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Abstract
The Product Line Architecture (PLA) is a crucial artifact for the development of Software
Product Lines. However, PLA is a complex artifact to be designed due to its large size and
the multiple conflicting properties that need to be considered to ensure its quality, requiring
a great effort for the architect. PLA designing has been formulated as an optimization prob-
lem aiming at improving some architectural properties in order to maximize both the feature
modularization and the relational cohesion, and to minimize the class coupling. This kind of
problem was successfully solved by multi-objective evolutionary algorithm. Nevertheless,
most of existing approaches optimize PLA designs without applying the crossover oper-
ator, one of the fundamental genetic operators. To overcome these limitations, this paper
aims to intensify the search-based PLA design optimization by presenting three crossover
operators. These operators were empirically evaluated in quantitative and qualitative studies
using three well-studied PLA designs. The experiments were conducted with eight exper-
imental configurations of NSGA-II in comparison with a baseline that uses only mutation
operators. Empirical results showed that there are significant differences among the use of
only mutation and mutation with crossover. Also, we observed that the crossover operators
contributed to generate solutions with better feature modularization. Finally, we could see
that the proposed operators complement each other, since the experiment that combines at
least two of the proposed operators achieved better results.
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1 Introduction

The architecture of a software system comprehends its components and the relationship
between them (Bass et al. 2003). Defining a proper architecture is paramount to develop a
system (Gomaa 2011). For developing a family of software products, Product Line Archi-
tecture (PLA) is one of the main artifacts to be defined for the Software Product Line (SPL).
A PLA describes all available features for the family and presents the architectural varia-
tions for creating SPL products (Van der Linden et al. 2007). However, designing a PLA is
a non-trivial activity, since SPL architects should consider important, sometimes conflict-
ing, properties such as extensibility, reusability and modularity (Colanzi et al. 2014). These
properties play an important role in the PLA design to maximize the reuse, maintenance, and
evolution of an SPL. For example, feature modularization must be taken into account during
the design of a PLA, as it directly impacts on SPL extensibility and reusability (Nunes et al.
2009). Modularity also affects cohesion, coupling, crosscutting, and tangling among com-
ponents in a PLA (Czarnecki 2013). The higher feature modularization, the lower scattering
functionality in PLA design. Scattering functionalities negatively impact PLA extensibility.
A proper PLA is important for the whole SPL life cycle, since it supports the configuration
of many products (Van der Linden et al. 2007).

To aid the designing of PLAs, e.g., dealing with variability and modularization, opti-
mization approaches with multi-objective evolutionary algorithms (MOEAs) have been
successfully applied (Colanzi et al. 2014; Colanzi and Vergilio 2016; Choma Neto et al.
2019). MOEAs are bio-inspired computational intelligence metaheuristics based on the pro-
cess of natural selection (Deb 2015). Traditionally, MOEAs apply crossover and mutation
operators to perform changes in an individual, i.e., solution, with the goal of performing
an evolutionary process of optimization. These changes evolve an existing PLA design
to improve it with regard to given properties, such as feature modularization, relational
cohesion and class coupling (Colanzi et al. 2014). However, the use of crossover opera-
tor has been poorly investigated for designing PLAs (discussed in related work, Section 2).
The crossover operator is arguably one of the fundamental operators of evolutionary algo-
rithms (Goldberg 1989). This operator combines parts of two different individuals (parents)
to create offspring. In the context of architectures for traditional single software systems,
crossover operators have been used to merge two alternative designs in order to take the
best parts of them (Räihä et al. 2009). Yet, empirical results of a study about software
design revealed that exclusively using the mutation operator lead to a very homogeneous
population of solutions, quickly reaching a local optimum (Räihä et al. 2009). This con-
firms the importance of the crossover operator to combine genes for maintaining diversity
within the population. Hence, the crossover operator is crucial to the evolutionary process
for promoting diversity. This is the main motivation of our work.

The majority of existing studies do not apply crossover operator to optimize PLA designs
(Colanzi et al. 2014; Choma Neto et al. 2019; Choma Neto et al. 2018; Guizzo et al. 2017).
Only one study introduced a crossover operator, called Feature-driven Crossover, which
has the goal of maintaining and improving feature modularization in PLA designs (Colanzi
and Vergilio 2016) (further details in Section 3). A qualitative analysis of the application
of this crossover operator concluded that fitness and diversity of solutions are improved.
However, a side effect was observed, which is the generation of some incomplete solutions,
with methods and attributes missing in classes of the resulting PLAs (Colanzi and Vergilio
2016). To fill this gap in the research and practice of optimizing PLAs, in a previous work
we presented two effective crossover operators to enhance the search-based PLA design
optimization (Silva et al. 2020). Specifically, we proposed a new version of Feature-driven
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Crossover (Colanzi and Vergilio 2016) correcting the problem of incomplete solutions, and
adapt the Complementary Crossover (Räihä et al. 2010) that focus on creating a solution so
that parents complement each other, to the PLA design context (Silva et al. 2020). In an in-
depth quantitative and qualitative evaluation, we observed that the benefit of using crossover
operators is to combine/merge parts already optimized in different individuals. These opera-
tors lead to more diversity in the population of potential PLA designs. In addition, crossover
operators generated solutions with better feature modularization (Silva et al. 2020).

In this present paper, we present an extension of our previous work (Silva et al. 2020).
The goal of our work reported in this extension is to intensify the search-based PLA design
optimization by providing three effective crossover operators (described in Section 4). In
this extension, we present a third new crossover operator for the optimization of PLAs,
namelyModular Crossover. Also, we present an empirical study (Section 5) with three sub-
ject PLAs to quantitatively evaluate the performance of the PLA optimization when using
crossover operators, providing an additional real-world subject system to enrich analysis
and the generalization of the results. We evaluate experimental configurations when using
each crossover operator individually, as well as all the combination of crossover operators,
summing eight experimental configurations, five more than in our previous work. For a
qualitative evaluation, we investigate the impact of the crossover operators regarding the
feature modularization of the PLA design solutions. Furthermore, as part of this extension,
we conducted a qualitative study with five software engineers, experts in SPL Engineer-
ing and two of the subject PLAs, to collect their opinion about characteristics of obtained
solutions. Finally, we performed an extended analysis and discussion of the results.

Summarizing, the main contributions of this paper are: (i) the improved version of
Feature-driven Crossover to avoid incomplete or inconsistent solutions; (ii) two addi-
tional crossover operators for PLA design, namely Complementary Crossover andModular
Crossover; (iii) an in-depth quantitative and qualitative evaluation of the proposed crossover
operators involving three SPLs, which shows the positive impact of the proposed opera-
tors to PLA design (Section 6); (iv) a qualitative analysis of solutions generated for two
SPLs by experts in SPL engineering, where the solutions obtained using combinations of
the crossover operators were the most accepted ones; and, (v) the empirical results clearly
show that the proposed crossover operators complement each other, achieve more diversity
of solutions and enable the generation of solutions with better feature modularization.

2 RelatedWork

For covering the existing literature on the topic of this work, we performed a systematic
review of studies, according to the guidelines presented by Kitchenham and Charters (2007).
The main goal was to identify existing crossover operators for software design and how
they impact the generation of solutions. The protocol of the systematic review as well as the
obtained results were made available in the supplementary material.1

For conducting the systematic review study, based on the aforementioned goal, we designed
a search string composed of three set of keywords:2 (i) software architecture, (ii) evolutionary

1The supplementary material is available at: https://doi.org/10.5281/zenodo.6516279
2Example of search string with synonyms and complementary keywords: (“Software Design” OR “Soft-
ware Architecture”) AND (“Evolutionary Algorithm” OR “Genetic Algorithm”) AND (“Crossover” OR
“Crossover Operator” OR “Recombination”)
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algorithms, and (iii) crossover operator. The search string was used for retrieving primary
sources from six digital libraries.3 In addition to digital libraries, we also conducted manual
searches on Google Scholar4 and backwards snowballing (Wohlin 2014). All the searches
retrieved 906 results, from which we selected five papers aligned with our review goal. The
selection of these works was carried out through the application of exclusion and inclusion
criteria, such as the type of representation of the problem and the possibility of adaptabil-
ity to the PLA design context. Other inclusion criteria were: peer-reviewed papers, text in
English, focus on optimization of software design, and describing crossover operators.

The majority of studies were excluded because they do not focus on software design or
PLA design (>70%). Around 13% were excluded because, in spite of dealing with software
design optimization, they did not present a crossover operator proposal or implementation.
Around 7% of the collected studies present a crossover operator but they are not adaptable
for the context of the software design. Thus, the exclusion in large numbers is due to these
restrictions and the difficulty of finding works that use a crossover operator that can be
adapted to the context of optimization of PLAs, taking into account the PLA encoding
adopted by MOA4PLA.

Regarding the five papers accepted in our SLR, four of them present crossover oper-
ators for software design optimization or PLA design optimization. Only one study was
included because it uses a representation suitable to be adapted to a UML class diagram.
The crossover operators identified in our review, their characteristics and impact on the
generated solutions, are described next.

For the optimization of traditional software architectures, i.e., single systems, Simons
et al. (2010) presented a strategy based on an interactive evolutionary algorithm to opti-
mize object-oriented class design. This evolutionary algorithm applies a Trans-Positional
Crossover operator that randomly chooses and swaps attributes and methods between two
parents, based on their class position. The only constraint is that each class in the design
must contain at least one attribute and one method. Thus, this positional swapping can only
occur for a class that would not be empty of attributes or methods after the application of
the crossover.

Instead of randomly selecting attributes and methods, Räihä et al. (2010) proposed a
more elaborated crossover to preserve quality attributes present in different individuals, i.e.,
software architectures. These authors presented the Complementary Crossover operator that
chooses and combines two parents having an optimized structure for given quality attributes.
The rationale is to preserve and combine good quality attributes from the parents in the
children. For example, an architecture with good modifiability and another architecture
with good reusability are selected as parents so that the children might inherit both desir-
able qualities. The Complementary Crossover was implemented in two versions, namely
Simple Complementary Crossover and Complementary Gene-Selective Crossover. The first
one applies a random crossover point to the parents, whereas the second version finds
the best crossover point in order to use the optimal portion of both parents. Experimental
results based on fitness of the solutions showed that the two versions of the Complemen-
tary Crossover lead to more flexible and elaborated architectures. However, although a
qualitative evaluation was presented, there was no in-depth analysis involving experts.

3Digital libraries commonly used for Software Engineering literature: IEEE Xplore, ACM Digital Library,
Scopus, Springer Link, Engineering Village, and ScienceDirect.
4Google Scholar indexes scholarly literature: https://scholar.google.com/
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Despite generating better architectures in terms of fitness functions, the operators pre-
sented by Simons et al. (2010) and Räihä et al. (2010) do not guarantee a proper mod-
ularization of architectural elements. Since their crossover operators does not focus on
modularization, some resulting architectures present scattering of elements assigned to
implementation of features.

To deal with this problem, Harman and Hierons (2002) introduced aModular Crossover
operator, which is based on a clustering algorithm. This operator focuses on preserving
allocations of complete or partial modules from a parent to a child. The Modular Crossover
Operator operates by randomly choosing similar modules in the two parents, instead of
selecting an arbitrary crossover point. Then, the components of the chosen modules are
exchanged between both parents. This mechanism implies the idea of integral preservation
of at least one parent module in the children, and that portions of other modules are also
retained.

None of the aforementioned operators were designed to consider architectures of SPLs,
dealing with feature modularity. To tackle this limitation, inspired by the Modular Crossover
operator presented by Harman and Hierons (2002), Colanzi and Vergilio (2016) proposed
the Feature-driven Crossover operator. This operator is applied by randomly selecting a fea-
ture of the SPL, and then creating children by swapping the architectural elements (classes,
interfaces, operations, etc.) that realize the selected feature. The rationale is to create chil-
dren that combine architectural elements that better modularize SPL features that were
inherited from their parents. In an empirical study to evaluate the benefits of the Feature-
driven Crossover to PLA design optimization (Colanzi and Vergilio 2016), the authors
concluded that resulting architectures in fact had a good feature modularization. However,
despite the noticeable improvement in the exploration of the search space with this oper-
ator, the authors discussed that inconsistent solutions were generated. These inconsistent
solutions lead to a degradation of the evolutionary process, as the individuals of these solu-
tions were removed from the population. In this sense, the authors acknowledged the need
of improvements in the implementation of the operator to reach better solutions along the
evolutionary process.

In summary, by the results of our systematic review study, we could observe that archi-
tectural optimization is an active topic of research. Several studies deal with optimization
of traditional software architectures (Simons et al. 2010; Räihä et al. 2010; Harman and
Hierons 2002; Colanzi and Vergilio 2016) and only a few of them focus on PLAs (Colanzi
and Vergilio 2016; Féderle et al. 2015). Based on the analysis of these pieces of work, we
observed that only one crossover operator for PLAs were proposed (Colanzi and Vergilio
2016), which occasionally generates inconsistent solutions. We can clearly see that there is
a need for more crossover operators to improve the optimization of PLA designs, leading to
better development of SPLs.

3 Search-based Design of PLA

One of the most prominent approaches to optimize PLA designs is the Multi-Objective
Approach for Product-Line Architecture Design (MOA4PLA) (Colanzi et al. 2014). The
several objective functions, which composes an evaluation model (Verdecia et al. 2017), are
based on software metrics that provide information about architectural properties relevant
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to a PLA design. The objective functions currently supported by MOA4PLA are: feature
modularization, SPL extensibility, variability, coupling, and cohesion.

3.1 Representation

The input for MOA4PLA is a PLA designed as a UML class diagram. This diagram
must have each architectural element associated to the feature(s) that it realizes. The asso-
ciations between elements and features are described by using UML stereotypes. For
allowing the optimization with evolutionary algorithms, the PLA is represented using a
metamodel (Fig. 1) that contains all architectural elements such as components, classes,
attributes, methods, interfaces, operations, interrelationships, variabilities, variation points,
and variants (Colanzi et al. 2014).

In this context, an individual is composed of the architectural representation of a PLA
design represented by a class diagram relying on the metamodel of Fig. 1. The initial popula-
tion is formed by n individuals, in which each individual is obtained by applying a mutation
operator selected at random on the original PLA design. Over generations, new solutions are
created by the application of crossover and mutation operators. These solutions are added
to the population and the best ones are selected to be kept in the population.

The output of the optimization process is a set of design solutions, which are decoded
as class diagrams, that consists of alternative designs for the PLA given as input. This set
contains solutions with the optimized trade-off among the objectives that are optimized.
Based on this set of alternative solutions, the software architect can decide which to adopt
for the SPL development.

3.2 Genetic Operators

The PLA optimization is performed with evolutionary algorithms by successively apply-
ing genetic operators in an evolutionary process. These genetic operators are mutation and

Fig. 1 PLA Metamodel (Colanzi et al. 2014)
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crossover operations responsible for moving architectural elements (methods, attributes,
operations), adding elements (class, package) or modularizing features in a way that
positively impacts some property of the solution.

The piece of work that introduced MOA4PLA presented six mutation operators specific
for PLA design (Colanzi et al. 2014), namely Move Method, Move Attribute, Add Class,
Move Operation, Add Package Manager, and Feature-driven Mutation. The Feature-driven
Mutation operator aims to improve feature modularization of a PLA. This mutation operator
helps to obtain PLA designs with less scattered and tangled features, improving the feature
cohesion of the architectural packages. The movements are performed taking into account
the architectural layer of the elements. In addition to the mutation operators, an extension of
the MOA4PLA presented a crossover operator named Feature-driven Crossover (Colanzi
and Vergilio 2016), which is explained in details in Section 4.2.1.

3.3 Fitness Functions

The evaluation model used by MOA4PLA provides a set of objective functions. The
approach allows users to select the functions related to the properties that they want to opti-
mize. The complete descriptions and equations to compute each objective function of the
evaluation model are presented in the work of Verdecia et al. (2017). In the context of our
work, the three objective functions used are: COE (Relational Cohesion), ACLASS (Class
Coupling), and FM (Feature Modularization).

COE measures the cohesion of a PLA design in terms of internal relationship of the
design classes, measured by theH metric5 (1). Basically, theH metric measures the number
of internal relationships per class in a component. ACLASS evaluates the coupling of a
class by computing the number of architectural elements that depend on other design classes
(CDepIn), added to the elements number in which each class depends on (CDepOut), as
presented in (2). In the case of (1) and (2), c is the number of classes.

FM evaluates the feature modularization of a solution based on the sum of the metrics for
feature scattering (CDAC, CDAO, CDAI ), feature interlacing (CIBC, IIBC,OOBC)
and feature-driven cohesion (LCC) (3), where pla is a given PLA design, c is the number
of components, and f is the number of its features. More details of the equations of the
objective functions and their metrics are presented in Verdecia et al. (2017).

COE(pla) = 1
∑c

i=1 H
(1)

ACLASS(pla) =
c∑

i=1

CDepIn +
c∑

i=1

CDepOut (2)

FM(pla) =
c∑

i=1

LCC +
f∑

i=1

CDAC +
f∑

i=1

CDAI +
f∑

i=1

CDAO +
f∑

i=1

CIBC

+
f∑

i=1

IIBC +
f∑

i=1

OOBC (3)

5The value of H is inverted in COE, as we are interested in maximizing the cohesion and MOA4PLA
minimizes all the objective functions.
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As evidenced in previous work (Choma Neto et al. 2019; Silva et al. 2020), these three
objective functions are conflicting. COE and ACLASS are inversely proportional, whereas
the competing between FM and COE (or ACLASS) is stronger or weaker depending on
the PLA design given as input. The results of the evaluation of this work corroborates such
statements.

3.4 Tool to Support the Application of MOA4PLA

To motivate practical adoption, easier replication of experiments, and new studies on
PLA optimization, MOA4PLA is implemented in an open source tool named OPLA-
Tool6 (Féderle et al. 2015; Freire et al. 2020). OPLA-Tool allows users to choose different
multi-objective algorithms, such as NSGA-II (Deb et al. 2002) and PAES (Knowles and
Corne 2000), as well as an easy way to include new algorithms.

4 Proposal of Crossover Operators for PLA Design

In this section, we present methods adopted to keep consistency of PLAs generated during
the evolutionary process and three crossover operators to intensify the PLA design optimiza-
tion. It is important to mention that the methods proposed in Section 4.1 are intended for
the crossover operation and not mutation, since the MOA4PLA approach checks whether
the solution is valid or not, discarding the invalid ones from the population. This validation
operation already existed and was maintained.

4.1 Consistency of the Generated Solutions

Software architectures are complex artifacts. In addition, when dealing with architectures
using UML class diagrams, these artifacts are constrained to many detailed properties.
These characteristics make any automatic strategy to deal with this artifact a difficult task.
For instance, Harman and Tratt (2007) stated that it is hard to guarantee the accuracy of
architectures when applying crossover operators. This was observed in a previous study,
in which incomplete solutions were obtained during the Feature-driven Crossover appli-
cation (Colanzi and Vergilio 2016). These incomplete solutions are due to the fact that
attributes or methods, associated with features that were tangled in the same class, end up
being lost after the crossover. Taking this into account, we propose two methods used to
maintain the consistency and completeness when dealing with PLAs. These methods are
Diff and RemoveDuplicate.

The Diff method is designed to search in the parents the elements missing in children, to
consequently include these elements in the new generated solutions. Algorithm 1 presents
the pseudocode of the Diff method. The list diffListsElements, with all elements of the par-
ent that do not exist in the offspring, is created (line 1). For each element of diffListElements,
it is checked if the child has the counterpart corresponding to element (line 3). If so, meth-
ods and attributes from element are included to the corresponding element in the child (line
5). Otherwise, the entire element is included in the child.

6https://github.com/otimizes/OPLA-Tool
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After the application of the Diff method, the RemoveDuplicate method is applied to
remove duplicate elements (methods and attributes) from the child. These duplicate ele-
ments can be originated during the crossover operation. The decision of which element
should be removed is based on the feature modularization, which means the element with
the worst feature modularization is removed. Algorithm 2 presents the pseudocode of
RemoveDuplicate. In lines 1 and 2, the list of elements and the list of the child’s elements,
respectively listElems and elementsOffspring, are initialized. listElems is an empty list and
elementsOffspring contains all child’s classes and interfaces. Then, the algorithm checks
for all elements of the child whether listElems contains these methods or attributes (lines
3 to 6). When contained, it means that the method or attribute is duplicated. Next, the get-
WorstMA method (line 7) compares the current method or attribute ma to that previously
one stored in listElems. This comparison takes into account the feature modularization of
the elements (class or interface) to which the duplicate method or attribute belongs. The
one with the worst modularization is selected to be removed from the offspring (line 8). The
modularization of each element is evaluated based on feature interlacing and feature-driven
cohesion. If the method or attribute is not in listElems, it is added to the list (line 10).

The application of both proposed methods leads to the generation of complete and con-
sistent solutions. On one hand, theDiff method guarantees the inclusion of missing elements
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and, on the other hand, the removeDuplicate method eliminates the duplicate elements in a
solution.

4.2 Proposed Crossover Operators

In this section, we present details of the three crossover operators that are one of the contri-
butions of this work. The Feature-driven Crossover operator is a new version of the operator
originally proposed in Colanzi and Vergilio (2016). The Complementary Crossover operator
was inspired in the Simple Complementary Crossover proposed by Räihä et al. (2010). The
Modular Crossover operator was based on the crossover proposed by Harman and Hierons
(2002).

The original versions of the two latter operators use different chromosome representa-
tions, which cannot be directly mapped to a PLA design. Hence, the Modular Crossover
and the Complementary Crossover proposed for the PLA design context use a different
individual encoding. Our crossover operators are based on the PLA design representation
explained in Section 3.1 (see Fig. 1). In this sense, the crossover operators perform the
transfer of architectural elements (such as packages, classes, interfaces, methods, attributes,
relationships, and variabilities) from parents to the children, following different rationales
as presented in the next sections.

4.2.1 Feature-Driven Crossover

The Feature-driven Crossover operator is designed to improve the feature modularization of
a PLA design. Its motivation is the fact that a PLA with low feature modularization is likely
to suffer early modifications to accommodate new products. These modifications make it
difficult to maintain the design stability over time. Figure 2 illustrates the application of
this operator. On the left side of the figure, Parent1 is represented by gray elements and
Parent2 by white elements. The features that are realized by each element, only of type
class in this example, are represented by stereotypes, e.g., <<Fn>>. Let us suppose that
the feature <<F1>> was chosen to be swapped between the parents. Then, the elements
of Parent1 and Parent2 that are not associated with <<F1>> are copied to Child1 and
Child2, respectively. Next, the operator reallocates the elements of Parent1 associated with
<<F1>> to Child2 and the elements of Parent2 to Child1. The resulting children are
presented on the right side of the figure.

Fig. 2 Feature-driven Crossover
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Algorithm 3 presents the pseudocode of the Feature-driven Crossover operator. Firstly, a
list of all features of parent1 is added in F (line 1) and a feature fx is randomly selected from
F (line 2). After, all elements associated with fx of both parents are collected and placed in
c1 and c2. The two children are initialized as copies of parent1 and parent2 (lines 5 and 8).
Next, all elements of offspring1 and offspring2 associated with the fx feature are removed
(lines 6 and 9). Then, all elements and relationships associated with fx and that belong to
parent2 are added in offspring1 (line 7). Similarly, all elements and relationships of parent1
associated with fx are added to offspring2 (line 10). The operations to guarantee the con-
sistency of the solution are highlighted in lines 11–16. The Diff method is applied in both
offspring1 and offspring2 to recover the elements potentially lost during the crossover oper-
ation (lines 11–12 and 15–17). The RemoveDuplicatemethod is applied to remove duplicate
elements in offspring1 and offspring2 (lines 13 and 16). Hence, the Diff and RemoveDu-
plicate methods solve the problem of consistency of the original version of Feature-driven
Crossover (Colanzi and Vergilio 2016). Finally, the links related to variability of each child
are updated (lines 17–18).

4.2.2 Complementary Crossover

The Complementary Crossover operator has the goal of creating offspring from parents
that are complementary regarding given quality attributes. The original version of the Com-
plementary Crossover (Räihä et al. 2010) is concerned with only two objectives, namely
modifiability and reusability. On the other hand, MOA4PLA is a multi-objective approach
that allows optimizing more than two objectives. Hence, we had to adapt our version of this
operator to deal with a greater number of objectives. The first step for the application of this
operator is to create a list with all individuals for each objective. Then, each list is sorted to
rank the individuals according to a specific objective, i.e., sort the individuals in ascending

Empir Software Eng (2022) 27:166 Page 11 of 44    166



order based on an exclusive objective fitness. This enables the algorithm to select parents
giving priority to the best solutions in relation to the objective related to the list. That is,
the better the solution, the greater the chance it will be chosen to be selected as a parent.
In MOA4PLA, the number of lists is similar to the number of objectives, which is defined
by the user. Each list stores information related to a particular objective. The next step is to
randomly select two lists, i.e., two objective functions, to perform the crossover. Then, one
parent is picked from each list by applying the standard roulette wheel selection, preferably
selecting the best ones for each objective.

Figure 3 presents an overview of the application of the Complementary Crossover oper-
ator. To avoid duplication of elements when applying the operator, the crossover point is
defined only at one parent. In this illustrative example, the crossover point (CP) is defined
for Parent1, on the left side of the figure. The crossover will operate in the parts of the
solution after the crossover point, which is the hachured part in Parent1. Parent2 is repre-
sented in gray, in the middle of the figure. To perform the crossover, firstly, the child on the
right side, receives the part that precedes the crossover point of Parent1, illustrated as the
white part in the child. Secondly, it receives elements from Parent2 that are not yet in the
child, represented by the gray part in the child. Finally, the child receives the part after the
crossover point, the hachured part, that is not yet in the child. In this way, the completeness
and consistency of the generated solution is guaranteed.

For dealing with PLAs representation, the definition of only one single crossover point
is not suitable to apply the Complementary Crossover operator. To overcome this problem,
three lists are created to different types of architectural elements, namely packages, classes,
and interfaces; as the elements are organized in different lists. Thus, we can create crossover
points for each one of them, that makes it possible to divide the PLA design into parts.

Algorithm 4 presents the pseudocode of our Complementary Crossover operator. Firstly,
chosenParent receives one of the two parents that is randomly selected (line 2). Then,
a crossover point cp is defined randomly for the chosenParent (line 3). After, the child
receives all elements of chosenParent placed before the crossover point (line 4) and ele-
ments from the other parent that are not yet in the child (line 5). Next, the chosenParent
elements that the child does not have yet, placed after the crossover point, are added to the
child (line 6). Finally, the operations performed in the lines 5 and 6 are the Diff method,
adding elements from parents that aren’t in the child, and variability links of the off spring

are updated (line 7). As only elements that the child does not have are added, there is no
possibility of duplicate methods and attributes. Therefore, it is not necessary to apply the
removeDuplicate method.
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Fig. 3 Complementary Crossover

4.2.3 Modular Crossover

The Modular Crossover operator focus on preserving allocations of complete or partial
modules from a parent to a child. Differently from the Feature-driven Crossover, which is
based on grouping architectural elements of a specific feature, the Modular Crossover relies
on structural aspects of the PLA modules, which are packages or components. The rationale
is that a module in a PLAmay already be well modularized, then, the child will likely benefit
from having this package as it is. In summary, the Modular Crossover guarantees the full
preservation of at least one module of one parent in the child and the partial preservation of
the other modules (Harman and Hierons 2002).

We adapted the original Modular Crossover (Harman and Hierons 2002) operator to opti-
mize PLAs. Some elements of the selected module of a PLA can relate to one or more
elements of one or more modules. This implies the need to also copy other modules related
to the chosen one to the child. Additionally, instead of excluding the modules from both
parents as in the original version of this operator (Harman and Hierons 2002), our adapta-
tion flags the modules as “deleted”, in order to not be selected again when completing the
children. Thus, every time a module with relationships is included to the child, it should be
checked whether the target module that the chosen module relates to is marked as “deleted”.
If so, the module is not included to the child, otherwise, it is included.

Two constraints are taken into account regarding the relationships of the modules.
Figure 4 presents an illustrative example to explain such constraints. Firstly, only relation-
ships that imply that the source module depends on the target module will be taken into

Fig. 4 Dependency between modules
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account. For example, if the module M1 has a relationship with the module M4, but does
not depend onM4, onlyM1 is preserved in the child. Secondly, exclusion of indirect depen-
dencies. For example, if M1, the module chosen, depends on M2, and M2 depends on M3,
onlyM1 andM2will be preserved in the child, as they are directly related. These constraints
are important because a well-designed PLA mostly have modules/components taking part
in relationships to other ones. That is, if the operator maintains all relationships, i.e., direct
and indirect relations, the child would tend to be very similar to one of the parents.

The last adaptation of the Modular Crossover operator is related to the selection of the
module from one of the parents, which in our version takes into account the particularities
of PLAs, such as variation points and SPL features. We opt for prioritizing the selection of
module with the highest number of variation points. In case of a tie, the criterion changes to
the module with the highest number of relationships. If this condition also results in a tie,
the tiebreaker criterion is the smallest number of features.

Algorithm 5 presents the pseudocode of the Modular Crossover. The lines 12 to 32, are
related to the criteria for selecting the module to be preserved to the child, which is applied
using listPackage. The elements of the module selected from listPackage are included to the
child (line 28). After that, the existing elements that were passed to the child are flagged as
“deleted” from both parents (lines 34 and 35, respectively). With the completion of the while
loop (line 36), the method addElementsNotInPackage completes the child (lines 37 and 38).
Then, the Diff (lines 39 and 40) and RemoveDuplicate (line 41) methods are applied to
maintain the consistency of the solution. In line 42, the references links of variabilities are
updated.

5 Empirical Study Design

This section describes details of the empirical study conducted to evaluate the crossover
operators proposed in this work.

5.1 Research Questions

In our study, we aim at answering the following research questions (RQ):

RQ1—What is the benefit of using crossover operators in the optimization of PLA
design in comparison to the state of the art? This is the main RQ of our study because
after proposing the three crossover operators, it is important to know whether they are
beneficial for search-based PLA design or not. Benefit in this context means the positive
impact on the characteristics of solutions that result in a well-designed PLA. These char-
acteristics are measure based on architectural properties such as feature modularization,
relational cohesion or class coupling, which are directly related to the improvement of
the fitness values of these solutions. In this question, we intend to characterize which are
the main benefits of the proposed crossover operators for PLA design.
RQ1.1—What is the performance of the proposed crossover operators for PLA
design optimization in terms of quality indicators? To answer this question, we con-
ducted a quantitative analysis, relying on quality indicators adopted in multi-objective
optimization, in order to evaluate the obtained results. The PLAs used to answer
this question were obtained by selecting the solutions among those that presented the
best trade-off after merging all the solutions from the 30 independent runs of each
experimental configuration.
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RQ1.2—What is the impact of the crossover operators on feature modularization
of the PLA design solutions? Taking into account the importance of feature modular-
ization for SPL engineering, it is important to know which is the impact caused by the
crossover operation on this architectural property. To answer this RQ, we analyzed the
quantitative data and performed a detailed analysis on several of the obtained design solu-
tions. The PLA solutions used to answer this question were obtained by selecting those
that presented the best trade-off after merging all the solutions from the 30 independent
runs. Furthermore, for the detailed analysis of the obtained solutions, those with the best
ED value regarding the 30 independent runs were used.
RQ1.3—Which crossover operator generates better solutions according to the
experts? To answer this question, we invite software engineer experts in SPL engineering
for evaluating eight solutions generated in our empirical study. So, this was an impartial
evaluation performed by people who do not know our proposed operators. For the analy-
sis with the experts, the solutions with the best ED and trade-off value of each experiment
were selected, thus obtaining eight solutions, i.e., one solution per experiment.

5.2 Quantitative Study

A quantitative study was conducted to evaluate the performance of the proposed crossover
operators. We present details of this study next.

5.2.1 Subject PLA Designs

In the experimental study we used three PLA designs: Arcade Game Maker (AGM) (2009),
Mobile Media (MM) (Contieri et al. 2011), and a real-world SPL named Electronic Tickets
in Urban Transportation (BET) (Donegan and Masiero 2007).7 AGM was created by the
Software Engineering Institute (SEI). This SPL is composed of three arcade games, namely
Brickles, Bowling and Pong (2009). MM is a mobile application that implements features to
handle with music, video, and photo in portable devices (Young 2005). BET was developed
for the management of municipal public transport bus services, offering various features for
passengers and road companies, such as using an electronic card for transportation payment,
automatic toll opening, and unified travel payment (Donegan and Masiero 2007). Table 1
presents architectural elements numbers of both PLA designs.

5.2.2 Experimental Configurations

For investigating the behavior of every single crossover, as well as their combinations, our
study considered eight experimental configurations, as follows:

1. BASE is the baseline experiment where only the six mutation operators of MOA4PLA
are applied, as done in previous studies (Colanzi et al. 2014; Choma Neto et al. 2019).

2. FdC applies the Feature-driven Crossover and the six mutation operators.
3. CC applies the Complementary Crossover and the six mutation operators.
4. MC applies the Modular Crossover and the six mutation operators.
5. FdC+CC applies the Feature-driven Crossover, the Complementary Crossover, and the

six mutation operators.

7The file of each PLA used to conduct the study is available at https://github.com/otimizes/OPLA-Tool/tree/
master/plas
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Table 1 Number of architectural elements of the subject PLA designs

PLA Components Interfaces Classes Mandatory Variable

features features

AGM 9 14 30 6 5

MM 8 15 14 7 7

BET 56 30 115 8 10

6. FdC+MC applies the Feature-driven Crossover, the Modular Crossover, and the six
mutation operators.

7. CC+MC applies the Complementary Crossover, the Modular Crossover, and the six
mutation operators.

8. All applies all crossover operators and the six mutation operators.

5.2.3 Search-Based Algorithm, Objective functions, and Parameter Settings

All experiments were executed using NSGA-II (Deb et al. 2002) implemented on top of
OPLA-Tool v2.0 (Freire et al. 2020). We chose NSGA-II because it has been successfully
used in many previous studies (Colanzi et al. 2014, 2020; Colanzi and Vergilio 2016) and
has good performance to optimize three competing objectives (as can be observed in Fig. 5),
allowing a wide exploration in the search space (Fig. 8). The objective functions were
the same for all experiments: COE, ACLASS and FM (presented in Section 3), similarly
to Choma Neto et al. (2019). The parameters of NSGA-II were set up as described next.

In our previous study (Silva et al. 2020), we performed an experimental calibration8

of parameters to define the best configuration of crossover and mutation rates for each
experiment. We adopted the same setting to execute the experiments of this extension. The
setting for all experimental configurations used in the present work was crossover rate of
0.4 and mutation rate of 0.8. Population size of 100 individuals and 300 generations. These
same parameters were used for 30 independent runs of each experimental configuration.

Regarding the execution time, each run spent around 5 h for the smallest PLA designs
(AGM and MM) and up to 24 h for the largest PLA (BET). In real PLAs, such as BET, an
architect will probably need several days to manually design and evaluate alternative PLAs.
Hence, a runtime of 24 h required to automatically obtain some alternative designs for a
PLA might not be obstructive for practical use. There is not a significant difference in the
runtime when applying a particular crossover operator. However, this analysis is out of the
scope of this study.

5.2.4 Quality Indicators and Statistical Tests

To support the result analysis and computing the quality indicator, we composed three sets
of solutions, namely, PFapprox , PFknown and PFtrue. PFapprox is the Pareto front of non-
dominated solutions obtained in each run of an experiment. As we run each experiment
by 30 times, we have 30 PFapprox sets for each experiment. PFknown is the set of non-
dominated solutions found by an experiment, considering the union of all solutions obtained
in all its runs, eliminating the dominated ones. PFtrue is conceptually known as the set with

8Results of the experimental calibration are available at https://doi.org/10.5281/zenodo.6516279
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ideal solutions for a problem. As the PFtrue of our problem is not known in advance, thus,
we adopted a common way to estimate this Pareto front that is using the non-dominated
solutions found by all experiments in all runs (Zitzler et al. 2002).

The quality indicators adopted to compare the experiment results are Hypervolume, Cov-
erage, and Euclidean Distance to the Ideal Solution, which evaluate spread and convergence
of solutions (Li and Yao 2019).

Hypervolume (H) is a quality indicator that measures the n-dimensional volume between
a Pareto front and a specific reference point (Zitzler et al. 2003). In our experiments,
which are minimization optimizations and we chose as reference point the worst values
of the objective functions, the higher the hypervolume value is, the greater the coverage
area, reflecting a better front. To compute H we normalized each PFapprox between 0
and 1, and adopted a reference point with the value of 1.01 for all objectives, which is
higher than the worst possible value. Hence, the reference point used in this paper was
(COE = 1.01, ACLASS = 1.01, FM = 1.01).

Coverage (C) measures the dominance between two sets of non-dominated solu-
tions (Zitzler and Thiele 1998). C(PFa, PFb) returns a value between 0 and 1 according
to how much the set PFb is dominated by set PFa. Similarly, but in an opposite way,
C(PFb, PFa) returns how much PFa is dominated by PFb. On one hand, C equal to 0
indicates that the solutions of the former set do not dominate any element of the latter set; on
the other hand, value equal to 1 indicates that all elements of the latter set are dominated by
elements of the former set. In our study, we used PFknown of each experiment to compute C.

Another quality indicator adopted is the Euclidean Distance to the Ideal Solution (ED).
The ED value is a distance measure that designates which solution is closest to an “ideal
solution”. For minimization problems, the ideal solution is the one that contemplates the
lowest value possible for the objective function being optimized (Zeleny and Cochrane
1973). The ideal solution adopted to be used as reference point to the ED value was
(COE = 0, ACLASS = 0, and FM = 0), as this work used three objective functions in a
minimization problem. The PFknown sets were used to find the solution with the lowest ED
of each experiment.

In addition to compute the quality indicators, to our analysis we also rely on statistical
tests to an in-depth discussion. Shapiro-Wilk statistical test (Surhone et al. 2010) was used
to investigate if the sample sets have normal distribution, which is the basis for deciding the
statistical methods for data analysis (Mishra et al. 2019). In order to statistically compare
the results found by hypervolume, Kruskal-Wallis Pairwise test was applied since there
are eight independent data sets (one for each experimental configuration) with non-normal
distribution, also having independent variables (Juristo and Moreno 2013). The Kruskal-
Wallis test aims to determine if there is an overall difference among the various sampling
groups, which is commonly needed in SBSE (Colanzi et al. 2020). However, the test does
not specify where the difference lies between groups (Kruskal and Wallis 1952). We adopt
a confidence of 95% (p-value ≤0.05) in order to verify the statistical difference between the
sample sets. To further analysis, we also compute the effect size with the Vargha-Delaney’s
Â12 measure (Vargha and Delaney 2000).

5.3 Qualitative Study

As important as the quantitative analysis with quality indicators, is to know the opinion
of experts about the obtained solutions. With this in mind, this qualitative analysis aims to
complement the quantitative one.
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5.3.1 Expert Characterization

The qualitative study was performed with five software engineers, who are experts in SPL
engineering, what is important to evaluate the alternatives of PLA design obtained during
the optimization process. The sampling of the participants was done based on convenience.
Tables 2 and 3 present the characterization of the participants. Most of them are masters
in Computer Science and PhD Candidates. Three of them also have positions in the indus-
trial sector. The entire set of participants have experience in their respective acting sector,
ranging from 5 to 25 years. Their experience in software development varies from 4 to 18
years. Three participants have moderate experience with UML modeling, whereas two have
advanced experience (Table 3). Four of them have moderate experience with SPL engineer-
ing and variability management and the remaining participant has advanced experience with
this subject. They are from three different Brazilian cities and their participation in the study
was remote due to the COVID-19 pandemic.

5.3.2 Qualitative Study Design

For conducting the qualitative study, a systematic guideline was followed with a series of
systematized steps, presented by the following protocol:

1 Application of the consent form and questionnaire to characterize the profile of the
participants;

2 Providing a video about SPL;
3 Providing a PDF file containing information about SPL properties;
4 Providing a PDF file containing specific information on the AGM SPL;
5 Providing 4 PLAs of AGM for the evaluation;
6 Application of a questionnaire about the evaluated PLAs;
7 Providing a PDF file containing specific information on the MM SPL;
8 Providing 4 PLAs of MM for the evaluation; and,
9 Application of a questionnaire about the evaluated PLAs.

For conducting the qualitative analysis, we decided to use only solutions of AGM and
MM aiming at avoiding fatigue of the participants, because both SPLs are smaller than
BET. For each SPL, four alternatives of PLA design were selected to be evaluated by the
experts. These alternative PLA designs were evaluated by using a questionnaire applied

Table 2 Participant characterization

Participant Education Sector of Experience Experience

level activity in the sector in software

of activity development

P1 PhD Candidate Academic 8 years 4 years

P2 PhD Candidate Academic 5 years 8 years

P3 PhD Candidate Academic/ Industrial 10 years 8 years

P4 PhD Candidate Academic/ Industrial 25 years 18 years

P5 Masters Industrial 15 years 10 years
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Table 3 Participant characterization regarding UML and SPL engineering

Participant UML modeling experience SPL engineering experience

P1 Moderate Moderate

P2 Moderate Moderate

P3 Advanced Advanced

P4 Advanced Moderate

P5 Moderate Moderate

using Google Forms.9 Such a questionnaire encompasses six essay questions related to
architectural properties (objectives) optimized in the search and the preferred solution by the
experts. The questionnaire was carried out with the participants individually, on predefined
dates and times, following each participant’s availability schedule. The questions are:

– Q1: What is your opinion about the relational cohesion of this PLA design?
– Q2: What is your opinion about the coupling of this PLA design?
– Q3: What is your opinion about the interface size of this PLA design?
– Q4: What is your opinion about the feature modularization of this PLA design?
– Q5: In our opinion, which is the best alternative of PLA design regarding feature

modularization?
– Q6: In our opinion, which are the most important architectural properties to be

evaluated in a PLA design?

For each SPL, questions Q1, Q2, Q3 and Q4 were answered four times for each alterna-
tive of PLA design. Question Q5 was answered once for each SPL, asking the participant to
choose the best of the four alternatives under his point of view. Question Q6 was answered
once at the end of the questionnaire. Before answering the questionnaire, the participants
received a training that includes a video and a document about SPL engineering. In addition,
we provided documents containing the specification of requirements, features and variabili-
ties of AGM and MM. It is important to note that participants were guided during the entire
process.

We selected the solution with the lowest ED, i.e., with the best trade-off among the
objectives, obtained by the experiments FdC+CC, FdC+MC, and All. We choose only these
experimental configurations because they achieved solutions with the best fitness values and
the lowest ED for AGM and MM (see Table 8), as we discuss in the quantitative analysis.
The best solution of BASE for AGM and MM was also selected in order to compare the
solutions generated using crossover operators with the baseline. Hence, it is possible to
analyze the impact caused by the proposed crossover operators in the obtained solutions.

The PLA designs were provided to each participant. Each design was numbered with
a unique identifier to hide the name of the experiment that generated it. The PLA designs
were identified as AGM-1, AGM-2, AGM-3, AGM-4, MM-1, MM-2, MM-3, and MM-4.
No further information about the solutions was provided to prevent any bias. So, the par-
ticipants did not know which experiment generated which solution, leading to an impartial
evaluation. The four designs involved in this study and their respective experiments are:
BASE (AGM-1 and MM-1), FdC+CC (AGM-2 and MM-2), FdC+MC (AGM-3 and MM-3)
and All (AGM-4 and MM-4). Recall that BASE is the baseline experiment, where solutions

9https://www.google.com/forms/about/
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are generated without crossover. FdC+CC applies the Feature-driven Crossover and Com-
plementary Crossover operators, whereas FdC+MC applies Feature-driven Crossover and
Modular Crossover. Finally, All uses the three proposed crossover operators: Feature-driven
Crossover, Complementary Crossover and Modular Crossover. The participants spent an
average of 2 h evaluating the PLA design alternatives.

6 Empirical Study Results

In this section, we present the quantitative and qualitative analysis of the results and answer
the posed research questions. Our goal is to identify the impact of the crossover operators
proposed in this work (Complementary Crossover, Feature-driven Crossover and Modular
Crossover) on the PLA design solutions when compared to the state-of-the-art baseline. The
figures used in this section illustrate excerpts extracted from the PLA design solutions that
contain only the elements of interest for the analysis.10 In these figures, the features are
assigned to architectural elements using UML stereotypes.

6.1 Quantitative Analysis

All the data from figures and tables presented in this section take into account the 30
independent runs of each experiment. Figure 5 presents the surface covered by the solu-
tions found for AGM, MM and BET in the search space. For AGM (Fig. 5(a)), FdC+CC,
FdC+MC and All were better when considering the objective function related to feature
modularization (FM), covering the most of the search space below the other experiment
fronts. FdC+MC, in turn, was better in terms of class coupling, i.e., the ACLASS objec-
tive function. When analyzing relational cohesion, i.e., the COE objective function, All
presented better surface values. CC+MC solutions are concentrated in the middle of the
other fronts. It is important to note that B is spread on an extensive part of the search space
above the other experiments, being close to the surfaces of the experiments that use a single
crossover operator (FdC, CC and MC). Thus, for AGM, the experiments that use combina-
tions of the crossover operators, cover the search space below the others, presenting better
results in general.

Similarly to AGM, FdC+MC, FdC+CC and All showed better distribution for MM when
analyzing the FM, COE, and ACLASS objective functions in an integrated manner. The
experiment All presented short peak moments for FM values. As we can see, the surface of
FdC+MC covers the search space below the other fronts to a large extent, more comprehen-
sively when compared to the AGM graph. For MM, the experiments that combine crossover
operators also show a better layout of the surfaces.

Differently from AGM and MM, FdC+MC, CC+MC, CC and MC achieved similar dis-
tribution of solutions on search space for BET, as can be seen in Fig. 5(c). FdC+CC is also
very similar to this group, except for the peak FM values in a given region of its surface. The
baseline experiment (B) presents the highest peaks in the distribution of its surface. Tak-
ing into account the three objectives should be minimized, it can be noticed that FdC+MC,
FdC+CC and All generated solutions with better distribution than the other experiments.

10The designs used in the qualitative analysis are available at https://doi.org/10.5281/zenodo.6516279.
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Fig. 5 Search space covered by solutions of AGM, MM and BET
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Coverage The results of coverage for AGM, presented in Table 4, showed that the solutions
of FdC+CC, FdC+MC and All dominate all the solutions found by B, FdC, CC and MC.
CC+MC solutions dominate 67%, 80% and 54% of the FdC, CC and MC solutions, respec-
tively. The solutions generated by FdC+CC, FdC+MC and All are not dominated by the
solutions of FdC, CC, MC, while the solutions of FdC and CC dominate 27% of CC+MC
solutions, a relatively small percentage. This information reveals that all the solutions gen-
erated by the experiments that use combinations of crossover operators, except for CC+MC,
dominate the solutions of the experiments that apply a single crossover operator.

Performing an analysis among the experiments that combine crossover operators,
FdC+MC shows better results for coverage, since the FdC+MC solutions dominate 67%,
100% and 67% of the solutions achieved by FdC+CC, CC+MC and All, respectively.

The coverage results for MM, presented in Table 5, are slightly different from AGM
results, because the experiments that combine crossover operators (FdC+CC, FdC+MC,
All) do not dominate the entire set of solutions achieved by the experiments that apply a
single crossover operator. FdC+CC solutions dominate 66%, 90% and 100% of the solutions
generated by FdC, CC and MC, respectively. The FdC+MC solutions dominate 87%, 80%
and 100% of the FdC, CC and MC solutions, respectively. Regarding All, its solutions
dominate 71% of FdC solutions, and all its solutions dominate the CC and MC solutions.
MC solutions dominate only solutions belonging to B (100% in total). Similar to what was
found for AGM, FdC+MC obtained better coverage results, since its solutions dominate
69%, 71% and 50% of FdC+CC, CC+MC and All solutions, respectively.

Regarding the results of coverage for BET (Table 6), all solutions achieved by B are dom-
inated by solutions of all other experiments. In addition, all solutions of FdC are dominated
by the solutions of FdC+CC, FdC+MC, CC+MC and All. The original PLA design of BET
has high feature modularization, what might justify the worse performance of Exp FdC for
this SPL. Interestingly, the solutions of CC dominate 91%, 49%, 67%, 63% and 10% of
the FdC, MC, FdC+CC, FdC+MC and All solutions, respectively. However, the best exper-
iment with respect to coverage was CC+MC, since its solutions dominate 98% and 88% of
the CC and MC solutions, respectively. In addition, the CC+MC solutions dominate 96% of
the FdC+CC solutions, 91% of the FdC+MC solutions and 93% of the All solutions.

Hypervolume Regarding the hypervolume indicator, Table 7 presents the results of the
Kruskal-Wallis test (p-value) and the Â12 measure (effect size), for the 30 independent runs

Table 4 Results of the coverage indicator for AGM

Experiment AGM

B FdC CC MC FdC+ FdC+ CC+ All

CC MC MC

B -x- 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FdC 1 -x- 0.28 0.14 0.00 0.00 0.27 0.00

CC 1 0.66 -x- 0.36 0.00 0.00 0.27 0.00

MC 1 0.67 0.68 -x- 0.00 0.00 0.36 0.00

FdC+CC 1 1 1 1 -x- 0.29 0.95 0.47

FdC+MC 1 1 1 1 0.67 -x- 1 0.67

CC+MC 1 0.67 0.80 0.54 0.00 0.00 -x- 0.67

All 1 1 1 1 0.44 0.18 0.91 -x-
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Table 5 Results of the coverage indicator for MM

Experiment MM

B FdC CC MC FdC+ FdC+ CC+ All

CC MC MC

B -x- 0.00 0.00 0.33 0.00 0.00 0.00 0.00

FdC 1 -x- 0.90 1 0.46 0.17 0.71 0.50

CC 1 0.04 -x- 1 0.00 0.05 0.57 0.00

MC 1 0.00 0.00 -x- 0.00 0.00 0.00 0.00

FdC+CC 1 0.66 0.90 1 -x- 0.28 0.86 0.50

FdC+MC 1 0.87 0.80 1 0.69 -x- 0.71 0.50

CC+MC 1 0.12 0.50 1 0.07 0.11 -x- 0.00

All 1 0.71 1 1 0.38 0.28 1 -x-

of NSGA-II. The magnitude of the effect size is presented by using symbols, according to
the caption note (*) in the table.

For AGM, the statistical test pointed to significant difference between 11 of experiments,
in gray cells, with confidence of 95% (p-value ≤ 0.05). Among these, for 10 pairs have
effect size of magnitude large (�). However, none of the experiments has supremacy over
the whole set of experiments, as can be seen in the boxplots presented in Fig. 6(a). We
observe that All, FdC+CC, FdC and MC are better than B. Among all the experiments that
apply crossover and mutation operators, FdC, FdC+CC and MC have the best performance
with respect to hypervolume.

For MM, a great amount of the experiments (18 out 28 paired comparisons) also obtained
statistical differences (Table 7). Regarding the effect size, we can observe large magnitude
for all of those pairs of experiments. To reason about the better experiments, we can analyze
the boxplot in Fig. 6(b). Interestingly, the boxplots show that the baseline (B), MC and CC
obtained the best results, while FdC+MC had the worst result of hypervolume among the
evaluated experiments. However, considering the best values obtained for the FM objective
function, FdC+MC presents the best result, as can be seen in Figs. 7 (for MM) and 5(b). This

Table 6 Results of the coverage indicator for BET

Experiment BET

B FdC CC MC FdC+ FdC+ CC+ All

CC MC MC

B -x- 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FdC 1 -x- 0.00 0.00 0.00 0.00 0.00 0.00

CC 1 0.91 -x- 0.49 0.67 0.63 0.00 0.10

MC 1 0.97 0.08 -x- 0.11 0.28 0.02 0.10

FdC+CC 1 1 0.2 0.59 -x- 0.68 0.00 0.04

FdC+MC 1 1 0.10 0.63 0.12 -x- 0.03 0.10

CC+MC 1 1 0.98 0.88 0.96 0.91 -x- 0.93

All 1 1 0.84 0.81 0.85 0.84 0.05 -x-
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Table 7 Results for the statistical test and effect size of Hypervolume for the 30 independent runs of NSGA-II

aValues in gray cells indicate statistical difference. The symbols for the magnitude of the effect size are:
“�” negligible, “�” small magnitude, “�” a medium magnitude, and “�” a large magnitude

peak in the FM value might have negatively influenced the calculation of the normalized
hypervolume. Therefore, it is not possible to state that FdC+MC is the worst experiment
for MM, as it presents superior results when looking solely for values of fitness of the
solutions.

Analyzing BET, it is possible to notice that 19 out 28 paired comparisons between the
experiments are statistically different, with large magnitude. When checking the boxplot
(Fig. 6(c)), it is noticeable that all experiments that apply crossover operators obtained better
values in terms of hypervolume than the baseline experiment. This evidences that the use
of crossover is effective in this SPL with respect to hypervolume. Taking into account the
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Fig. 6 Boxplot of the hypervolume

hypervolume values (Fig. 6(c)), the best performing experiments for BET are CC, FdC+CC,
and CC+MC.

FeatureModularization Fitness Values In an additional analysis of the boxplots presented
in Fig. 6, we can see that, for AGM and MM, the experiments B and FdC seem to behave
inversely proportional, as also observed in our previous work (Silva et al. 2020). The
Feature-driven Crossover operator is clearly dependent on the characteristics of the sub-
ject PLAs. We performed an in-depth analysis in the AGM and MM original designs and
observed the features of AGM are better modularized than MM (Silva et al. 2020). The
impact of feature modularization can be noticed in Fig. 6(a) and (b), where the experiments
that apply the Feature-driven Crossover operator (FdC, FdC+CC, FdC+MC and All) have
worse values of hypervolume.
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Figure 7 presents the behavior of each experiment over generations in terms of FM fitness
values. The slower convergence of FdC, FdC+CC, FdC+MC and All for MM corroborates
our analysis that the original design of MM has worse feature modularization than AGM.

The experiments that use any crossover operator reached solutions with better FM values
than the baseline experiment for the three SPLs. In addition, the experiments that apply
more than one crossover operator (FdC+CC, FdC+MC, CC+MC and All) often reached the
best values of FM, showing that the proposed crossover operators complement each other
and that their joint application is more profitable.

Furthermore, in spite of FdC+MC did not obtain the best solutions in relation to the
hypervolume, it is noted that it obtained the best FM values in two (AGM and MM) of
the three SPLs used in the experiments. This shows that, in general, this combination of
crossover operators generates interesting results in terms of feature modularization. It is also
important to highlight the noticeably faster convergence of FM values with FdC+MC for
MM compared to AGM (Fig. 7 for AGM andMM). Given the low feature modularization of
the original PLA design of MM, there is a greater range of optimization in this PLA reached
by the crossover operators.

Euclidean Distance to the Ideal Solution The ED indicator is useful to identify which
is the solution that has the best trade-off among the optimized objectives, that is usually
preferred by decision makers. Table 8 presents the fitness and the ED values of the solution
that is closest to the ideal solution by experiment for each SPL. The cells highlighted in gray
in each column of the table refer to the three experiments that found the solutions with the
lowest ED for each SPL. The lower the ED value, the better the result. It is important to note
that the best experiments for AGM and MM are the same, in this order: FdC+MC, FdC+CC
and All. For BET, the FdC+CC, CC+MC and All experiments showed the best results. It
is important to emphasize that best performing experiments for this quality indicators are
those that achieved the best FM values for the three SPLs.

In addition, it is possible to notice that the ED values achieved by the best perform-
ing experiments diverge with greater expressiveness in relation to the ED values of the
solutions found by the baseline experiment (B) for the PLAs MM and BET. For MM,

Fig. 7 FM values over generations (the lower value, the better result)
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Table 8 Fitness Values (ACLASS, COE, FM) and Euclidean Distance (ED) of the solutions with the lowest
ED achieved by experiment

TEBMMMGAtnemirepxE

Fitness ED Fitness ED Fitness ED

Original PLA (30, 26, 758) – (14, 28, 1122) – (122, 100, 1486) –

B (10, 32, 596) 596.94 (10, 35, 992) 992.66 (128, 97, 1470) 1478.74

FdC (10, 30, 580) 580.86 (12, 36, 814) 814.88 (129, 95, 1401) 1410.13

CC (13, 30, 568) 568.94 (10, 33, 943) 943.63 (159, 88, 1325) 1337.40

MC (13, 30, 563) 563.94 (10, 37, 985) 985.74 (136, 95, 1325) 1335.34

FdC+CC (14, 28, 518) 518.94 (10, 30, 741) 741.67 (152, 89, 1281) 1293.00

FdC+MC (12, 27, 489) 489.89 (13, 26, 521) 521.81 (136, 95, 1318) 1328.39

CC+MC (12, 30, 548) 548.95 (10, 34, 948) 948.66 (166, 85, 1300) 1313.30

All (13, 27, 526) 526.85 (9, 31, 806) 806.64 (130, 94, 1307) 1316.80

whose original design has lower feature modularization, there was a better improvement
in the FM value of the solution with the best trade-off generated by FdC+MC (from 1122
to 521, around 54% of decreasing), when compared to the best trade-off AGM solution
(from 758 to 489, that is, around 35% of improvement). For BET, the solution with the
best trade-off among the objectives achieved a lower rate of improvement for FM, equiv-
alent to 14% (from 1486 to 1281). Like AGM, the original design of BET also presents
high feature modularization. On the other hand, the value of ACLASS (class coupling)
was severely compromised in the referred solution. From these observations, we infer that
there is a greater range of performance to the crossover operators (especially Feature-driven
Crossover) for PLAs that originally have worse feature modularization, since there are more
features to be modularized.

Since the Complementary Crossover operator achieved better results for BET, it is pos-
sible to infer that this operator is able to effectively complement more properties of the
parents, as BET is the biggest design of our study and has a greater diversity of architec-
tural elements. For MM, it is possible to deduce that Feature-driven Crossover has a greater
impact on the FM values, as expected, since this operator is concerned with feature modu-
larization. It is important to highlight that the combination of operators showed even better
results when compared to the separate application of each operator.

Figure 8 depicts parallel coordinates graphs, where each objective function is represented
by a coordinate and each line represents a solution. Hence, Fig. 8 represents the fitness (rel-
ative to FM (Feature Modularization), COE (Cohesion) and ACLASS (Class Coupling)) of
each solution of the PFknown set, that is the best solutions (all the non-dominated solu-
tions) achieved by a particular configuration (experiment) after the 30 independent runs. We
improved the explanation about this figure in the text.

In order to complement the results obtained so far, Fig. 8 presents the graphs of the
parallel coordinates referring to the baseline experiments (B) and the experiments with the
best trade-off for AGM, MM and BET. In the figures, the values of FM, COE and ACLASS
are represented in the coordinates of the graphs as Feature Modularization, Cohesion and
Coupling, respectively. These graphs present the solutions of the PFknown set, which are the
best solutions (all the non-dominated solutions) achieved by a particular experiment after
the 30 independent runs. As can be seen, a good part of the FdC+MC solutions achieved an
FM value less than the minimum of the same objective in B. Furthermore, the maximum
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and minimum values of each objective reveal a significant improvement in the solutions
generated for the three PLAs.

For MM, the range of values of FM is considerably smaller in the baseline experiment
(B) than in FdC+MC (Fig. 8(c) and (d)). Also, the latter reached a slightly lower FM min-
imum than the baseline experiment. In addition, it is possible to notice that in the case
of the FdC+MC experiment, the values of FM are very close to 950 and 1000. Due to
this value discrepancy, relatively bad values are obtained when performing normalization
of the hypervolume results, reinforcing the fact that the B boxplot reached a better result
than the FdC+MC boxplot (Fig. 6(b)). These results corroborate that FdC+MC obtained
the best results in terms of FM, also obtaining lower values of ACLASS. Furthermore,
FdC+MC is able to reduce the maximum value of ACLASS when compared with the
baseline experiment.

For BET, analyzing Fig. 8(b) and (f), there is clearly presented greater concentration of
solutions with FM values between 1300 and 1500 and with ACLASS values between 200
and 300 for FdC+CC, reaching a total of optimized solutions much more comprehensive
than the baseline experiment (B). Conversely, it is possible to verify most solutions gen-
erated by the baseline experiment have ACLASS values higher than 500. In this way, the
search space achieved for BET with the FdC+CC is notoriously broader, achieving a greater
diversity of optimized solutions and superior to the solutions obtained by the baseline exper-
iment. This behavior for BET corroborates the fact that, because it has a larger design,
the Complementary Crossover operator handles better with Feature-driven Crossover to
complement different characteristics in many ways.

Fig. 8 Parallel Coordinates for B and the experiments that found the solution with the best trade-off among
the objectives

Empir Software Eng (2022) 27:166 Page 29 of 44    166



Furthermore, when comparing the parallel coordinates of B with the parallel coordinates
of FdC+MC and FdC+CC in Fig. 8, it is clear that applying crossover operators contributes
to achieve more diversity of solutions as identified in our previous work (Silva et al. 2020).

Overall Analysis of the Quantitative Results Table 9 presents the top three experiments
regarding the quality indicators and the FM fitness values in order to summarize the results
of the quantitative analysis. The best experiments for AGM and MM are the same consider-
ing Coverage, FM fitness values and Euclidean Distance. These experiments are FdC+MC,
FdC+CC and All, in this order. There is certain similarity with the results of FM and ED
for BET, since FdC+CC, CC+MC and All are the best experiments. Taking into account the
Hypervolume indicator, different experiments achieved the highest positions. So, there is
not a consensus about which are the best experiment.

An interesting observation is that the Complementary Crossover operator has a substan-
tial impact on optimization of the PLA design of BET, as all the best experiments for BET
apply this operator, independently of the criterion. Hence, this fact corroborates our infer-
ence that such an operator is able to effectively complement the best architectural properties
of the parents, especially for BET that is the biggest design of our study. On the other hand,
Feature-driven Crossover was very beneficial for the optimization of the original design of
AGM and MM, since it is applied by almost all the best experiments for both SPLs.

Independently of these observations, we can state that the joint application of at least two
of the proposed operators is more beneficial for the optimization of PLA design than the
other experiments. This is clear in Fig. 9, which synthesizes the number of the best results
achieved by each experiment taking into account the top-3 lists presented in Table 9.

6.2 Qualitative Analysis Regarding Feature Modularization

Aiming at supporting the analysis to answer RQ1.2, in this section we present excerpts of
solutions obtained for AGM and MM in order to illustrate the differences regarding fea-
ture modularization. For this analysis, we used the solutions with the best trade-off among
the optimized objectives. When there is not a preference by a certain objective, the solution
closest to the ideal solution is usually preferred by decision makers (Zeleny and Cochrane
1973). As we did not know the user preferences, we choose to use the solution with the

Table 9 Best experiments regarding the quantitative criteria (quality indicators and FM fitness values)

PLA Quantitative criteria

Hypervolume Coverage FM fitness Euclidean distance

AGM 1. FdC 1. FdC+MC 1. FdC+MC 1. FdC+MC

2. FdC+CC 2. FdC+CC 2. FdC+CC 2. FdC+CC

3. MC 3. All 3. All 3. All

MM 1. MC 1. FdC+MC 1. FdC+MC 1. FdC+MC

2. B 2. FdC+CC 2. FdC+CC 2. FdC+CC

3. CC 3. All 3. All 3. All

BET 1. CC 1. CC+MC 1. FdC+CC 1. FdC+CC

2. FdC+CC 2. All 2. CC+MC 2. CC+MC

3. CC+MC 3. CC 3. All 3. All
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Fig. 9 Number of the best results by quality indicator

lowest EDs (the best trade-off). It is important to highlight that the solutions with the low-
est ED are coincidentally those that have the best FM fitness values, as can be seen in
Table 8. Therefore, it is possible to analyze the solutions with the best trade-off has also the
better feature modularization and which parts of the solutions positively influenced to this
behavior.

For AGM, in general, the solution found by the baseline experiment is similar to the
solutions of other experiments in terms of feature modularization, with only a few minor
differences. However, when comparing the original design with the other experiments, it
is easy to see the differences given the new packages created during the optimization to
modularize certain features as well as the condensed pre-existing packages, resulting in a
reduction in the number of features interlaced with others.

Analyzing Fig. 10(b), it is clear that Package112450Ctrl was created to modularize
the ranking feature in the solution obtained by FdC+MC. In the original design of AGM
(Fig. 10(a)), this feature is highly interlaced with the save and play features. In the solution
generated by All (Fig. 10(c)), ranking is interlaced with save. Thus, for this specific situa-
tion, the solution of FdC+MC overcomes the others, since the architectural elements of the
package are associated exclusively with ranking.

In addition, FdC+CC is the single experiment that improved the modularization of the
configuration feature, achieving the excerpt of design presented in Fig. 11. It is possible to
observe that configuration is interlaced with having only one method which is assigned to
the logging feature. On the other hand, the solution of FdC+CC is the only design in which
theGameBoardCtrl package is not assigned to several features. In the original design, this is
a large package, which contains many classes and interfaces assigned to multiple features.

The solutions found for MM have more significant differences regarding feature modu-
larization in comparison to both the original design and the solution achieved by the baseline
experiment, as expected due to the feature modularization degree of the original design. For
instance, the mM feature has been successfully modularized in the package UserMgr for
solutions obtained using crossover operators (solutions of FdC+CC, FdC+MC and All), as
the elements of this package solely realize mM. In the original design, the referred package
also realizes part of the albumManagement feature. In the baseline solution (B), the interface
assigned to mM has higher feature interlacing, as it also realizes the video and copyMedia
features.

For the sake of illustration, Fig. 12 depicts excerpts of the obtained solutions that realizes
the favourites feature. This feature is clearly interlaced with other ones in the original design
and in the design obtained by the baseline experiment, as can be seen in Fig. 12(a) and (b),
respectively. On the other hand, the positive effect of the crossover operators on the PLA
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Fig. 10 Modularization of the ranking feature for AGM

design optimization in terms of feature modularization can be seen in Fig. 12(c), (d) and
(e) representing solutions obtained using crossover operator, where favourites is realized
by architectural elements assigned exclusively for this feature. However, we can observe
in the examples presented in Fig. 12 that some improvements can be done in the obtained
solutions. We can illustrate this statement using the showFavouriteMedias operation which
is inside IManageFavouriteMedia interface in Fig. 12(a), (b) and (d) but is not present in the
excerpts of the solutions generated by FdC+CC and All (Fig. 12(c) and (e)), what means that
this operation assigned to favourites is realized by another element increasing the diffusion
of this feature.

Another feature that was better modularized using the crossover operators is sMSTrans-
fer. The solution obtained by FdC+MC has the highest degree of modularization for this
feature. We can observe in Fig. 13 that the excerpt of the design achieved by FdC+MC
(Fig. 13(c)) deals exclusively with sMSTransfer, while in the design of B (Fig. 13(a))
sMSTransfer is interlaced with photo in the ISendMedia interface. The interfaces presented
for FdC+CC and All realize a single feature (sMSTransfer), however, there are operations
assigned to this feature in other architectural elements, increasing the feature diffusion.

These results MM suggest that the solution with best the trade-off of FdC+MC presents
a better feature modularization when compared to both the original design and the solutions
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Fig. 11 Modularization of the configuration feature in the solution of FdC+CC for AGM

obtained by the other experiments. The solutions generated by FdC+CC and All are sim-
ilar regarding feature modularization, being superior to the original design and the design
obtained by the baseline experiment.

Last but not least, the excerpts of design presented in this section corroborate that the
application of crossover operators leads to populations with more diversity, as can be noticed
when analysing the different designs achieved by the experiments that apply the proposed
crossover operators.

6.3 Qualitative Analysis by Experts

This section presents the results obtained in the evaluation with experts. In what follows,
we discuss the results of each question answered by the participants in the order presented
in Section 5.3.2.

Relational Cohesion Regarding the baseline solutions, three participants judged that the
solution AGM-1 obtained by Exp-B has satisfactory relational cohesion. On the other hand,
two participants consider that it has low cohesion as pointed by P4: “It has low relational
cohesion since most classes of some packages are not related”. P1 is more specific when
mentioning that “the classes of Package91599Ctrl and Package90457Ctrl are not so related
and in some cases the class that implements an interface is isolated in another package, e.g.,
GameBoardGUI).” The baseline solution generated to MM is highly cohesive, according to
four experts. Only P2 and P3 suggested improvements, e.g., “The copyMedia method should
not be in IAddMediaAlbum and the media class contains methods that should be in other
classes (P3).”

The experts disagreed about the solutions generated by FdC+CC for AGM and MM
(AGM-2 and MM-2). For AGM, two participants (P2 and P3) stated that the cohesion of
these solutions is similar to their respective solution obtained by B, whereas P1, P4 and
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Fig. 12 Modularization of the favourites feature in solutions obtained for MM

Empir Software Eng (2022) 27:166166 Page 34 of 44



Fig. 13 Modularization of the sMSTransfer features in solutions obtained for MM

P5 judge that the relational cohesion is adequate. Two of them highlighted the effect of
the Feature-driven Crossover operator. One of them mentioned: “This solution has few
packages, hence higher relational cohesion. However, the modularization of the movement
feature negatively impacted the relational cohesion of some elements.” For MM, P1 stated
that this solution is similar to the previous one, P4 stated that the cohesion of MM-2 is
similar to MM-1 and the other participants stated that the solution has adequate relational
cohesion.

Regarding the solutions achieved by FdC+MC, three participants judged that the solu-
tion AGM-3 has satisfactory relational cohesion and four participants stated the same for
the solution MM-3. P4 stated that AGM-3 is more cohesive than the AGM-1 and AGM-2
since it has lower number of packages, while P1 judged that MM-3 is slightly more cohe-
sive than MM-1 and MM-2. On the other hand, P1 stated that MM-3 is the lowest cohesive
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solution: “The relational cohesion in this solution is worse than the previous solutions
because several packages have classes that are not connected with each other.”

The solutions obtained by All (AGM-4 and MM-4) were well evaluated with respect to
the relational cohesion. AGM-4 and MM-4 were judged as highly cohesive by P1, P2, P4
and P5, and P1 and P5, respectively. P3 stated that AGM-4 has adequate cohesion, while
P2, P3 and P4 said that MM-4 has satisfactory cohesion. Despite these evaluations, some
experts pointed out that there are improvement opportunities, such as the statement of P5:
“In my opinion, this solution has the best relational cohesion, but package11967Ctrl could
be split in two packages to modularize the play and movement features.”

As can be observed, for relational cohesion, All overcame the other experiments for
both AGM and MM, since the solutions were considered highly cohesive in 6 out of 10
evaluations, in accordance with the quantitative results (Table 9). Despite this, the solutions
achieved by the other experiments has overall satisfactory relational cohesion.

Coupling Most experts answered the Q2 question regarding class coupling by comparing
the four PLA design alternatives presented by SPL. For AGM, two experts (P2 and P5)
judged that the solution generated by All (AGM-4) is the best. For example, P5 mentioned:
“After analyzing the four solutions, I judged that all solutions have satisfactory class cou-
pling. However, I think that AGM-4 has the best coupling.” It is important to recall that as
lower the coupling, the better. P3 and P4 judged that the solutions of FdC+CC and FdC+MC
achieved the best solutions with respect to coupling. Finally, P1 stated that the solution
achieved by B is the best one. Hence, for AGM there is a tie among All, FdC+MC and
FdC+CC. These three experiments are the same that have the best performance for AGM in
the quantitative analysis (Table 9).

For MM, the solutions generated by the baseline experiment (B) and the experiment that
applies all the proposed crossover operators (All) received two votes. In addition, P1 consid-
ered that the four PLA design alternatives have satisfactory class coupling. This participant
stated: “MediaMgr and Media are highly coupled in the four solutions. The remaining
classes have adequate coupling in all solutions.” P2, who preferred the solution of B (MM-
1) also mentioned theMediaMgr package as a highly coupled element in MM-4 (generated
by All): “This design has high coupling. The MediaMgr class has relationships with classes
of eight different packages.” So, for MM, there is also a tie between experiments, but in this
case the best performing experiments were B and All.

Interface Size With respect to the Q3 question regarding the interface size, the overall eval-
uation is that the solutions achieved for AGM and MM have interfaces with adequate size,
without responsibility overload according to the expert opinions. However, some interfaces
could be segregated and other ones could be grouped.

P1 and P5 suggested segregating the IGameBoardMgt and IGameMgt interfaces for the
four solutions (AGM-1, AGM-2, AGM-3 and AGM-4) since they are assigned to more than
one feature. Their suggestion consists of modularizing each feature in a different inter-
face. P1 and P5 also argued that some specific interfaces could have fewer operations in
the solution MM-1, e.g., “Most interfaces have adequate size with few feature interlacing.
However, some interfaces, such as IManageMedia and IMediaMgt, could be split in two or
more interfaces.” On the other hand, P2 highlighted the existence of very small interfaces in
AGM-4: “The interfaces are so small leading to a design with several interfaces that have
few responsibilities.” P2 wrote a similar statement for the solutions MM-2 and MM-3. So,
the All, FdC+CC and FdC+MC experiments generated small interfaces in some solutions
according to the experts’ point of view.
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Overall, none experiment has overcome each other when considering the interface size.

Feature Modularization The subject of Q4 is the expert opinions about the feature modu-
larization of the evaluated solutions. The baseline solutions were the worst evaluated ones
for both AGM and MM. The most common problems mentioned by participants are feature
diffusion and feature interlacing over architectural elements, as pointed by P1 with respect
to MM-1: “Many features are diffused over different architectural elements. In addition,
there is high feature interlacing in some elements, e.g., Media, IMediaMgt and MediaCtrl).
I think the feature modularization of this solution might be significantly improved.”

The experts agreed that the solutions generated by FdC+CC for AGM and MM (AGM-2
and MM-2) have better feature modularization than the baseline solutions. They argued
that the features are less diffused than the baseline solutions and that there is lower feature
interlacing. They also mentioned that some elements could be changed to improve fea-
ture modularization, as P5 suggested of splitting IManageMedia in MM-2 to modularize
different features in different interfaces.

The solutions generated by FdC+MC (AGM-3 and MM-3) and All (AGM-4 and MM-4)
were pretty well evaluated by the participants. Most experts judged that these solutions have
high feature modularization, as highlighted by P2 with respect to AGM-3: “The variation
points are well distributed as well as the features are well modularized in packages with
well-defined responsibilities.” and by P5 with respect to AGM-4: “This solution has the best
feature modularization in both classes and packages.” Despite the positive evaluation, P2
and P4 presented few suggestions to improve the feature modularization of some new pack-
ages and interfaces created during the optimization process by the Feature-driven Mutation
Operator, e.g., P2 stated that despite the high feature modularization of MM-3, three new
packages are too small and deserve further attention. Another negative point raised by P1
about AGM-3 is that: “There is low feature interlacing as there are more (small) architec-
tural elements. However, the features are diffused over several elements, leading to a bad
feature modularization, in my opinion.”

One participant (P3) considered that all solutions have the satisfactory feature modular-
ization degree for AGM andMM, dealing with one or two features. However, he mentioned:
“Some few elements are assigned to up 4 features, for which I suggest re-designing such
elements. Thus, the overall feature modularization of all solutions is acceptable”. He also
suggested some improvements in managers and their respective interfaces (elements with
suffix Mgr and Mgt) in the solutions obtained for MM.

In summary, All and FdC+MC overcame the experiments B and FdC+CC for both SPLs
regarding feature modularization, since their solutions were considered with high feature
modularization by most participants. All and FdC+MC are also two of the best performing
experiments in the quantitative analysis for AGM and MM.

Which Solution has the Best Feature Modularization? For AGM, the solution obtained
by FdC+CC was chosen by the participant P1. The solutions generated by FdC+MC and
All were chosen twice. For MM, the solutions of FdC+MC and All received two votes,
while the participant P5 preferred the solutions obtained by B and FdC+CC. For example,
P2 said: “AGM3 is better modularized than the other alternative solutions due to the distri-
bution of features over architectural elements”. P1 presented an improvement suggestion:
“I think AGM-2 is the best, taking into account the analyzed criteria. However, it needs
some improvements, such as splitting GameBoardCtrl in two or more different packages.”
This statement reinforces our analysis, presented in Section 6.2, that the GameBoardCtrl
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package of the solution generated by FdC+CC is better than the original version of this
package, but it is still realizing more than one feature.

It is interesting to notice that P2 evaluated the solution obtained by FdC+MC for MM as
the best solution regarding feature modularization. He took into account the novel packages
Package132839Mgr, Package133087Mgr, Package132722Mgr created during the optimiza-
tion process to modularize the video, copyMedia and photo features, respectively. This is the
solution that has the lowest Euclidean distance to the ideal solution, as can be observed in
Table 8. The referred solution has also the lowest fitness values for feature modularization
(FM objective function) and relational cohesion (COE objective function). This fact points
that even without knowing the fitness values and the results of the quality indicators, two
experts chose the best solution according to quantitative results.

Another interesting observation is that in spite of P3 has chosen MM-4 obtained by All
for answering Q5, he mentioned, in the previous question (Q4), that MM-4 and MM-2
(FdC+CC) are equivalent in terms of feature modularization and he untied both solutions
considering the class coupling. Both solutions have slightly better quantitative results than
the other three solutions.

Another important finding is related to the statement of P1 that there is high feature inter-
lacing in some elements of the solution MM-1 obtained by B, e.g., IMediaMgt interface of
MediaMgr package. When comparing this interface in MM-1 and in MM-4—the solution
chosen by P1 as the best one regarding feature modularization—it is noticeable that IMedi-
aMgt of MM-1 has methods assigned to different features, such as sMSTransfer, favourites,
viewPlayMedia and create Delete, as can be seen in Fig. 14(a). On the other hand, the IMe-
diaMgt interface of the solution obtained by All (MM-4) deals with a single feature, namely
viewPlayMedia (depicted in Fig. 14(b)). Furthermore, the feature interlacing of MediaMgr
is lower in MM-4 than in MM-1, dealing with the features music and viewPlayMedia.

In summary, All and FdC+MC received four votes for the question Q5, what means that
the experiments that apply all the proposed crossover operators (All) and the experiment
that apply the Feature-driven Crossover and Modular Crossover operator (FdC+MC) have
the best performance in terms of the solution with best feature modularization. Once again,
these experiments are also the best ones in the quantitative analysis for AGM and MM.

Architectural Properties to be Evaluated in PLADesign In the Q5 question, we were inter-
ested in knowing what are the architectural properties that the experts judge to be essential
to be evaluated in a PLA design. This kind of information is useful to validate whether
the objective functions used during the optimization process are appropriate in the point
of view of experts. More importantly, this is a rich opportunity to discover other important
properties to be included in the evaluation model of MOA4PLA.

The five participants mentioned that feature modularization is the main property to be
evaluated in a PLA design. P1 emphasized that “the PLA design needs to have excellent
feature modularization in order to enable the reuse of SPL assets and ease the variability
management.” Furthermore, P3 explicitly mentioned lack of feature-based cohesion when
argued that we need to evaluate the number of features of each architectural element.

P2, P3 and P4 also cited architectural properties that are the goal of the objective func-
tions of MOA4PLA, such as coupling, cohesion and interface size, as highlighted by P4:
“The main properties to be evaluated are (in this order) 1. feature modularization, 2.
coupling, 3. cohesion.”

In addition, P2 and P3 mentioned the number of class responsibilities and the class
size, respectively, which are not measured and optimized by the objective functions of
MOA4PLA.
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Fig. 14 Comparison of feature modularization of excerpts of PLA design solutions obtained by B and All

Overall Analysis of the Qualitative Results The results of the qualitative analysis with
experts indicate a greater acceptance by the participants for the All and FdC+MC experi-
ments, as can be seen in Table 10, which presents the experiments with better performance
by criterion evaluated in the study.

Regarding the feature modularization, the All and FdC+MC were equivalent for AGM
and MM. Regarding relational cohesion, the solutions obtained by the experiment that
applied all crossover operators (All) were more accepted for both PLAs. In relation to the
class coupling, there were divergent opinions, however, the solutions achieved by All were
well evaluated by experts for both AGM and MM. Therefore, it is possible to verify that the
joint application of the proposed crossover operators generated solutions positively evalu-
ated by the experts. As FdC+MC also obtained acceptance equivalent to All regarding the
feature modularization, and both operators are applied in All, it is noted that Feature-driven
Crossover andModular Crossover generate the most appropriate solutions from their point

Table 10 Experiments with better performance in the qualitative evaluation according to the experts

PLA Relational Class Interface Feature

cohesion coupling size modularization

AGM All All – All

FdC+CC FdC+MC

FdC+MC

MM All All – All

B FdC+MC
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of view. It is interesting to note that the solutions best accepted by the experts had the best
results in quantitative analysis (mainly FdC+MC), corroborating this finding.

6.4 Answering the Research Questions

In this section we answer the posed research questions taking into account the results
presented in the previous subsections.

RQ1 - What is the benefit of using crossover operators in the optimization of PLA
design in comparison to the state of the art?

The results obtained in the empirical study showed that the experiments that apply
crossover operators are almost always better than the baseline experiment. Given the empir-
ical results, we can state that the benefit of using crossover operators in the PLA design
optimization are threefold: (i) combine/merge parts already optimized in different individu-
als; (ii) lead to more diversity in the population of potential PLA designs; and (iii) generate
solutions with better feature modularization. These benefits are discussed in more details in
the next sub-RQs.

RQ1.1 - What is the performance of the proposed crossover operators for PLA
design optimization in terms of quality indicators?

The overall analysis of the quantitative results showed that the FdC+CC, All and
FdC+MC experiments were the best. Despite the divergence between the hypervolume
results and the results of the other quality indicators, FdC+MC obtained the best result for
AGM and MM and, in general, we can state that the Feature-driven Crossover operator was
very beneficial for both SPLs. Taking into account the results achieved for BET, the best
experiment was CC+MC and the Complementary Crossover operator was significantly ben-
eficial for this SPL. However, as the best performing experiments were always those that
combine more than one crossover operator, we can state that the joint application of at least
two of the proposed operators is more beneficial for the optimization of PLA design than the
other experiments. Taking into account the different purpose of each crossover operator, the
better results achieved by FdC+CC, All and FdC+MC evidenced that the proposed crossover
operators complement each other, optimizing the solutions more broadly in relation to the
different objectives.

RQ1.2 - What is the impact of the crossover operators on feature modularization
of the PLA design solutions?

The experiments that apply the Feature-driven Crossover were the best performing ones
in the quantitative analysis, what points out that this operator is able to optimize the PLA
design since one of the objective functions is related to feature modularization (FM). More
importantly, the solutions obtained using crossover operators have better feature modular-
ization than the original design and the baseline solution, including the experiments that
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do not apply the Feature-driven Crossover, as can be noticed in Table 8 and in Fig. 8.
For instance, CC+MC achieved a lower value of FM than the baseline solution. As afore-
mentioned, for AGM and BET the improvement impact on feature modularization was
lower than for MM, because the original design of the two former SPLs have better fea-
ture modularization than MM. In addition, it is possible to verify that the experiments that
applied the Feature-driven Crossover achieved greater gain in feature modularization for
MM. Hence, a worse modularized design has a greater search space to be explored by
Feature-driven Crossover. Furthermore, when considering the ED quality indicator and the
FM fitness values (Table 9), the best performing experiments are those that apply more than
one crossover operator, emphasizing that the combination of Feature-driven Crossover with
other crossovers is more effective to improve the feature modularization of the PLA design
under optimization.

RQ1.3 - Which crossover operator generates better solutions according to the
experts?

The results of the qualitative analysis showed that the Feature-driven Crossover and
Modular Crossover operators generate the most appropriate solutions from the point of view
of experts who participate in our study. The fact that the experts preferred the solutions
generated by experiments that apply more than one crossover operator (All and FdC+MC)
corroborates the evidence that the proposed crossover operators complement each other and
that they are beneficial for search-based PLA design. The best accepted solutions by the
experts achieved the best results in the quantitative analysis (mainly FdC+MC), corrobo-
rating these findings. In addition, the experts’ evaluation reveals that the obtained solutions
need some polishing before being adopted as the PLA of the SPL under development, as
we also detected and pointed in Section 6.2. Indeed, when using SBSE techniques, it is
expected the automatic generation of near-optimal solutions, which needs some adaptations
before using in practice.

7 Threats to Validity

In this section, we discuss the threats to validity related to our quantitative and qualitative
empirical studies, based on the taxonomy of Wohlin et al. (2000). We also describe how we
mitigate possible threats.

Internal Validity An internal threat is the fact that the search-based algorithm used in the
experiments is non-deterministic. In order to mitigate this threat, each experimental config-
uration was performed 30 times for the three subject PLAs. Another internal threat is the
size and diversity of the subject PLA designs. Regarding the diversity of PLAs, it is possi-
ble to affirm that the three PLAs are distinguished in relation to their sizes, in which BET is
much larger than the others; and domains. This allowed us to analysis the results from dif-
ferent perspectives and aspects. In this sense, we believe this treat is reduced. The last treat
is related to the selection of SPL experts to participate in the qualitative experiment. Despite
not conducting an extensive search for experts, we believe that the five ones that participate
in our experiment are representative to allow us to reach relevant results.
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External Validity The two main threats related to the generalization of the results are
regarding the subject PLA designs and the opinion of experts. Despite the AGM and MM
being academic PLAs, their development took into account real scenarios. Additionally,
BET was developed for practical purposes, which makes it very close to an industrial sys-
tem. We can also highlight that finding industrial projects with the necessary details to carry
out the experiments is not a trivial task. Taking into account the opinion of experts, despite
only five participants, they all have at least a moderate experience in UML design and
SPL engineering. And, despite being students, three of them are/have been also in industry,
which brings even more credibility to their opinion. Overall, excluding organizational and
operational aspects that vary from company to company, our results can be generalized.

Construct Validity To avoid threats related to how the solutions were obtained, we used
objective functions based on software metrics of coupling, cohesion, and modularity, which
are widely used for designing architectures. Also, these metrics were used in several pre-
vious studies. In addition to the metrics, the crossover operators were designed based in
accordance with existing theory for creating software architectures. To mitigate threats
related to parameters settings, we adopted crossover and mutation rates experimentally
defined in our previous work.

Conclusion Validity Finally, we alleviated all threats to conclusion validity by using quality
indicators widely adopted in the field of multi-objective optimization. For the quantitative
analysis, statistical and effect size tests were applied to avoid any subjective interpretation
of the results. Also, the qualitative analysis as conducted in a way to prevent any bias that
could impact the opinion of the participants.

8 Concluding Remarks

In this paper, we proposed three crossover operators whose goal is intensifying the search-
based PLA design. The proposed operators are: Feature-driven Crossover, Complementary
Crossover andModular Crossover. Feature-driven Crossover aims at improving the feature
modularization of the PLA design. The purpose of Complementary Crossover is extracting
better characteristics of different parents and merge in the offspring. The goal of Modular
Crossover is preserving structural allocations of complete or partial modules from a parent
to a child. In addition, the proposed operators are able to generate complete and consistent
solutions, improving the state of the art.

We performed an empirical study, where we compared the results obtained using the pro-
posed crossover operators against the state of the art. This empirical study also included a
qualitative analysis of the generated solutions by experts in order to identify which are the
best solutions in their point of view and to detect improvement needs. The empirical results
showed that there are significant differences among the use of only mutation (state of the
art), and mutation with crossover and that the crossover operators contributed to generate
solutions with better feature modularization. Results also showed that the proposed opera-
tors complement each other, as the experiment that combines at least two of the proposed
operators achieved better results.

In a future work, we intend to investigate: (i) the evidence that the Complementary
Crossover is more beneficial for large PLA designs, (ii) the high impact of the Feature-
driven Crossover on other original designs that have poor feature modularization, (iii)
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conducting an exploratory study with interviews to obtain more insights from experts on
how to improve PLA optimization.
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Räihä O, Koskimies K,Mäkinen E (2010) Complementary crossover for genetic software architecture synthe-
sis. In: Proceedings of the 10th international conference on intelligent systems design and applications,
pp 266–271. https://doi.org/10.1109/ISDA.2010.5687255

SEI: Arcade game maker pedagogical product line (2009) https://resources.sei.cmu.edu/library/asset-view.
cfm?assetid=485941

Silva DFD, Okada LF, Colanzi TE, Assunção WKG (2020) Enhancing search-based product line design with
crossover operators. In: Genetic and evolutionary computation conference (GECCO ’20), pp 1250–1258.
https://doi.org/10.1145/3377930.3390215

Simons C, Parmee IC, Gwynllyw R (2010) Interactive, evolutionary search in upstream object-oriented class
design. IEEE Trans Softw Eng 36(6):798–816. https://doi.org/10.1109/TSE.2010.34

Surhone LM, Timpledon MT, Marseken SF (2010) Shapiro-Wilk test. VDM Publishing. https://books.
google.com.br/books?id=LsG-cQAACAAJ

Van der Linden FJ, Schmid K, Rommes E (2007) Software product lines in action: the best industrial practice
in product line engineering. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-
71437-8

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of McGraw and Wong. J Educ Behav Stat 25(2):101–132

Verdecia YD, Colanzi TE, Vergilio SR, Santos MCB (2017) An enhanced evaluation model for search-based
product line architecture design. In: Proceedings of the XX Ibero-American conference on software
engineering (CIbSE - ICSE 2017), pp 155–168

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering. https://doi.org/10.1145/2601248.2601268
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