Empirical Software Engineering (2023) 28:36
https://doi.org/10.1007/510664-022-10248-w

®

Check for
updates

An empirical study of automated unit test generation
for Python

Stephan Lukasczyk' © . Florian Kroi' - Gordon Fraser'

Accepted: 26 September 2022 /Published online: 31 January 2023
© The Author(s) 2023

Abstract

Various mature automated test generation tools exist for statically typed programming
languages such as Java. Automatically generating unit tests for dynamically typed program-
ming languages such as Python, however, is substantially more difficult due to the dynamic
nature of these languages as well as the lack of type information. Our PYNGUIN framework
provides automated unit test generation for Python. In this paper, we extend our previous
work on PYNGUIN to support more aspects of the Python language, and by studying a larger
variety of well-established state of the art test-generation algorithms, namely DynaMOSA,
MIO, and MOSA. Furthermore, we improved our PYNGUIN tool to generate regression
assertions, whose quality we also evaluate. Our experiments confirm that evolutionary algo-
rithms can outperform random test generation also in the context of Python, and similar
to the Java world, DynaMOSA yields the highest coverage results. However, our results
also demonstrate that there are still fundamental remaining issues, such as inferring type
information for code without this information, currently limiting the effectiveness of test
generation for Python.

Keywords Dynamic typing - Python - Automated Test Generation

1 Introduction

Automated unit test generation is an established field in research and a technique
well-received by researchers and practitioners to support programmers. Mature research

Communicated by: Aldeida Aleti, Annibale Panichella, Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

P< Stephan Lukasczyk
stephan.lukasczyk @uni-passau.de

Florian Kroif3
kroiss @fim.uni-passau.de

Gordon Fraser
gordon.fraser@uni-passau.de

University of Passau, Innstr. 33, 94032 Passau, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10248-w&domain=pdf
http://orcid.org/0000-0002-0092-3476
http://orcid.org/0000-0002-4364-6595
mailto: stephan.lukasczyk@uni-passau.de
mailto: kroiss@fim.uni-passau.de
mailto: gordon.fraser@uni-passau.de

36 Page2of46 Empir Software Eng (2023) 28:36

prototypes exist, implementing test-generation approaches such as feedback-directed ran-
dom generation (Pacheco et al. 2007) or evolutionary algorithms (Campos et al. 2018).
These techniques enable the automated generation of unit tests for statically typed program-
ming languages, such as Java, and remove the burden of the potentially tedious task of
writing unit tests from the programmer.

In recent years, however, dynamically typed programming languages, most notably
JavaScript, Python, and Ruby, have gained huge popularity amongst practitioners. Current
rankings, such as the IEEE Spectrum Ranking! underline this popularity, now listing Python
as the overall most popular language according to their ranking criteria. Dynamically typed
languages lack static type information on purpose as this is supposed to enable rapid devel-
opment (Gong et al. 2015). However, this dynamic nature has also been reported to cause
reduced development productivity (Kleinschmager et al. 2012), code usability (Mayer et al.
2012), or code quality (Meyerovich and Rabkin 2013; Gao et al. 2017). The lack of a (vis-
ible static) type system is the main reason for type errors encountered in these dynamic
languages (Xu et al. 2016).

The lack of static types is particularly problematic for automated test generation, which
requires type information to provide appropriate parameter types for method calls or to
assemble complex objects. In absence of type information the test generation can only
guess, for example, the appropriate parameter types for new function calls. To overcome
this limitation, existing test generators for dynamically typed languages often do not tar-
get test-generation for general APIs, but resort to other means such as using the document
object model of a web browser to generate tests for JavaScript (Mirshokraie et al. 2015),
or by targeting specific systems, such as the browser’s event handling system (Artzi et al.
2011; Li et al. 2014). A general purpose unit test generator at the API level has not been
available until recently.

PYNGUIN (Lukasczyk et al. 2020; Lukasczyk and Fraser 2022) aims to fill this funda-
mental gap: PYNGUIN is an automated unit test generation framework for Python programs.
It takes a Python module as input together with the module’s dependencies, and aims to
automatically generate unit tests that maximise code coverage. The version of PYNGUIN
we evaluated in our previous work (Lukasczyk et al. 2020) implemented two established
test generation techniques: whole-suite generation (Fraser and Arcuri 2013) and feedback-
directed random generation (Pacheco et al. 2007). Our empirical evaluation showed that the
whole-suite approach is able to achieve higher code coverage than random testing. Further-
more, we studied the influence of available type information, which leads to higher resulting
coverage if it can be utilised by the test generator.

In this paper we extend our previous evaluation (Lukasczyk et al. 2020) in several aspects
and make the following contributions: We implemented further test generation algorithms:
the many-objective sorting algorithm (MOSA, Panichella et al. 2015) and its extension
DynaMOSA (Panichella et al. 2018a), as well as the many independent objective (MIO)
algorithm (Arcuri 2017; 2018). We study and compare the performance of all algorithms
in terms of resulting branch coverage. We furthermore enlarge the corpus of subjects for
test generation to get a broader insight into test generation for Python. For this we take
projects from the BUGSINPY project (Widyasari et al. 2020) and the MANYTYPES4PY
dataset (Mir et al. 2021); in total, we add eleven new projects to our dataset. Additionally,
we implemented the generation of regression assertions based on mutation testing
(Fraser and Zeller 2012).

Thttps://spectrum.ieee.org/at-work/tech- careers/top- programming-language- 2020, accessed 2021-02-02.

@ Springer

https://spectrum.ieee.org/at-work/tech-careers/top-programming-language-2020

Empir Software Eng (2023) 28:36 Page30of46 36

Our empirical evaluation confirms that, similar to prior findings on Java, DynaMOSA
and MOSA perform best on Python code, with a median of 80.7% branch coverage. Fur-
thermore, our results show that type information is an important contributor to coverage on
all studied test-generation algorithms, although this effect is only significant for some of
our subject systems, showing an average impact of 2.20% to 4.30% on coverage. While this
confirms that type information is one of the challenges in testing Python code, these results
also suggest there are other open challenges for future research, such as dealing with type
hierarchies and constructing complex objects.

2 Background

The main approaches to automatically generate unit tests are either by creating random
sequences, or by applying meta-heuristic search algorithms. Random testing assembles
sequences of calls to constructors and methods randomly, often with the objective to find
undeclared exceptions (Csallner and Smaragdakis 2004) or violations of general object con-
tracts (Pacheco et al. 2007), but the generated tests can also be used as automated regression
tests. The effectiveness of random test generators can be increased by integrating heuris-
tics (Ma et al. 2015; Sakti et al. 2015). Search-based approaches use a similar representation,
but apply evolutionary search algorithms to maximize code coverage (Tonella 2004; Baresi
and Miraz 2010; Fraser and Arcuri 2013; Andrews et al. 2011).

As an example to illustrate how type information is used by existing test generators,
consider the following snippets of Java (left) and Python (right) code:

class Foo { class Foo:
Foo(Bar b) { ... } def __init__(self, b):
void doFoo(Bar b) { ... } } def do_foo(self, b):
class Bar { class Bar:
Bar() { ... } def __init__(self):
Bar doBar(Bar b) { ... } } def do_bar(self, b):

Assume Foo of the Java example is the class under test. It has a dependency on class
Bar: in order to generate an object of type Foo we need an instance of Bar, and the method
doFoo also requires a parameter of type Bar.

Random test generation would typically generate tests in a forward way. Starting with
an empty sequence 7y = (), all available calls for which all parameters can be satisfied with
objects already existing in the sequence can be selected. In our example, initially only the
constructor of Bar can be called, since all other methods and constructors require a param-
eter, resulting in #; = (0] = new Bar ()). Since #; contains an object of type Bar, in the
second step the test generator now has a choice of either invoking doBar on that object
(and use the same object also as parameter), or invoking the constructor of Foo. Assuming
the chosen call is the constructor of Foo, we now have r; = (0] = new Bar (); 0y =new
Foo (01) ;). Since there now is also an instance of Foo in the sequence, in the next step
also the method doFoo is an option. The random test generator will continue extending the
sequence in this manner, possibly integrating heuristics to select more relevant calls, or to
decide when to start with a new sequence.

An alternative approach, for example applied during the mutation step of an evolutionary
test generator, is to select necessary calls in a backwards fashion. That is, a search-based test
generator like EVOSUITE (Fraser and Arcuri 2013) would first decide that it needs to, for
example, call method doFoo of class Foo. In order to achieve this, it requires an instance of

@ Springer

36 Page4of46 Empir Software Eng (2023) 28:36

Foo and an instance of Bar to satisfy the dependencies. To generate a parameter object of
type Bar, the test generator would consider all calls that are declared to return an instance
of Bar—which is the case for the constructor of Bar in our example, so it would prepend
a call to Bar () before the invocation of doFoo. Furthermore, it would try to instantiate
Foo by calling the constructor. This, in turn, requires an instance of Bax, for which the test
generator might use the existing instance, or could invoke the constructor of Bar.

In both scenarios, type information is crucial: In the forward construction type informa-
tion is used to inform the choice of call to append to the sequence, while in the backward
construction type information is used to select generators of dependency objects. Without
type information, which is the case with the Python example, a forward construction (1)
has to allow all possible functions at all steps, thus may not only select the constructor of
Bar, but also that of Foo with an arbitrary parameter type, and (2) has to consider all exist-
ing objects for all parameters of a selected call, and thus, for example, also str or int.
Backwards construction without type information would also have to try to select genera-
tors from all possible calls, and all possible objects, which both result in a potentially large
search space to select from.

Without type information in our example we might see instantiations of Foo or calls to
do_foo with parameter values of unexpected types, such as:

var_1 Bar ()
var_2 Foo (42)
var_3 = var_2.do_foo("hello")

This example violates the assumptions of the programmer, which are that the constructor
of Foo and the do_f oo method both expect an object of type Bar. When type information
is not present such test cases can be generated and will only fail if the execution raises an
exception; for example, due to a call to a method that is defined for the Bar type but not
on an int or str object. Type information can be provided in two ways in recent Python
versions: either in a stub file that contains type hints or directly annotated in the source
code. A stub file can be compared to C header files: they contain, for example, method
declarations with their according types. Since Python 3.5, the types can also be annotated
directly in the implementing source code, in a similar fashion known from statically typed
languages (see PEP 4842).

3 Unit Test Generation with PYNGUIN

We introduce our automated test-generation framework for Python, called PYNGUIN, in the
following sections. We start with a general overview on PYNGUIN. Afterwards, we formally
introduce a representation for the test-generation problem using evolutionary algorithms in
Python. We also discuss different components and operators that we use.

3.1 The PYNGUIN Framework

PYNGUIN is a framework for automated unit test generation written in and for the Python
programming language. The framework is available as open-source software licensed under

Zhttps://python.org/dev/peps/pep-0484/, accessed 2021-05-04.

@ Springer

https://python.org/dev/peps/pep-0484/

Empir Software Eng (2023) 28:36 Page 50f46 36

=0 s

Test Case
Execution

«uses» T
‘ [Analysis | [Test Test Case Assertion Test Case Python Test
‘ ‘ ‘ Cluster Generation Generation Export Module
Python .
. Mutation
Module DynaMOSA ‘ Whole Suite ‘ ‘ g Engine

Fig.1 The different components of PYNGUIN (taken from Lukasczyk and Fraser (2022))

the GNU Lesser General Public License from its GitHub repository>. It can also be installed
from the Python Package Index (PyPI)* using the pip utility. We refer the reader to
PYNGUIN’s web site’ for further links and information on the tool.

PYNGUIN takes as input a Python module and allows the generation of unit tests using
different techniques. For this, it analyses the module and extracts information about avail-
able methods from the module and types from the module and its transitive dependencies
to build a test cluster (see Section 3.3). Next, it generates test cases using a variety of
different test-generation algorithms (which we describe in the following sub-sections).
Afterwards, it generates regression assertions for the previously generated test cases (see
Section 3.7). Finally, a tool run emits the generated test cases in the style of the widely-used
PYTEST® framework. Figure 1 illustrates PYNGUIN’s components and their relationships.
For a detailed description of the components, how to use PYNGUIN for own purposes, as
well as how to extend PYNGUIN, we refer the reader to our respective tool paper (Lukasczyk
and Fraser 2022).

PYNGUIN is built to be extensible with other test generation approaches and algorithms.
It comes with a variety of well-received test-generation algorithms, which we describe in
the following sections.

3.1.1 Feedback-Directed Random Test Generation

PYNGUIN provides a feedback-directed random algorithm adopted from RANDOOP
(Pacheco et al. 2007). The algorithm starts with two empty test suites, one for passing and
one for failing tests, and randomly adds statements to an empty test case. The test case is
executed after each addition. Test cases that do not raise an exception are added to the pass-
ing test suite; otherwise they are added to the failing test suite. The algorithm will then
randomly choose a test case from the passing test suite or an empty test case as the basis to
add further statements. Algorithm 1 shows the basic algorithm.

The main differences of our implementation compared to RANDOOP are that our version
of the algorithm does not check for contract violations, does not implement any of RAN-
DOOP’s filtering criteria, and it does not require the user to provide a list of relevant classes,
functions, and methods. Please note that our random algorithm, in contrast to the following
evolutionary algorithms, does not use a fitness function to guide its random search process.
It only checks the coverage of the generated test suite to stop early once the module under
test is fully covered. We will refer to this algorithm as Random in the following.

3https://github.com/se2p/pynguin, accessed 2022—07—06.
“https://pypi.org/project/pynguin/, accessed 2022—-07-06.
Shttps://www.pynguin.eu, accessed 2022—07-06.
Shttps://www.pytest.org, accessed 2022-07-06.

@ Springer

https://github.com/se2p/pynguin
https://pypi.org/project/pynguin/
https://www.pynguin.eu
https://www.pytest.org

36 Page6o0f46 Empir Software Eng (2023) 28:36

Input: Stopping condition C, a set of modules ¢
Output: A pair of non-error sequences s, and error sequences s,
15 < {}
2 sp < {k
3 while —=C do
4 m(Ty ...T;) < RANDOMPUBLICMETHOD(c);

5 (S, V) < RANDOMSEQSANDVALS(s,, 11 ... Ty);
6 N < EXTEND(m, S, V);

7 if N € 5, Us, then

8 Continue

9 (0, v) < EXECUTE(N);

10 if v then

1 Se < Se U{N};

12 else

13 sp < sp U{N};

14 return (s, S.)

Algorithm 1 Feedback-directed random generation (adapted from Pacheco et al. (2007)).

3.1.2 Whole Suite Test Generation

The whole suite approach implements a genetic algorithm that takes a test suite, that is a set
of test cases, as an individual (Fraser and Arcuri 2013). It uses a monotonic genetic algo-
rithm, as shown in Algorithm 2 as its basis. Mutation and crossover operators can modify
the test suite as well as its contents, that is, the test cases. It uses the sum of all branch
distances as a fitness function. We will refer to this algorithm as WS in the following.

3.1.3 Many-Objective Sorting Algorithm (MOSA)

The Many-Objective Sorting Algorithm (MOSA, Panichella et al. 2015) is an evolutionary
algorithm specifically designed to foster branch coverage and overcome some of the lim-
itations of whole-suite generation. MOSA considers branch coverage as a many-objective
optimisation problem, whereas previous approaches, such as whole suite test generation,
combined the objectives into one single value. It therefore assigns each branch its individual
objective function. The basic MOSA algorithm is shown in Algorithm 3.

MOSA starts with an initial random population and evolves this population to improve
its ability to cover more branches. Earlier many-objective genetic algorithms suffer from
the so-called dominance resistance problem (von Liicken et al. 2014). This means that the
proportion of non-dominated solutions increases exponentially with the number of goals to
optimise. As a consequence the search process degrades to a random one. MOSA specif-
ically targets this by introducing a preference criterion to choose the optimisation targets
to focus the search only on the still relevant targets, that is, the yet uncovered branches.
Furthermore, MOSA keeps a second population, called archive, to store already found solu-
tions, that is, test cases that cover branches. This archive is built in a way that it automatically
prefers shorter test cases over longer for the same coverage goals. We refer the reader to the
literature for details on MOSA (Panichella et al. 2015). In the following we will refer to this
algorithm as MOSA.

@ Springer

Empir Software Eng (2023) 28:36 Page 7 of 46 36

Input: Stopping condition C, Fitness function §, Population size p;, Selection
function sy, Crossover function ¢y, Crossover probability ¢,, Mutation
function m s, Mutation probability m,,
Output: Population of optimised individuals P
1 P < GENERATERANDOMPOPULATION(py);
2 PERFORMFITNESSEVALUATION(S, P);
3 while —C do
4 Np < {} UELITISM(P);

5 while |Np| < p; do

6 D1, P2 < SELECTION(sy, P);

7 01, 02 < CROSSOVER(cy, ¢p, p1, P2);
8 MUTATION(my, my,, 01);

9 MUTATION(mf, mp, 02);

10 PERFORMFITNESSEVALUATION(S, 01);
11 PERFORMFITNESSEVALUATION(S, 03);
12 if BEST(01, 07) is better than BEST(p1, p2) then
13 Np < Np U{o1, 02};

14 else

15 Np <= Np U{p1, p2};

16 P < Np;

17 return P

Algorithm 2 Monotonic Genetic Algorithm (adopted from Campos et al. (2018)).

Input: Stopping condition C, Fitness function §, Population size ps, Crossover
function ¢y, Crossover probability c,, Mutation probability m,,

Output: Archive of optimised individuals A

1 p <0

2 N, <— GENERATERANDOMPOPULATION (py);

3 PERFORMFITNESSEVALUATION(S, Np);

4 A< {}h

5 while —=C do

6 N, < GENERATEOFFSPRING(cy, ¢p, mp, Np);

7 R: < Np U Ny;

8 r < 0;

9 F, < PREFERENCESORTING(R;);

10 Nppt < {h

11 while |N,; (| + |F.| < ps do

12 CALCULATECROWDINGDISTANCE(F;);
13 Np+1 <= Ny U Fy;
14 r<r+1;

15 DISTANCECROWDINGSORT (F});

16 Npy1 < Npyy U F, with size py — [Npy1l;
17 UPDATEARCHIVE(A, Np11);

18 p<p+1;

19 return A

Algorithm 3 Many-Objective Sorting Algorithm (MOSA, adopted from Campos et al. (2018)).

@ Springer

36 Page8o0f46 Empir Software Eng (2023) 28:36

®

Fig.2 The control-dependence graph for the snippet in Listing 1

1 |if foo < 42:
2 if bar == 23:
3 do_something ()

Listing 1 A Python snippet showing control-dependent conditions

3.1.4 Dynamic Target Selection MOSA (DynaMOSA)

DynaMOSA (Panichella et al. 2018a) is an extension to the original MOSA algorithm. The
novel contribution of DynaMOSA was to dynamically select the targets for the optimisation.
This selection is done on the control-dependency hierarchy of statements. Let us consider
the Python code snippet from Listing 1.

The condition in line 2 is control dependent on the condition in the first line. This means,
it can only be reached and covered, if the condition in the first line is satisfied. Thus,
searching for an assignment for the variable bar to fulfil the condition—and thus cover-
ing line 3—is not necessary unless the condition in line 1 is fulfilled. Figure 2 depicts the
control-dependence graph. DynaMOSA uses the control-dependencies, which are found in
the control-dependence graph of the respective code, to determine which goals to select for
further optimisation. To compute the control dependencies within PYNGUIN, we generate a
control-flow graph from the module under test’s byte code using the bytecode’ library;
we use standard algorithms to compute post-dominator tree and control-dependence graph
from the control-flow graph (see, for example, the work of Ferrante et al. (1987) for such
algorithms). We refer the reader to the literature for details on DynaMOSA (Panichella et al.
2018a). In the following we will refer to this algorithm as DynaMOSA.

3.1.5 Many Independent Objectives (MIO)

The Many Independent Objectives Algorithm (MIO, Arcuri 2017) targets some limitations
of both the Whole Suite and the MOSA approach. To do this, it combines the simplicity
of a (1 + 1)EA with feedback-directed target selection, dynamic exploration/exploitation,
and a dynamic population. MIO also maintains an archive of tests, were it keeps a different
population of tests for each testing target, for example, for each branch to cover. Algorithm 4
shows its main algorithm.

7 https://www.pypi.org/project/bytecode, accessed 2022-07—14.

@ Springer

https://www.pypi.org/project/bytecode

Empir Software Eng (2023) 28:36 Page 9 of 46 36

MIO was designed with the aim of overcoming some intrinsic limitations of the Whole
Suite or MOSA algorithms that arise especially in system-level test generation. Such sys-
tems can contain hundreds of thousands of objectives to cover, for which a fixed-size
population will most likely be not suitable; hence, MIO uses a dynamic population. It
furthermore turns out that exploration is good at the beginning of the search whereas a
focused exploitation is beneficial for better results in the end; MIO addresses this insight
by a dynamic exploration/exploitation control. Lastly, again addressing the large number
of objectives and limited resources, MIO selects the objectives to focus its search on by
using a feedback-directed sampling technique. The literature (Arcuri 2017; 2018) provides
more details on MIO to the interested reader. We will refer to this algorithm as MIO in the
following.

Input: Stopping condition C, Fitness function §, Population size N, Number of
mutations M, Mutation function m ¢, Mutation probability m,, Probability of
random sampling R, Start of focus search F
Output: Archive of optimised individuals A
1 Z < SETOFEMPTYPOPULATIONS();
2 A< {};
3 p < null;
4 m<1;
5 while —=C do
6 if p # null Am < M then

7 p < MUTATION(my, mp, p);

8 m<—m+1;

9 else if p = null v R > RANDOM(O0, 1) then
10 p < GENERATERANDOMINDIVIDUAL();
1 m <« 1;

12 else
13 p < SAMPLEINDIVIDUAL(Z);

14 p < MUTATION(my, mp, p);

15 m < 1;

16 forall t € REACHEDTARGETS(p) do
17 if ISTARGETCOVERED(?) then
18 UPDATEARCHIVE(A, p);

19 Z «— Z\{Z:};

20 else

21 Z; < ZU{p};

22 if |Z;| > N then

23 REMOVEWORSTTEST(Z;, §);
24 UPDATEPARAMETERS(F, R, N, M);

25 return A

Algorithm 4 Many Independent Objective (MIO) Algorithm (adapted from Campos et al. (2018)).

@ Springer

36 Page 100f46 Empir Software Eng (2023) 28:36

3.2 Problem Representation

As the unit for unit test generation, we consider Python modules. A module is usually
identical with a file and contains definitions of, for example, functions, classes, or state-
ments; these can be nested almost arbitrarily. When the module is loaded the definitions
and statements at the top level are executed. While generating tests we do not only want all
definitions to be executed, but also all structures defined by those definitions, for example,
functions, closures, or list comprehensions. Thus, in order to apply a search algorithm, we
first need to define a proper representation of the valid solutions for this problem.

We use a representation based on prior work from the domain of testing Java code (Fraser
and Arcuri 2013). For each statement s; in a test case #; we assign one value v(s ;) with type
7(v(s))) € T, with the finite set of types 7 used in the subject-under-test (SUT) and the
modules transitively imported by the SUT. A set of test cases form a fest suite. We define
five kinds of statements: Primitive statements represent int, float, bool, bytes and
str variables, for example, var_0 = 42. Value and type of a statement are defined by
the primitive variable. Note that although in Python everything is an object, we treat these
values as primitives because they do not require further construction in Python’s syntax.

Constructor statements create new instances of a class, for example, var_ 0 =
SomeType (). Value and type are defined by the constructed object; any parameters are
satisfied from the set V = {v(sy) | 0 < k < j}. Method statements invoke methods on
objects, for example, var_1 = var_0.foo (). Value and type are defined by the return
value of the method; source object and any parameters are satisfied from the set V. Function
statements invoke functions, for example, var_2 = bar (). They do not require a source
object but are otherwise identical to method statements.

Extending our previous work (Lukasczyk et al. 2020) we introduce the genera-
tion of collection statements. Collection statements create new collections, that is,
List, Set, Dict, and Tuple. An example for such a list collection statement
is var_2 = [var_0, wvar_1]; an example for a dictionary collection statement is
var 4 = {var 0: var_ 1, var_2: var_ 3}. Value and type are defined by the con-
structed collection; elements of a collection are satisfied from the set V. For dictionaries,
both keys and values are satisfied from V. Tuples are treated similar to lists; their sole
difference in Python is that lists are mutable while tuples are immutable.

Previously, we always filled in all parameters (except rargs and x+kwargs), when
creating a constructor, method or function statement and passed the parameters by posi-
tion. However, filling all parameters might not be necessary, as some parameters may have
default values or are optional (for example *args and * xkwargs, which will result in an
empty tuple or dictionary, respectively). It can also be impossible to pass certain parame-
ters by position as it is possible to restrict them to be only passed by keyword. We improved
our representation of statements with parameters, by (1) passing parameters in the correct
way, that is, positional or by keyword, and (2) leaving optional parameters empty with some
probability.

Parameters of the form xargs or **kwargs capture positional or keyword arguments
which are not bound to any other parameter. Hereby, args and kwargs are just names
for the formal parameters; they can be chosen arbitrarily, but args and kwargs are the
most common names. Their values can be accessed as a tuple (xargs) or a dictionary
(»+xkwargs). We fill these parameters by constructing a list or dictionary of appropri-
ate type and passing its elements as arguments by using the * or ** unpacking operator,
respectively. Consider the example snippet in Listing 2 to shed light into how a test case for
functions involving those parameter types may look like.

@ Springer

Empir Software Eng (2023) 28:36 Page 11 0of 46 36

def my_sum(*args):
result = 0
for x in args:
result += x
return result

Test case for my_sum
def test_case_0():
int_0 = 42
list_O0 = [int_0, int_O0]
Equivalent to my_sum(int_0, int_0)
int_1 = my_sum(*1list_0)
assert int_1 == 84

def concatenate (**kwargs):

result = ""
for key, value in kwargs.items():
result += key + "=" + value + ";"

return result

Test case for concatenate
def test_case_1():
str_0 = ’foo’
str_1 = ’bar’
dict_0 = {str_0: str_1}
Equivalent to concatenate(foo=str_1)
str_2 = concatenate (*¥*xdict_0)
assert str_2 == ’foo=bar;’

Listing 2 Example test cases for functions accepting lists or dictionaries

This representation is of variable size; we constrain the size of test cases [€ [1, L] and
test suites n € [1, N]. In contrast to prior work on testing Java (Fraser and Arcuri 2013),
we do not define attribute or assignment statements; attributes of objects are not explicitly
declared in Python but assigned dynamically, hence it is non-trivial to identify the existing
attributes of an object and we leave it as future work. Assignment statements in the Java
representation could assign values to array indices. This was necessary, as Java arrays can
only be manipulated using the []-operator. While Python also has a [] -operator, the same
effect can also be achieved by directly calling the __setitem__or __getitem__ methods.
Please note that we do not use the latter approach in PYNGUIN currently, because PYNGUIN
considers all methods having names starting with one or more underscores to be private
methods; private methods are not part of the public interface of a module and thus PYNGUIN
does not directly call them. Given these constraints, we currently cannot generate a test case
as depicted in Listing 3 because this would require some of the aforementioned features,
such as reading and writing attributes or the []-operator for list manipulation. The latter
is currently not implemented in PYNGUIN because we assume that changing the value of
a list element is not often required; it is more important to append values to lists, which
is supported by PYNGUIN. Additionally, in Java an array has a fixed size, whereas lists in
Python have variable size. This would require a way to find out a valid list index that could
be used for the []-operator.

@ Springer

36 Page 120f46 Empir Software Eng (2023) 28:36

def test_case_0():
obj_0 = SomeClass ()
Attribute read mnot supported
var_0 = obj_0.foo

int_0 = 42
Attribute write mot supported
obj_O.bar = int_0

int_1 = 0

int_2 23

list_0 = [int_0]

[]-operator mnot supported.
list_0[int_1] = int_2

Listing3 A test case with statements that are currently not supported

3.3 Test Cluster

For a given subject under test, the test cluster (Wappler and Lammermann 2005) defines
the set of available functions and classes along with their methods and constructors. The
generation of the test cluster recursively includes all imports from other modules, starting
from the subject under test. The test cluster also includes all primitive types as well as
Python’s built-in collection types, that are, List, Set, Dict, and Tuple. To create the
test cluster we load the module under test and inspect it using the inspect module from
the standard Python API to retrieve all available functions and classes from this module.
Additionally, we transitively inspect all dependent modules.

The resulting test cluster basically consists of two maps and one set: the set contains
information about all callable or accessible elements in the module under test, which are
classes, functions, and methods. This set also stores information about the fields of enums,
as well as static fields at class or module level. During test generation, PYNGUIN selects
from this set the callable or accessible elements in the module under test to generate its
inputs for.

The two maps store information about which callable or accessible elements can generate
a specific type, or modify it. Please note that these two maps do not only contain elements
from the module under test but also from the dependent modules. PYNGUIN uses these two
maps to generate or modify specific types, if needed.

3.4 Operators for the Genetic Algorithms

Except the presented random algorithm (see Section 3.1.1), the test-generation algo-
rithms (see Sections 3.1.2 to 3.1.5) implemented in PYNGUIN are genetic algorithms.
Genetic algorithms are inspired by natural evolution and have been used to address many
different optimisation problems. They encode a solution to the problem as an individual,
called chromosome; a set of individuals is called population. Using operations inspired by
genetics, the algorithm optimises the population gradually. Operations are, for example,
crossover, mutation, and selection. Crossover merges genetic material from at least two
individuals into a new offspring, while mutation independently changes the elements of an
individual. Selection is being used to choose individuals for reproduction that are considered
better with respect to some fitness criterion (Campos et al. 2018).

@ Springer

Empir Software Eng (2023) 28:36 Page 13 0of 46 36

In the following, we introduce those operators and their implementation in PYNGUIN
in detail.

3.4.1 The Crossover Operator

Crossover is used to merge the genetic material from at least two individuals into a new
offspring. The different implemented genetic algorithms use different objects as their indi-
viduals: DynaMOSA, MIO, and MOSA consider a test case to be an individual, whereas
Whole Suite considers a full test suite, consisting of potentially many test cases, to be an
individual.

This makes it necessary to distinguish between fest-suite crossover and test-case
crossover; both work in a similar manner but have subtle differences.

Test-suite Crossover The search operators for our representation are based on those used
in EVOSUITE (Fraser and Arcuri 2013): We use single-point relative crossover for both,
crossing over test cases and test suites.

The crossover operator for fest suites, which is used for the whole suite algorithm, takes
two parent test suites P; and P, as input, and generates two offspring test suites O and O3,
by splitting both P and P, at the same relative location, exchanging the second parts and
concatenating them with the first parts. Individual test cases have no dependencies between
each other, thus the application of crossover always generates valid test suites as offspring.
Furthermore, the operator decreases the difference in the number of test cases between the
test suites, thus abs(|O1| —|02]) < abs(|P;| — | P2|). Therefore, no offspring will have more
test cases than the larger of its parents.

Test-case Crossover For the implementation of DynaMOSA, MIO, and MOSA we also
require a crossover operator for test cases. This operator works similar to the crossover
operator for test suites. We describe the differences in the following using an example.

Listing 4 depicts an example defining a class Foo containing a constructor and two
methods, as well as two test cases that construct instances of Foo and execute both methods.
During crossover, each test case is divided into two parts by the crossover point and the
latter parts of both test cases are exchanged, which may result in the test cases depicted
in Listing 5. Since statements in the exchanged parts may depend on variables defined in
the original first part, the statement or test case needs to be repaired to remain valid. For
example, the insertion of the call foo_0.baz (int_0) into the first crossed-over test case
requires an instance of Foo as well as an int value.

In the example, the crossover operator randomly decided to create a new Foo instance
instead of reusing the existing foo_0 as well as creating a new int constant to satisfy
the int argument of the baz method. For the second crossed-over test case, the operator
simply reused both, the instance of Foo as well the existing str constant to satisfy the
requirements for the bar method.

3.4.2 The Mutation Operator

Similarly to the crossover operator, the different granularity of the individuals between the
different genetic algorithms requires a different handling in the mutation operation.

Test-suite Mutation When mutating a fest suite T, each of its test cases is mutated with
probability |—}‘ After mutation, we add new randomly generated test cases to 7. The first

@ Springer

36 Page 14 0f 46 Empir Software Eng (2023) 28:36

Class under test
class Foo:
def __init__(self, foo: str):
self._foo = foo

def bar(self, suffix: str) -> None:
print (self._foo + suffix)

def baz(self, repeat: int) -> None:
print (self._foo * repeat)

Test cases
def test_case_0():

str_0 = "string a"
foo_0 = Foo(str_0)
str_1 = "string b"

<- Randomly chosen crossover point
foo_0.bar(str_1)

def test_case_1():
str_0 = "string c"
foo_0 = Foo(str_0)
int_0 = 1337
<- Randomly chosen crossover point
foo_0.baz(int_0)

Listing 4 A class under test and two generated test cases before applying crossover

new test case is added with probability Oiesicase. If it is added, a second new test case is
added with probability Uéstcase; this happens until the i-th test case is not added (probability:
1 — 0lgicase)- Test cases are only added if the limit N has not been reached, thus |T| < N.

def test_case_after_crossover_0():
Statements from test_case_0

str_0 = "string a"
foo_0 = Foo(str_0) # Temporarily unused after crossover
str_1 = "string b" # Temporarily unused after crossover

Statement from test_case_1 + repairing statements
foo_1 = Foo(str_0)

int_0 = 42

foo_1.baz(int_0)

def test_case_after_crossover_1():
Statements from test_case_1

str_0 = "string c"

foo_0 = Foo(str_0)

int_0 = 1337 # Temporarily unused after crossover
Statement from test_case_0

foo_0.bar(str_0) # Used str_0 to satisfy parameter

Listing 5 Test cases from Listing 4 after performing crossover

@ Springer

Empir Software Eng (2023) 28:36 Page 150f 46 36

Test-case Mutation The mutation of a fest case can be one of three operations: remove,
change, or insert, which we explain in the following sections. Each of these operations can
happen with the same probability of % A test case that has no statements left after the
application of the mutation operator is removed from the test suite 7.

When mutating a test case ¢ whose last execution raised an exception at statement s;, the
following two rules apply in order:

1. Ift has reached the maximum length, that is, || > L, the statements {s;|i < j < [} are
removed from 7.

2. Only the statements {s;|0 < j < i} are considered for mutation, because the statements
{sjli < j < I} are never reached and thus have no impact on the execution result.

For constructing the initial population, a random test case ¢ is sampled by uniformly choos-
ing a value r with 1 < r < L, and then applying the insertion operator repeatedly starting
with an empty test case ¢/, until [t'| > r.

The Insertion Mutation Operation With probability ogement We insert a new statement at
a random position p € [0, []. If it is inserted, we insert another statement with probability
Gsztatemem and so on, until the i-th statement is not inserted. New statements are only inserted,
as long as the limit L has not been reached, that is, || < L.

For each insertion, with probability % each, we either insert a new call on the module
under test or we insert a method call on a value in the set {v(sg) | 0 < k < p}. Any param-
eters of the selected call are either reused from the set {v(sx) | 0 < k < p}, set to None,
possibly left empty if they are optional (see Section 3.2), or are randomly generated. The
type of a randomly generated parameter is either defined by its type hint, or if not avail-
able, chosen randomly from the test cluster (see Section 3.3). If the type of the parameter is
defined by a type hint, we can query the test cluster for callable elements in the subject under
test or its dependencies that generate an object of the required type. Generic types currently
cannot be handled properly in PYNGUIN, only Python’s collection types are addressed. A
parameter that has no type annotation or the annotation Any, requires us to consider all
available types in the test cluster as potential candidates. For those, we can only randomly
pick an element from the test cluster.

*args, »xkwargs as well as parameters with a default value are only filled with a cer-
tain probability. For xargs: T and xxkwargs: T we try to create or reuse a parameter
of type List [T] or Dict [str, TI], respectively. Primitive types are either randomly
initialized within a certain range or reuse a value from static or dynamic constant seed-
ing (Fraser and Arcuri 2012) with a certain probability. Complex types are constructed in
a recursive backwards fashion, that is, by constructing their required parameters or reusing
existing values.

The Change Mutation Operation For a test case t = (sg, 51, ...,s;—1) of length [, each
statement s; is changed with probability % For int and float primitives, we choose
a random standard normally distributed value «. For int primitives we add o Ajy to the
existing value. For £1oat primitives we either add o Afjoat OF ¢ to the existing value, or we
change the amount of decimal digits of the current value to a random value in [0, Agigits]-
Here Aint, Afloar and Agigits are constants.

For str primitives, with probability % each, we delete, replace, and insert characters.
Each character is deleted or replaced with probability m A new character is inserted
at a random location with probability og,. If it is added, we add another character with

@ Springer

36 Page 160f 46 Empir Software Eng (2023) 28:36

probability o2, and so on, until the i-th character is not added. This is similar to how we
add test cases to a test suite. bytes primitives are mutated similar to str primitives. For
bool primitives, we simply negate v(s;).

For tuples, we replace each of its elements with probability WISIN Lists, sets, and dic-
tionaries are mutated similar to how string primitives are mutated. Values for insertion or
replacement are taken from {v(sx) | 0 < k < i}. When mutating an entry of a dictionary,

with probability % we either replace the key or the value. For method, function, and con-

structor statements, we change each argument of a parameter with probability L, where p
denotes the number of formal parameters of the callable used in s;. For methO(fs, this also
includes the callee. If an argument is changed and the parameter is considered optional (see
Section 3.2) then with a certain probability the associated argument is removed, if it was
previously set, or set with a value from {v(sx) | 0 < k < i} if it was not set. Otherwise,
we either replace the argument with a value from {v(sz) | 0 < k < i}, whose type matches
the type of the parameter or use None. If no argument was replaced, we replace the whole
statement s; by a call to another method, function, or constructor, which is randomly cho-
sen from the test cluster, has the same return type as v(s;), and whose parameters can be
satisfied with values from {v(s;) | 0 < k < i}.

The Remove Mutation Operation For a test case ¢t = (sq, s, ..., s—1) of length [, each
statement s; is deleted with probability % As the value v(s;) might be used as a parameter
in any of the statements s;41, ..., Sj—1, the test case needs to be repaired in order to remain
valid. For each statement s, i < j <1, if 5 refers to v(s;), then this reference is replaced
with another value out of the set {v(sx) | 0 < k < j A k # i}, which has the same type as
v(s;). If this is not possible, then ; is deleted as well recursively.

3.5 Covering and Tracing Python Code

A Python module contains various control structures, for example, if or while statements,
which are guarded by logical predicates. The control structures are represented by condi-
tional jumps at the bytecode level, based on either a unary or binary predicate. We focus on
branch coverage in this work, which requires that each of those predicates evaluates to both
true and false.

Let B denote the set of branches in the subject under test—two for each conditional
jump in the byte code. Everything executable in Python is represented as a code object. For
example, an entire module is represented as a code object, a function within that module
is represented as another code object. We want to execute all code objects C of the subject
under test. Therefore, we keep track of the executed code objects Cr as well as the minimum
branch distance dpin (b, T') for each branch b € B, when executing a test suite 7. By C B
denotes the set of taken branches. Code objects which contain branches do not have to be
considered as individual coverage targets, since covering one of their branches also covers
the respective code object. Thus, we only consider the set of branch-less code objects C; €
C. We then define the branch coverage cov(T) of a test suite T as cov(T) = %

Branch distance is a heuristic to determine how far a predicate is away from eval-
uating to true or false, respectively. In contrast to previous work on Java, where most
predicates at the bytecode level operate only on Boolean or numeric values, in our case
the operands of a predicate can be any Python object. Thus, as noted by Arcuri (2013),
we have to define our branch distance in such a way that it can handle arbitrary Python
objects.

@ Springer

Empir Software Eng (2023) 28:36 Page 17 of 46 36

Let O be the set of possible Python objects and let © := {=, #, <, <, >, >, €, ¢, =, #}
be the set of binary comparison operators (remark: we use ‘=", ‘=, and ‘e’ for Python’s
==, ig, and in keywords, respectively). For each 6 € ©®, we define a function §y : O x
0 —]R(T U {oo} that computes the branch distance of the true branch of a predicate of
the form afb, with a, b € O and 6 € ©. By §5(a, b) we denote the distance of the false
branch, where 6 is the complementary operator of 6. Let further k be a positive number,
and let lev(x, y) denote the Levenshtein distance (Levenshtein 1966) between two strings x
and y. The value of k is used in cases where we know that the distance is not 0, but we cannot
compute an actual distance value, for example, when a predicate compares two references
for identity, the branch distance of the true branch is either 0, if the references point to the
same object, or k, if they do not. While the actual value of k does not matter, we use k = 1.

The predicates is_numeric(z), is_string(z) and is_bytes(z) determine whether the type of
their argument z is numeric, a string or a byte array, respectively. The function decode(z)
decodes a byte array into a string by decoding every byte into a unique character, for
example, by using the encoding ISO-8859-1.

0 a=b
la — b| a # b A is_numeric(a) A is_numeric(b)
d=(a,b) = 1 lev(a, b) a # b Ais_string(a) A is_string(b)
lev(decode(a), decode(b)) a # b A is_bytes(a) A is_bytes(b)
00 otherwise
0 a<b
d.(a,b) = { a—b+k a > b Ais_.numeric(a) A is_numeric(b)
00 otherwise
0 a<b
d<(a,b) = { a—>b+k a> b Ais.numeric(a) A is_numeric(b)
00 otherwise

8>(aab) = 5<(ba a)
8>(a.b) = 8=(b,a)

0 acb
Se(a,b) = { min({§=(a, x) | x € b} U {00}) otherwise
0abb
8(a,b) = { k otherwise 0ci# ¢é=7#

Note that every object in Python represents a Boolean value and can therefore be used as
a predicate. Classes can define how their instances are coerced into a Boolean value, for
example, numbers representing the value zero or empty collections are interpreted as false,
whereas non-zero numbers or non-empty collections are interpreted as true. We assign a
distance of k to the true branch, if such a unary predicate v represents false. Otherwise,
we assign a distance of §r(v) to the false branch, where is_sized(z) is a predicate that
determines if its argument z has a size and len(z) is a function that computes the size of its
argument Z.

len(a) is_sized(a)
Sr(a) = 4 la| is_numeric(a)

oo} otherwise

Future work shall refine the branch distance for different operators and operand types.

@ Springer

36 Page 18 0f 46 Empir Software Eng (2023) 28:36

3.6 Fitness Functions

The fitness function required by genetic algorithms is an estimate of how close an individual
is towards fulfilling a specific goal. As stated before we optimise our generated test suites
towards maximum branch coverage. We define our fitness function with respect to this
coverage criterion. Again, we need to distinguish between the fitness function for Whole
Suite, which operates on the test-suite level, and the fitness function for DynaMOSA, MIO,
and MOSA, which operates on the test-case level.

3.6.1 Test-suite Fitness

The fitness function required by our Whole Suite approach is constructed similar to the
one used in EVOSUITE (Fraser and Arcuri 2013) by incorporating the branch distance. The
fitness function estimates how close a test suite is to covering all branches of the SUT.
Thus, every predicate has to be executed at least twice, which we enforce in the same way
as existing work (Fraser and Arcuri 2013): the actual branch distance d(b, T) is given by

0 if the branch has been covered
d(b, T) = { v(dnmin(b, T)) if the predicate has been executed at least twice
1 otherwise

with v(x) = xxﬁ being a normalisation function (Fraser and Arcuri 2013). Note that the

requirement of a predicate being executed at least twice is used to avoid a circular behaviour

during the search, where the Whole Suite algorithm alternates between covering a branch of

a predicate, but in doing so loses coverage on the opposing branch (Fraser and Arcuri 2013).
Finally, we can define the resulting fitness function f of a test suite 7 as

f(T)=1CL\Crl+ Y db,T)

beB

3.6.2 Test-case Fitness

The aforementioned fitness function is only applicable for the Whole Suite algorithm, which
considers every coverage goal at the same time. DynaMOSA, MIO, and MOSA consider
individual coverage goals. Such a goal is to cover either a certain branch-less code object ¢ €
Cy or abranch b € B. For the former, its fitness is given by

0 ¢ has been executed
1 otherwise

f c (Z) = {
while for the latter it is defined as

Jo@) = al®d, 1) + v(dpin (D, 1))
where dy,i, (b, t) is the smallest recorded branch distance of branch » when executing test
case ¢ and al(b, t) denotes the approach level. The approach level is the number of control
dependencies between the closest executed branch and b (Panichella et al. 2018a).

3.7 Assertion Generation

PYNGUIN aims to generate regression assertions (Xie 2006) within its generated test cases
based on the values it observes during test-case execution. We consider the following types

@ Springer

Empir Software Eng (2023) 28:36 Page 19 of 46 36

import queue

def divide(x: int, y: int) -> float:
if y < 0:
raise ValueError("y shall only be positive")
return x / y

def queue():
return queue.Queue ()

Listing6 A code snippet to generate tests with assertions for

as assertable: enum values, builtin types (int, str, bytes, bool, and None), as well
as builtin collection types (tuple, 1ist, dict, and set) as long as they only consist
of assertable elements. Additionally, PYNGUIN can generate assertions for values using an
approximate comparison to mitigate the issue of imprecise number representation. For those
assertable types, PYNGUIN can generate the assertions directly, by directly, by creating an
appropriate expected value for the assertion’s comparison.

We call other types non-assertable. This does, however, not mean that PYNGUIN is not
able to generate assertions for these types. It indicates that PYNGUIN will not try to create
a specific object of such a type as an expected value for the assertion’s comparison, but it
will aim to check the object’s state by inspecting its public attributes; assertions shall then
be generated on the values of these attributes, if possible.

For non-assertable collections, PYNGUIN creates an assertion on their size by calling the
len function on the collection and assert for that size. As a fallback, if the aforementioned
strategies is successful, PYNGUIN is asserting that an object is not None. Listing 7 shows a
simplified example of how test cases for the code snippet in Listing 6 could look like. Please
note that the example was not directly generated with PYNGUIN but manually simplified for
demonstration purpose.

Additionally, PYNGUIN creates assertions on raised exceptions. Python does, in con-
trast to Java, not know about the concept of checked and unchecked, or expected and
exceptions. During PYNGUIN’s analysis of the module under test we analyse the abstract
syntax tree of the module and aim to extract for each function which exceptions it excep-
tions it explicitly raises but not catches or that are specified in the function’s Docstring.
We consider these exceptions to be expected, all other exceptions that might appear during
execution are unexpected. For an expected exception a generated test case will utilise the

import example as moduleO
import pytest

def test_case_O0:

int_0 =1

int_1 = 2

float_0 = moduleO.divide(int_0O, int_1)
assert pytest.approx(0.5) == float_O

def test_case_1:
var_0 = module_0.queue ()
assert var_0O is not None

Listing7 Some test cases for the snippet in Listing 6

@ Springer

36 Page 200f46 Empir Software Eng (2023) 28:36

import example as moduleO
import pytest

def test_case_O:
int_0 = 1
int_1 = -1
with pytest.raises(ValueError):
moduleO.divide (int_0, int_1)

@pytest.mark.xfail(strict=True)
def test_case_O:

int_0 = 1

int_1 = 0

moduleO.divide (int_O, int_1)

Listing 8 Some test cases handling exceptions for the code snippet in Listing 6

pytest.raises context from the PyTest framework®, which checks whether an excep-
tion of a given type was raised during execution and causes a failure of the test case if
not. PYNGUIN decorates a test case, who’s execution causes an unexpected exception, with
the pytest .mark.xfail decorator from the PyTest library; this marks the test case
as expected to be failing. Since PYNGUIN is not able to distinguish whether this failure is
expected it is up to the user of PYNGUIN to inspect and deal with such a test case. Listing 8
shows two test cases that check for exceptions.

To generate assertions, PYNGUIN observes certain properties of the module under test.
The parts of interest are the set of return values of function or method invocations and con-
structor calls, the static fields on used modules, and the static fields on seen return types. It
does so after the execution of each statement of a test case. First, executes every test case
twice in random order. We do this to remove trivially flaky assertions, for example, asser-
tions based on memory addresses or random numbers. Only assertions on Only assertions
on values that are the same on both executions are kept as the base assertions.

To minimise the set of assertions (Fraser and Zeller 2012) to those that are likely to be
relevant to ensure the quality of the current test case, PYNGUIN utilises a customised fork of
MUTPY? to generate mutants of the module under test. A mutant is a variant of the original
module under test that differs by few syntactic changes (Acree et al. 1978; DeMillo et al.
1978; Jia and Harman 2011). There exists a wide selection of so called mutation operators
that generate mutants from a given program.

From the previous executions, PYNGUIN knows the result of each test case. It then exe-
cutes all test cases against all mutants. If the outcome for one test case differs on a particular
mutant between the original module and that mutant, the mutant is said to be killed; oth-
erwise it is classified as survived. Out of the base assertions, only those assertions are
considered relevant that have an impact on the result of the test execution. Such an impact
means that the test is able to kill the mutant based on the provided assertions. Assertions
that have not become relevant throughout all runs are removed from the test case, as they do
not seem to help for fault finding.

8https://www.pytest.org, accessed 2022-07—13.
9https://github.com/se2p/mutpy-pynguin, accessed 2022-06—12.

@ Springer

https://www.pytest.org
https://github.com/se2p/mutpy-pynguin

Empir Software Eng (2023) 28:36 Page 21 0of 46 36

3.8 Limitations of PYNGUIN

At its current state, PYNGUIN is still a research prototype facing several technical limita-
tions and challenges. First, we noticed that PYNGUIN does not isolate the test executions
properly in all cases. We used Docker containers to prevent PYNGUIN from causing harm
on our systems; however, a proper isolation of file-system access or calls to specific func-
tions, such as sys.exit, need to be handled differently. One of the reasons PYNGUIN
fails on target modules is that they call sys.exit in their code, which stops the Python
interpreter and thus also PYNGUIN. Future work needs to address those challenges by, for
example, providing a virtualised file system to or mocking calls to critical functions, such
as sys.exit.

The dynamic nature of Python allows developers to change many properties of the pro-
gram during runtime. One example is a non-uniform object layout; instances of the same
class may have different methods or fields during runtime, of which we do not know when
we analyse the class before execution. This is due to the fact that attributes can be added,
removed, or changed during runtime, special methods like __getattr__ can fake non-
existing attributes and many more. The work of Chen et al. (2018), for example, lists some
of these dynamic features of the Python language and their impact on fixing bugs.

Besides the dynamic features of the programming language PYNGUIN suffers from
supporting all language features. Constructs such as generators, iterators, decorators,
higher-order functions provide open challenges for PYNGUIN and aim for future research.
Furthermore, Python allows to implement modules in C/C++, which are then compiled to
native binaries, in order to speed up execution. The native binaries, however, lack large parts
of information that the Python source files provide, for example, there is no abstract syntax
tree for such a module that could be analysed. PYNGUIN is not able to generate tests for a
binary module because its coverage measurement relies on the available Python interpreter
byte code that we instrument to measure coverage. Such an on-the-fly instrumentation is
obviously not possible for binaries in native code.

Lastly, we want to note that the type system of Python is challenging. Consider the two
types List [Tuple [Any, ...] and List[Tuple[int, str]]; there is no built-
in support in the language to decide at runtime whether one is a subtype of the other. Huge
engineering effort has been put into static type checkers, such as mypy'?, however they
are not considered feature complete. Additionally, each new version of Python brings new
features regarding type information to better support developers. This, however, also causes
new challenges for tool developers to support those new features.

4 Empirical Evaluation

We use our PYNGUIN test-generation framework to empirically study automated unit test
generation in Python. A crucial metric to measure the quality of a test suite is the coverage
value it achieves; a test suite cannot reveal any faults in parts of the subject under test (SUT)
that are not executed at all. Therefore, achieving high coverage is an essential property of a
good test suite.

The characteristics of different test-generation approaches have been extensively studied
in the context of statically typed languages, for example by Panichella et al. (2018b) or

10http://mypy-lang.org/, accessed 2022-07—14.

@ Springer

http://mypy-lang.org/

36 Page220f46 Empir Software Eng (2023) 28:36

Campos et al. (2018). With this work we aim to determine whether these previous findings
on the performance of test generation techniques also generalise to Python with respect to
coverage:

Research Question 1 (RQ1) How do the test-generation approaches compare on
Python code?

Our previous work (Lukasczyk et al. 2020) indicated that the availability of type infor-
mation can be crucial to achieve higher coverage values. Type information, however, is not
available for many programs written in dynamically typed languages. To gain information
on the influence of type information on the different test-generation approaches, we extend
our experiments from our previous study (Lukasczyk et al. 2020). Thus, we investigate the
following research question:

Research Question 2 (RQ2) How does the availability of type information influence
test generation?

Coverage is one central building block of a good test suite. Still, a test-generation tool
solely focussing on coverage is not able to create a test suite that reveals many types of
faults from the subject under test. The effectiveness of the generated assertions is therefore
a crucial metric to reveal faults. We aim to investigate the quality of the generated assertions
by asking:

Research Question 3 (RQ3) How effective are the generated assertions at revealing faults?
4.1 Experimental Setup

The following sections describe the setup that we used for our experiments.

4.1.1 Experiment Subjects

For our experiments we created a dataset of Python projects, which allows us to answer our
research questions. We only selected projects for the dataset that contain type information
in the style of PEP 484. Projects without type information would not allow us to investigate
the influence of the type information (see RQ2). Additionally, we focus on projects that use
features of the Python programming language that are supported by PYNGUIN. We do this
to avoid skewing the results due to missing support for such features in PYNGUIN.

We excluded projects with dependencies to native code such as numpy from our dataset.
We do this for two reasons: first, we want to avoid compiling these dependencies, which
would require a C/C++ compilation environment in our experiment environment to keep this
environment as small as possible. Second, PYNGUIN’s module analysis and on the source
code and Python’s internally used byte code. Both are not available for native code, which
can limit PYNGUIN’s applicability on such projects. Unfortunately, many projects depend
to native-code libraries such as numpy, either directly or transitively. PYNGUIN can still be
used on such projects but its capabilities might be its capabilities might be limited by not
being able to analyse these native-code dependencies. Fortunately, only few Python libraries
are native-code only. Dependencies that only exist in native code, for example, the widely
used numpy library, can still be used, although PYNGUIN might not be able to retrieve all
information it could retrieve from a Python source file.

@ Springer

Empir Software Eng (2023) 28:36 Page 23 of 46 36

We reuse nine of the ten projects from our previous work (Lukasczyk et al. 2020);
the removed project is async_btree, which provides an asynchronous behaviour-tree
implementation. The functions in this project are implemented as co-routines, which would
require a proper handling of the induced parallelism and special function invocations. PYN-
GUIN currently only targets sequential code; it therefore cannot deal with this form of
parallelism to avoid any unintended side effects. Thus, for the async_btree project, the
test generation fails and only import coverage can be achieved, independent of the used
configuration. None of the other used projects relies on co-routines.

We selected two projects from the BUGSINPY dataset (Widyasari et al. 2020), a collec-
tion of 17 Python projects at the time of writing. The selected projects are those projects in
the dataset that provide type annotations. The remaining nine projects have been randomly
selected from the MANYTYPES4PY dataset (Mir et al. 2021), a dataset of more than 5200
Python repositories for evaluating machine learning-based type inference. We do not use
all projects from MANYTYPES4PY for various reasons: first, generating tests for 183916
source code files from the dataset would cause a tremendous computational effort. Second,
many of those projects also have dependencies on native-code libraries, which we explicitly
excluded from our selection. Third, the selection criterion for projects in that dataset was
that they use the MYPY type checker as a project dependency in some way. The authors state
that only 27.6 % of the source-code files have type annotations. We manually inspected the
projects from MANYTYPES4PY we incorporated into our dataset to ensure that they have
type annotations present.

Overall, this results in a set of 163 modules from 20 projects. Table 1 provides a more
detailed overview of the projects. The column Project Name gives the name of the project on
PyPI; the lines of code were measured using the CLOC!! tool. The table furthermore shows
the total number of code objects and predicates in a project’s modules, as well as the number
of types detected per project. The former two measures give an insight on the project’s
complexity: higher numbers indicate larger complexity. The latter provides an overview
how many types PYNGUIN was able to parse. Please note that PYNGUIN may not be able
to resolve all types as it relies on Python’s inspect library for this task. This library is
the standard way of inspecting modules in Python—to extract information about existing
classes and functions, or type information. If fails to resolve a type that type will not be
known to PYNGUIN’s test cluster, which means that PYNGUIN will not try to generate an
object of such a type. However, since the inspect library is part of the standard library
we would consider its quality to be very good; furthermore, if such a type is reached in a
transitive dependency, it might be used anyway.

4.1.2 Experiment Settings

We executed PYNGUIN on each of the constituent modules in sequence to generate test
cases. We used PYNGUIN in version 0.25.2 (Lukasczyk et al. 2022) in a Docker container.
The container. The container is used for process isolation and is based on Debian 10 together
with Python 3.10.5 (the python:3.10.5-slim-buster image from Docker Hub is
the basis of this container).

https://github.com/AlDanial/cloc, accessed 2022—-07-06.

@ Springer

https://github.com/AlDanial/cloc

36 Page240f46 Empir Software Eng (2023) 28:36

Table 1 Projects used for evaluation

Project Name Version LOCs Modules CodeObjs. Preds. Types
apimd 1.2.1 390 1 50 110 10
codetiming 1.3.0 89 2 7 5 4
dataclasses-json 0.5.2 891 5 75 76 23
docstring parser 0.7.3 506 4 50 86

flake8 3.9.0 542 8 80 41

flutes 0.3.0 235 3 4 0

flutils 0.7 772 [§ 48 136 19
httpie 24.0 1274 18 152 129 22
isort 5.8.0 841 6 37 9 11
mimesis 4.13 685 21 150 55 4
pdir2 0.3.2 461 5 43 46 9
py-backwards 0.7 618 18 125 100 13
pyMonet 0.12.0 394 8 145 59 6
pypara 0.0.24 877 7 232 70 15
python-string-utils 1.0.0 421 3 76 101 7
pytutils 0.4.1 943 19 62 80

sanic 2132 1886 18 143 187 30
sty 1.0.0rcl 136 3 18 4 2
thonny 3.3.6 794 5 66 232 1
typesystem 0.2.4 157 3 23 19 13
Total 12912 163 1586 1545 210

We ran PYNGUIN in ten different configurations: the five generation approaches
DynaMOSA, MIO, MOSA, Random, and WS (see Section 3.1 for a description of each
approach), each with and without incorporated type information. We will refer to a con-
figuration with incorporated type information by adding the suffix TypeHints to its name,
for example, DynaMOSA-TypeHints for DynaMOSA with incorporated type information;
the suffix NoTypes indicates a configuration that omits type information, for example,
Random-NoTypes for feedback-directed random test generation without type information.

We adopt several default parameter values from EVOSUITE (Fraser and Arcuri 2013). It
has been empirically shown (Arcuri and Fraser 2013) that these default values give reason-
ably acceptable results. We leave a detailed investigation of the influence of the parameter
values as future work. The following values are only set if applicable for a certain config-
uration. For our experiments, we set the population size to 50. For the MIO algorithm, we
cut the search budget to half for its exploration phase and the other half for its exploitation
phase. In the exploration phase, we set the number of tests per target to ten, the probability
to pick either a random test or from the archive to 50 %, and the number of mutations to
one. For the exploitation phase, we set the number of tests per target to one, the probabil-
ity to pick either a random test or from the archive to zero, and the number of mutations to
ten. We use a single-point crossover with the crossover probability set to 0.750. Test cases
and test suite are mutated using uniform mutation with a mutation probability of 1, where
! denotes the number of statements contained in the test case. PYNGUIN uses tournament

@ Springer

Empir Software Eng (2023) 28:36 Page 25 of 46 36

selection with a default tournament size of 5. The search budget is set to 600 s. This time
does not include preprocessing and pre-analysis of the subject. Neither does it include any
post-processing, such as assertion generation or writing test cases to a file. The search can
stop early if 100 % coverage is achieved before consuming the full search budget. Please
note that the stopping for the search budget is only checked between algorithm iterations.
Thus, it may be possible that some executions of PYNGUIN slightly exceed the 600 s search
budget before they stop the search.

To minimise the influence of randomness we ran PYNGUIN 30 times for each config-
uration and module. All experiments were conducted on dedicated compute servers each
equipped with an AMD EPYC 7443P CPU and 256 GB RAM, running Debian 10. We
assigned each run one CPU core and four gigabytes of RAM.

4.1.3 Evaluation Metrics

We use code coverage to evaluate the performance of the test generation in RQ1 and RQ2.
In particular, we measure branch coverage at the level of Python bytecode. Branch coverage
is defined as the number of covered, that is, executed branches in the subject under test
divided by the total number of branches in the subject under test. Similar to Java bytecode,
complex conditions are compiled to nested branches with atomic conditions in Python code.
We also keep track of coverage over time to shed light on the speed of convergence of the
test-generation process; besides, we note the final overall coverage.

To evaluate the quality of the generated assertions in RQ3 we compute the mutation
score. We use a customised version of the MUTPY tool (Derezinska and Hatas 2014) to
generate the mutants from the original subject under test. MUTPY brings a large selection
of standard mutation operators but also operators that are specific to Python. A mutant is a
variant of the original subject under test obtained by injecting artificial modifications into
them. It is referred to as killed if there exists a test that passes on the original subject under
test but fails on the mutated subject under test. The mutation score is defined as the number
of killed mutants divided by the total number of generated mutants (Jia and Harman 2011).

We statistically analyse the results to see whether the differences between two different
algorithms or configurations are statistically significant or not. We exclude modules from
the further analysis for which PYNGUIN failed to generate tests 30 times in all respective
configurations to make the configurations comparable. We use the non-parametric Mann-
Whitney U-test (Mann and Whitney 1947) with a p-value threshold 0.0500 for this. A
p-value below this threshold indicates that the null hypothesis can be rejected in favour of
the alternative hypothesis. In terms of coverage, the null hypothesis states that none of the
compared algorithms reaches significantly higher coverage; the alternative hypothesis states
that one of the algorithms reaches significantly higher coverage values. We use the Vargha
and Delaney effect size A (Vargha and Delaney 2000) in addition to testing for the null
hypothesis. The effect size states the magnitude of the difference between the coverage val-
ues achieved by two different configurations. For equivalent coverage the Vargha-Delaney
statistics is Alg = 0.500. When comparing two configurations C; and C» in terms of cov-
erage, an effect size of A1z > 0.500 indicates that configuration C| yields higher coverage
than Cy; vice versa for Alz < 0.500. Furthermore, we use Pearson’s correlation coeffi-
cient r (Pearson 1895) to measure the linear correlation between two sets of data. We call a
value of r = =£1 a perfect correlation, a value of r between £0.500 and *1 a strong cor-
relation, a value of r between £0.300 and +0.499 a medium correlation, and a value of r
between +0.100 and £0.299 a small or weak correlation.

@ Springer

36 Page 26 0f46 Empir Software Eng (2023) 28:36

Finally, please note that we report all numbers during our experiments rounded to three
significant digits, except if they are countable, such as, for example, lines of code in a
module.

4.1.4 Data Availability

We make all used projects and tools as well as the experiment and data-analysis infrastruc-
ture together with the raw data available on Zenodo (Lukasczyk 2022). This shall allow
further analysis and replication of our results.

4.2 Threats to Validity
As usual, our experiments are subject to a number of threats to validity.
4.2.1 Internal Validity

The standard coverage tool for Python is COVERAGE.PY, which offers the capability to mea-
sure both line and branch coverage. It, however, measures branch coverage by comparing the
transitions between sources lines that have occurred and that are possible. Measuring branch
coverage using this technique is possibly imprecise. Not every branching statement neces-
sarily leads to a source line transition, for example, x = 0 if y > 42 else 1337
fits on one line but contains two branches, which are not considered by COVERAGE.PY. We
thus implemented our own coverage measurement based on bytecode instrumentation. By
providing sufficient unit tests for it we try to mitigate possible errors in our implementation.

Similar threats are introduced by the mutation-score computation. A selection of
mutation-testing tools for Python exist, however, each has some individual drawbacks,
which make them unsuitable for our choice. Therefore, we implemented the computation
of mutation scores ourselves. However, the mutation of the subject under test itself is done
using a customised version of the MUTPY mutation testing tool (Derezinska and Hatas
2014) to better control this threat.

A further threat to the internal validity comes from probably flaky tests; a test is flaky
when its verdict changes non-deterministically. Flakiness is reported to be a problem, not
only for Python test suites (Gruber et al. 2021) but also for automatically generated tests in
general (Fan 2019; Parry et al. 2022).

The used Python inspection to generate the test cluster (see Section 3.3) cannot handle
types provided by native dependencies. We mitigate this threat by excluding projects that
have dependencies with native code. This, however, does not exclude any functions from
the Python standard library, which is partially also implemented in C, and which could
influence our results.

4.2.2 External Validity

We used 163 modules from different Python projects for our experiments. It is conceiv-
able that the exclusion of projects without type annotations or native-code libraries leads
to a selection of smaller projects, and the results may thus not generalise to other Python
projects. Furthermore, to make the different configurations comparable, we omitted all mod-
ules from the final evaluation for that PYNGUIN was not able to generate test cases for each
configuration and each of the 30 iterations. This leads to 134 modules for RQ1 and RQ2 and
105 modules for RQ3. The number of used modules for RQ3 is lower because we exclude

@ Springer

Empir Software Eng (2023) 28:36 Page 27 of 46 36

modules from the analysis that did not yield 30 results. Reasons for such failures are, for
example, flaky tests. However, besides the listed constraints, no others were applied during
this selection.

4.2.3 Construct Validity

Methods called with wrong input types still may cover parts of the code before possibly
raising exceptions due to the invalid inputs. We conservatively included all coverage in
our analysis, which may improve coverage for configurations that ignore type information.
A configuration that does not use type information will randomly pick types to generate
argument values, although these types might be wrong. In contrast, configurations including
type information will attempt to generate the correct type; they will only use a random
type with small probability. Thus, this conservative inclusion might reduce the effect we
observed. It does, however, not affect our general conclusions.

Additionally, we have not applied any parameter tuning to the search parameters but use
default values, which have been shown to be reasonable choices in practice (Arcuri and
Fraser 2013).

4.3 RQ1: Comparison of the Test-Generation Approaches

The violin plots in Fig. 3 show the coverage distributions for each algorithm. We use all
algorithms here in a configuration that incorporates type information. We note coverage
values over the full range of 0 % to 100 %. Notably, all violins show a higher coverage den-
sity above 20 %, and very few modules result in lower coverage; this is caused by what we
call import coverage. Import coverage is achieved by importing the module; when Python

100%
80%
60%
40%
20%

0

oW - LS .
3) A A0 (o W

& 9
™ & o o S

Coverage

R

Fig.3 Coverage distribution per algorithm with type information. The median value is indicated by a white
dot within the inner quartile markers

@ Springer

36 Page 280f46 Empir Software Eng (2023) 28:36

Table 2 Comparison of the different algorithms, with and without type information

Algorithm With Type Hints Without Type Hints
median (%) mean (%) median (%) mean (%)
DynaMOSA 80.7 71.6 +30.5 76.5 69.4 +£31.0
MIO 80.0 71.3 +30.7 75.0 68.4 +31.3
MOSA 80.0 71.3 +30.8 76.7 68.7 £31.7
Random 71.4 66.9 £+ 31.5 66.7 62.6 +32.9
WS 80.0 70.6 £+ 30.7 71.4 67.5 £ 31.5

The table shows the median coverage value, as well as the mean coverage value with standard deviation

imports a module it executes all statements at module level, such as imports, or module-level
variables. It also executes all function definitions (the def statement but not the function’s
body or any closures) as well as class definitions and their respective method definitions.
Due to the structure of the Python bytecode these definitions are also (branchless) cover-
age targets that get executed anyway. Thus, they count towards coverage of a module. As a
consequence coverage cannot drop below import coverage.

The distributions for the different configurations look very similar, indicating a very
similar performance characteristics of the algorithms; the notable exception is the Random
algorithm with a lower performance compared to the evolutionary algorithms.

Although the violin plot reports the median values (indicated by a white dot), we addi-
tionally report the median and mean coverage values for each configuration in Table 2.
The table shows the almost equal performance of the evolutionary algorithms DynaMOSA,
MIO, and MOSA. Our random algorithm achieves the lowest coverage values in this
experiment.

Since those coverage values are so close together, we computed Alz statistics for each
pair of DynaMOSA and one of the other algorithms on the coverage of all modules.
All effects are negligible but in favour of DynaMOSA (DynaMOSA and MIO: Ap =
0.502; DynaMOSA and MOSA: Alz = 0.502; DynaMOSA and Random: Alz = 0.541;
DynaMOSA and WS: A1 = 0.508). The effects are not significant except for DynaMOSA
and Random with p = 1.08 x 10719, We also compared the effects on coverage on a module
level. The following numbers report the count of modules where an algorithm performed
significantly better or worse than DynaMOSA. MIO performed better than DynaMOSA
on 3 modules but worse on 13. MOSA performed better than DynaMOSA on 1 module
but worse on 5. Random performed better than DynaMOSA on 0 modules but worse on
52. Whole Suite performed better than DynaMOSA on 1 module but worse on 25. We see
that although modules exist where other algorithms outperform DynaMOSA significantly,
overall DynaMOSA performs better than the other algorithms.

We now show the development of the coverage over the full generation time of 600 s.
The line plot in Fig. 4 reports the mean coverage values per configuration measured in one-
second intervals. We see that during the first minute, MIO yields the highest coverage values
before DynaMOSA is able to overtake MIO, while MOSA can come close. However, the
performance of MIO decreases over the rest of the exploration phase. From the plot we can
see that MOSA comes close to MIO at around 300 s. At this point, MIO switches over to
its exploitation phase, which again seems to be beneficial compared to MOSA. Over the
full generation time, Whole Suite yields smaller coverage values than the previous three, as
does Random.

@ Springer

Empir Software Eng (2023) 28:36 Page 29 of 46 36

72%
70%
o 68%
=)
<
St
o
>
o
Q

66%

64% .
=== DynaMOSA-TypeHints
=== MIO-TypeHints
=== MOSA-TypeHints

62% === Random-TypeHints
== WS-TypeHints

0 60 120 180 240 300 360 420 480 540 600
Time (s)

Fig. 4 Development of the coverage over time with available type information

We hypothesize that the achieved coverage is influenced by properties of the module
under test. Our first hypothesis is that there exists some correlation between the achieved
coverage on a module and the number of lines of code in that module. In order to study
this hypothesis, we use our best-performing algorithm, DynaMOSA, and compare the mean
coverage values per module with the lines of code in the module. The scatter plot in Fig. 5
shows the result; we fitted a linear regression line in red colour into this plot. The data

shows a weak negative correlation (Pearson r = —0.211 with a p-value of 0.0143), which
X
700
S 600
BN
3 500 X X
2 400 X
-§ 300
3 X
= X X
v X X X% x
= 100 X ig—xv - Xx X , ;KX
. XX XK X T KB R
0% 20% 40% 60% 80% 100%
Coverage

Fig.5 Mean coverage for DynaMOSA with type information correlated to the lines of code per module; the
red line shows the linear regression fitted to the data (Pearson r = —0.211, p = 0.0143)

@ Springer

36 Page300f46 Empir Software Eng (2023) 28:36

o X
2 14
o
g
o 12
k=
3 10
= X
x 8
) X x b
g 6 = X X X
X X
';"; 4 - —— X . >$(xx)X x
g . 2005 . YEsea— RS "
= X X RS XX 3R KX Mg KX
ﬁ 0% 20% 40% 60% 80% 100%

Coverage

Fig. 6 Mean coverage for DynaMOSA with type information correlated to the mean McCabe cyclomatic
complexity of a module’s functions; the red line shows the linear regression fitted to the data (Pearson r =
—0.365, p = 3.00 x 107)

indicates that there is at least some support for this hypothesis: it is slightly easier to achieve
higher coverage values on modules with fewer lines of code. However, lines of code is often
not considered a good metric to estimate code complexity. Therefore, we similarly study
the correlation of mean coverage values per module with the mean McCabe cyclomatic
complexity (McCabe 1976) of that module. The scatter plot in Fig. 6 shows the results;
again, we fitted a linear regression line in red colour into the plot. The data shows a medium
negative correlation (Pearson r = —0.365 with a p-value of 3.00 x 107>), supporting this
hypothesis: modules with higher mean McCabe cyclomatic complexity tend to be more
complicated to cover. However, since this correlation still is not strong, other properties
of a module appear to influence the achieved coverage. Possible properties might be the
quality of available type information or the ability of the test generator to instantiate objects
of requested types properly. Also finding appropriate input values for function parameters
might influence the achievable coverage. We study the influence of type information in
RQ2, and leave exploring further factors as future work.

Summary (RQ1)

Our experiments show that test-generation algorithms in Python yield
reasonable coverage values between 66.9 % to 71.6 % in the mean. Fur-
thermore, we show that DynaMOSA performed best in this experiment,
followed by MIO, MOSA, and Whole Suite; Random achieves the least
coverage values.

Discussion: Overall, the results we achieved from our experiments indicate that automated
test generation for Python is feasible. They also show that there exists a ranking between
the performance of the studied algorithms, which is in line with previous research on test
generation in Java (Campos et al. 2018).

@ Springer

Empir Software Eng (2023) 28:36 Page 31 0f46 36

def ceil_div(a: int, b: int) -> int:
r"""Integer division that rounds up."""
return (a - 1) // b + 1

Listing 9 A function that can be trivially covered, taken from flutes.math

The results, however, do not show large differences between the algorithms; only
DynaMOSA compared to Random yielded a significant, although negligible, effect. A rea-
son, why the algorithms have very similar performance is indicated by the subjects that
we use for our study. We noticed subjects that are trivial to cover for all algorithms.
Listing 9 shows such an example taken from the module f1utes.math fromthe flutes
project!2.

Almost every pair of two integers is a valid input for this function (only b = 0 will cause
a ZeroDivisionError). Since this function is the only function in that particular mod-
ule, achieving full coverage on this module is also trivially possible for all test-generation
algorithms, especially since they know from the type hints that they shall provide integer
values as parameters.

Another category of modules that is hard to cover, independent of the used algorithm,
is due to technical limitations of PYNGUIN (see Section 3.8). Consider the minimised code
from the f1utes'? project in Listing 10.

This function is actually both a context manager (due to its decorator) and a genera-
tor (indicated by the yield statement). PYNGUIN currently supports neither; the context
manager would require a special syntax construct to be called, such as a with block. Call-
ing a function with a yield statement in it does not actually execute its code. It generates
an iterator object pointing to that function. The code will only be executed when iterat-
ing over the generator in a loop or by explicitly calling next on the object. A test case
PYNGUIN can come up with is similar to the one shown in Listing 11.

This test case would only result in a coverage of 50 %, which is only import coverage
resulting from executing the import and def statements during module loading. As stated
above, the body of the function will not even be executed.

Figures 5 and 6 indicate that our subject modules are not very complex. Previous research
has shown that algorithms like DynaMOSA or MIO are more beneficial for a large num-
ber of goals, that is, a large number of branches (Panichella et al. 2015; Arcuri 2018). For
modules with only few branches they cannot show their full potential which definitely influ-
ences our results. Having smaller modules is a property of our evaluation set. On average,
our modules consist of 79.2 lines of code; Mir et al. (2021) report an average module size
of 120 lines of code. Future work shall repeat our evaluation using more complex subject
systems in order to evaluate whether the assumed improvements can be achieved there.

4.4 RQ2: Influence of Type Information

We hypothesized in the previous section that type information might have an impact on the
achieved coverage. We compare the configuration with type information and the configu-
ration without type information for each algorithm. Our comparison is done on the module
level.

2https://www.pypi.org/project/flutes, accessed 2022-07—14.
Bhttps://www.pypi.org/project/flutes, accessed 2022-07—14.

@ Springer

https://www.pypi.org/project/flutes
https://www.pypi.org/project/flutes

36 Page32o0f46 Empir Software Eng (2023) 28:36

import contextlib
import time

@contextlib.contextmanager

def work_in_progress(desc: str = "Work in progress"):
print (desc + "... ", end=’’, flush=True)
begin_time = time.time ()
yield
time_consumed = time.time() - begin_time

print (f"done. ({time_consumed:.2f}s)")

Listing 10 A function that is actually a context manager and a generator and thus cannot be covered by
PYNGUIN due to technical limitations, taken from flutes.timing

import flutes.timing as module_O

def test_case_O0:

generator_context_manager_O = module_O.work_in_progress ()
assert generator_context_manager_0.args == ()
assert generator_context_manager_O.kwds == {}

Listing 11 A test case from PYNGUIN for the function in Listing 10

We plot the effect-size distributions per project for DynaMOSA, our best-performing
algorithm from RQ1, in Fig. 7. We aggregate the data for a better overview here; we will
also show the data on a module level afterwards. Each data point that is used for the plot
is the effect size on one module of that project. The results show that the median effect is
always greater or equal than 0.500. This entails that available type information is beneficial
in the mean for four out of our twenty projects.

We do not only report the data on a project level as we did using Fig. 7 but also per mod-
ule. We provide a table that reports the effect size per module in Table 3 in the Appendix. A
value larger than 0.500 for a module indicates that the configuration with type information
yielded higher coverage results than the configuration without type information. A value
smaller than 0.500 indicates the opposite. We use a bold font to mark a table entry where
the effect size is significant with respect to a p-value < 0.05.

Summary (RQ2)

Our experiment shows that type information can be beneficial for the
effectiveness of the test-generation algorithms. The effect, however,
largely depends on the module under test.

Discussion: Our results show that type information can be beneficial to achieve higher
coverage, although this largely depends on the module under test. From Table 3 we also note
that there are cases where the presence of type information has a negative impact compared
to its absence.

A reason for this is that the type information is annotated manually by the developers
of the projects. Although powerful static type checking tools, such as MYPY are available,

@ Springer

Empir Software Eng (2023) 28:36 Page 33 0of 46 36

1.00
0.75
o (0]
X
z (==
& o) 0]
0.25
0.00
T 0w g g ° £ 04 @ ¢ o2 Qg 2 g o= 2 2 9 xn o=
g2 2§ ¢ 3 &8 2 &4 %85 § =z 2 8 2 2 € & B B
2 & 7 3 < é =] g 4 E g‘ 3 S & B E] 3 g 2
g = % Q. = = <= g E s z & =3 £ Z,
151 Q g] > =] a 5]
s 2 0 4 o E o
S = £ 3 =
3] o = T P 2
I @ 2z =
£ & = 2
kSl
© =
al

Fig. 7 Effect-size distributions per project for DynaMOSA. A, > 0.500 indicates that DynaMOSA-
TypeHints performed better than DynaMOSA-NoTypeHints; vice versa for A2 < 0.500

def example(a: int) -> int:
if isinstance(a, str):
raise TypeError ("Expected an int but not a string")
return 2 * a

Listing 12 A function having a precondition. The then-branch can only be executed if one uses a type for the
argument that is different from the annotated type

they are often not used. Rak-amnouykit et al. (2020) conducted a study using more than
2600 repositories consisting of more than 173 000 files that have partial type annotations
available. They report that often type information is only partially available. As a conse-
quence, large parts of the code still do not have any type information at all. They furthermore
report that the type annotations are often wrong, too: they were able to correctly type check
only about 11.9% of the repositories using the MYPY tool. Such wrong or incomplete type
information can mislead PYNGUIN as to which parameter types to use. For wrong type infor-
mation there is still a small probability for PYNGUIN to disregard the type hint anyway and
use a random type. The consequence for missing type information is that PYNGUIN needs
to use a random type, anyway.

We also noticed cases where parts of the code can only be executed if one uses a type
for an argument that is different from the annotated type. An example can be error-handling
code that explicitly raises an error in case the argument type is wrong. We depict a simple
example of such a case in Listing 12.

In this example, we see that the then-branch of the isinstance check can only be
executed if the argument to the function is of type str—in contradiction to the annotated
int. Although it is possible that PYNGUIN disregards the type hint there is only a small
probability for this. Besides, PYNGUIN would then pick a random type from all available
types in the test cluster, where again the probability that it picks a str is small, depending
on the size of the test cluster.

Yet another reason for the results lies in the limitations PYNGUIN currently has with
respect to generating objects of specific characteristics. PYNGUIN is, for example, not
example, not able to provide generators or iterators as arguments; neither does is provide

@ Springer

36 Page34o0f46 Empir Software Eng (2023) 28:36

120%

100%

80%

60%

40%

Mutation Score

20%

0%

—20%

DynaMOSA-TypeHints

Fig. 8 A violinplot showing the distribution of the mutation scores for the used DynaMOSA configuration
in our experiment for RQ3

higher-order functions. Adding these features is open as future work. Higher-order functions
are required as an argument to 49 functions throughout the 134 modules. Being able to gen-
erate higher-order functions in the context of a dynamically-typed programming language
has also been shown to be beneficial (Selakovic et al. 2018); we leave this for future work.

4.5 RQ3: Assertion Effectiveness to Reveal Faults

For our last research question we study the assertion effectiveness. To measure the effective-
ness of the generated assertions we use the mutation-score metric. We limit our presentation
of results for this questions to a smaller subset of our modules: 105 modules that we ran
with DynaMOSA-TypeHints, our best-performing configuration with respect to achieved
coverage. The remaining modules from the original 134 caused various issues and failed to
yield results for all 30 reruns. Please note that for answering RQ1 and RQ2, we configured
PYNGUIN in a way that it does not create assertions but only reaches for coverage. We did
this both to save computation time as well as to prevent PYNGUIN from failing on modules
due to issues related to the assertion generation, such as flaky tests. The issues that cause
a drop in the number of modules for answering this research question were caused by our
used mutation approach, flakiness, or incorrect programs and non-terminating loops.

Figure 8 reports the distribution of the mutation scores for this configuration in
a violinplot.

Additionally, we hypothesize that higher mutation scores are correlated with higher cov-
erage, as it seems unlikely that for modules with small coverage values we can achieve high
mutation scores. The rationale behind this hypothesis is that only mutated statements of a
program that are covered by the execution can be detected. For this, we plot the achieved
coverage values and mutation scores into a scatter plots; Fig. 9 shows these results. Besides,
we add the number of lines of code per module as an additional dimension to the plots,
visualised by the hue; a lighter colour stands for few lines of code, while a dark colour
symbolises a module with a large number of code lines.

The plot shows a strong correlation between coverage and mutation score, with Pearson’s
correlation coefficient being computed to be » = 0.450 with a p-value of 5.53 x 107157,
Interestingly, there exist a few outliers where mutation score is 100 % although the coverage

@ Springer

Empir Software Eng (2023) 28:36 Page 350f46 36

100% loc .‘ _J
100
80% - @ 200 -
® 300
= @ 400
o
60%
a @
=
S
= 40%
El
=
20%
0%
0% 20% 40% 60% 80% 100%
Coverage

Fig. 9 Correlation between coverage and mutation score for DynaMOSA-TypeHints (Pearson r = 0.450,
p =553 x10"197)

is only at a mediocre level of around 30 %. We investigated these cases and found out that
mutants were only introduced in those parts of the module that were also covered by the
test case. We conjecture this is caused by the mutation code which our implementation
uses from the MutPy library, in combination with limitations of PYNGUIN. An example
is the simplified snippet from pyMonet’s!'* module pymonet . task, which we show in
Listing 13.

The module consists of 15 branchless code objects, each of which is a coverage goal'?.
Of these, PYNGUIN is able to cover only five (the module, the class declaration, the con-
structor declaration, and the declarations of the map and methods). The methods of and
reject are not even called as they are annotated as class methods, which is currently not
supported by PYNGUIN. PYNGUIN, however, is generating a test cases like the one shown
in Listing 14.

When mutating the module from Listing 13, the only possible change is to remove a
@classmethod decorator. The consequence is that of or reject become normal meth-
ods by this operation. Executing the test case from Listing 14 against such a mutant causes
a difference in the result and thus PYNGUIN counts the mutant as killed. As a consequence,
both possible mutants get killed, although only one third of the modules coverage goals
are actually covered. Furthermore, we also note many modules for those the tests achieve
100 % coverage but the achieved mutation scores range from 0 % to 100 %; this shows that
the effectiveness of our assertions can still be improved in the future.

Summary (RQ3)

Our experiment shows that PYNGUIN is able to generate assertions of
good effectiveness—they can achieve mutation scores of up to 100 %.

4https://pypi.org/project/pyMonet, accessed 2022—-07—15.
15The module itself, the class, each method, each closure, and each lambda form such code objects.

@ Springer

https://pypi.org/project/pyMonet

36 Page360f46 Empir Software Eng (2023) 28:36

class Task:
def __init__(self, fork):
self.fork = fork

Q@classmethod

def of (cls, value):
return Task(lambda _, resolve: resolve(value))

Q@classmethod

def reject(cls, value):

return Task(lambda reject, reject (value))

def map(self, fn):
def result(reject, resolve):
return self.fork(lambda arg: reject(arg), lambda arg:
resolve (fn(arg)))
return Task(result)

def bind(self, fn):
def result(reject, resolve):
return self.fork(lambda arg: reject(arg), lambda arg: fn(arg
) .fork(reject, resolve))
return Task(result)

Listing 13 Simplified snipped from pymonet . task showing different results in the original version than
in a mutant

Discussion: Our experiment indicates that PYNGUIN is able to provide high-quality asser-
tions. As we expected, we note a strong correlation between coverage and mutation
score (see Fig. 9). Using mutation score as an indicator for fault-finding capabilities is
backed by the literature (see, for example, the work of Just et al. (2014) or Papadakis et al.
(2018)). However, it is still open in the literature whether there exists a strong correlation
between mutation scores and fault detection.

To answer this research question we had to shrink the set of subject modules from
134 down to 105. This is caused by various influences: we use a customised version of
MUuTPY (Derezinska and Hatas 2014) to generate the mutants (see Section 3.7). The orig-
inal MUTPY has not received an update since 2019 and is designed to work with Python

import pymonet.task as module_O

def test_case_O0:
int_0 = 317
task_0 = module_O0.Task(int_0)
assert module_0.Task.of is not None
assert module_0.Task.reject is not None

Listing 14 A test case for the snippet in Listing 13

@ Springer

Empir Software Eng (2023) 28:36 Page 37 of 46 36

versions 3.4 to 3.7'%; PYNGUIN, however, requires Python version 3.10 for our experiments.
Several Python internals, such as the abstract syntax tree (AST) that is used by MUTPY to
mutate the original module, received changes between Python 3.7 and 3.10. Although we
fixed the obvious issues, our customised version of MUTPY is an issue for crashes: future
work shall replace this component by our own implementation of the various mutation
operators for a more fine-grained control.

Furthermore, mutation at the AST level can cause various problems, for example, incor-
rect programs or non-terminating loops. We tried to make our test execution as robust
against non-termination as we could, still we noted that there are open issues the experiment
infrastructure to shutdown PYNGUIN hardly after a walltime of 2.50 h—without reporting
any results.

In some cases already the original subject module shows non-deterministic behaviour,
for example, due to the use of random numbers. Our assertion generation executes each
generated test case twice in random order to remove trivially flaky assertions. Previous
research (Gruber et al. 2021), however, has shown that in order to achieve a 95 % confi-
dence that a passing test case is not flaky will require 170 reruns on average. Obviously,
those reruns would consume a huge amount of time, which PYNGUIN should not invest into
rerunning tests to potentially find a flaky one. Therefore, we accept that PYNGUIN generates
flaky tests, which can influence the assertion generation and cause failures.

The results we report here, however, are promising. They show that also mutation-based
assertion generation is feasible for dynamically typed programming languages; this again
opens up new research perspectives targeting the underlying oracle problem.

5 Related Work

Closest to our work is EVOSUITE (Fraser and Arcuri 2013), which is a unit test generation
framework for Java. Similar to our approach, EVOSUITE incorporates many different test-
generation strategies to allow studies on their different behaviour and characteristics.

To the best of our knowledge, little has been done in the area of automated test gen-
eration for dynamically typed languages. Search-based test generation tools have been
implemented before, for example, for the Lua programming language (Wibowo et al. 2015)
or Ruby (Mairhofer et al. 2011). While these approaches utilise a genetic algorithm, they
are only evaluated on small data sets and do not provide comparisons between different
test-generation techniques.

Approaches such as SYMJS (Li et al. 2014) or JSEFT (Mirshokraie et al. 2015) tar-
get specific properties of JavaScript web applications, such as the browser’s DOM or the
event system. Feedback-directed random testing has also been adapted to web applications
with ARTEMIS (Artzi et al. 2011). Recent work proposes LAMBDATESTER (Selakovic et al.
2018), a test generator that specifically addresses the generation of higher-order functions in
dynamic languages. Our approach, in contrast, is not limited to specific application domains.

A related approach to our random test generation can be found in the HYPOTHESIS
library, a library for property-based testing in Python (Maclver and Hatfield-Dodds 2019;
Maclver and Donaldson 2020). HYPOTHESIS uses a random generator to generate the inputs
for checking whether a property holds. It is also able to generate and export test cases based
on this mechanism. It does, however, only implement a random generator and does not

16https://github.com/mutpy/mutpy, accessed 2022-07-12.

@ Springer

https://github.com/mutpy/mutpy

36 Page38o0f46 Empir Software Eng (2023) 28:36

focus on unit-test generation primarily. TSTL (Groce and Pinto 2015; Holmes et al. 2018)
is another tool for property-based testing in Python although it can also be used to generate
unit tests. It utilises a random test generator for this but its main focus is not to generate unit
tests automatically, which we aim to achieve with our approach.

Further tools are, for example, AUGER!7, CROSSHAIR'®, or KLARA'?; they all require
manual effort by the developer to create test cases in contrast to our automated generation
approach.

Additionally, dynamically typed languages have also gained attention from research
on test amplification. Schoofs et al. (2022) introduce PYAMPLIFIER a proof-of-concept
tool for test amplification in Python. Recently, SMALL-AMP (Abdi et al. 2022) demon-
strated the use of dynamic type profiling as a substitute for type declarations in the
Pharo Smalltalk language.

In recent work, PYNGUIN has also been evaluated on a scientific software stack from
material sciences (Triibenbach et al. 2022). The authors also compared the performance
of different test-generation algorithms and the assertion generation on their subject sys-
tem; their results regarding the algorithm performance are in line with our results, whereas
their results on assertion quality differ significantly due to their use of an older version of
PYNGUIN that only provided limited assertion-generation capabilities.

6 Conclusions

In this work, we presented PYNGUIN, an automated unit test generation framework for
Python. We extended our previous work (Lukasczyk et al. 2020) by incorporating the
DynaMOSA, MIO, and algorithms, and by evaluating the achieved coverage on a larger
corpus of Python modules. Our experiments demonstrate that PYNGUIN is able to emit unit
tests for Python that cover large parts of existing code bases. In line with prior research in
the domain of Java unit test generation, our evaluation results show that DynaMOSA per-
forms best in terms of branch coverage, followed by MIO, MOSA, and the Whole Suite
approach.

While our experiments provide evidence that the availability of type information influ-
ences the performance of the test-generation algorithms, they also show that there are
several open issues that provide opportunities for further research. A primary challenge is
that adequate type information may not be available in the first place, suggesting synergies
with research on type inference. However, even if type information is available, generat-
ing instances of the relevant types remains challenging. There are also technical challenges
that PYNGUIN needs to address in order to become practically usable; overcoming techni-
cal limitations is necessary to allow the usage of PYNGUIN for a wider field of projects and
projects and scenarios.

While we were investigating in the technical limitations of PYNGUIN, we also found
a real bug in one of our subjects: the module mimesis.providers.date from the
mimesis?® project contains the following function presented in Listing 15 (we removed
various lines that are not relevant to the bug for presentation reasons).

Thttps://github.com/laffra/auger, accessed 2022-07-12.
18https://crosshair.readth«:—:docs.io, accessed 2022-02-10.
https://klara-py.readthedocs.io, accessed 2022-02-10.
20nttps://pypi.org/project/mimesis, accessed 2022-07—14.

@ Springer

https://github.com/laffra/auger
https://crosshair.readthedocs.io
https://klara-py.readthedocs.io
https://pypi.org/project/mimesis

Empir Software Eng (2023) 28:36 Page 39 of 46 36

from datetime import datetime, timedelta

def bulk_create_datetimes (

date_start: datetime, date_end: datetime, **kwargs: Any
) -> list[datetime]:

dt_objects = []

if date_end < date_start:
raise ValueError ()

while date_start <= date_end:
date_start += timedelta (**kwargs)

dt_objects.append(date_start)

return dt_objects

Listing 15 Simplified code snippet taken from mimesis.providers.date

import datetime
import mimesis.providers.date as module_O

def test_case():
int_0 = 2022

int_1 =1
int_2 = 2
date_time_0 = datetime.datetime(int_O0, int_1, int_1)
date_time_1 = datetime.datetime(int_O, int_1, int_2)

module_0.bulk_create_datetimes (date_time_0O, date_time_1)

Listing 16 A bug-exposing test case

The mimesis project provides utility functions that generate fake data, which aims
to look as realistic as possible. The function presented in Listing 15 aims to generate a
list of datetime objects (essentially, a combination of date and time stamp) between a
given start and end time using a specific interval. It requires a start time that is smaller
than the end time, that is, lies before the end time. Besides, it takes a dictionary in
its **kwargs parameter, which it hands over to the timedelta function of Python’s
datetime APL

The timedelta function is used to compute a delta that can be added to the current
time in order to retrieve the next date. Its API is very flexible: it allows to specify an arbi-
trary delta, especially also of negative and zero values. While we were investigating in
PYNGUIN’s timeout handling, we noticed that PYNGUIN generated a test case for for this
function similar to the one presented in Listing 16.

Executing this test case leads to an infinite loop because the timedelta function will
yield a delta of zero if no parameters given.

@ Springer

36 Page 40o0f46 Empir Software Eng (2023) 28:36

We reported this issue to the developers of mimesis, who stated that this ‘is a major
bug actually’?'. They furthermore accepted the fix proposed by the second author of this
paper and released a new version of their library.

More information on PYNGUIN is available from its web page: https://www.pynguin.eu

Appendix : Comparison of Coverage Improvements

The following Table 3 presents the Vargha-Delaney A 12 statistics for each module and
algorithm on the resulting coverage values. A value larger than 0.500 indicates that the
configuration with type information yielded higher coverage results than the configuration
without type information; vice versa for values smaller 0.500. We use a bold font to indicate
effect sizes that are significant.

Table 3 Improvement of types

Module Name Effect Size
apimd.compiler 0.860
codetiming._timer 0.500
dataclasses_json.api 0.500
dataclasses_json.mm 0.975
dataclasses_json.undefined 0.267
docstring.parser.google 0.909
docstring_parser.numpydoc 0.871
docstring parser.parser 0.450
docstring.parser.rest 0.269
flake8.exceptions 0.500
flake8.formatting.base 0.500
flake8.formatting.default 0.500
flake8.main.debug 0.500
flake8.main.git 0.500
flutes.math 0.500
flutes.timing 0.500
flutils.decorators 0.500
flutils.namedtupleutils 0.500
flutils.packages 0.484
flutils.pathutils 0.707
flutils.setuputils.cmd 0.500
flutils.strutils 0.500
httpie.cli.dicts 0.500
httpie.cli.exceptions 0.500
httpie.config 0.883
httpie.models 0.394
httpie.output.formatters.colors 1.00

21 https://github.com/Ik- geimfari/mimesis/pull/12294#issuecomment- 1162974494, accessed 2022-07—14.

@ Springer

https://www.pynguin.eu
https://github.com/lk-geimfari/mimesis/pull/1229#issuecomment-1162974494

Empir Software Eng (2023) 28:36

Page 41 0of 46 36

Table 3 (continued)

Module name

Effect size

httpie.output.formatters.headers

httpie.output.formatters.json

httpie.output.processing
httpie.output.streams
httpie.plugins.base
httpie.plugins.manager
httpie.sessions
httpie.ssl
httpie.status
isort.comments
isort.exceptions
isort.utils
mimesis.builtins.base
mimesis.builtins.da
mimesis.builtins.de
mimesis.builtins.it
mimesis.builtins.nl
mimesis.builtins.pt_br
mimesis.builtins.uk
mimesis.decorators
mimesis.exceptions

mimesis.providers.choice

mimesis.providers.clothing

mimesis.providers.code

mimesis.providers.development

mimesis.providers.hardware

mimesis.providers.numbers

mimesis.providers.science

mimesis.providers.transport

mimesis.providers.units
mimesis.shortcuts
pdir._internal_utils
pdir.attr_category
pdir.color
pdir.configuration
pdir.format
py-backwards.conf

py-backwards.files

py-backwards.
py-backwards.
py-backwards.
py-backwards.
py-backwards.

transformers.
transformers.
transformers.
transformers.

transformers.

base
class_without_bases
dict_unpacking
formatted_-values

functions_annotations

0.500
0.500
1.00
0.0167
0.867
0.550
0.737
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.352
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.612
0.891
0.500
0.500
0.967
0.500
0.
1.00
0.883
1.00
0.950
0.500

@ Springer

36 Page 42 of46

Empir Software Eng (2023) 28:36

Table3 (continued)

Module name

Effect size

py-backwards.transformers.
py-backwards.transformers.
py-backwards.transformers.
py-backwards.transformers.
py-backwards.transformers.
py-backwards.transformers.
py-backwards.transformers.

py-backwards.transformers.

py-backwards.types

py-backwards.
py-backwards.

pymonet
pymonet .
pymonet
pymonet
pymonet
pymonet
pymonet

pymonet .

pypara.accounting.generic

.box

immutable_list

.lazy
.maybe
.monad_try
.semigroups

.task

validation

utils.helpers

utils.snippet

import_pathlib
metaclass
python2_future
return_from_generator
starred_unpacking
string_types
variables_annotations

yield_from

pypara.accounting.journaling

pypara.c
pypara.c
pypara.c
pypara.c

ommons .errors
ommons . numbers
ommons .others

ommons.zeitgeist

pypara.monetary

pytutils
pytutils
pytutils
pytutils
pytutils
pytutils
pytutils
pytutils
pytutils
pytutils
pytutils

.debug

.excs

.files
.lazy.lazy_import
.meth

.path

.pretty

.props

.python

.pythree

.rand

sanic.base

sanic.config

sanic.cookies

sanic.handlers

sanic.he

sanic.he

aders

lpers

@ Springer

0.500
0.917
0.500
0.951
0.813
0.500
0.500
1.00

0.500
0.630
1.00

0.500
0.500
0.383
0.500
0.500
0.500
0.500
0.500
0.500
0.467
0.500
0.500
0.500
0.500
0.532
0.500
0.500
0.500
0.473
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.408
0.500
0.676
0.500

Empir Software Eng (2023) 28:36 Page 43 of 46 36

Table 3 (continued)

Module name Effect size
sanic.mixins.listeners 0.500
sanic.mixins.middleware 0.500
sanic.mixins.routes 0.709
sanic.mixins.signals 0.500
sanic.models. futures 0.500
sanic.models.protocol_types 0.500
sanic.views 0.583
string.utils.errors 0.500
string.utils.manipulation 0.906
string.utils.validation 0.447
sty.lib 0.500
sty.register 0.500
sty.renderfunc 0.500
thonny.languages 0.500
thonny.plugins.pgzero_frontend 0.500
thonny.roughparse 0.462
thonny.terminal 0.500
thonny.token_utils 0.500
typesystem.tokenize.positional validation 0.500
typesystem.tokenize.tokenize_yaml 0.583
typesystem.unique 0.500

The table shows the Vargha-Delaney A2 statistic for each module and DynaMOSA. A value larger than
0.500 indicates that the configuration with type information yielded higher coverage results than the config-
uration without type information; vice versa for values smaller 0.500. In bold font we denote those effects
that are significant at a p-value < 0.0500

Funding Open Access funding enabled and organized by Projekt DEAL.
Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdi M, Rocha H, Demeyer S, Bergel A (2022) Small-amp: test amplification in a dynamically typed
language. Empir Softw Eng 27:128. https://doi.org/10.1007/s10664-022-10169-8

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-022-10169-8

36 Page44of46 Empir Software Eng (2023) 28:36

Acree AT, Budd TA, DeMillo RA, Lipton RJ, Sayward FG (1978) Mutation analysis. Tech. Rep. GIT-ICS-
79/08. Georgia Institute of Technology, Atlanta, Georgia USA

Andrews JH, Menzies T, Li FCH (2011) Genetic algorithms for randomized unit testing. IEEE Trans Softw
Eng 37(1):80-94. 10.1109/TSE.2010.46

Arcuri A (2013) It really does matter how you normalize the branch distance in search-based software testing.
Journal of Software Testing. Verification Reliab 23(2):119-147. https://doi.org/10.1002/stvr.457

Arcuri A (2017) Many Independent Objective (MIO) algorithm for test suite generation. In: International
Symposium on Search Based Software Engineering (SSBSE), Springer, Lecture Notes in Computer
Science, vol 10452, pp 3—17. https://doi.org/10.1007/978-3-319-66299-2_1

Arcuri A (2018) Test suite generation with the Many Independent Objective (MIO) algorithm. Inf Softw
Technol 104:195-206. https://doi.org/10.1016/j.infsof.2018.05.003

Arcuri A, Fraser G (2013) Parameter tuning or default values? an empirical investigation in search-based
software engineering. Empir Softw Eng 18(3):594-623. https://doi.org/10.1007/s10664-013-9249-9

Artzi S, Dolby J, Jensen SH, Mgller A, Tip F (2011) A framework for automated testing of JavaScript web
applications. In: International Conference on Software Engineering (ICSE), ACM, pp 571-580. https://
doi.org/10.1145/1985793.1985871

Baresi L, Miraz M (2010) Testful: automatic unit-test generation for java classes. In: International Conference
on Software Engineering (ICSE), ACM, vol 2. pp 281-284. https://doi.org/10.1145/1810295.1810353

Campos J, Ge Y, Albunian N, Fraser G, Eler M, Arcuri A (2018) An empirical evaluation of evolution-
ary algorithms for unit test suite generation. Inf Softw Technol 104:207-235. https://doi.org/10.1016/j.
infsof.2018.08.010

Chen Z, Ma W, Lin W, Chen L, Li Y, Xu B (2018) A study on the changes of dynamic feature code
when fixing bugs: towards the benefits and costs of python dynamic features. Sci China Inf Sci
61(1):012107:1-012107:18. https://doi.org/10.1007/s11432-017-9153-3

Csallner C, Smaragdakis Y (2004) Jcrasher: an automatic robustness tester for java. Softw Pract Exp
34(11):1025-1050. https://doi.org/10.1002/spe.602

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the practicing programmer.
Computer 11(4):34—41. https://doi.org/10.1109/C-M.1978.218136

Derezinska A, Hatas K (2014) Experimental evaluation of mutation testing approaches to python pro-
grams. In: International Conference on Software Testing, Verification and Validation workshops
(ICST-Workshops), IEEE Computer Society, pp 156—164. https://doi.org/10.1109/ICSTW.2014.24

Fan Z (2019). https://doi.org/10.1109/ICSE-Companion.2019.00068

Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence graph and its use in optimization.
ACM Trans Program Lang Syst 9(3):319-349. https://doi.org/10.1145/24039.24041

Fraser G, Arcuri A (2012) The seed is strong: seeding strategies in search-based software testing. In: Inter-
national Conference on Software Testing, Verification and Validation (ICST), IEEE Computer Society,
pp 121-130. https://doi.org/10.1109/ICST.2012.92

Fraser G, Arcuri A (2013) Whole test suite generation. IEEE Trans Softw Eng 39(2):276-291. https://doi.
org/10.1109/TSE.2012.14

Fraser G, Zeller A (2012) Mutation-driven generation of unit tests and oracles. IEEE Trans Softw Eng
38(2):278-292. https://doi.org/10.1109/TSE.2011.93

Gao Z, Bird C, Barr ET (2017) To type or not to type: quantifying detectable bugs in javascript. In: Interna-
tional Conference on Software Engineering (ICSE), IEEE/ACM, pp 758-769. https://doi.org/10.1109/
ICSE.2017.75

Gong L, Pradel M, Sridharan M, Sen K (2015) DLint: dynamically checking bad coding practices in
JavaScript. In: International Symposium on Software Testing and Analysis (ISSTA), ACM, pp 94-105.
https://doi.org/10.1145/2771783.2771809

Groce A, Pinto J (2015) A little language for testing. In: NASA International Symposium on Formal Methods
(NFM), Springer, Lecture Notes in Computer Science, vol 9058. pp 204-218. https://doi.org/10.1007/
978-3-319-17524-9_15

Gruber M, Lukasczyk S, Kroi F, Fraser G (2021) An empirical study of flaky tests in python. In: Interna-
tional Conference on Software Testing, Verification and Validation (ICST), IEEE, pp 148-158. https://
doi.org/10.1109/ICST49551.2021.00026

Holmes J, Groce A, Pinto J, Mittal P, Azimi P, Kellar K, O’Brien J (2018) TSTL: the template
scripting testing language. Int J Softw Tools Technol Transfer 20(1):57-78. https://doi.org/10.1007/
$10009-016-0445-y

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649-678. https://doi.org/10.1109/TSE.2010.62

@ Springer

https://doi.org/10.1002/stvr.457
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1145/1985793.1985871
https://doi.org/10.1145/1985793.1985871
https://doi.org/10.1145/1810295.1810353
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1007/s11432-017-9153-3
https://doi.org/10.1002/spe.602
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.1109/ICSE-Companion.2019.00068
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/ICST.2012.92
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1145/2771783.2771809
https://doi.org/10.1007/978-3-319-17524-9_15
https://doi.org/10.1007/978-3-319-17524-9_15
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1007/s10009-016-0445-y
https://doi.org/10.1007/s10009-016-0445-y
https://doi.org/10.1109/TSE.2010.62

Empir Software Eng (2023) 28:36 Page 45 of 46 36

Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G (2014) Are mutants a valid substitute for real
faults in software testing? In: International Symposium on Foundations of Software Engineering (FSE),
ACM, pp 654—665. https://doi.org/10.1145/2635868.2635929

Kleinschmager S, Hanenberg S, Robbes R, Tanter E, Stefik A (2012) Do static type systems improve
the maintainability of software systems? an empirical study. In: International Conference on Pro-
gram Comprehension (ICPC), IEEE Computer Society, pp 153-162. https://doi.org/10.1109/ICPC.2012.
6240483

von Liicken C, Baran B, Brizuela CA (2014) A survey on multi-objective evolutionary algorithms for many-
objective problems. Comput Optim Appl 58(3):707-756. https://doi.org/10.1007/s10589-014-9644- 1

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl
10:707-710

Li G, Andreasen E, Ghosh I (2014) SymlJS: automatic symbolic testing of JavaScript web applications.
https://doi.org/10.1145/2635868.2635913

Lukasczyk S (2022) Artefact to our paper “an empirical study of automated unit test generation for python”.
https://doi.org/10.5281/zenodo.6838658

Lukasczyk S, Fraser G (2022) PYNGUIN: Automated unit test generation for python. In: International Con-
ference on Software Engineering Companion (ICSE Companion), [IEEE/ACM, pp 168—172. https://doi.
org/10.1145/3510454.3516829

Lukasczyk S, Kroif F, Fraser G (2020) Automated unit test generation for python. In: International Sympo-
sium on Search Based Software Engineering (SSBSE), Springer, Lecture notes in computer science, vol
12420. pp 9-24. https://doi.org/10.1007/978-3-030-59762-7_2

Lukasczyk S, Kroif F, Fraser G, Contributors P (2022) se2p/pynguin: PYNGUIN 0.25.2. https://doi.org/10.
105381/zenodo.6836225

MalL, Artho C, Zhang C, Sato H, Gmeiner J, Ramler R (2015) GRT: program-analysis-guided random testing
(T). In: International Conference on Automated Software Engineering (ASE), IEEE Computer Society,
pp 212-223. https://doi.org/10.1109/ASE.2015.49

Maclver D, Donaldson AF (2020) Test-case reduction via test-case generation: insights from the hypothesis
reducer (tool insights paper). In: European Conference on Object-Oriented Programming (ECOOP),
Schloss Dagstuhl — Leibnitz-Zentrum fiir Informatik, Leibnitz International Proceedings in Informatics
(LIPIcs), vol 166, pp 13:1-13:27. https://doi.org/10.4230/LIPIcs. ECOOP.2020.13

Maclver D, Hatfield-Dodds Z (2019) Hypothesis: a new approach to property-based testing. J Open Source
Softw 4(43):1891. https://doi.org/10.21105/joss.01891

Mairhofer S, Feldt R, Torkar R (2011) Search-based software testing and test data generation for a dynamic
programming language. In: Annual Conference on Genetic and Evolutionary Computation (GECCO),
ACM, pp 1859-1866. https://doi.org/10.1145/2001576.2001826

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Annal Math Stat 18(1):50—60. https://doi.org/10.1214/aoms/1177730491

Mayer C, Hanenberg S, Robbes R, Tanter E, Stefik A (2012) An empirical study of the influence of static
type systems on the usability of undocumented software. In: Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM, pp 683-702.
https://doi.org/10.1145/2384616.2384666

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308-320. https://doi.org/10.1109/
TSE.1976.233837

Meyerovich LA, Rabkin AS (2013) Empirical analysis of programming language adoption. In: Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM, pp 1-18. https://doi.org/10.1145/2509136.2509515

Mir AM, Latoskinas E, Gousios G (2021) Manytypes4py: a benchmark python dataset for machine learning-
based type inference. In: IEEE Working Conference on Mining Software Repositories (MSR), IEEE,
pp 585-589. https://doi.org/10.1109/MSR52588.2021.00079

Mirshokraie S, Mesbah A, Pattabiraman K (2015) JSEFT: Automated javascript unit test generation. In: Inter-
national Conference on Software Testing, Verification and Validation (ICST), IEEE Computer Society,
pp 1-10. https://doi.org/10.1109/ICST.2015.7102595

Pacheco C, Lahiri SK, Ernst MD, Ball T (2007) Feedback-directed random test generation. In: Interna-
tional Conference on Software Engineering (ICSE), IEEE Computer Society, pp 75-84. https://doi.org/
10.1109/ICSE.2007.37

Panichella A, Kifetew FM, Tonella P (2015) Reformulating branch coverage as a many-objective optimiza-
tion problem. In: International Conference on Software Testing, Verification and Validation (ICST),
IEEE Computer Society, pp 1-10. https://doi.org/10.1109/I1CST.2015.7102604

@ Springer

https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ICPC.2012.6240483
https://doi.org/10.1109/ICPC.2012.6240483
https://doi.org/10.1007/s10589-014-9644-1
https://doi.org/10.1145/2635868.2635913
https://doi.org/10.5281/zenodo.6838658
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1007/978-3-030-59762-7_2
https://doi.org/10.105381/zenodo.6836225
https://doi.org/10.105381/zenodo.6836225
https://doi.org/10.1109/ASE.2015.49
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/2001576.2001826
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1109/MSR52588.2021.00079
https://doi.org/10.1109/ICST.2015.7102595
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICST.2015.7102604

36 Page 46 0f 46 Empir Software Eng (2023) 28:36

Panichella A, Kifetew FM, Tonella P (2018a) Automated test case generation as a many-objective optimisa-
tion problem with dynamic selection of the targets. IEEE Trans Softw Eng 44(2):122-158. https://doi.
org/10.1109/TSE.2017.2663435

Panichella A, Kifetew FM, Tonella P (2018b) A large scale empirical comparison of state-of-the-art search-
based test case generators. Inf Softw Technol 104:236-256. https://doi.org/10.1016/j.infsof.2018.08.009

Papadakis M, Shin D, Yoo S, Bae D (2018) Are mutation scores correlated with real fault detection? a large
scale empirical study on the relationship between mutants and real faults. In: International Conference
on Software Engineering (ICSE), ACM, pp 537-548. https://doi.org/10.1145/3180155.3180183

Parry O, Kapthammer GM, Hilton M, McMinn P (2022) A survey of flaky tests. ACM Trans Softw Eng
Methodol 31(1):17:1-17:74. https://doi.org/10.1145/3476105

Pearson K (1895) Notes on regression and inheritance in the case of two parents. In: Proceedings of the Royal
Society of London, vol 58. pp 240-242

Rak-amnouykit I, McCrevan D, Milanova AL, Hirzel M, Dolby J (2020) Python 3 types in the wild: a tale of
two type systems. In: ACM SIGPLAN International Symposium on Dynamic Languages (DLS), ACM,
pp 57-70. https://doi.org/10.1145/3426422.3426981

Sakti A, Pesant G, Guéhéneuc Y (2015) Instance generator and problem representation to improve object
oriented code coverage. IEEE Trans Softw Eng 41(3):294-313. https://doi.org/10.1109/TSE.2014.
2363479

Schoofs E, Abdi M, Demeyer S (2022) Ampyfier: test amplification in python. J Softw Evol Process.
https://doi.org/10.1002/smr.2490

Selakovic M, Pradel M, Karim R, Tip F (2018) Test generation for higher-order functions in dynamic
languages. Proc ACM Prog Lang 2(OOPSLA):161:1-161:27. https://doi.org/10.1145/3276531

Tonella P (2004) Evolutionary testing of classes. In: International symposium on software testing and analysis
(ISSTA), ACM, pp 119-128. https://doi.org/10.1145/1007512.1007528

Triibenbach D, Miiller S, Grunske L (2022) A comparative evaluation on the quality of manual and automatic
test case generation techniques for scientific software—a case study of a python project for mate-
rial science workflows. In: International Workshop on Search-Based Software Testing (SBST@ICSE),
IEEE/ACM, pp 6-13. https://doi.org/10.1145/3526072.3527523

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of mcgraw and wong. J Educ Behav Stat 25(2):101-132

Wappler S, Lammermann F (2005) Using evolutionary algorithms for the unit testing of object-oriented
software. In: Annual Conference on Genetic and Evolutionary Computation (GECCO), pp 1053-1060.
https://doi.org/10.1145/1068009.1068187

Wibowo JTP, Hendradjaya B, Widyani Y (2015) Unit test code generator for lua programming language.
In: International conference on data and software engineering (ICoDSE), IEEE, pp 241-245. https://doi.
org/10.1109/ICODSE.2015.7437005

Widyasari R, Sim SQ, Lok C, Qi H, Phan J, Tay Q, Tan C, Wee F, Tan JE, Yieh Y, Goh B, Thung F,
Kang HJ, Hoang T, Lo D, Ouh EL (2020) Bugsinpy: a database of existing bugs in Python programs to
enable controlled testing and debugging studies. In: Joint Meeting of the European Software Engineer-
ing Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE), ACM,
pp 1556—1560. https://doi.org/10.1145/3368089.3417943

Xie T (2006) Augmenting automatically generated unit-test suites with regression oracle checking. In: Euro-
pean Conference on Object-Oriented Programming (ECOOP), Springer, Lecture Notes in Computer
Science, vol 4067. pp 380—403. https://doi.org/10.1007/11785477-23

XuZ,LiuP, Zhang X, Xu B (2016) Python predictive analysis for bug detection. In: International Symposium
on Foundations of Software Engineering (FSE), ACM, pp 121-132. https://doi.org/10.1145/2950290.
2950357

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1016/j.infsof.2018.08.009
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/3476105
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1002/smr.2490
https://doi.org/10.1145/3276531
https://doi.org/10.1145/1007512.1007528
https://doi.org/10.1145/3526072.3527523
https://doi.org/10.1145/1068009.1068187
https://doi.org/10.1109/ICODSE.2015.7437005
https://doi.org/10.1109/ICODSE.2015.7437005
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1007/11785477_23
https://doi.org/10.1145/2950290.2950357
https://doi.org/10.1145/2950290.2950357

	An empirical study of automated unit test generation for Python
	Abstract
	Introduction
	Background
	Unit Test Generation with Pynguin
	The Pynguin Framework
	Feedback-Directed Random Test Generation
	Whole Suite Test Generation
	Many-Objective Sorting Algorithm (MOSA)
	Dynamic Target Selection MOSA (DynaMOSA)
	Many Independent Objectives (MIO)

	Problem Representation
	Test Cluster
	Operators for the Genetic Algorithms
	The Crossover Operator
	Test-suite Crossover
	Test-case Crossover

	The Mutation Operator
	Test-suite Mutation
	Test-case Mutation
	The Insertion Mutation Operation
	The Change Mutation Operation
	The Remove Mutation Operation

	Covering and Tracing Python Code
	Fitness Functions
	Test-suite Fitness
	Test-case Fitness

	Assertion Generation
	Limitations of Pynguin

	Empirical Evaluation
	Experimental Setup
	Experiment Subjects
	Experiment Settings
	Evaluation Metrics
	Data Availability

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	RQ1: Comparison of the Test-Generation Approaches
	Discussion:

	RQ2: Influence of Type Information
	Discussion:

	RQ3: Assertion Effectiveness to Reveal Faults
	Discussion:

	Related Work
	Conclusions
	Appendix A : Comparison of Coverage Improvements
	Declarations
	References

