ eZ

=
(

R̂2

λz(R̂2 + k)

)

eR ⊗ eR +
(

R̂2 + k

λz R̂2

)

e
 ⊗ e
 + λ2
z eZ ⊗ eZ , (29)

where R̂ = R/Ri (from here on we scale all length parameters on Ri , and we omit the hat together with the tilde
on σ ). From the constitutive relation (6) we then obtain

σrr = −p + cm

(
R2

λz(R2 + k)
− 1

)

,

σθθ = −p + cm

(
R2 + k

λz R2 − 1

)

+
∑

i=1,2

nc, i
(
e
 · Tc,i e


)
,

(30)

where Tc,i = τ f, i ec, i ⊗ ec, i . With (24) we derive

e
 · Tc,1 e
 = e
 · Tc,2 e
 = τ hom
f

(
λθ

λ f

)2

cos2 γ = τ hom
f

λ2(R)

λ2(R) + λ2
z tan2 γ

, (31)
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where

λ(R) = λθ (R) = 1

R

√

R2 + k

λz
, (32)

and

τ f,1 = τ f,2 = τ hom
f ≡ τ f (λ

hom
c ) = 2 k1 [λhom

c ]2
(
[λhom

c ]2 − 1
)

ek2
([λhom

c ]2−1
)2

, (33)

according to (7) with λc,1 = λc,2 = λhom
c .

Substitution of (19) in an equilibrium state in (16) gives

nc(R) = β

α

(
λrec(R) − λrec, 0

) + nc, 0 = β

α

(
λ f (R)

λc
− λrec, 0

)

+ nc, 0

= β

α

(
cos γ

λhom
c

√

λ2(R) + λ2
z tan2 γ − λrec, 0

)

+ nc, 0, (34)

where we have successively used (4)2 and (23).
With these results, we can write out (30)2 as

σθθ (R) = −p(R) + cm

(
R2 + k

λz R2 − 1

)

+ 2τ hom
f

[
β

α

(
cos γ

λhom
c

√

λ2(R) + λ2
z tan2 γ − λrec, 0

)

+ nc, 0

]
λ2(R)

λ2(R) + λ2
z tan2 γ

. (35)

Substituting (30) and (35) in (28) and evaluating the resulting integral, we arrive at

pI = cm

2λz

(
k(R2

o − 1)

(R2
o + k)(1 + k)

+ log
R2

o(1 + k)

(R2
o + k)

)

+ τ hom
f

w

[
2β cos γ

αλhom
c

√
w

λz
log

Ro
√

w + √
R2

ow + k√
w + √

w + k
−

(
β

α
λrec,0 − nc,0

)

log
wR2

o + k

w + k

]

, (36)

where w =
√

1 + λ3
z tan2 γ .

Once k is found from the latter relation, the current coordinate r can be determined from (26), and the tissue
stretches from (20).

3.2 Thin-walled artery

Here, we will reduce (36) for the limiting case of a thin-walled artery. The outer radius can be written as

Ro

Ri
= R̂o =

(

1 + H

Ri

)

= 1 + ε, (37)

with H the thickness of the cylinder, being small as compared to the inner radius: ε = H/Ri � 1. From now on,
we will neglect terms that are of higher order in ε, and then (36) reduces to

pI = H

R

[
cm

λz

k(2 + k)

(1 + k)2 + 2 τ hom
f

w + k

(
β cos γ

αλhom
c

√
λz

√
w + k − β

α
λrec,0 + nc,0

)]

. (38)

Since, according to (29), (26), and (4)2, the circumferential stretch and the recruitment stretch are given by

λ =
√

1 + k

λz
, and λrec = cos γ

λhom
c

√

λ2 + λ2
z tan2 γ = cos γ

λhom
c

√
λz

√
w + k, (39)
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Stability against dynamic remodeling of an arterial tissue 183

Fig. 2 Relationship
between the blood pressure
p, and the tissue stretch λ

during remodeling from an
initial state G0 to an
intermediate state GI

respectively, we can rewrite (38) in terms of the circumferential stretch λ and the recruitment stretch λrec as

pI = H

λz R

[
cm

λ2
z

(

λ2
z − 1

λ4

)

+ 2ncτ
hom
f

λ2 + λ2
z tan2 γ

]

, (40)

where

nc = β

α

(
λrec − λrec,0

) + nc,0. (41)

We will use (40) for our stability analysis in the next section.

4 Stability of the healthy artery

In this section, we investigate the stability against remodeling of the intermediate state G I of the artery described
in the preceding section. The intermediate state of the tissue is obtained from the initial state G0 via remodeling as
described in the next subsection.

4.1 Remodeling in the approach to the intermediate state

If λc = λhom
c throughout the artery, then there is no remodeling, and we say that the artery is in homeostatic

equilibrium. The initial state G0 of the artery is supposed to be a homeostatic state. We choose the initial recruit-
ment λrec, 0 and initial volume fraction of collagen nc, 0 at the state G0 such that equilibrium is realized under a
pressure p0, which is much lower than the physiological pressure pph. If the pressure increases to some intermediate
value pI, the collagen stretches beyond λhom

c . This causes violation of the equilibrium, and, consequently, collagen
remodeling. Assuming that the pressure increases very slowly with respect to the remodeling speed, the tissue
reaches the intermediate state G I , see Fig. 2. We will now investigate what the conditions are under which the tissue
will reach a stable intermediate state G I .

4.2 Stability analysis of the evolution equations for a thin-walled artery

We first consider the thin-walled artery, in which mechanical equilibrium of the tissue at the current time t in the
perturbed state is described by the following equations (which follow successively from (4), (7), (16), (19), (23),
and (40))
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�(λ, λrec) ≡ 1

λ2
z

(

λ2
z − 1

λ4(t)

)

+ 2 nc(t)

λ2(t) + λ2
z tan2 γ

τ̂ f (λc(t)) = p̂I ≡ λz R

H

pI

cm
, (42)

where

λc(t) = λ f (t)

λrec(t)
=

√

λ2(t) cos2 γ + λ2
z sin2 γ

λrec(t)
,

nc(t) = β

α

(
λrec(t) − λrec, 0

) + nc, 0, (43)

τ̂ f (λc) = τ f (λc) /cm = 2 k̂1 λ2
c

(
λ2

c − 1
)

ek2
(
λ2

c−1
)2

,

with k̂1 = k1/cm , and λc = λc,1 = λc,2. The unknowns here are λ(t), λc(t), λrec(t) and nc(t). In addition to (43),
λrec is related to λc through the evolution equation (12), i.e.,

dλrec

dt
(t) = α

(
λc(t) − λhom

c

)
. (44)

With (43)1 and (43)2, the collagen stretch λc and the collagen density nc can be eliminated from the system.
Then only two unknowns are left: the tissue stretch λ and the recruitment stretch λrec. The stationary solution of
the system (42)–(44), corresponding to the intermediate equilibrium state G I , is given by

λc = λc,I = λhom
c , λ = λI , λrec = λrec,I , nc = nc,I = β

α

(
λrec,I − λrec, 0

) + nc, 0, (45)

where λrec,I follows from (43)1 as

λrec,I = λ f,I

λhom
c

= cos γ

λhom
c

√

λ2
I + λ2

z tan2 γ , (46)

while λI is the solution of (42) for given p̂I.
The perturbed state can be presented in the form:

λ(t) = λI + δλ(t), λrec(t) = λrec,I + δλrec(t), nc(t) = nc,I + δnc(t), λc(t) = λhom
c + δλc(t), (47)

with δλ(t), δλrec(t), δnc(t), and δλc(t) the perturbations (or variations) of the circumferential tissue stretch, the
recruitment stretch, the collagen density, and the collagen stretch, respectively. Variations of the tissue stretch and
the recruitment stretch are considered to be independent of each other, while the variations of collagen stretch λc,
collagen density nc and collagen stress τ̂ f can be found successively from (43)2, (43)1 and (43)3 as

δnc = β

α
δλrec, δλ f = cos2 γ

λ

λ f
δλ,

δλc = λ f

λrec

(
δλ f

λ f
− δλrec

λrec

)

= λhom
c

(
λ

λ2 + λ2
z tan2 γ

δλ − δλrec

λrec

)

, (48)

δτ̂ f = 2τ̂ hom
f τ̃ hom

f

(
λ

λ2 + λ2
z tan2 γ

δλ − δλrec

λrec

)

,

where τ̂ hom
f = τ̂ f (λ

hom
c ) and

τ̃ hom
f = 2[λhom

c ]2 − 1

[λhom
c ]2 − 1

+ 2k2[λhom
c ]2([λhom

c ]2 − 1). (49)

These relations must be evaluated for λ = λI , and λrec = λrec,I . Using these partial results, we find from the first
variation of � (notice that pI is fixed)

δ� = δ�(λ, λrec) = 0, ⇒
(

∂�

∂λ

)

I
δλ +

(
∂�

∂λrec

)

I
δλrec = 0, (50)

that
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δλ = L δλrec, (51)

with

L = A

B
, (52)

and

A = −
(

∂�

∂λrec

)

I
= − 2 τ̂ hom

f

λ2 + λ2
z tan2 γ

[
β

α
− 2nc τ̃

hom
f

λrec

]

, (53)

B =
(

∂�

∂λ

)

I
= 4

λ2
zλ

5
+ 4nc τ̂

hom
f λ

(
λ2 + λ2

z tan2 γ
)2 (τ̃ hom

f − 1). (54)

In the expressions above, one must take λ = λI , λrec = λrec,I , and nc = nc,I , according to (45) and (46). Taking
the first variation of (44), and substituting (48)2, (43)1 and (51) in the result, we get the equation for the variation
δλrec

d

dt
δλrec(t) = αλhom

c

λ2 + λ2
z tan2 γ

(

λ L − λhom
c

cos γ

√

λ2 + λ2
z tan2 γ

)

δλrec(t), (55)

with the solution

δλrec(t) = C1 exp

{
αλhom

c

λ2 + λ2
z tan2 γ

(

λ L − λhom
c

cos γ

√

λ2 + λ2
z tan2 γ

)

t

}

, (56)

where C1 is an arbitrary but irrelevant constant.
The intermediate state G I is stable if and only if the perturbations decay with time, so limt→∞ δλrec(t) = 0. In

this case, also δλ(t) tends to zero. Hence, according to (56), we formulate the stability against remodeling of the
intermediate equilibrium state G I under given pressure pI by the following

4.2.1 Statement

If

L = L

(

λ; β

α

)

=

⎧
⎪⎪⎨

⎪⎪⎩

<
λhom

c
λ cos γ

√

λ2 + λ2
z tan2 γ =: Lcr, the solution is stable,

>
λhom

c
λ cos γ

√

λ2 + λ2
z tan2 γ , the solution is unstable,

(57)

where λ follows from (see (42), (43)2)

�I

(

λ; β

α

)

≡ 1 − 1

λ2
zλ

4 +
[
β

α

(
�(λ)

λhom
c

cos γ − λrec, 0

)

+ nc, 0

] 2 τ̂ hom
f

�2(λ)
= p̂I, (58)

where �(λ) =
√

λ2 + λ2
z tan2 γ .

From this statement we can obtain an allowable range of (β/α)-values for which the homeostatic equilibrium
state GH (p = pph) is stable by the following formal procedure:

Find the critical (β/α)-value from (57), (58) for given p̂I by numerically solving L(λ;β/α) = Lcr and
�I (λ;β/α) = p̂I. The computed value (β/α)cr is a function of p̂I, and the function (β/α)cr( p̂I) is monotone
increasing with p̂I (see Fig. 3 further on). Since p̂I � p̂ph, the maximum value for (β/α)cr occurs for p̂I = p̂ph.
Hence, for all values of (β/α) > (β/α)cr( p̂ph), every intermediate equilibrium state G I , with p̂I ≤ p̂ph, is stable
against remodeling.
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Fig. 3 Dependence of (β/α)m on the intermediate pressure p̂I
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cm = 0 (—), see Sect. 5.5. Note that for the latter the values of
(β/α)m are much higher (for this the right vertical axis is used).
Each line on the graph separates the upper region of stability
from the lower region of instability

1 1.5 2 2.5
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

tissue stretch λ , [−]

P
(λ

,β
/α

) 
, [

−
]

β/α = 0.7 = (β/α)
m

(p
ph

)

β/α = 1.6 > (β/α)
m

(p
ph

)

β/α = 0.56  < (β/α)
m

(p
ph

)

<

λ
m
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sent the scaled pressure borne by an artery in a homeostatic
state having a circumferential stretch λ

However, we can find and interpret this result also in an alternative way, which yields an easier numerical pro-
cedure. We consider the left-hand side of (58) as a function of λ and β/α according to (we wish to consider this
function here as a scaled pressure, and therefore we use the symbol P̂ instead of �I )

P̂

(

λ; β

α

)

= 1 − 1

λ2
zλ

4 +
[
β

α

(
�(λ)

λhom
c

cos γ − λrec, 0

)

+ nc, 0

] 2 τ̂ hom
f

�2(λ)
. (59)

If we plot P̂ as a function of λ for different values of β/α (see Fig. 4 further on), then we observe that these graphs
have a local maximum of pressure P̂max. The tissue stretch at which P̂max is reached can be found from the relation

d P̂I

dλ
= 0. (60)

However, if we compare this with (50), we see that this is exactly the same relation (although, maybe, in a quite
different interpretation). Let the maximum of P̂ be reached for λ = λm = λm(β/α), and let P̂max(β/α) be the
maximum, scaled pressure that can be reached, thus

P̂max = P̂(λm(β/α), β/α). (61)

This means that for a chosen value of β/α, the pressure can, for any value of λ, reach only values p̂ < P̂max. It
turns out that this P̂max is a monotone increasing function of β/α (at least for the values we considered). We can
interpret this also the other way around: for each value of p̂I ∈ [ p̂0, p̂ph] there exists (β/α)m( p̂I) such that for
β/α < (β/α)m the pressure cannot reach the value p̂I, whereas for β/α > (β/α)m it can reach pressure values up
to and higher than p̂I. We obtain the maximum value of (β/α)m when we take p̂I = p̂ph. Our preceding analysis
reveals that (β/α)m( p̂I) is exactly equal to (β/α)cr( p̂I). This leads to the following important conclusion from our
stability analysis:

If the healthy state GH can be reached, then it is stable against dynamic remodeling.
As a consequence, two cases can occur:

• β/α < (β/α)m( p̂ph): the homeostatic equilibrium state (λc = λhom
c ) for p̂ = p̂ph does not exist;

• β/α > (β/α)m( p̂ph): the homeostatic equilibrium state (λc = λhom
c ) for p̂ = p̂ph exists, and is stable against

remodeling.

123



Stability against dynamic remodeling of an arterial tissue 187

4.3 Stability analysis in case of a thick-walled artery

The thick-walled artery can be treated in an analogous way. In fact, we merely have to replace (40) by (36). However,
when applying the method leading to Statement (57) we must realize that the perturbed variables λ, λrec, etc. are
now all functions of the radial coordinate R and time.

To find the function L , we have to integrate over the wall thickness of the artery. This is a cumbersome operation
and therefore we prefer to use the second approach of Sect. 4.2. We assume (without an explicit proof as it seems
quit logical, since the thin-walled artery is a limiting case of the thick-walled one) that again (β/α)cr = (β/α)m,
and that when a healthy state can be reached, this state is stable.

Following the second approach of Sect. 4.2, we start from (36) and we denote by P(k, β/α) the right-hand side
(36). Let the maximum Pmax of P be obtained for k = km, then km = km(β/α) follows from

dP

dk

(

km; β

α

)

= 0, (62)

and

Pmax = Pmax(β/α) = P (km(β/α), β/α). (63)

The value of (β/α)m(pph) is then defined as that value of β/α for which Pmax is exactly equal to pph. This means
that for any pI < pph, (β/α)m(pI) follows from

Pmax( (β/α)m(pI) ) = pI, (64)

and on basis of its monotony (see Fig. 3) (β/α)m(pI) < (β/α)m(pph). We conclude thus that for all β/α >

(β/α)m(pph) all homeostatic equilibrium states for pI ≤ pph exist and are stable against remodeling.
In the next section, we will present some explicit numerical results, which illustrate the procedures derived in

this section.

5 Results

In this section, we show numerical results of the stability analysis presented in the previous section. We consider
three cases to which we refer as: thin, cerebral and aorta; see Table 1. In order to examine whether the thin-walled
approach is justified, we determine the condition of existence of the healthy state of a thin-walled artery with ratio
of wall thickness to inner radius equal to 0.01, using both the thin-walled and the thick-walled approach, and show
that the results are the same. Then we determine the stability of a representative cerebral artery. Using the thin-
walled approach we calculate (β/α)cr according to stability Statement (57) as well as (β/α)m using the condition
of existence of the healthy state (60). We show that explicit numerical values of (β/α)cr and (β/α)m are equal, thus
confirming the conclusion of equivalence of stability condition and the existence of the healthy state. Finally, we
study the stability of the aorta by evaluating the condition of existence of the healthy state using the thick-walled
approach.

5.1 Parameter settings

For the demonstrative case of the thin artery we took the parameters of a cerebral artery, changing the ratio of
wall thickness to radius only. The value of the homeostatic stretch λhom

c varies from 1.012 to 1.2 in [15–19]. We
arbitrarily set the value of the homeostatic stretch to 1.15. The angles between the circumference and collagen fiber
directions are taken from [16] for the media layer. We assume that the intrinsic properties of the matrix and collagen
fibers do not differ much in the abdominal and cerebral arteries. Therefore, the shear modulus cm and material
coefficients for collagen fibers k1 and k2 are obtained using the material parameters for elastin, ground substance
and collagen for abdominal aorta in [16]. For that the relations (17) were used. The value of the initial recruitment
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Table 1 Model parameters of three types of arteries. The symbol ‘−’ denotes the corresponding value for the aorta

Parameter Value Unit Description

Aorta Cerebral Thin

H/Ri 0.3 0.14 0.01 [–] Ratio between the inner radius and the wall thickness
for unloaded artery at the initial state

λhom
c 1.1 1.15 1.15 [–] Homeostatic collagen stretch

γ ±π/6 – – [rad] Angles between the fibers and the circumferential direction

cm 75 – – [kPa] Shear modulus of the matrix

k1 13 – – [kPa] Stiffness parameter of collagen fiber

k2 10 – – [–] Material parameter of collagen fiber

λrec,0 1.0 – – [–] Initial recruitment stretch

λz 1.3 – – [–] In-situ axial stretch of the artery

pph 16 10 10 [kPa] Mean physiological blood pressure

Table 2 Values of (β/α)m
for different pressures pI for
the thin artery with
H/Ri = 0.01

Pressure pI (kPa) 1.6 4.4 7.2 10.0

(β/α)m, (–) Thin-walled approach 14.2 55.1 96.0 136.8

Thick-walled approach 14.3 55.4 96.5 137.5

stretch λrec,0 is arbitrarily set to one. In-situ axial stretch is taken from [22], and the blood pressure equals the mean
intracranial cerebral blood pressure.

For a cerebral artery, the ratio of the wall thickness to the inner radius in the unloaded state is taken from [23].
For the aorta, the initial recruitment stretch λrec,0 is arbitrarily set to 1.0, and all the other parameters are obtained

from the parameters in [16] (for the calculation of material parameters cm , k1 and k2 the reader is referred to Sect. 3).

5.2 Thin artery

We calculated the minimal value (β/α)m for the thin artery of H/Ri = 0.01, with the thin-walled approach using
(60), and with the thick-walled approach, using (62) for four different values of the pressure pI; see Table 2. The
maximum in the set of the pressure values equals the mean intracranial cerebral blood pressure. The maximum
relative error of the values of the ratio of (β/α)m obtained with the two models does not exceed 0.7%, showing that
the thin- and the thick-walled approaches are in good correspondence for really thin arteries.

5.3 Cerebral artery

For a representative cerebral artery with parameters given in Table 1 we determine (β/α)cr as a function of applied
pressure p̂I with the help of (58), and the expression L(λ;β/α) = Lcr, which follows from (57). This is in accor-
dance with the thin-walled approach of Sect. 4.2. To show that lower values of p̂I yield lower values of (β/α)cr,
we plot (β/α)cr as a function of the pressure; see the thick solid line in Fig. 3. As follows from (57), for (β/α, p̂I)

from the region above that line the state of the artery is stable, and for (β/α, p̂I) from the region below that line the
state is unstable. To find (β/α)m in accordance with the thick-walled approach of Sect. 4.3, we have to use (63).
The thick dashed line in Fig. 3 represents the dependence of (β/α)m on p̂I obtained in this way. The graph shows
that the values of (β/α)m obtained with the thin-walled approach are significantly lower than the corresponding
values obtained with the thick-walled approach. The thin line on the graph displays the relation between (β/α)m

and pI in case of the absence of the matrix (cm = 0), which is considered in Sect. 5.5. By comparing this case with
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the previous two, one can see that an order of magnitude larger values of (β/α)cr are needed to ensure stability in
the case without matrix than in case with the matrix. We note that for the sake of getting comparable values of the
pressure both in thin and thick-walled cases, we made the pressure dimensionless as defined by (42).

We now proceed with analyzing the expression (59) representing the function P̂ of λ with β/α as a parameter. For
different values of β/α, this function is presented in Fig. 4. The lines in the graph are bounded from above. Hence,
the pressure of the homeostatic equilibrium states is bounded from above as well. The line for β/α = (β/α)m( p̂ph),
reaches in its peak value the physiological pressure p̂ph. The value (β/α)m is the minimal value of the ratio β/α

for which the healthy pressure can be reached. For β/α < (β/α)m, the pressure values do not reach the pressure
p̂ph, which means that for this value of β/α the healthy state does not exist. On the other hand, the healthy state
exists for any ratio satisfying the condition β/α > (β/α)m, and the corresponding line (the dash-dot line) reaches
p̂ph before reaching its peak value.

We note that in the considered thin-walled case (β/α)m = (β/α)cr, which is in line with the conclusion formu-
lated at the end of Sect. 4.2. From the thin-walled approach we find (β/α)m = 0.68, whereas from the thick-walled
approach we find (β/α)m = 1.55, which is more than twice as high.

5.4 Aorta

As a representative case of a thick-walled artery we consider the aorta. The parameters for the aorta are taken
from [16]. Note that the physiological pressure here (16 kPa) is higher than the one for the thinner cerebral artery
(10 kPa). Our calculations showed that the homeostatic state for the aorta is unconditionally stable (stable for
(β/α)m = 0 already) according to the thin-walled approach, whereas (β/α)m = 0.75 according to the thick-walled
approach.

5.5 Effect of uniform matrix degradation on the stability of the artery

In this section we analyse the stability in case of uniform matrix degradation. This is inspired by the observa-
tion that the content of elastin is decreased in aneurysms (e.g. [24,25]). We can model this by decreasing the
shear modulus of the matrix. All results derived here remain valid also in the case of dynamic uniform degra-
dation, provided the rate of degradation is slow compared to the rate of remodeling. Indeed, the time scale of
degradation of elastin in aneurysmal tissues is in the order of years, while the half-life of collagen is 3–90 days
in various soft tissues [26]. We notice that in case of non-uniform degradation the cylinder will no longer pre-
serve the cylindrical shape, and then the stability analysis would be completely different. We assume, therefore, a
uniform quasi-static degradation, and the only consequence is that we have to replace in (40) the shear modulus
cm by a smaller value cm(t), where cm(t) is the degraded value of cm at the current time t with respect to the
original healthy value of cm . The most critical situation is then obtained by letting cm → 0. Relation (42) then
reduces to

2 nc(t)

λ2(t) + λ2
z tan2 γ

τ̂ f (λc(t)) = p̂I, (65)

where the pressure p is scaled according to (42) with respect to the original value of the matrix shear modulus cm

in order to keep the same dimensionless value of the pressure when degrading the matrix. The rest of the analysis
is exactly analogous to that for the non-degraded case, ultimately resulting in the following expressions for L and
�I (compare with (52)–(54) and (58))

L = A

C
, (66)

A = − 2 τ̂ hom
f

λ2 + λ2
z tan2 γ

[
β

α
− 2nc τ̃

hom
f

λrec

]

, (67)
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C = 4nc τ̂
hom
f λ

(
λ2 + λ2

z tan2 γ
)2 (τ̃ hom

f − 1), (68)

and

�I

(

λ; β

α

)

≡
[
β

α

(
�(λ)

λhom
c

cos γ − λrec, 0

)

+ nc, 0

] 4 τ̂ hom
f

�2(λ)
= p̂I, (69)

which allows determining the critical value of the ratio (β/α)col
cr in case of a tissue consisting of collagen only.

Each value of β/α satisfying β/α > (β/α)col
cr ensures stability of the homeostatic state of the tissue without matrix.

An important interpretation of this result is the following: suppose the tissue is in a healthy homeostatic state; if
now the matrix degrades completely, a new homeostasis will be reached and be stable against dynamic remodeling,
provided that

β/α > (β/α)col
cr . (70)

6 Discussion

We have calculated the values (β/α)m for both an a priori thin-walled approximation and for the more general
thick-walled model. We have verified the thin-walled approach by considering the thick-walled model for the case
H/Ri = 0.01. The error in (β/α)m was less than 0.7%, confirming the correctness of the thin-walled approach in
the limit of H/Ri → 0.

We compared the values of (β/α)m obtained using the thick-walled approach with the corresponding values
obtained using the thin-walled approach both for cerebral artery and for abdominal aorta. In case of a cerebral artery
(H/Ri = 0.14) the relative error in (β/α)m was about 60%. In case of the abdominal aorta the thin-wall approach
yielded an unconditional stability, meaning that even for β/α = 0 the artery is stable, whereas the thick-walled
model yielded (β/α)m = 0.75. We conclude that even in case of the (thinner) cerebral artery the thin-walled
approach does not yield an accurate estimate of (β/α)m.

Recalling the definition of the dimensionless pressure (42), one can see that under the same pressure and geome-
try of the artery, increasing the matrix shear modulus corresponds to decreasing the dimensionless pressure. On the
other hand, Fig. 3 shows that the value of (β/α)m increases with an increase of the dimensionless pressure. From
this we conclude that the stiffer the matrix (or the lower the dimensionless pressure on the graph), the lower value
of (β/α)m is needed to provide stability of the healthy state.

Watton et al. [15] and [16] question whether a linear function of the remodeling equations (12) realistically
represents the remodeling behavior of the tissue, suggesting that the nonlinear functional forms might be more
appropriate. Towards this end, we note that our linear stability analysis is not restricted to linear remodeling equa-
tions. In case of nonlinear remodeling equations, still of the form (12), but with nonlinear functions of λc − λhom

c
at their right-hand sides, the rate constants α and β should be treated as the coefficients of the first-order terms of a
Taylor expansion of these nonlinear functions around λc = λhom

c .

7 Conclusions

We achieved the goal of this paper to study stability of the homeostatic state of an artery against remodeling as
described by a model of remodeling of an arterial tissue presented by Watton et al. [15]. In this model the remod-
eling is described by the evolution of collagen recruitment stretch and collagen density. In the equilibrium state all
collagen fibers are uniformly stretched to the homeostatic stretch λhom

c . If the artery is out of equilibrium, colla-
gen recruitment stretch and collagen density are described by evolution equations with rate parameters α and β,
respectively.
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The presented stability analysis is linear. To investigate the stability we disturb the healthy artery (stationary state)
by small dynamic perturbations. Whether, via dynamic remodeling, the artery will recover equilibrium depends on
the ratio β/α of the rate constants of the remodeling variables. Use of the assumption that the equilibrium state of a
healthy artery is stable against remodeling it enabled us to determine the range of physiologically acceptable values
of the rate constants.

We have considered as a specific example a thin-walled tube under internal pressure and axial pre-stretch. The
tube represents a healthy artery, and the pressure and the pre-stretch describe physiological loading. We showed
that the artery is stable against the remodeling if β/α > (β/α)m, where the value of (β/α)m is determined by
L(λ;β/α) = Lcr and �I (λ;β/α) = p̂I (see (57) and (58) for the definitions). One of our main results is that the
conditions for existence of the healthy state and for stability of this state are equivalent. This theoretical finding was
confirmed by the numerical results in case of a thin-walled approach. The equivalence of the two methods holds
also in the more general case of a thick-walled artery, which enabled us to study the stability of the thick-walled
artery by considering the existence of the healthy state only.

Comparison of the thin-walled and the thick-walled approach for the relatively thin-walled cerebral artery yielded
already large difference in (β/α)m between these two approaches.

Reduction of the matrix stiffness, considered a trigger for aneurysm formation, yielded an increase of (β/α)m,
with a finite value of (β/α)m for complete absence of the matrix. This implies that if β/α > (β/α)m then after any,
partial or total, matrix degradation the artery will remodel into a stable healthy state.

In this paper we determined physiologically acceptable ranges for the ratio of the two rate constants in the rel-
atively simple remodeling model of Watton and Hill. We recommend analogous studies for recent, more complex
models of remodeling of the vascular wall.
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