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Abstract
Product lines are widely used to manage families of products that share a common base
of features. Typically, not every combination (configuration) of features is valid. Feature
models are a de facto standard to specify valid configurations and allow standardized anal-
yses on the variability of the underlying system. A large variety of such analyses depends
on computing the number of valid configurations. To analyze feature models, they are typ-
ically translated to propositional logic. This allows to employ #SAT solvers that compute
the number of satisfying assignments of the propositional formula translated from a feature
model. However, the #SAT problem is generally assumed to be even harder than SAT and its
scalability when applied to feature models has only been explored sparsely. Our main con-
tribution is an investigation of the performance of off-the-shelf #SAT solvers on computing
the number of valid configurations for industrial feature models. We empirically evaluate 21
publicly available #SAT solvers on 130 feature models from 15 subject systems. Our results
indicate that current solvers master a majority of the evaluated systems (13/15) with the
fastest solvers requiring less than one second for each successfully evaluated feature model.
However, there are two complex systems for which none of the evaluated solvers scales. For
the given experiment design, the solvers that consumed the least runtime are sharpSAT
(2.5 seconds in sum for the 13 systems) and Ganak (3.5 seconds).

Keywords Configurable systems · Feature models · Product lines · Model counting ·
Configuration counting · #SAT · Benchmark

1 Introduction

A product line represents a family of products that share certain configuration options, also
called features (Benavides et al. 2010; Sobernig et al. 2016; Bosch et al. 2001; Heradio et al.
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2019). Each product is composed of a distinct selection of features, called configuration
(Apel et al. 2013). However, systems typically contain constraints which limit the set of
valid configurations (e.g., the selection of one feature requires selecting another feature).
These constraints are typically specified as a feature model (Bagheri et al. 2012; Batory
2005; Czarnecki and Wȧsowski 2007) which consists of a tree hierarchy and additional
cross-tree constraints.

Managing a product line is typically complex due to the high number of constraints
(Benavides et al. 2010). For example, one feature model we analyzed, representing an
automotive product line, contains more than 10,000 cross-tree constraints in addition to hier-
archical constraints. Manually keeping track of all these dependencies is infeasible (Sprey
et al. 2020). Consequently, a large variety of automated support in terms of analyses has
been proposed (Batory 2005; Schröter et al. 2016; Mendonça et al. 2009; Pohl et al. 2011;
Czarnecki and Wȧsowski 2007; Perrouin et al. 2010; Segura 2008; Galindo et al. 2016;
Benavides et al. 2010; Sprey et al. 2020). A multitude of analyses is based on feature-model
counting (i.e., computing the number of valid configurations), such as uniform random sam-
pling (Munoz et al. 2019; Oh et al. 2019; Sharma et al. 2018) and detecting design errors
(Sundermann et al. 2021; Heradio et al. 2013; Chen and Erwig 2011; Fernández-Amorós
et al. 2014; Heradio-Gil et al. 2011; Kübler et al. 2010). We refer to the number of valid
configurations of a feature model as its cardinality (Sundermann et al. 2021).

In the literature, the scalability of analyses that depend on computing the number of valid
configurations is largely unknown. Existing work either focuses on single analyses (e.g.,
uniform random sampling of feature-model configurations (Oh et al. 2017, 2019; Sharma
et al. 2018)), has not been evaluated on industrial feature models (Heradio-Gil et al. 2011;
Fernández-Amorós et al. 2014; Pohl et al. 2011), or considers very few solvers or systems
(Ku̇bler et al. 2010; Oh et al. 2017, 2019; Sharma et al. 2018). In this paper, we focus on
propositional model counting (for short #SAT) which determines the number of satisfying
assignments for a given propositional formula. As the translation of feature models to propo-
sitional logic is well-researched (Benavides et al. 2010; Batory 2005), #SAT solvers can be
applied out of the box to compute the cardinality of feature models. However, #SAT is at
least as hard as SAT because after computing #SAT (i.e., the number of satisfying assign-
ments) it is trivial to determine whether a formula is SAT (i.e., there is at least one satisfying
assignment). In general, #SAT is assumed to be harder (Burchard et al. 2015; Valiant 1979).
While it is widely accepted that regular SAT is typically easy for industrial feature models
(compared to randomly generated formulas (Pett et al. 2019; Mendonça et al. 2009)), this
has not been explored for #SAT.

In this work, we provide insights on the scalability of modern off-the-shelf #SAT solvers
for the analysis of feature models. Analyses based on feature-model counting can only be
applied in practice if available #SAT solvers scale to industrial feature models considering
time restrictions for typical use cases, such as interactive settings (Fritsch et al. 2020; Sprey
et al. 2020; Krieter et al. 2017; Acher et al. 2013; Benavides et al. 2007) or continuous inte-
gration environments (Pett et al. 2021). We thus evaluate the runtimes of analyzing feature
models with publicly available #SAT solvers. Furthermore, we provide recommendations
on which solvers to use for analyzing feature models to reduce runtimes.

#SAT solvers rely on a variety of techniques to compute the number of satisfying assign-
ments. While some solvers only report the number of satisfying assignments (Bayardo Jr
and Pehoushek 2000; Sang et al. 2004; Thurley 2006; Burchard et al. 2015; Biere 2008),
other solvers apply knowledge compilation to different target languages, such as binary
decision diagrams (BDDs) http://buddy.sourceforge.net/manual/main.html. Accessed: 02
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Mar 2020; https://github.com/vscosta/cudd. Accessed: 13 Jun 2020 (Toda and Soh 2016),
deterministic decomposable negation normal forms (d-DNNFs) (Darwiche 2004; Lagniez
and Marquis 2017; Muise et al. 2010), sentential decision diagrams (SDDs) (Oztok and
Darwiche 2015), and extended affine decision trees (Koriche et al. 2013). The compiled tar-
get languages may be reused for further feature-model analyses. We analyze the benefits of
different techniques to identify promising classes of #SAT solvers.

In general, the runtime required to analyze a feature model depends on structural
properties related to its size and complexity (Mendonça et al. 2009; Kübler et al. 2010;
Fernández-Amorós et al. 2014). We provide first insights on properties which induce a
time-consuming computation for every or some #SAT solvers. In particular, we analyze the
correlation between the runtimes and a variety of structural metrics.

For some feature models, it may be infeasible to compute an exact result using publicly
available solvers. In this case, approximate #SAT solvers, which estimate the number of
satisfying assignments for a given formula, may be beneficial. We inspect the benefits of
approximate #SAT solvers when applied to industrial feature models.

Overall, we evaluate 19 exact and 2 approximate off-the-shelf #SAT solvers which are
publicly available. For our empirical evaluation, we consider 15 subject systems with overall
130 feature models. We provide the framework and data used for the empirical evaluation
on Zenodo.1 In particular, our work provides the following contributions:

1. We examine the performance regarding runtime of #SAT technology on 130 industrial
feature models.

2. We identify best performing #SAT solvers out of 21 off-the-shelf tools.
3. We compare the benefits of different #SAT technologies.
4. We examine the correlation between the runtime of #SAT solvers and structural metrics

of the feature model.
5. We inspect the performance of two approximate #SAT solvers.
6. We provide the number of valid configurations for feature models in our dataset.

In this work, we extend our previous conference publication (Sundermann et al. 2020)
regarding the following aspects. First, we additionally evaluate ten more exact #SAT
solvers. Second, we examine the runtimes of two approximate #SAT solvers. Third, we
consider four additional subject systems. Fourth, we analyze the correlation between the
runtime and 12 structural metrics of the feature models. Fifth, we improve the accuracy of
our results by repeating the measurements and applying statistical tests to study the signifi-
cance of our results. Overall, the evaluation subsumes the previous evaluation (Sundermann
et al. 2020) except for analyzing the evolution of systems. We consider a more thorough
analysis (compared to the previous evaluation (Sundermann et al. 2020)) of the evolution as
out of scope for this work.

2 Motivating example

Figure 1 shows a feature diagram representing a simplified car product line. A feature dia-
gram is a commonly used visual representation of a feature model (Benavides et al. 2010).
It visualizes the feature model’s tree structure and additional cross-tree constraints given in

1https://doi.org/10.5281/zenodo.7329979
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Fig. 1 Example feature model adapted from Ananieva et al. (Ananieva et al. 2016)

propositional logic. The tree structure and the cross-tree constraints specify the set of valid
configurations.

In our example, each car of the product line requires a Carbody. This is indicated by the
mandatory property of the feature. In contrast, a Radio is an optional feature (i.e., it may
or may not be selected). A configuration that does not contain exactly one of the Gearbox
types,Manual or Automatic, is invalid, as they appear in an alternative-relation in the feature
diagram. Furthermore, the Ports of a Radio include at least one of USB or CD. This relation
is described by an or-relation. The cross-tree constraint Navigation ⇒ USB represents that
a car with Navigation requires a USB port.

To analyze a feature model, we can use its cardinality (i.e., the number of valid config-
urations). Consider the following scenario. The vast majority of automatic cars are sold in
the USA. As a consequence, a developer introduces a new constraint Automatic ⇒ USA

(automatic cars require digital maps for the USA). Using a #SAT solver, the developer finds
that the cardinality is 42 before the change and 25 afterwards. The immense decrease in
the cardinality, if unexpected, may already be an indicator for a design problem, because
the set of available cars is almost halved. Further, the cardinality can be combined with
domain knowledge for more sophisticated insights as follows. In the old version, there are
21 cars with an Automatic gearbox and 21 cars with a Manual gearbox. The newly intro-
duced constraint has no impact on cars with Manual. Thus, there are still 21 cars with
Manual in the new version which implies that only 25 − 21 = 4 valid configurations
with Automatic remain. Due to the tree hierarchy, the introduced constraint (Automatic ⇒
USA) requires each automatic car to also have Radio, Navigation, DigitalMaps, and USB.
This side effect was probably unintended and can be fixed by changing the constraint to
Automatic∧DigitalMaps ⇒ USA. While the original constraint (Automatic ⇒ USA)
induces an immense and possibly unintended reduction in the variability, it introduces no
traditional anomalies (e.g., core, false-optional, or dead features; cf. (Benavides et al. 2010)
for more details). Hence, in such cases it is hard to detect the side effects with traditional
SAT-based analyses. In the provided scenario, we used the variability reduction of a fea-
ture model update to detect side effects, one of 21 applications of #SAT we identified in
previous work (Sundermann et al. 2021).
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Without cross-tree constraints, computing the number of valid configurations has lin-
ear time complexity in the number of features (Heradio-Gil et al. 2011). Only considering
the tree-structure, the selections in a subtree are completely independent of selections in
other subtrees. Therefore, the cardinality of each subtree can be computed separately. The
cardinality of the feature model can be computed by traversing the tree once and apply-
ing rules for each relation type, recursively. For example, the cardinality of an alternative
group is equal to the sum of cardinalities of the subtrees induced by the children of the
alternative group. However, for feature models with cross-tree constraints, the proposed pro-
cedure results in a wrong cardinality as interdependencies are disregarded. Hence, a more
sophisticated algorithm is required.

With cross-tree constraints, the number of configurations cannot be computed in linear
time complexity w.r.t. to the number of features. Every feature model can be translated to a
propositional formula (Mendonça et al. 2009). Furthermore, a feature model that contains
cross-tree constraints can represent every propositional formula and vice versa (Knüppel
et al. 2017). Thus, computing the satisfiability of a model with those constraints is as hard
as SAT and computing the number of valid configurations is as hard as #SAT.

3 The need for feature-model counting

In our previous work (Sundermann et al. 2021), we surveyed a large variety of applications
dependent on the number of valid configurations of feature models. The presented applica-
tions indicate the benefits of applying #SAT to feature models for multiple aspects, such
as detecting design errors, economical estimations, and guidance for developers. Overall,
we found 21 applications gathered from the literature or inspired by industry projects, one
of which we exemplified in the last section. In the following, we present some exemplary
applications that depend on computing the number of valid configurations provided in the
original work (Sundermann et al. 2021). Each of the exemplary applications is inspired by
insights of our industry projects.

Variability reduction In Section 2, we already introduced an example of variability reduc-
tion to detect the side effect of a new constraint. Generally, when working with product
lines, it is infeasible to manually keep track of all possible side effects when applying
changes (Sprey et al. 2020; Chen and Erwig 2011; Heradio et al. 2016). These side effects
are especially difficult to detect if they introduce no traditional anomaly, such as dead fea-
tures (Benavides et al. 2010), or a void feature model (Benavides et al. 2010) (i.e., the
feature model does not describe a single valid configuration). In such cases, computing the
cardinality before and after a change may provide an indicator for faulty edits (Sundermann
et al. 2021). Another use case is willingly decreasing the cardinality to limit the variability
of a system during an evolution. However, in order to grasp the impact of such changes it is
necessary to know the cardinality before and after the change (Benavides et al. 2005).

Feature prioritization In some scenarios, features can be prioritized based on the number
of valid configurations they appear in. For example, a developer may have to decide which
feature to develop next. Suppose the developer’s goal is to develop as many distinct products
as possible. Consequently, the developer wants to prioritize features that appear in a higher
number of valid configurations, which can be computed using a #SAT solver (Sundermann
et al. 2021).
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Uniform random sampling As it is mostly infeasible to analyze a configuration space by
considering each single configuration, it is common to create representative samples for a
product line (Munoz et al. 2019). However, finding these samples is not trivial (Oh et al.
2016, 2017). Uniform random sampling creates representative (i.e., each valid configuration
has the same chance to be included) samples (Munoz et al. 2019). One technique for uniform
random sampling is to create a bijection between integers and valid configurations. Suppose
the cardinality of the feature model is #FM. Then, by randomly selecting an integer within
the range [1,. . .,#FM], each configuration has the same probability to be included in the
sample. The bijection can be achieved using #SAT by recursively assigning the features
(Munoz et al. 2019). Following the algorithm of Munoz et al. (Oh et al. 2019), the number
of valid configurations needs to be computed for each assignment in the worst case. This
requires an efficient #SAT solver, especially for large systems (Munoz et al. 2019).

4 Propositional model counting

In this section, we provide some background for propositional logic, the #SAT problem, and
different strategies employed by the evaluated solvers. Note that this section is not necessary
to understand the empirical evaluation. Hence, the section can be skipped if considering the
evaluated solvers as black boxes is sufficient for the reader.

Let F be a propositional formula and vars(F ) the corresponding set of variables with
|vars(F )| = n. An assignment is a function α : vars(F ) → {0, 1, undef } that maps
variables contained in F to the truth values (0 or 1) or undefined (undef ) (Kübler et al.
2010). Assignments can be partial, meaning that some variables v ∈ vars(F ) are mapped to
undef . Otherwise, the assignment is called full (Kübler et al. 2010). For an assignment α,
|α| ≤ n corresponds to the number of variables mapped to 0 or 1 in α. We use F(α) ∈ {0, 1}
to denote whether a full assignment α satisfies the formula F . We refer to assignments α

with F(α) = 1 as satisfying.
Propositional model counting (for short #SAT) is defined as the problem of comput-

ing the number of satisfying full assignments of a propositional formula (Gomes et al.
2006; Kübler et al. 2010). #F = |{α | F(α) = 1}| corresponds to the number of sat-
isfying full assignments of formula F . In the following, we present three popular model
counting methods employed by the majority of solvers in our empirical evaluation, namely
(Davis-Putnam-Logemann-Loveland) DPLL-based (Bayardo Jr and Pehoushek 2000; Sang
et al. 2005; Thurley 2006; Burchard et al. 2015; Biere 2008), d-DNNF-based (Darwiche
2004; Lagniez and Marquis 2017; Muise et al. 2010), and BDD-based (Toda and Soh 2016)
counting.

The algorithms based on exhaustive DPLL iteratively assign variables to ultimately com-
pute the number of satisfying assignments. The goal is to find an assignment that either
satisfies or does not satisfy the formula for each possible assignment of the remaining
n − |α| variables. If the formula evaluates to false under α, the number of resulting satis-
fying assignments for α is 0. If it evaluates to true, the number of satisfying assignments
for α is 2n−|α|, which is the number of possible assignments of the remaining variables. In
particular, a satisfying full assignment induces exactly 2n−n = 1 solution. After computing
a result for α, DPLL uses backtracking to find remaining assignments. The backtracking
algorithm is performed until each satisfying assignment is covered. The sum of computed
results is the exact number of satisfying assignments (Biere et al. 2009).
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Another possible way to compute the number of satisfying assignments are d-DNNFs.
The term d-DNNF stands for deterministic, decomposable negation normal form (Darwiche
and Marquis 2002). A formula is in negation normal form (NNF) if the logical operators
are limited to ∧ (conjunction), ∨ (disjunctions), ¬ (negations) and negations only appear
directly in front of literals (Huth and Ryan 2004). A formula F is called deterministic if
each child D1, . . . , Dn of a disjunction D ∈ F is logically disjunct (i.e., ∀i, j : i 	= j : Di ∧
Dj |=⊥) (Darwiche and Marquis 2002). Determinism implies that the children D1, . . . , Dn

of a disjunction D share no common solutions. Therefore, the number of satisfying assign-
ments of the disjunction is equal to the sum of its children’s results (i.e., #D = ∑n

i=1 #Di)
(Biere et al. 2009). A formula is called decomposable if the children C1, . . . , Cn of a con-
junction C share no variables (i.e., ∀i, j : i 	= j : vars(Ci) ∩ vars(Cj ) = ∅) (Darwiche
and Marquis 2002). Decomposability implies that assignments for variables of the children
C1, . . . , Cn are independent of each other as the variables are disjoint. It follows that the
number of satisfying assignments of the conjunction is equal to the product of the results for
each child (i.e., #C = ∏n

i=1 #Ci) (Biere et al. 2009). Using both properties (determinism
and decomposability), it is possible to compute the overall number of satisfying assign-
ments by traversing the formula once (Biere et al. 2009). d-DNNF-based #SAT solving
corresponds to compiling a propositional formula to d-DNNF and then retrieving the num-
ber of satisfying assignments by traversing the d-DNNF. After the compilation, computing
the model count takes linear time w.r.t. the number of the d-DNNF nodes (Darwiche 2004).

Finally, #SAT may also be computed using a binary decision diagram BDD(F) repre-
senting the propositional formula F . A binary decision diagram is a rooted directed acyclic
graph two terminal nodes ⊥ and 
. Every non-terminal node x is associated with a vari-
able v ∈ vars(F ) and has precisely two outgoing edges, named low (setting v to false)
and high (setting v to true). Typically, one considers reduced ordered binary decision dia-
grams (BDD) (Bryant 1986, 2018; Mendonça 2009). A BDD is ordered, if nodes associated
to a variable vi always precede nodes associated to a variable vj or vice versa. If a BDD
is reduced, then it (1) does not contain nodes with their low and high edges incident with
the same node and (2) no two nodes associated with the same variable have the same nodes
incident to their low and high edges. All satisfying assignments for F correspond to a path
P from the root node to 
 (1-path) in BDD(F). Let xv be a node associated to the variable
v. If the low edge of xv is contained in P , then v is set to false. Analogously, v is set to true
if P contains the high edge of xv . If no node associated to v is contained in P , then v can
be assigned an arbitrary value. Consequently, every 1-path induces 2n−|P | satisfying assign-
ments, where |P | is the number of edges in P , and it suffices to iterate over all 1-paths in
BDD(F) to compute #F :

#F =
∑

1-path P
in BDD(F)

2n−|P | (1)

This can be achieved in linear time with respect to the number of nodes in BDD(F) (Bryant
2018). BDDs are known to be sensitive to the order of variables and there are examples in
which one order results in a BDDwith linear number of nodes (w.r.t. the number of features)
and another order results in a BDD of exponential size (Bryant 1986).

The main difference between the solving techniques is the reuse of results. DPLL-based
solvers perform a single computation and typically just return the number of satisfying
assignments (Bayardo Jr and Pehoushek 2000; Sang et al. 2004; Thurley 2006; Burchard
et al. 2015; Biere 2008). When using a BDD or d-DNNF compiler, the resulting target
format can be reused for further analysis. For example, d-DNNFs and BDDs can be used
to compute the number of satisfying assignments under assumptions (Darwiche 2001; Heß
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et al. 2021), which could be used to compute the number of valid configurations containing
a certain feature or an arbitrary combination of features (i.e., a partial configuration). Thus,
if multiple #SAT computations are required, compiling into d-DNNF or BDD might be
beneficial even if the compilation time takes longer than a DPLL-based computation.

5 Experiment design

In this section, we present the experiment design for our evaluation of #SAT solvers
on industrial feature models. We provide the required information for the presentation
(Section 6) and discussion (Section 7) of the results. The replication package for our
empirical evaluation is publicly available.2.

In Section 5.1, we explain the research questions we aim to answer in our evaluation. In
Section 5.2, we present the gathered #SAT solvers and the methodology we used to collect
them. In Section 5.3, we discuss the selection of subject feature models and provide infor-
mation (e.g., number of features and domain) of the underlying product line. In Section 5.4,
we describe the setup of the experiments regarding the overall procedure of the measure-
ments, considered solvers, considered systems, and applied statistical tests. In Section 5.5,
we provide details on the technical setup for the evaluation.

5.1 Research questions

In this section, we discuss the research questions that we aim to answer with the empirical
evaluation. The research questions provide insight on the general scalability of #SAT tech-
nology, the performance of exact #SAT solvers and solver classes, the correlation between
structural metrics of the feature model and the runtime of solvers, and the performance of
approximate #SAT solvers. Typically, feature-model analyses, such as counting, are applied
in interactive settings or in continuous integration. As those settings mandate short runtimes,
we consider an analysis to be scalable if it requires at most a few minutes of runtimes.

RQ1 How do #SAT solvers perform on industrial feature models?
To use applications based on the feature-model cardinality in industry, we need to

identify solvers that scale for the task of analyzing industrial feature models. Thus, we
examine the performance of exact #SAT solvers regarding the runtime when computing
the cardinality of industrial feature models. Furthermore, we aim to find the most effi-
cient #SAT solvers to provide recommendations on which #SAT solvers to use. Here, we
consider the runtime required to compute #SAT for given feature models as the efficiency
of a solver.

RQ2 How do different classes of #SAT solvers perform on industrial feature models?
We consider multiple classes of #SAT solvers (cf. Section 5.3). With RQ2, we

analyze the runtimes of different categories of solvers, namely (1) DPLLbased, (2)
algebraic-based, and knowledge compilers translating to (3) BDD, (4) d-DNNF, and
(5) other formats (i.e., EADT and SDD).We use the insights to discuss the benefits of
different solver categories and to give recommendations on promising techniques for
counting-based analyses.

RQ3 How does the runtime of #SAT solvers correlate to structural metrics of the feature
model?

2https://doi.org/10.5281/zenodo.7329979
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We aim to provide some first insights on which properties cause a feature model to
be hard to analyze for #SAT solvers. In particular, we examine if there is a correlation
between the performance of the #SAT solvers and structural metrics related to the size
and complexity of feature models. The insights can be used as an indicator on the scal-
ability of existing #SAT solvers for a given feature model depending on their structure.
Furthermore, we identify metrics that have a high impact on performance to find promis-
ing candidates for more accurate performance predictions in the future. In Table 1, we
provide a list of metrics we examined. For each metric, we provide a description and
instructions on how to compute the respective metric for a given feature model. The
metrics were collected by Bezerra et al (Bezerra et al. 2014) and Bagheri and Gasevic
(Bagheri and Gasevic 2011). Those metrics are based on structural properties related to
size (e.g., number of features) or related to complexity (e.g., cyclomatic complexity).

RQ4 How do approximate #SAT solvers perform on industrial feature models?
In addition to exact #SAT solvers, we examine the performance of approximate #SAT

solvers which estimate the number of satisfying assignments for a given formula. There
are applications which require exact results, such as uniform random sampling where
approximate results would violate uniformity. However, for a multitude of applications,
an estimated cardinality may be often sufficient. For example, consider prioritizing fea-
tures that appear in many valid configurations for two features A and B with #A = 1065

and #B = 1060. For instance, an approximation that ensures that the result is at most
20 times larger/smaller than the exact count, would result in the same prioritizations as
exact results as 1

20 ·1065 > 20 ·1060. We examine the performance of approximate #SAT
solvers to provide insights on their benefits.

5.2 Evaluated #SAT solvers

In the following, we present the #SAT solvers used in our empirical evaluation. First, we
describe our methodology of gathering the solvers. Second, we list the identified solvers,
group them by their type of computing #SAT, and provide pointers where to find them.

Methodology Our main goal for selecting the solvers is a representative coverage of
publicly available #SAT solvers. Such a coverage should allow for conclusive results on
(1) the current scalability of #SAT technologies when applied to feature models and (2)
recommendations on which solvers should be used to analyze feature models at hand.

We included all solvers that satisfy the following criteria: First, the solver needs to be
publicly available (i.e., source code or binary is provided at generally accessible URL).
Second, the tools have to accept CNFs in DIMACS format as input. DIMACS is the de facto
standard for representing CNFs and used by the vast majority of SAT and #SAT solvers
(Biere 2008; Bayardo Jr and Pehoushek 2000; Sang et al. 2004, 2005; Darwiche 2002, 2004;
Toda and Soh 2016). Third, the solver can be used as a standalone blackbox tool in contrast
to tools that require further setup (e.g., a client-server architecture (Lagniez et al. 2018)).
Furthermore, we excluded the tool GPUSAT (Fichte et al. 2019) which performs #SAT on
a GPU as we expect issues with the comparability if a solver uses different hardware. We
identified #SAT solvers with the following three approaches.

First, we collected work that performs counting-related analyses on product lines (Kübler
et al. 2010; Munoz et al. 2019; Oh et al. 2016; Pérez Morago 2016; Heradio-Gil et al.
2011; Fernández-Amorós et al. 2014; Chen and Erwig 2011; Pohl et al. 2011) to identify
#SAT tools and respective publications used in product-line analysis. Then, we performed
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Table 1 Structural feature-model metrics (RQ3)

Number of features

DescriptionNumber of features in the feature model overall

Formula |Features|, with Features being the set of features

Number of leaf features

DescriptionNumber of features in the feature model without children

Formula |Leaves|, with Leaves being the set of leaf features

Number of top features

DescriptionNumber of children of the root feature

Formula |T op|, with T op being the set of children of the root feature

Number of cross-tree constraints

DescriptionNumber of cross-tree constraints in the feature model

Formula |CT C|, with CT C being the set of cross-tree constraints

Number of clauses

DescriptionNumber of clauses in the CNF representing the feature model

Formula |Clauses|, with Clauses being the set of clauses in the CNF

Number of literals

DescriptionNumber of overall literals appearing in the CNF

Formula |Literals|, with Literals being the set of literals in the CNF

CTC-Density

DescriptionRatio of unique features appearing in CTC compared to overall number of features

Formula |FeaturesCT C |
#Features , with FeaturesCT C being the set of features appearing in a cross-tree constraint.

Depth of tree

DescriptionDepth of the feature tree at the longest path

Formula |FeaturesLP |, with FeaturesLP being the set of features in the longest path from the root to
a leaf feature.

Flexibility of configuration

DescriptionRatio of optional features compared to overall number of features

Formula
|FeaturesOpt |

|Features| with FeaturesOpt being the set of features that appear in some but not all valid
configurations.

Ratio of variability

DescriptionAverage number of children

Formula
∑

f ∈Features |childrenf |
|Features\Leaves| , with childrenf being the set of children of feature f .

Coefficient of connectivity-density

DescriptionNumber of edges between features compared to the number of features

Formula
∑

f ∈Features |edgesf |
2·|Features| , with edgesf being the

set of distinct edges connecting features. For
a clause (f1 ∨ . . . ∨ fn), there is an edge
between every pair of feature f1, . . . , fn.

Cyclomatic complexity

DescriptionNumber of distinct cycles between features

Formula |cyclesf | with cyclesf being the set of independent cycles spanned by edgesf

(forward and backward) snowballing from the identified publications. For backward snow-
balling, we employed data from Google Scholar. Second, we used a list of publicly available
#SAT solvers from the report of the model counting 2020 competition as comparison (Fichte
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Table 2 Overview exact #SAT solvers

Solver Type Target format Reference

Cachet DPLL − (Sang et al. 2004, 2005)

countAntom DPLL − (Burchard et al. 2015)

Ganak DPLL − (Sharma et al. 2019)

PicoSAT DPLL − (Biere 2008)

Relsat DPLL − (Bayardo Jr and Pehoushek 2000)

SharpCDCL DPLL − (Klebanov et al. 2013)

sharpSAT DPLL − (Thurley 2006)

McTW Algebraic − MC Competition (Fichte et al. 2021)

SUMC1 Algebraic − MC Competition (Fichte et al. 2021)

ADDMC Algebraic − MC Competition (Fichte et al. 2021)

c2d Compiler d-DNNF (Darwiche 2002; 2004)

d4 Compiler d-DNNF (Lagniez and Marquis 2017)

dSharp Compiler d-DNNF (Muise et al. 2010)

BuDDy Compiler BDD http://buddy.sourceforge.net/manual/main.html. Accessed: 02
Mar 2020

CNF2OBDD Compiler BDD (Toda and Soh 2016)

Cudd Compiler BDD https://github.com/vscosta/cudd. Accessed: 13 Jun 2020

CNF2EADT Compiler EADT (Koriche et al. 2013)

MiniC2D Compiler SDD (Oztok and Darwiche 2015)

SDD Compiler SDD (Darwiche 2011)

et al. 2021). Both lists are similar with eleven shared #SAT solvers. The list of the model
counting competition contained one solver in addition to the eleven shared solvers while
the list from product-line analysis contained four additional solvers. Due to the similarity in
the identified solvers, we argue that our list of #SAT solvers provides a reasonable repre-
sentation of current #SAT technology. Third, we added three #SAT solvers that entered the
model counting 2020 competition but were not published beforehand.3

Selected solvers Overall, we gathered 19 exact and 2 approximate #SAT solvers. Table 2
provides an overview on the exact solvers. The exact #SAT solvers can be separated in
three main categories: DPLL-based solvers, algebraic solvers, and knowledge compilers.
We consider a knowledge compiler to be a #SAT solver if the compiled target language and
the compiler support computing the number of satisfying assignments in polynomial time
in the size of the target formula.

The solver countAntom is the only solver which internally supports multi-threading
(Burchard et al. 2015). We evaluated countAntom with one and four available threads
separately to examine the impact of multi-threading on the runtime. We consider evaluating
countAntom also with four threads (opposed to only with a single thread) as the more
sensible option due to the following reasons: First, it is reasonable to assume that multiple
threads would be used in industrial settings. Second, to allow multi-threading the developers

3https://doi.org/10.5281/zenodo.4292581
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of countAntom made several adjustments which may put countAntom at a disadvan-
tage when using a single thread. Third, nevertheless, a larger number of threads may result
in a too large advantage for countAntom. During the remainder of the evaluation, we refer
to countAntom with four threads if not stated otherwise.

Neither BuDDy http://buddy.sourceforge.net/manual/main.html. Accessed: 02 Mar 2020
nor CUDD https://github.com/vscosta/cudd. Accessed: 13 Jun 2020 support parsing
DIMACS directly. In previous work, we implemented a Python-based wrapper called
ddueruem4 (Heß et al. 2021) which uses the ctypes library5 to interface with their
shared libraries and construct the BDD using the API described in their respective manu-
als http://buddy.sourceforge.net/manual/main.html. Accessed: 02 Mar 2020; https://github.
com/vscosta/cudd. Accessed: 13 Jun 2020. As suggested in the manuals of BuDDy and
CUDD, we enabled automatic variable reordering in both BuDDy and Cudd, using the con-
verging variant of the sift algorithm (Rudell 1993). We decided to use our own wrapper
ddueruem due to limitations, namely the missing support for Cudd 3.0.0 and fre-
quent crashes when using BuDDy in the JavaBDD6 framework, which is often used for
product-line analysis (Mendonça 2009; Mendonca and Cowan 2010; Pohl et al. 2011).

In addition to the exact #SAT solvers, we also identified two approximate #SAT solvers,
namely ApproxMC (Chakraborty et al. 2013) and ApproxCount (Wei and Selman 2005).
The solver ApproxCount iteratively assigns variables to reduce the complexity of a for-
mula. For each assigned variable, the solver estimates the resulting reduction in the number
of satisfying assignments. After a user-specified number of assigned variables, the exact
#SAT solver Cachet is executed with the simplified formula as input. The estimated reduc-
tion is then applied to the result of the simplified formula to derive an approximated number
of satisfying assignments for the original formula. In our previous work (Sundermann et al.
2020), every feature model with less than 1,000 features was successfully evaluated by
most #SAT solvers. Following this insight, we directed ApproxCount to start the exact
computation at 1,000 remaining variables. For ApproxMC, we used the default parameters.

5.3 Subject systems

The main goal of the empirical evaluation is to examine the applicability of #SAT solvers for
analyzing feature models. We argue that the applicability mainly depends on the scalability
on industrial feature models, as artificial models might not be representative for industrial
usage as observed in other domains (Ansótegui et al. 2009; Heß et al. 2021). Therefore, we
only use industrial feature models as subject systems. We consider a feature model to be
industrial if it fulfills the following two criteria: (1) it specifies the variability of a product
line used in the real world and (2) it does not vastly simplify the complexity (in terms
of features and constraints) of the product line. Note that we only consider variability of
the problem space (i.e., which valid configurations do exist) opposed to variability in the
solution space (i.e., how and where to implement variability).

Selected systems With our selection of subject systems, we aim for a wide coverage of
different domains. We evaluate the performance of the listed #SAT solvers on feature mod-
els taken from industrial product lines from the automotive, operating system, database, and

4https://github.com/SoftVarE-Group/emse-evaluation-sharpsat/tree/v1.0/solvers/ddueruem
5https://docs.python.org/3/library/ctypes.html
6http://javabdd.sourceforge.net/
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Table 3 Overview Subject Systems (Sorted by #Features)

Subject systems i #Features #Constraints Orig. source

BerkeleyDB 1 76 20 https://github.com/FeatureIDE/FeatureIDE

axTLS 2 96 14 (Knüppel et al. 2017)

uClibc 3 313 56 (Knüppel et al. 2017)

uClinux-base 4 380 3,455 (Knüppel et al. 2017)

Automotive04 5 531 623 Confidential

Automotive03 6 588 1,184 Confidential

BusyBox 7 631 681 (Pett et al. 2021)

FinancialServices 8 771 1,080 (Nieke et al. 2018; Pett et al. 2019)

Embtoolkit 9 1,179 323 (Knüppel et al. 2017)

CDL (116 Models) 10 1,178–1,408 816–956 (Knüppel et al. 2017)

uClinux-distribution 11 1,580 197 (Knüppel et al. 2017)

Automotive05 12 1,663 10,321 Confidential

Automotive01 13 2,513 2,833 https://github.com/FeatureIDE/FeatureIDE

Linuxv2.6.33.3 14 6,467 3,545 (Knüppel et al. 2017)

Automotive02 15 18,616 1,369 (Knüppel et al. 2017)

financial services domain. Table 3 provides an overview on the considered feature models,
sorted by the number of features, including name, number of features, number of con-
straints, and the work they were originally published in. The index i indicates the position
of the subject system in diagrams in Section 6.

First, we analyze feature models provided by Knüppel et al (Knüppel et al. 2017).7 The
authors extracted the systems from snapshots of an automotive product line and by trans-
lating KConfig and CDL models. KConfig8 is a language designed for managing Linux
configurations and CDL for managing eCos9, a configurable operating system for embed-
ded applications (Knüppel et al. 2017). The considered KConfig models are axTLS, uClibc,
uClinux-base, Embtoolkit, uClinux-distribution, and Linux. In addition, Knüppel et al pro-
vide an automotive product line Automotive02. Second, we evaluate the solvers on BusyBox
provided by Pett et al (Pett et al. 2021).10 Third, we include a feature model from the Finan-
cialServices domain (Nieke et al. 2018; Pett et al. 2019). Fourth, we consider the systems
Automotive01 (Kowal et al. 2016) and BerkeleyDB (Kästner et al. 2007) which are avail-
able as FeatureIDE examples.11 Fourth, we were given access to industrial models for three
different systems from the automotive domain (Automotive03-Automotive05). These mod-
els were provided in a proprietary format. With the help of company interns, we translated
their configuration knowledge into feature models. For our entire experiment, we translated
each feature model to the DIMACS format using FeatureIDE 3.5.5.12

For some subject systems, namely Automotive02–05, FinancialServices, and BusyBox
a history of feature models is available, each representing a unique timestamp. For each

7https://github.com/AlexanderKnueppel/is-there-a-mismatch
8https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
9https://ecos.sourceware.org/
10https://github.com/TUBS-ISF/Stability-of-Productline-Sampling
11https://github.com/FeatureIDE/FeatureIDE
12https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.5.5
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feature model with a history, we consider only the latest version. Thoroughly analyzing the
entire history is out of scope and left as future work.

In previous experiments (Sundermann et al. 2020), we found that the 116 CDL models
are highly similar regarding a variety of metrics (i.e., all metrics considered Section 5.1)
and also resulted in similar runtimes for #SAT solvers. If we evaluated the different CDL
models as distinct systems, 89.2% of the overall 130 (14 other + 116 CDL) evaluated feature
models are CDL models which results in a huge bias of the results. Therefore, we consider
the median of runtimes over the 116 different CDL models as the runtime of the CDL
subject system in every experiment if not stated otherwise. To show the similarity in the
performance of #SAT solvers, we also present the runtimes on the different CDL models in
Section 6.

5.4 Experimental setup

In this section, we describe the procedure of the experiments conducted to gather insights
to answer our research questions.

To analyze the feature models with #SAT solvers, we translate each feature model into
conjunctive normal form (CNF) and store it in DIMACS format. We invoke the #SAT
solvers with the DIMACS as input. As the translation to CNF typically requires only a few
milliseconds and is equivalent for each solver, we do not include the translation time in the
overall runtime. Furthermore, we set a timeout of ten minutes (cf. RQ1 in Section 5.1) for
evaluating a single feature model as the baseline for the experiment. The threshold is moti-
vated by applying counting-based analyses in interactive settings and continuous-integration
environment which should not exceed a few minutes of runtime to provide fast feedback to
developers after changing a feature model.

An important aspect we consider for our benchmark is the trade-off between significance
of results and ecological footprint. If a solver hits the timeout of ten minutes for every single
one of the 130 feature models, the evaluation would require almost a day of continuous
runtime considering a single repetition. Performing a number of repetitions that allows for
significant results would require substantially more runtime. For instance, when using 50
repetitions this would potentially result in more than 11 years of nonstop computation time.
Thus, we aim to reduce the overall runtime of the experiments while preserving significant
results.

In the following, we explain the performed experiments in detail. Table 4 provides
an overview over the two experiments regarding considered solvers, considered research
questions, and number of performed repetitions per measurement.

Table 4 Overview experiments

Experiment Solvers #Reps. RQ1 RQ2 RQ3 RQ4

Experiment 1a All Exact #SAT 1 × ×
Experiment 1b Remaining Exact #SAT 50 × × ×
Experiment 1c Remaining Exact #SAT 1 × ×
Experiment 2a All Approximate #SAT 1 ×
Experiment 2b Remaining Approximate #SAT 50 ×
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Experiment 1: Scalability of exact #SAT solvers In the first experiment, we measure the
runtimes of the exact #SAT solvers (cf. Section 5.2) on the considered feature models (cf.
Section 5.3). For the solvers based on knowledge compilation, we consider the overall run-
time to compile and compute a result. We use the insights of this experiment to answer
RQ1, RQ2, and RQ3. The experiment is separated into three stages.

In the first stage (Experiment 1a), we identify and filter slow #SAT solvers. Here, we
measure the runtime of each of the 19 exact #SAT solvers on the 15 subject systems. The
idea of Experiment 1a is to remove slow solvers from the following two stages that signif-
icantly increase the overall runtime for the experiments. We consider a solver to be slow if
the solver requires more than 50% of additional runtime compared to the following solver
when ordered by overall runtime for the experiment. We refer to the solvers that are not
excluded as remaining solvers. In the second stage (Experiment 1b), we perform the mea-
surements with the remaining #SAT solvers with 50 repetitions for each feature model for
more robust results. In the third stage (Experiment 1c), we further evaluate the runtimes of
the remaining solvers on subject systems for which no solver computed a result in Exper-
iment 1a and 1b. Here, we perform one repetition and increase the timeout to 24 hours to
examine whether an increase of the timeout allows a successful computation.

Orthogonal to the measurements of Experiment 1a, 1b, and 1c, we examine the number
of valid configurations for the considered feature models. Here, we use the results computed
by the solvers.

Experiment 2: Scalability of approximate #SAT solvers In the second experiment, we
examine the scalability of the two considered approximate #SAT solvers on each feature
model to provide insights for RQ4. Furthermore, we give a comparison to the exact #SAT
solvers to evaluate the benefits. Analogous to Experiment 1a, we also perform an ini-
tial experiment referred to as Experiment 2a with only one repetition per measurement to
exclude slow solvers from the following experiments. Then, we repeat the measurements
with 50 repetitions on the remaining approximate #SAT solvers (Experiment 2b), analogous
to Experiment 1b.

Statistical tests We apply the following statistical tests to evaluate the significance of our
results depending on the use case. Table 5 gives an overview on the use cases, tests we used
for each use case, and the RQs that are dependent on the given use case.

For the first use case Comparison Solvers System, we compare the performance of differ-
ent solvers on each of the feature models separately. For the comparison, we consider the 50
repetitions of a solver/system combination as sample. Here, we apply a Mann-Whitney sig-
nificance test (McKnight and Najab 2010) as we have unpaired samples and do not assume

Table 5 Overview statistical tests

Use case Sample Statistical tests RQ1 RQ2 RQ3 RQ4

Comparison solvers system Unpaired Mann-Whitney (McKnight and Najab 2010) × × ×
Comparison solvers overall Paired Friedman test (Conover and Iman 1981) × × ×

Post-Hoc Conover (Conover and Iman 1981)

Correlation solver/metric Paired Spearman (Zar 1972) ×
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Table 6 Spearman: levels of correlation

Correlation Value range

Very weak 0 ≤ |rs | < 0.2

Weak 0.2 ≤ |rs | < 0.4

Moderate 0.4 ≤ |rs | < 0.6

Strong 0.6 ≤ |rs | < 0.8

Very strong 0.8 ≤ |rs | ≤ 1.0

a normal distribution. For the tests, we assume the typical significance level of α = 5%. We
use the scipyv1.7.2 implementation of Mann-Whitney.13

For the second use case Comparison Solvers Overall, we compare the overall perfor-
mance of the different #SAT solvers on all 15 subject systems. For the comparison, each
data point corresponds to the median of runtimes over the 50 repetitions for a combina-
tion of subject system and solver. Here, we apply a Friedman Test followed by a Post-hoc
Conover test on the samples of all solvers as we have paired samples (pairs of subject sys-
tems) and again do not assume a normal distribution (Conover and Iman 1981). For the
tests, we assume a significance level α = 5%. We use the scipyv1.7.2 implementation of
Friedman14 and the scikit posthocs implementation of Post-Hoc Conover.15

For the third use case Correlation Solver/Metric, we evaluate the correlation between the
runtime of #SAT solvers and structural metrics (cf. RQ3). Here, we use Spearman’s corre-
lation coefficient rs (Zar 1972) to evaluate the strength of the correlation. For two variables,
rs describes their correlation with a value between -1 and 1. The values 1 and -1 describes a
very strong positive or negative correlation, respectively. rs = 0 indicates that the variables
have no correlation at all. We expect that Spearman’s coefficient provides more sensitive
results (compared to Pearson’s coefficient) due to the following reasons (Artusi et al. 2002).
First, Spearman’s coefficient is suitable to detect non-linear relationships between the vari-
ables, and it is possible that the correlation between a metric and the runtimes is not linear.
Second, there may be significant outliers which tend to cause problems for the expres-
siveness of Pearson’s coefficient. Table 6 shows the levels of correlation strength for the
Spearman’s coefficient rs we use. We use the scipyv1.7.2 implementation of Spearman
to compute the correlation coefficients16.

In addition to significance tests, we compute effect sizes (Sullivan and Feinn 2012) for
samples shown to be significantly different. In particular, we employ Cohen’s d which
describes the difference between the median of two samples relative to the standard devia-
tion (Sullivan and Feinn 2012). Table 7 shows the levels of effect sizes with their range of
d values (Sullivan and Feinn 2012).

5.5 Technical setup

Each experiment was performed on a Linux CentOS 8 system with 64-bit architecture. The
evaluated machine uses an Intel Core Broadwell Processor that consists of 16 sockets with

13https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
14https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
15https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit posthocs.posthoc conover/
16https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Table 7 Cohen: levels of effect size

Effect size Value range

Very small 0 ≤ d < 0.2

Small 0.2 ≤ d < 0.5

Medium 0.5 ≤ d < 0.8

Large 0.8 ≤ d < 1.3

Very large 1.3 ≤ d

one core each. The clock rate is 2,394 Mhz and the machine contains 62 GB of RAM. For
each computation and experiment, we limit the memory usage to 8 GB due to the following
two reasons. First, we assume that a memory limit of 8 GB reflects the capacity for RAM
usage on common PCs or notebooks. Second, in preliminary experiments, we found that
further increasing the memory limit yields little to no benefits for the runtimes of #SAT
solvers. For the measurements, we implemented a Python framework to (1) call the solver
binaries and provide the input, (2) measure the runtimes with the timeit module,17 and
(3) limit the memory usage. For reproducibility, the framework, solvers, and input data
are publicly available.18 Hyper-threading, turboboost, and caching of the file system were
disabled during the entire measurements to reduce computational bias. Furthermore, no
other major computations were run on the system during the experiments.

6 Results

In this section, we present the results of our empirical evaluation separated into the two
presented experiments.

6.1 Experiment one: Exact #SAT solvers

Experiment 1a Figure 2 shows the runtime of all exact #SAT solvers on each subject sys-
tem. Each point on the x-axis corresponds to one of the 15 subject systems. The systems are
sorted by the number of features in ascending order (cf. Table 3). The y-axis shows the run-
time of the different solvers with a logarithmic scale. The different categories are indicated
by the colors of the markers ( = DPLL, = algebraic, = d-DNNF,
= BDD, = knowledge compilers to other formats). The red line indicates that a solver
hits the timeout. The blue line indicates that an error occurred or a solver passed the mem-
ory limit. CDL Median corresponds to the median over all 116 CDL feature models (cf.
Section 5.3). The majority of systems (13/15) was successfully evaluated within 10 minutes
by at least one solver. For each of the 13 solved systems, the fastest solver required less than
one second. However, none of the solvers was able to compute the cardinality of the other
two systems, namely Automotive05 and Linux.

Figure 3 shows the sum of runtimes of each evaluated exact #SAT solver on all 15 subject
systems in Experiment 1a. Each bar corresponds to the sum of runtimes for one solver. Note
that this sum only includes the median of runtimes for the 116 CDL models instead of the

17https://docs.python.org/3/library/timeit.html
18https://doi.org/10.5281/zenodo.7329979

Page 17 of 38    29Empir Software Eng (2023) 28:29

https://docs.python.org/3/library/timeit.html
https://doi.org/10.5281/zenodo.7329979


Fig. 2 Runtime in seconds for all exact #SAT solvers

overall sum (cf. Section 5.3). Considering a timeout of 10 minutes per system, the maximum
runtime is 150 minutes (hitting the timeout for all 15 systems) which is indicated by the red
line. The solvers are sorted by the overall sum of runtimes (ascending). If a subject system
could not be evaluated due to timeout, memory limit, or an arbitrary error, we added the
timeout (10 minutes) to the overall runtime. Table 8 gives an overview of the performance

Fig. 3 Runtime of all solvers to evaluate the 15 subject systems
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Table 8 Overview Experiment 1a

Solver Solved % Solved Ov. Runtime (s) Remaining

sharpSAT 13 87 1,202.6

Ganak 13 87 1,203.4

countAntom4t 13 87 1,207.8

countAntom1t 13 87 1,210.2

dSharp 13 87 1,212.7

d4 13 87 1,230.1

Cachet 13 87 1,339.9

miniC2D 13 87 1,733.6

c2d 13 87 1,818.9

mcTw 11 73 2,892.0

Relsat 9 60 3,602.4

ADDMC 9 60 3,625.0

CNF2EADT 8 53 4,504.1

SDD 8 53 4,705.7

CNF2OBDD 6 33 5,558.1

SUMC1 6 33 5,721.8

BuDDy 3 20 7,206.6

Cudd 3 20 7,206.8

SharpCDCL 0 0 9,000.0

PicoSAT 0 0 9,000.0

for the different solvers. Eight of the solvers, namely sharpSAT, Ganak, countAntom
(both with four and one thread), d4, Cachet, dSharp, MiniC2D, and c2d evaluated
13 out of 15 (86.7%) subject systems within eleven minutes of runtime. The eleven slower
solvers, namely McTW, Relsat, ADDMC, CNF2EADT, SDD, CNF2OBDD, SUMC1, BuDDy,
Cudd, SharpCDCL, and PicoSAT, successfully evaluated at most 73.3% of the 15 sub-
ject systems with a timeout of ten minutes for each model. Furthermore, the fastest of the
slower solvers (McTW) requires around 60% more runtime than the slowest of the faster
solvers (c2d). Overall, the eleven slower solvers took 96.8% of the total runtime (10.2 days)
required for Experiment 1a. Performing the 50 repetitions with all solvers would result in
around 1.4 years of continuous computation just for Experiment 1b. For all following exper-
iments, we only include the eight fastest #SAT solvers. In Table 8 the excluded solvers are
marked with an -mark in the column remaining. In Fig. 3, the dashed violet line marks
the cut for the excluded solvers. Each solver on right side of the line is excluded from the
following experiments.

Each BDD-based #SAT solver successfully evaluated at most 6 of the 15 systems and
required at least 92 minutes overall. Every d-DNNF-based solver needed less than 31
minutes for all subject systems and only failed to evaluate Linux and Automotive05.

Figure 4 shows the runtime of the 19 exact #SAT solvers for the 116 CDL feature models.
Each point on the x-axis corresponds to one CDL model. The y-axis shows the runtime
of different solvers in seconds with a logarithmic scale. For all solvers but Cachet, the
median runtime over all 116 feature models is smaller than two times the minimum value
(i.e., the shortest runtime required for one of the 116 feature models for that solver). Also,
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Fig. 4 Runtime in seconds for all exact #SAT solvers on CDL models

the maximum is always smaller than two times the median. The results support our claim
in Section 5.3 that CDL models are highly similar and handling them as separate subject
systems would result in a bias of the measured runtimes.

Experiment 1b In Experiment 1b, we measured each combination of the feature models
and the eight remaining solvers with 50 repetitions for more reliable results (cf. Section 5.4).
Figure 5 shows the median runtimes and standard deviation for each solver-system combina-
tion. In the remainder of this section, we only consider the 13 systems successfully evaluated
by at least one of the solvers if not stated otherwise. Considering the overall sum of run-
times, the three solvers requiring the least runtime are sharpSAT (2.5 seconds), Ganak
(3.3 seconds), and countAntom (7.8 seconds). Over the 13 systems, sharpSAT is sig-
nificantly (p < 0.03) faster than every #SAT solver but Ganak, Cachet, and dSharp.
However, each effect size is small (d < 0.47) which matches the expectations as the large
differences in runtime between the subject systems for each solver result in a large standard
deviation.

sharpSAT is significantly (p < 0.004) faster with mostly (88.1%) very large effect
sizes (d > 1.53) than all other solvers on 6 of the 13 systems. Ganak is significantly
(p < 10−11) faster than all other #SAT solvers with very large effect sizes (d > 1.61) for
Automotive03. countAntom is significantly faster (p < 10−17) than all other solvers with
very large effect sizes (d > 1.73) on all 116 CDL models but for no other system. Cachet
is significantly (p < 10−7) faster than all other solvers for three smaller (less than 1,200
features) systems, namely axTLS, embToolkit, and BerkeleyDB with all effect sizes being
very large (d > 1.38) but one with a medium effect size (d = 0.78).

We also compared countAntom with four and one thread. countAntom with four
threads is significantly (p = 0.028) faster than with one thread for the 13 systems overall.
Still, countAntom with one thread is significantly (p < 0.036) faster for three sub-
ject systems, namely embtoolkit (d = 0.60), uClinux-base (d = 0.82), and Automotive03
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Fig. 5 Runtime (median & standard deviation) in seconds for remaining exact #SAT solvers

(d = 0.21). Overall, countAntom with four and one thread require 7.8 and 9.2 seconds of
runtime, respectively.

Table 9 shows the correlation between structural metrics of the feature models and the
runtime of #SAT solvers. ’Correlation Fastest’ shows the correlation between each metric
and the runtime of the fastest solver for each instance. Note that the fastest solver varies
depending on the evaluated feature model. There is a very strong positive (rs > 0.8) corre-
lation between the runtime and the following metrics: number of features, number of leaf
features, number of cross-tree constraints, number of literals, and number of clauses. Conse-
quently, for instance, the runtime of #SAT solvers tends to increase if the number of features
increases. Also, there is a strong correlation between the cyclomatic complexity and the run-
time. Every other metric correlates either weakly (0.2–0.39) or very weakly (rs < 0.2) with
the runtime of the fastest solver. ’Correlation Range’ shows the minimum and maximum
correlation between a metric and a solver. For every metric that has a strong correlation with
the runtime of the fastest solver, each solver has an at least strong correlation. This obser-
vation is analogous for weakly correlated metrics with one exception (countAntom has a
moderate correlation with the connectivity density).

Figures 6 and 7 show the runtime of the eight remaining solvers in relation to the num-
ber of features and the number of constraints, respectively. In each diagram, both scales
are logarithmic. Every system with either fewer than 1,000 features or 1,000 constraints
was evaluated within 0.5 seconds. While there is a strong correlation between the runtimes
of the #SAT solvers and both metrics (i.e., number of features and constraints), a feature
model with respectively more features or constraints does not guarantee a longer runtime.
The two systems that reached the timeout, namely Linux and Automotive05, contain 6,467
and 1,663 features. Automotive02 which contains 18,616 features was evaluated within 0.5
seconds. It is important to note that Automotive02 contains only 1,369 constraints while
Linux and Automotive05 contain 3,545 and 10,321 constraints, respectively. Also, uClinux-
base contains 3,455 constraints, but the fastest solver is about 50 times faster than for
Automotive02.
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Table 9 Correlation between structural metrics and runtime of #SAT solvers

Metric Coefficient fastest Coefficient range

Number of literals 0.89 (very strong) 0.82 (very strong)–0.89 (very strong)

Number of clauses 0.87 (very strong) 0.80 (very strong)–0.87 (very strong)

Number of features 0.85 (very strong) 0.73 (strong) –0.94 (very strong)

Number of leaf features 0.82 (very strong) 0.68 (strong) –0.92 (very strong)

Number of constraints 0.81 (very strong) 0.67 (strong)–0.84 (very strong)

Cyclomatic complexity 0.77 (strong) 0.64 (strong)–0.79 (strong)

Tree depth 0.34 (weak) 0.29 (weak)–0.39 (weak)

Connectivity density 0.20 (weak) 0.11 (very weak)–0.57 (moderate)

Ratio of variability 0.11 (very weak) -0.01 (very weak)–0.27 (weak)

Number of top features 0.06 (very weak) -0.01 (very weak)–0.17 (very weak)

Flexibility of configuration 0.07 (very weak) -0.01 (very weak)–0.18 (very weak)

Experiment 1c In Experiment 1c, we invoked the remaining solvers with a timeout of 24
hours for the two systems which hit the timeout for every solver in every repetition, namely
Automotive05 and Linux. Neither of the remaining eight solvers was able to compute the
cardinality for either system within 24 hours.

Feature-model cardinalities Table 10 shows the cardinalities (i.e., the number of valid
configurations) of the evaluated subject systems. The systems are sorted by their number
of features. Note that the computed cardinalities are equal for all solvers. For Linux and
Automotive05, the cardinality is unknown as no solver was able to compute a result. For
the remaining systems, the cardinality ranges from 4.1 · 109 (BerkeleyDB) to 1.7 · 101534
(Automotive02).

Figure 8 shows the cardinality of the 13 successfully evaluated subject systems in relation
to their number of features. There is a very weak positive correlation between the number
of features and the cardinality (0.03 with Spearman). In several cases, a feature model with

Fig. 6 Runtime of solvers in relation to the number of features
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Fig. 7 Runtime of solvers in relation to the number of constraints

fewer features has a higher cardinality. For instance, BusyBox has 631 features and a cardi-
nality of 2.1 · 10201 while FinancialServices has 771 features and a cardinality of 9.7 · 1013.
Still, the three feature models with the largest number of features also have the highest
cardinality. For instance, Automotive02 has by far the largest cardinality 1.7 · 101534 and
also seven times more features than Automotive01 which has the second-highest number of
features (disregarding Linux as we do not know its cardinality).

6.2 Experiment two: approximate #SAT solvers

Experiment 2a Figure 9 shows the runtimes of both evaluated approximate #SAT solvers
on each feature model. ApproxMC hit the timeout of ten minutes for each but the two

Table 10 Cardinalities of Subject Systems (Sorted by #Features)

Subject systems Number of valid configurations

BerkeleyDB 4.1 · 109
axTLS 8.3 · 1011
uClibc 1.7 · 1040
uClinux-base 2.6 · 1022
Automotive04 2.5 · 1021
Automotive03 2.5 · 1031
BusyBox 2.1 · 10201
FinancialServices 9.7 · 1013
Embtoolkit 5.1 · 1096
CDL (116 Models) 2.6 · 10118 – 3.0 · 10136
uClinux-distribution 4.1 · 10409
Automotive05 unknown

Automotive01 5.4 · 10217
Linux unknown

Automotive02 1.7 · 101534
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Fig. 8 Cardinality of subject systems in relation to number of features

smallest models, namely axTLS (96 features) and BerkeleyDB (76 features). Consequently,
ApproxMC was excluded for Experiment 2b. ApproxCount hit the timeout for four
subject systems.

Experiment 2b Figure 10 shows the runtimes of the best performing approximate #SAT
solver (ApproxCount) with the exact #SAT solver that required the least time over-
all, namely sharpSAT. ApproxCount hit the timeout for four subject systems, while

Fig. 9 Runtime in seconds for approximate #SAT solvers
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Fig. 10 Comparison runtime (median & standard deviation) ApproxCount vs sharpSAT

sharpSAT hit the timeout for two subject systems. For all 13 feature models that were
successfully evaluated by at least one solver, sharpSAT is significantly faster than
ApproxCount (p < 0.0002) with very large (d > 5.1) effect sizes for every single fea-
ture model. Furthermore, ApproxCount needs 5 minutes for 11 out of 15 systems while
sharpSAT requires less than 2 seconds for those.

7 Discussion

In this section, we discuss the results regarding our research questions.

RQ1 How do #SAT solvers perform on industrial feature models? Our results indicate
that the scalability of the #SAT solvers depends on the evaluated feature model. Based
on our results, we expect that most industrial feature models can be evaluated within
minutes or even seconds by the faster #SAT solvers we identified. Overall, 13 of the 15
analyzed feature models were successfully evaluated within 10 minutes. In addition, the
fastest solver for each of those feature models required even less than one second which
we consider scalable as it satisfies typical time restrictions of interactive environments
and continuous integration environments. Nevertheless, there are systems for which no
available #SAT solver scales. In our experiment, two systems, namely Automotive05 and
Linux, could not be evaluated by any solver not even within a timeout of 24 hours. Our
results indicate that the hardness of both systems lies in their high number of features
and constraints (c.f. the answer for RQ3).

Eight solvers, namely sharpSAT, Ganak, countAntom, dSharp, d4, Cachet,
MiniC2D, and c2d, successfully evaluated 13 of 15 systems within 10 minutes of over-
all runtime. sharpSAT requires the least time to evaluate the 13 subject systems (2.6
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seconds overall) closely followed by Ganak (3.4 seconds). While some solvers per-
formed overall better than others, none of the solver is superior to the other solvers
on every feature model. The results indicate that some solvers are inferior regarding
the task of computing the cardinality of feature models, namely PicoSAT, Relsat,
SharpCDCL, McTW, SUMC1, CNF2OBDD, BuDDy, Cudd, CNF2EADT, and SDD. Those
solvers hit the timeout for at least four subject systems and some even for all systems
while being substantially slower for the systems they successfully evaluated.

RQ2 How do different classes of #SAT solvers perform on industrial feature models? For
single #SAT invocations, as performed in the experiment design at hand, we recommend
the usage of the fastest DPLL-based solvers. The three best performing solvers, namely
sharpSAT, Ganak, and countAntom are based on exhaustive DPLL.

For multiple #SAT invocations, reusing d-DNNFs seems promising. All d-DNNF
compilers are part of the eight fastest solvers. For each feature model, that was success-
fully evaluated by at least one solver, the fastest d-DNNF-based solvers dSharp and
d4 require at most a few seconds in sum for compilation and model counting. For each
follow-up computation, the compiled d-DNNF could be re-used (e.g., for computing the
number of valid configurations containing certain features). Hence, we expect d-DNNF
solvers are likely faster when performing multiple computations, which is required for
the majority of counting-based analyses (Sundermann et al. 2021). SDDs can also be re-
used and, thus, are a considerable candidate but the best performing SDD-based solver
(MiniC2D) was substantially slower than dSharp (42 times slower) and d4 (18 times
slower).
The remaining types of #SAT solvers, namely algebraic-based, BDDs, and other

knowledge compilation formats performed substantially worse than the eight fastest
solvers. Both algebraic solvers, namely ADDMC and SUMC1, overall successfully eval-
uated only nine (60%) of the subject systems. Hence, we excluded both solvers after
Experiment 1a, and we cannot recommend using these solvers for #SAT-based analysis
of feature models. The three BDD libraries overall successfully evaluated only six (40%)
subject systems. BuDDy and Cudd even hit the timeout for 12 of 15 subject systems.
Therefore, we do not recommend to use current BDD libraries for computing the car-
dinality of feature models. Nevertheless, BDDs are tractable (i.e., have polynomial time
complexity w.r.t. to the size of the BDD) for additional computation types, such as exis-
tential quantification (Bryant 2018). Using BDDs for other feature-model analyses may
thus still be beneficial.

RQ3 How does the runtime of #SAT solvers correlate to structural metrics of the feature
model? The runtime required to compute the cardinality of a feature model generally
increases if the feature model grows in size or complexity. There is a strong or very strong
positive correlation between the runtime of #SAT solvers and several structural met-
rics related to size and complexity, namely number of features, number of leaf features,
number of constraints, number of clauses, and number of literals.
Feature models with few features or constraints seem to be simple to analyze for #SAT

solvers. Each subject system with less than 1,000 features was evaluated within one sec-
ond by at least one solver, independent of the number of constraints. Analogously, all
subject systems with less than 1,000 constraints were evaluated by at least one solver
within one second, independent of the number of features.
While both systems for which no solver computed a result have at least 3,500

constraints, a large number of features, or constraints do not necessarily cause a time-
consuming computation. The Automotive02 system contains by far the most features
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(18,616), but sharpSAT still evaluated it in less than a second. The reason probably lies
in the comparatively low number of constraints (1,369) while Linux and Automotive05
contain 3,545 and 10,321 constraints, respectively. Furthermore, uClinux-base contains
3,455 constraints but the fastest solver is about 50 times faster than for Automotive02
which contains only 1,369 constraints.
Our insights indicate that, independent of structural metrics, one of the fastest solvers

should be used. There is no single feature model for which one of the fastest eight solvers
fails, while another #SAT solver computes a result. Thus, we expect that if the fastest
solvers do not scale to a feature model, the others will also fail.
Predicting performance based on structural metrics may still be beneficial. For

instance, countAntom is slower than sharpSAT for 12 out 13 (successfully evalu-
ated) subject systems, but significantly faster for all 116 CDL feature models. Applying
a meta #SAT solver that selects a suitable #SAT solver for a given feature model should
yield runtime benefits. Our insights on the correlations between structural metrics and
runtime may be a useful starting point for future work on predicting performance. In par-
ticular, the metrics showing a strong correlation are promising indicators for predicting
performance.

RQ4 How do approximate #SAT solvers perform on industrial feature models? Approx-
imating the results with the evaluated approximate #SAT solvers yields no benefits as
we can acquire exact results with shorter runtimes. In particular, the fastest exact solver
sharpSAT is significantly faster than both approximate #SAT solvers for every single
successfully evaluated feature model. The slower solver ApproxMC computed a result
only for the two smallest considered feature models. While ApproxCount computed a
result for the majority of models, it scaled to fewer feature models than the fastest exact
#SAT solver sharpSAT.
A reason for the worse performance of approximate #SAT solvers may be that

the solvers were evaluated on (and eventually optimized for) formulas from different
domains with generally fewer satisfying assignments. The largest formulas evaluated
induce up to 1012 (Chakraborty et al. 2013) and up to 1033 (Wei and Selman 2005) satis-
fying assignments, respectively (compared to up to 101534 in our evaluation). Optimizing
those approximations for formulas representing feature models may be beneficial.

8 Threats to validity

We identified the following potential threats to validity for our evaluation.

Translating the subject systems to feature models It is possible that the translation from
the original proprietary format into a feature model changes the variability. Knüppel et
al. remarked some threats to internal validity regarding their translation of product lines
(Knüppel et al. 2017). First, there are differences between feature model semantics and the
semantics of the variability languages used for CDL and KConfig. Second, the translation
may have removed a few cross-tree constraints. Third, a few cases lead to features that did
not appear in the input format (Knüppel et al. 2017). Still, this is the largest available bench-
mark and has been used by other authors (Krieter et al. 2018; Plazar et al. 2019; Baranov
et al. 2020). Pett et al. (2021) translated the BusyBox model to CNF using KClause (Oh
et al. 2019).19 Then, the authors translated the CNF into feature model that is equivalent to

19https://doi.org/10.5281/zenodo.2574218
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the CNF and, thus, should maintain the variability. In addition to publicly available subject
systems, we translated three automotive product lines into feature models from a propri-
etary format. It is possible that we misinterpreted given constraints. However, we created
the parser in direct cooperation with company interns. Furthermore, the interns reviewed
the resulting feature models.

Translating feature models to the DIMACS format An incorrect translation of feature
models to CNF may lead to incorrect cardinalities. Another important aspect of the trans-
lation to CNF is that the number of satisfying assignments has to be equal for the resulting
CNF. This is not given for every conversion method (Knüppel et al. 2017). For every trans-
lation to CNF in DIMACS format, we used the FeatureIDE library (Kästner et al. 2009).
FeatureIDE uses a transformation that does not introduce new variables nor changes the
number of solutions. Nevertheless, we performed the following sanity checks to ensure a
correct translation. First, we manually computed the model count of small feature models
(¡ 100 valid configurations and only few cross-tree constraints) and compared these results
with the ones computed by the solvers. Second, we made changes to the feature model that
should change the model count in a certain way. For example, we added an optional feature
to the root which should always double the number of valid configurations and verified that
the #SAT solvers computed the expected result.

We did not consider the time required to translate the feature model to CNF. However, the
translation time is equivalent for all #SAT solvers as they use the same CNF. Furthermore,
for all feature models but Linux the translation required only a few milliseconds.

Wrapper for BuDDy and Cudd As described in Section 5.2, we used a wrapper to inter-
face with BuDDy and Cudd, due to their incapability to process DIMACS directly. The
implementation of our wrapper for BuDDy and Cudd could be erroneous or inefficient,
yielding a negative impact on their performance. While parsing of the input is handled by
the wrapper, the BDDs are constructed entirely by BuDDy and Cudd using the parameters
and techniques suggested in their respective manuals. For each successful computation of
BuDDy and Cudd, the returned number of satisfying assignments was correct. Furthermore,
for every feature model the parsing time of the wrapper required less than one second and at
most 10% of the overall runtime. Note that each time BuDDy or Cudd required more than
one second of runtime the relative share of parsing time is even lower (at most 2%). Thus,
we consider the parsing time of the DIMACS input is negligible compared to the overall
runtime and do not expect an impact on our conclusions on the performance of BuDDy
or Cudd. Furthermore, we decided against using the widely used (Mendonça 2009; Men-
donca and Cowan 2010; Pohl et al. 2011) library JavaBDD as it misses support for the latest
version of Cudd (3.0.0) and frequently crashes when using BuDDy.

Parameterization of the solvers Typically, there are various parameters to adapt the behav-
ior of the solvers, such as enabling or disabling boolean constraint propagation. These
parameters may have a noticeable impact on the scalability in some cases (Wei and Selman
2005). In general, we used the default parameterization for each solver to achieve the fol-
lowing: (1) prevent introducing a bias based on our decision of the parameterization, and
(2) evaluate the solver’s performance when integrated without further expertise which we
typically expect in practice. In general, evaluating multiple parameter permutations multi-
plicatively vastly increases the complexity, required time, and ecological footprint of the
performed experiments.
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Correctness of the solvers We used only external solvers without a possibility of directly
verifying the results. However, for every subject system the number of satisfying assign-
ments returned by each solver was equal. This is a strong indicator for the correctness of
the solvers. Furthermore, we manually computed the cardinality for multiple small feature
models (¡ 100 valid configurations) and compared them to the results of #SAT solvers.

Computational bias When performing measurements, it is possible that a program accel-
erates during the computations. In this case, early measurements might be slower than later
ones. In our benchmark framework, each single invocation of a #SAT solver is performed
in a separate execution of the binary. Thus, the solvers are in the same state at the start of
each computation. It may be possible that hardware optimizations induce a warm-up. We
disabled turboboost and file system cache to reduce a potential bias.

In general, it is possible for a background process to influence the runtime of a solver
and, thus, impact our results. First, we disabled hyper-threading. Second, we performed
a preliminary experiment with five repetitions for each solver several months prior to the
evaluation described in this work which resulted in the same conclusions regarding the
performance of the solvers. Third, during the 50 repetitions of Experiment 1b, the solvers
always had very similar runtimes for the same feature model. Fourth, during the runtime
of the experiments no other computational expensive task was performed on the device
and each measurement was performed sequentially. Fifth, we occasionally monitored the
available RAM and CPU resources. Every time we tracked, there were at least 40 GB of
RAM available and less than 15% of the CPU used. Therefore, we do not expect that any
conclusion we made is impacted by a background process.

Singlemeasurements for slow solvers For slow solvers, we only performed one repetition
per measurement. It is possible that for 50 repetitions the median significantly differs from
a single measurement for some feature models. Nevertheless, neither solver was excluded
after Experiment 1a due to single or few measurements but due to a large gap to the fastest
#SAT solvers.

Random effects It is possible that the runtimes of #SAT solvers are affected by random
effects. For example, c2d (Darwiche 2002, 2004) randomly chooses cuts in order to create
a decomposition tree of the formula at the start of the computation. To reduce the bias
resulting from randomness, we performed 50 repetitions in Experiment 1b and Experiment
2b and performed statistical tests on the significance of results.

External validity solvers Our results cannot be necessarily transferred to other #SAT
solvers. For instance, Kübler etal (Kübler et al. 2010) developed their own tool to compute
the cardinality of feature models. Their tool is not publicly available and, thus, we could
not evaluate and compare it to other solvers. Nevertheless, we evaluated a large variety of
different #SAT solvers. To the best of our knowledge, we included each publicly available
#SAT solver in our benchmark.

External validity systems We cannot claim that our results can be transferred to any other
industrial product lines. However, we considered multiple domains, namely automotive,
operating system, database, and financial services to increase our confidence. We overall
evaluated 130 feature models which cover a wide range of number of features (76–18,616),
number of constraints (20–10,321), number of valid configurations (≈ 109–101534), and
runtime of #SAT solvers (between few milliseconds and hitting a timeout of 24 hours).
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Therefore, we expect that our results represent a reasonable indicator for the scalability of
#SAT solvers on other product lines.

9 Related work

In this section, we discuss work that is related to ours regarding (1) applying #SAT to feature
models, (2) usage of #SAT technology in feature-modelling tools, and (3) computing the
cardinality with tools that are not based on propositional logic.

Applying#SAT to featuremodels Kübler et al. (2010) also evaluated the use of two #SAT
solvers, Cachet (Sang et al. 2004) and c2d (Darwiche 2004), on three different versions of
an automotive product line. We evaluated both solvers and they were outperformed by newer
solvers on most instances. However, the authors also proposed their own model counter that
was not based on conjunctive normal form and performed better than Cachet and c2d.
However, their solver and their evaluated product lines are not publicly available. Therefore,
we could not directly compare the results. Overall, we evaluated 21 solvers on 130 formulas
while Kübler et al. evaluated 3 solvers on 3 formulas.

Pohl et al. (2011) evaluated different feature model analyses including model count-
ing using BDDs, constraint-satisfaction-problem solvers, and SAT solvers. However, the
authors used models with much smaller configuration spaces and fewer features for their
evaluation. Their analyzed configuration spaces only reached up to 108 valid configurations
whereas 97.3% of our feature models have larger configuration spaces with up-to 101534

valid configurations.
Oh et al. (2019) evaluated the application of #SAT for uniform random sampling with

their tool Smarch. Their results indicate that #SAT can be used to create a uniformly
distributed sample for a variety of industrial feature models. However, their evalua-
tion is limited to one application (uniform random sampling) and limited to one solver
(sharpSAT). Sharma et al. (2018) proposed using #SAT technology for uniform random
sampling and provided an algorithm exploiting d-DNNFs. However, their empirical evalu-
ation is also limited to uniform random sampling and two solvers (d4 and dSharp). We
evaluate 21 solvers including the three solvers considered by Oh et al. (2019) and Sharma
et al. (2018).

Current tool support for #SAT technology BDDs are a popular choice for counting the
number of valid configurations in a product line as it is possible to compute the BDD offline
and then compute the cardinality with linear time in the number of nodes (Acher et al.
2013; Hadzic et al. 2004; Mendonça et al. 2009). However, our results indicate that existing
BDD libraries do not scale to industrial feature models. Additionally, d-DNNFs can be com-
puted offline as well and performed significantly better than BDDs in all our experiments
(Darwiche and Marquis 2002).

FeatureIDE uses a regular SAT solver (SAT4J (Le Berre and Parrain 2010)) to com-
pute the number of valid configurations (Thüm et al. 2011). The tool realizes counting with
a regular SAT solver using blocking clauses (Toda and Soh 2016); after finding a valid
assignment α, the negation of α is added as a clause to the formula. Thus, α is not a valid
assignment for the resulting formula and the next run of the solver returns another assign-
ment until no new satisfying assignments are left. For each satisfying assignment (i.e.,
valid configuration), an invocation of the SAT solver is required. Our results indicate that
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industrial feature models induce up to 101500 valid configurations. Therefore, the algorithm
should not scale for larger systems.

Non-propositional model counting Constraint satisfaction problems (CSP) are an alter-
native to propositional logic for the representation of feature models (Benavides et al. 2005,
2006, 2010; Pohl et al. 2011). CSPs are defined by a set of variables, domains for each
variable, and constraints over these variables. For CSPs, the variables may also be integers
or intervals, contrary to propositional boolean variables which are strictly binary (Bena-
vides et al. 2010). Benavides et al. (2005) use constraint programming (CP) to compute
the number of valid configurations for feature models. However, the models considered
in their experiment only included up to 23 features (Benavides et al. 2005). Pohl et al.
(2011) compare SAT solvers, BDDs, and CSP solvers for several feature-model analyses
that include computing the cardinality. Their results indicate that the analyzed CSP solvers
scale far worse than the #SAT solvers evaluated in our experiment (Pohl et al. 2011). Munoz
et al. (2019) examined counting the number of valid configurations of feature models with
numerical features for uniform random sampling. The authors evaluated an SMT solver,
a CP solver, and the #SAT solver sharpSAT. The numerical values were translated to
propositional logic using bit-blasting (Munoz et al. 2019). In their experiment, sharpSAT
outperformed the CP and SMT solver. This indicates that #SAT solvers are also a rea-
sonable choice for computing the number of valid configurations for feature models with
numerical values and our results (e.g., recommendations of solvers) could also be useful for
non-propositional model counting.

10 Future work

In this section, we describe further tasks in applying #SAT solvers to industrial feature
models.

Cardinality of features and partial configurations In this work, we limited our empirical
evaluation to computing the cardinality of feature models (i.e., the number of valid config-
urations of the entire feature model). In our previous work (Sundermann et al. 2021), we
presented 21 applications and a major part of them is dependent on the cardinality of (pos-
sibly many) features (i.e., number of valid configurations that contain a specific feature) or
the cardinality of partial configurations (i.e., number of valid configurations that include
some and exclude some other features). The runtimes of computing the cardinality of the
entire feature model (as measured in our empirical evaluation) can be used as estimate for
computing the cardinality of a feature or a partial configuration due to the similar input
formulas (Sundermann et al. 2021). Nevertheless, to provide accurate insights on the scala-
bility of these applications, an empirical evaluation for computing the cardinality of features
and partial configurations is required.

Analyzing #SAT during the evolution of systems Often, product lines evolve over time
(Svahnberg and Bosch 1999). Typically, underlying feature models grow both in number
of features and constraints (Sundermann et al. 2020; Israeli and Feitelson 2010). As we
found a strong correlation between the scalability of #SAT and both metrics (i.e., number
of features and number of constraints), the evolution of a system may increase the runtime
required to evaluate an underlying feature model with a #SAT solver. This is also indicated
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by the preliminary results of our previous work (Sundermann et al. 2020). If a product
lines evolves over time, even product lines for which #SAT solvers scale currently may be
infeasible to analyze in the future or vice versa.

Exploit d-DNNFs for cardinality-based analyses In our empirical evaluation, all three d-
DNNF compilers, namely dSharp, d4, and c2dwere part of the eight fastest solvers. If we
require multiple computations on a single feature model (e.g., to compute the cardinalities
for multiple features or partial configurations), exploiting a compiled d-DNNFmay be bene-
ficial. However, the research on exploiting an existing d-DNNF is very limited (Sharma et al.
2018) as most work focuses on the compilation process (Darwiche 2002, 2004; Lagniez
and Marquis 2017; Oztok and Darwiche 2014; Muise et al. 2010; Huang and Darwiche
2005). While SDDs and BDDs are also considerable target formats for knowledge compi-
lation, all compilers based on these formats performed significantly worse than dSharp
and d4.

Parameterize #SAT solvers In this paper, we invoked the #SAT solvers using the default
parameters with a few exceptions (e.g., some solvers require specific parameters to per-
form #SAT instead of SAT). Other parameterizations (e.g., selecting strategies for variable
ordering) may improve the performance of #SAT solvers. Especially, the runtime of approx-
imate #SAT solvers is dependent on the given parameters. However, identifying effective
parameters is not trivial. To use #SAT solvers to their full potential requires finding suitable
parameters that result in efficient and effective computations.

Further metrics for a meta-solver Our results show that the solvers perform differently
depending on the system. None of the solvers is faster than all other solvers for every feature
model. Analyzing structural metrics of the feature model may enable an efficient meta-
solver that selects the most promising solver depending on a given instance. For regular
SAT, it is already known that selecting a solver based on a given formula often improves the
performance (Xu et al. 2008).

Directly translate featuremodels to target format For every experiment, we used propo-
sitional formulas in conjunctive normal form. The translation to CNF was not considered in
the runtime. However, for the larger systems, the translation requires a considerable amount
of time. Directly translating the feature model to knowledge compilation target formats,
such as BDDs or d-DNNFs, might result in two benefits. First, the time overhead of trans-
lating the model to CNF would be eliminated. Second, using structural information of the
feature model may accelerate the translation to the target format.

Purpose-built solvers for analyzing feature models None of the analyzed #SAT solvers
and knowledge compilers is optimized for feature models. Optimizing the computations
specifically for feature models may improve the performance of solvers. One improvement
may be deriving beneficial variable orders using structural information of the feature model.
The performance of each considered type of solver is highly dependent on variable ordering
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(Sang et al. 2005; Muise et al. 2010; Thurley 2006; Wei and Selman 2005; Darwiche 2002;
Toda and Soh 2016).

11 Conclusion

A large variety of feature-model analyses is dependent on computing the cardinality of fea-
tures models (Sundermann et al. 2021). However, the scalability of such analyses is largely
unknown. We analyzed 19 exact and 2 approximate #SAT solvers on the task of computing
the cardinality of industrial feature models. Overall, we evaluated the #SAT solvers on 130
feature models from 15 subject systems.

Our results strongly indicate that current #SAT solvers scale to many, but not to all
systems. Out of the 15 evaluated systems, eight solvers computed the cardinality of 13
(86.7%) systems within 10 minutes per system. The solver with the overall shortest runtime
is sharpSAT requiring less than three seconds for all 13 models in total. However, for the
two remaining systems, namely Linux and Automotive05, none of the solvers was able to
compute a result within 24 hours of runtime.

While no solver was strictly superior to all other solvers, we identified several promis-
ing #SAT solvers for the task of computing the cardinality of feature models. For single
#SAT computations on feature models, we recommend using the DPLL-based solvers
sharpSAT, countAntom, and Ganak. For applications requiring multiple #SAT invoca-
tions, reusing d-DNNFs seems promising. All three considered d-DNNF compilers, namely
dSharp, d4, and c2d, were within the fastest eight solvers. Surprisingly, each approxi-
mate #SAT solver we evaluated is significantly slower than the fastest exact #SAT solver
for every considered feature model and, thus, yields no benefits over the exact solvers.

The runtime of all #SAT solvers tends to increase for feature models with a larger num-
ber of constraints or features. Each feature model with either fewer than 1,000 features or
fewer than 1,000 constraints was evaluated within one second by the solver with the short-
est runtime for that feature model. Nevertheless, the results indicate that a higher number of
constraints or features does not necessarily result in longer runtimes.
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Schröter R, Krieter S, Thüm T, Benduhn F, Saake G (2016) Feature-model interfaces: the highway to compo-
sitional analyses of Highly-Configurable systems. In: Proc. Int’l conf. on software engineering (ICSE),
ACM, pp 667–678

Segura S (2008) Automated analysis of feature models using atomic sets. In: Proc. Int’l systems and software
product line conf. (SPLC), vol 2. IEEE, pp 201–207

29   Page 36 of 38 Empir Software Eng (2023) 28:29



Sharma S, Gupta R, Roy S, Meel KS (2018) Knowledge compilation meets uniform sampling. In: Proc. Int’l
conf. on logic for programming, artificial intelligence, and reasoning, Easy chair, pp 620–636

Sharma S, Roy S, Soos M, Meel KS (2019) GANAK: a scalable probabilistic exact model counter. In: Proc.
Int’l joint conf. on artificial intelligence (IJCAI), vol 19. AAAI press, pp 1169–1176

Sobernig S, Apel S, Kolesnikov S, Siegmund N (2016) Quantifying structural attributes of system decompo-
sitions in 28 Feature-Oriented software product lines. Empir Softw Eng (EMSE) 21(4):1670–1705

Sprey J, Sundermann C, Krieter S, Nieke M,Mauro J, Thüm T, Schaefer I (2020) SMT-based variability anal-
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