
https://doi.org/10.1007/s10664-022-10170-1

Optimal priority assignment for real-time systems:
a coevolution-based approach

Jaekwon Lee1,2 · Seung Yeob Shin1 · Shiva Nejati1,2 · Lionel C. Briand1,2

Accepted: 12 April 2022 /
© The Author(s) 2022

Abstract
In real-time systems, priorities assigned to real-time tasks determine the order of task exe-
cutions, by relying on an underlying task scheduling policy. Assigning optimal priority
values to tasks is critical to allow the tasks to complete their executions while maximiz-
ing safety margins from their specified deadlines. This enables real-time systems to tolerate
unexpected overheads in task executions and still meet their deadlines. In practice, pri-
ority assignments result from an interactive process between the development and testing
teams. In this article, we propose an automated method that aims to identify the best possi-
ble priority assignments in real-time systems, accounting for multiple objectives regarding
safety margins and engineering constraints. Our approach is based on a multi-objective,
competitive coevolutionary algorithm mimicking the interactive priority assignment process
between the development and testing teams. We evaluate our approach by applying it to six
industrial systems from different domains and several synthetic systems. The results indi-
cate that our approach significantly outperforms both our baselines, i.e., random search and
sequential search, and solutions defined by practitioners. Our approach scales to complex
industrial systems as an offline analysis method that attempts to find near-optimal solutions
within acceptable time, i.e., less than 16 hours.

Keywords Priority assignment · Schedulability analysis · Real-time systems ·
Coevolutionary search · Search-based software engineering

1 Introduction

Mission-critical systems are found in many different application domains, such as
aerospace, automotive, and healthcare domains. The success of such systems depends
on both functional and temporal correctness. For functional correctness, systems are

Communicated by: Aldeida Aleti, Annibale Panichella and Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Seung Yeob Shin
seungyeob.shin@uni.lu

Extended author information available on the last page of the article.

Published online: 6 August 2022

Empirical Software Engineering (2022) 27: 142

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10170-1&domain=pdf
http://orcid.org/0000-0001-9025-7173
mailto: seungyeob.shin@uni.lu


required to provide appropriate outputs in response to the corresponding stimuli. Regard-
ing temporal correctness, systems are supposed to generate outputs within specified
time constraints, often referred to as deadlines. The systems that have to comply
with such deadlines are known as real-time systems (Liu 2000). Real-time systems
typically run multiple tasks in parallel and rely on a real-time scheduling policy to
decide which tasks should have access to processing cores, i.e., CPUs, at any given
time.

While developing a real-time system, one of the most common problems that engineers
face is the assignment of priorities to real-time tasks in order for the system to meet its
deadlines. Based on priorities of real-time tasks, the system’s task scheduler determines a
particular order for allocating real-time tasks to processing cores. Hence, a priority assign-
ment that is poorly designed by engineers makes the system scheduler execute tasks in an
order that is far from optimal. In addition, the system will likely violate its performance and
time constraints, i.e., deadlines, if a poor priority assignment is used.

In real-time systems, the problem of optimally assigning priorities to tasks is important
not only to avoid deadline misses but also to maximize safety margins from task dead-
lines and is subject to engineering constraints. Tasks may exceed their expected execution
times due to unexpected interrupts. For example, it is infeasible to test an aerospace sys-
tem exhaustively on the ground such that potential environmental uncertainties, e.g., those
related to space radiations, are accounted for. Hence, engineers assign optimal priorities to
tasks such that the remaining times from tasks’ completion times to their deadlines, i.e.,
safety margins, are maximized to cope with potential uncertainties. Furthermore, engineers
typically have to account for additional engineering constraints, e.g., they assign higher pri-
orities to critical tasks that must always meet their deadlines compared to the tasks that are
less critical or non-critical.

A brute force approach to find an optimal priority assignment would have to examine
all n! distinct priority assignments, where n denotes the number of tasks. Furthermore, for
a given priority assignment, schedulability analysis is, in general, known as a hard prob-
lem (Audsley 2001), which determines whether or not tasks will always complete their
executions within their specified deadlines. Thus, optimizing priority assignments is also
a hard problem because the space of all possible system states to explore in order to find
optimal priority assignments is very large. Most of the prior works on optimizing priority
assignments provide analytical methods (Fineberg and Serlin 1967; Leung and White-
head 1982; Audsley 1991; Davis and Burns 2007; Chu and Burns 2008; Davis and Burns
2009; Davis and Bertogna 2012), which rely on well-defined system models and are very
restrictive. For example, they assume that tasks are independent, i.e., tasks do not share
resources (Davis et al. 2016; Zhao and Zeng 2017). Industrial systems, however, are typ-
ically not compatible with such (simple) system models. In addition, none of the existing
work addresses the problem of optimizing priority assignments by simultaneously account-
ing for multiple objectives, such as safety margins and engineering constraints, as discussed
above.

Search-based software engineering (SBSE) has been successfully applied in many appli-
cation domains, including software testing (Wegener et al. 1997; Wegener and Grochtmann
1998; Lin et al. 2009; Arcuri et al. 2010; Shin et al. 2018), program repair (Weimer et al.
2009; Tan et al. 2016; Abdessalem et al. 2020), and self-adaptation (Andrade and Macêdo
2013; Chen et al. 2018; Shin et al. 2020), where the search spaces are very large. Despite the
success of SBSE, engineering problems in real-time systems have received much less atten-
tion in the SBSE community. In the context of real-time systems, there exists limited work

142   Page 2 of 49 Empir Software Eng (2022) 27: 142



on finding stress test scenarios (Briand et al. 2005) and predicting worst-case execution
times (Lee et al. 2020b), which complements our work.

In practice, priority assignments result from an interactive process between the develop-
ment and testing teams. While developing a real-time system, developers assign priorities
to real-time tasks in the system and then testers stress the system to check whether or not
the system meets its specified deadlines. If testers find a problematic condition under which
any of the tasks violates its deadline, developers have to modify the priority assignment to
address the problem. The back-and-forth between the development and testing teams con-
tinues until a priority assignment that does not lead to any deadline miss is found or the
one that yields the least critical deadline misses is identified. The process is, however, not
automated.

In this article, we use metaheuristic search algorithms to automate the process of assign-
ing priorities to real-time tasks. To mimic the interactive back-and-forth between the
development and testing teams, we use competitive coevolutionary algorithms (Luke 2013).
Coevolutionary algorithms are a specialized class of evolutionary search algorithms. They
simultaneously coevolve two populations (also called species) of (candidate) solutions for
a given problem. They can be cooperative or competitive. Such competitive coevolution is
similar to what happens in nature between predators and preys. For example, faster preys
escape predators more easily, and hence they have a higher probability of generating off-
spring. This impacts the predators, because they need to evolve as well to become faster if
they want to feed and survive (Meneghini et al. 2016). Hence, the two species, i.e., preda-
tors and preys, have coevolved competitively. We note that no species has the competing
traits of predators and preys simultaneously as such species could not evolve to survive. In
our context, priority assignments defined by developers can be seen as preys and stress test
scenarios as predators. The priority assignments need to evolve so that stress testing is not
able to push the system into breaking its real-time constraints. Dually, stress test scenarios
should evolve to be able to break the system when there is a chance to do so.

Contributions. We propose an Optimal Priority Assignment Method for real-time sys-
tems (OPAM). Specifically, we apply multi-objective, two-population competitive coevo-
lution (Popovici et al. 2012) to address the problem of finding near-optimal priority
assignments, aiming at maximizing the magnitude of safety margins from deadlines and
constraint satisfaction. In OPAM, two species relate to priority assignment and stress testing
coevolve synchronously, and compete against each other to find the best possible solu-
tions. We evaluated OPAM by applying it to six complex, industrial systems from different
domains, including the aerospace, automotive, and avionics domains, and several synthetic
systems. Our results show that: (1) OPAM finds significantly better priority assignments
compared to our baselines, i.e., random search and sequential search, (2) the execution time
of OPAM scales linearly with the number of tasks in a system and the time required to sim-
ulate task executions, and (3) OPAM priority assignments significantly outperform those
manually defined by engineers based on domain expertise.

We note that OPAM is the first attempt to apply coevolutionary algorithms to address the
problem of priority assignment. Further, it enables engineers to explore trade-offs among
different priority assignments with respect to two objectives: maximizing safety margins
and satisfying engineering constraints. Our full evaluation package is available online (Lee
et al. 2021).

Organization. The remainder of this article is structured as follows: Section 2 motivates
our work. Section 3 defines our specific problem of priority assignment in practical terms.

Page 3 of 49    142Empir Software Eng (2022) 27: 142



Section 4 discusses related work. Sections 5 and 6 describe OPAM. Section 7 evaluates
OPAM. Section 8 concludes this article.

2 Motivating case study

We motivate our work using an industrial case study from the satellite domain. Our case
study concerns a mission-critical real-time satellite, named ESAIL (LuxSpace 2021), which
has been developed by LuxSpace – a leading system integrator for microsatellites and
aerospace system. ESAIL tracks vessels’ movements over the entire globe as the satellite
orbits the earth. The vessel-tracking service provided by ESAIL requires real-time pro-
cessing of messages received from vessels in order to ensure that their voyages are safe
with the assistance of accurate, prompt route provisions. Also, as ESAIL orbits the planet,
it must be oriented in the proper position on time in order to provide services correctly.
Hence, ESAIL’s key operations, implemented as real-time tasks, need to be completed
within acceptable times, i.e., deadlines.

Engineers at LuxSpace analyze the schedulability of ESAIL across different develop-
ment stages. At an early design stage, the engineers use a priority assignment method that
extends the rate monotonic scheduling policy (Fineberg and Serlin 1967), which is a theo-
retical priory assignment algorithm used in real-time systems. At a later development stage,
if the engineers found that any real-time task of ESAIL cannot complete its execution within
its deadline, the engineers, in our study context, reassign priorities to tasks in order to
address the problem of deadline violations.

The rate monotonic policy assigns priorities to tasks that arrive to be executed periodi-
cally and must be completed within a certain amount of time, i.e., periodic tasks with hard
deadlines. According to the policy, periodic tasks that arrive frequently have higher priori-
ties than those of other tasks that arrive rarely. In ESAIL, for example, if the vessel-tracking
task arrives every 100ms and the satellite-position control task arrives every 150ms, the
former has a higher priority than the latter. However, the rate monotonic policy does not
account for tasks that arrive irregularly and should be completed within a reasonable amount
of time, i.e., aperiodic tasks with soft deadlines. ESAIL contains aperiodic tasks with soft
deadlines as well, such as a task for updating software. Hence, the engineers extend the rate
monotonic policy to assign priorities to all tasks of ESAIL. The extensions are as follows:
First, the engineers assign priorities to periodic tasks based on the rate monotonic policy.
Second, the engineers assign lower priorities to aperiodic tasks than those of periodic tasks.
As aperiodic tasks with soft deadlines are typically considered less critical than periodic
tasks with hard deadlines, the engineers aim to ensure that periodic tasks complete their exe-
cutions within their deadlines by assigning lower priorities to aperiodic tasks while periodic
tasks have higher priority. Engineers use a heuristic to assign priorities to aperiodic tasks.
They treat aperiodic tasks as (pseudo-)periodic tasks by setting aperiodic tasks’ (expected)
minimum arrival rates as their fixed arrival periods, making the tasks frequently arrive. The
engineers then apply the rate monotonic policy for the aperiodic tasks with the synthetic
periods while ensuring that aperiodic tasks have lower priorities than those of periodic tasks.

A priority assignment made at an early design stage keeps changing while developing
ESAIL due to various reasons, such as changes in requirements and implementation con-
straints. At a development stage, instead of relying on the extended rate monotonic policy,
the engineers assign priorities based on their domain expertise, manually inspecting schedu-
lability analysis results. Hence, a priority assignment at later development stages often does

142   Page 4 of 49 Empir Software Eng (2022) 27: 142



not follow the extended rate monotonic policy. For example, as aperiodic tasks are also
expected to be completed within a reasonable amount of time, some aperiodic tasks may
have higher priorities than some periodic tasks as long as they are schedulable.

Engineers at LuxSpace, however, are still faced with the following issues: (1) Their
priority assignment method, which extends the rate monotonic scheduling policy, assigns
priorities to tasks in order to ensure only that tasks are to be schedulable. However, engi-
neers have a pressing need to understand the quality of priority assignments in detail as
they impact ESAIL operations differently. For example, once ESAIL is launched into orbit,
the satellite operates in the space environment, which is inherently impossible to be fully
tested on the ground. Unexpected space radiations may trigger unusual system interrupts,
which hasn’t been observed on the ground, resulting in overruns of ESAIL tasks’ execu-
tions. In such cases, a priority assignment assessed on the ground may not be able to tolerate
such unexpected uncertainties. Hence, engineers need a priority assignment that enables
ESAIL tasks to tolerate unpredictable uncertainties as much as possible and to be schedula-
ble. (2) Engineers at LuxSpace assign priorities to tasks without any systematic assistance.
Instead, they rely on their expertise and the current practices described above to manually
assign priorities to ensure that tasks are to be schedulable. To this end, we are collaborating
with LuxSpace to develop a solution for addressing these issues in assigning task priority.

3 Problem description

This section defines the task, scheduler, and schedulability concepts, which extend the con-
cepts defined in our previous work (Lee et al. 2020b) by augmenting our previous definitions
with the notions of safety margins, constraints in assigning priorities, and relationships
between real-time tasks. We then describe the problem of optimizing priority assignments
such that we maximize the magnitude of safety margins and the degree of constraint sat-
isfaction. Figure 1 shows an overview of the conceptual model that represents the key
abstractions required to analyze optimal priority assignments for real-time systems. The
entities in the conceptual model are described below.

Task. We denote by j a real-time task that should complete its execution within a spec-
ified deadline after it is activated (or arrived). Every real-time task j has the following

Fig. 1 A conceptual model representing the key abstractions to analyze optimal priority assignments

Page 5 of 49    142Empir Software Eng (2022) 27: 142



properties: priority denoted by pr(j), deadline denoted by dl(j), and worst-case execution
time (WCET) denoted by wcet(j). Task priority pr determines if an execution of a task
is preempted by another task. Typically, a task j preempts the execution of a task j ′ if the
priority of j is higher than the priority of j ′, i.e., pr(j) > pr(j ′). The pr(j) priority is a
fixed value assigned to task j . Such fixed priorities are determined offline; hence, they are
not changed online for any reason. Note that a real-time task scheduler that relies on fixed
priorities is applied in all the study subjects in this article (see Section 7.2) and is commonly
used in industrial systems (Briand et al. 2005; Guan et al. 2009; Lin et al. 2009; Anssi et al.
2011; Zeng et al. 2014; Di Alesio et al. 2015; Du̇rr et al. 2019; Lee et al. 2020a).

The dl(j) function determines the deadline of a task j relative to its arrival time. A
task deadline can be either hard or soft. A hard deadline of a task j constrains that j must
complete its execution within a deadline dl(j) after j is activated. While violations of hard
deadlines are not acceptable, depending on the operating context of a system, violating
soft deadlines may be to some extent tolerated. Note that we use a metaheuristic search
relying on fitness functions quantifying the degrees of deadline misses, safety margins,
and constraint satisfaction. Such functions do not depend on the nature of the deadlines.
Our approach outputs a set of priority assignments that are Pareto optimal with respect to
safety margins and constraint satisfaction. Engineers then perform domain-specific trade-
off analysis among Pareto solutions. Hence, in this article, we handle hard and soft deadline
tasks in the same manner.

Real-time tasks are either periodic or aperiodic. Periodic tasks, which are typically trig-
gered by timed events, are invoked at regular intervals specified by their period. We denote
by pd(j) the period of a periodic task j , i.e., a fixed time interval between subsequent acti-
vations (or arrivals) of j . Any task that is not periodic is called aperiodic. Aperiodic tasks
have irregular arrival times and are activated by external stimuli which occur irregularly.
In real-time analysis, based on domain knowledge, we typically specify a minimum inter-
arrival time denoted by pmin(j) and a maximum inter-arrival time denoted by pmax(j)

indicating the minimum and maximum time intervals between two consecutive arrivals of
an aperiodic task j . In real-time analysis, sporadic tasks are often separately defined as hav-
ing irregular arrival intervals and hard deadlines (Liu 2000). In our conceptual definitions,
however, we do not introduce new notations for sporadic tasks because the deadline and
period concepts defined above sufficiently characterize sporadic tasks. Note that for peri-
odic tasks j , we have pmin(j) = pmax(j) = pd(j). Otherwise, for aperiodic tasks j , we
have pmax(j) > pmin(j).

Task relationships. The execution of a task j depends not only on its own parameters
described above, e.g., priority pr(j) and period pd(j), but also on its relationships with
other tasks. Relationships between tasks are typically determined by task interactions related
to accessing shared resources and triggering arrivals of other tasks (Di Alesio et al. 2012).
Specifically, if two tasks j and j ′ access a shared resource r in a mutually exclusive way,
j may be blocked from executing for the period during which j ′ accesses r . We denote by
dp(j, j ′) the resource-dependency relation between tasks j and j ′ that holds if j and j ′
have mutually exclusive access to a shared resource r such that they cannot be executed
in parallel or preempt each other, but one can execute only after the other has completed
accessing r .

The other type of relationship between tasks is related to a task j triggering the arrival of
another task j ′. This is a common interaction between tasks (Locke et al. 1990; Anssi et al.

142   Page 6 of 49 Empir Software Eng (2022) 27: 142



2011; Di Alesio et al. 2015). For example, j may hand over some of its workload to j ′ due
to performance or reliability reasons. We denote by tr(j, j ′) the triggering relation between
tasks j and j ′ that holds if j triggers the arrival of j ′. We note that both relationships are
defined at the level of tasks, following prior works (Locke et al. 1990; Anssi et al. 2011; Di
Alesio et al. 2015) describing the five industrial case study systems used in our experiments
(see Section 7.2).

Scheduler. Let J be a set of tasks to be scheduled by a real-time scheduler. A scheduler
then dynamically schedules executions of tasks in J according to the tasks’ arrivals and the
scheduler’s scheduling policy over the scheduling period T = [0,T]. We denote by atk(j)

the kth arrival time of a task j ∈ J . The first arrival of a periodic task j does not always
occur immediately at the system start time (0). Such offset time from the system start time
to the first arrival time at1(j) of j is denoted by off set(j). For a periodic task j , the kth
arrival of j within T is atk(j) ≤ T and is computed by atk(j) = off set(j)+(k−1)·pd(j).
For an aperiodic task j ′, atk(j

′) is determined based on the k−1th arrival time of j ′ and
its minimum and maximum arrival times. Specifically, for k > 1, atk(j

′) ∈ [atk−1(j
′) +

pmin(j ′), atk−1(j
′) + pmax(j ′)] and, for k = 1, at1(j

′) ∈ [pmin(j ′), pmax(j ′)], where
atk(j

′) < T.
A scheduler reacts to a task arrival at atk(j) by scheduling the execution of j .

Depending on a scheduling policy (e.g., rate monotonic scheduling policy for single-core
systems (Fineberg and Serlin 1967) and single-queue multi-core scheduling policy (Arpaci-
Dusseau and Arpaci-Dusseau 2018)), an arrived task j may not start its execution at the
same time as it arrives when higher priority tasks are executing on all processing cores.
Also, task executions may be interrupted due to preemption. We denote by etk(j) the com-
pletion time for the kth arrival of a task j . According to the worst-case execution time of a
task j , we have: etk(j) ≥ atk(j) + wcet(j).

During system operation, a scheduler generates a schedule scenario which describes a
sequence of task arrivals and their completion time values. We define a schedule scenario
as a set S of tuples (j, atk(j), etk(j)) indicating that a task j has arrived at atk(j) and
completed its execution at etk(j). Due to a degree of randomness in task execution times and
aperiodic task arrivals, a scheduler may generate a different schedule scenario for different
runs of a system.

Figure 2 shows two schedule scenarios S (Figure 2a) and S′ (Figure 2b) produced by a
scheduler over the [0, 23] time period of a system run. Both S and S′ describe executions
of three tasks, j1, j2, and j3 arrived at the same time stamps (see ati in the figures). In
both scenarios, the aperiodic task j1 is characterized by: pmin(j1) = 5, pmax(j1) = 13,
dl(j1) = 4, and wcet(j1) = 2. The aperiodic task j2 is characterized by: pmin(j2) = 3,
pmax(j2) = 10, dl(j2) = 4, and wcet(j2) = 1. The periodic task j3 is characterised by:
pd(j3) = 8, dl(j3) = 7, and wcet(j3) = 3. The priorities of the three tasks in S (resp. S′)
satisfy the following: pr(j1) > pr(j2) > pr(j3) (resp. pr(j2) > pr(j3) > pr(j1)). In
both scenarios, task executions can be preempted depending on their priorities. Then, S is
defined by S = {(j1, 5, 7), . . ., (j2, 4, 5), . . ., (j3, 8, 14), (j3, 16, 19))}; and S′ is defined
by S′ = {(j1, 5, 7), . . ., (j2, 4, 5), . . ., (j3, 8, 12), (j3, 16, 19))}.

Schedulability. Given a schedule scenario S, a task j is schedulable if j completes its
execution before its deadline, i.e., for all etk(j) observed in S, etk(j) ≤ atk(j)+dl(j). Let
J be a set of tasks to be scheduled by a scheduler. A set J of tasks is then schedulable if for
every schedule S of J , we have no task j ∈ J that misses its deadline.

Page 7 of 49    142Empir Software Eng (2022) 27: 142



Fig. 2 Example schedule scenarios S and S′ of three tasks: j1, j2, and j3. (a) The S schedule scenario is
produced when pr(j1) = 3, pr(j2) = 2, and pr(j3) = 1. (b) The S′ schedule scenario is produced when
pr(j1) = 1, pr(j2) = 3, and pr(j3) = 3

As shown in schedule scenarios S and S′ presented in Fig. 2a and b, respectively, all
three tasks, j1, j2, and j3, are schedulable. However, we note that the overall amounts of
remaining time, i.e., safety margins, from the tasks’ completions to their deadlines observed
in S and S′ are different (see the second completion times and deadlines of j1, j2, and j3 in
S and S′) because S and S′ are produced by using different priority assignments. Engineers
typically desire to assign optimal priorities to real-time tasks that aim at maximizing such
safety margins, as discussed below.

Problem. In real-time systems, fixed priorities are typically assigned to tasks (Davis et al.
2016; Lee et al. 2020a). Finding an appropriate priority assignment is important not only for
ensuring the schedulability of a system but also for maximizing the safety margins within
which a system can tolerate unexpected execution time overheads. For example, if an unpre-
dictable error occurs and triggers check-point mechanisms (Davis and Burns 2007), which
re-execute part or all of a task j , then the execution time of j unexpectedly overruns. Hence,
engineers need an optimal priority assignment that maximizes the overall remaining times
from task completion times to task deadlines, i.e., safety margins.

While assigning priorities to tasks, engineers also account for constraints, that are often
but not always domain-specific. For example, aperiodic tasks’ priorities should be lower
than those of periodic tasks because periodic tasks are often more critical than aperiodic
tasks. Hence, engineers develop a system that prioritizes executions of periodic tasks over

142   Page 8 of 49 Empir Software Eng (2022) 27: 142



aperiodic tasks. Recall from Section 2, this constraint is desirable by engineers. When
needed, however, engineers can violate the constraint to some extent in order to ensure that
aperiodic tasks complete within a reasonable amount of time while periodic tasks meet their
deadlines. Constraints can be either hard constraints, which must be satisfied, or soft con-
straints, which are desired to be satisfied. In our study, hard constraints need to be assured
while scheduling tasks, e.g., a running task’s priority must be higher than a ready task’s
priority, which are enforced by a scheduler. In the context of optimizing priority assign-
ments, we focus on maximizing the extent of satisfying soft constraints. We refer to a soft
constraint as a constraint in this paper.

Our work aims at optimizing priority assignments that maximize the safety margins while
satisfying such constraints. Specifically, for a set J of tasks to be analyzed, we define three
concepts as follows: (1) a priority assignment for J denoted by

#»
P , (2) the magnitude of

safety margins for a priority assignment
#»
P denoted by f s(

#»
P ), and (3) the degree of con-

straint satisfaction denoted by f c(
#»
P ). We note that Section 6.3 describes how we optimize

#»
P , and compute f s(

#»
P ) and f c(

#»
P ) in detail. Our study aims at finding a set B of best

possible priory assignments that are Pareto optimal (Knowles and Corne 2000) such that
a priority assignment

#»
P ∈ B maximizes both f s(

#»
P ) and f c(

#»
P ), and any other priority

assignments in B are equally viable.

4 RelatedWork

This section discusses related research strands in the areas of priority assignments, real-
time analysis using exhaustive techniques, search-based analysis in real-time systems, and
coevolutionary analysis in software engineering.

Priority assignment. The problem of optimally assigning priorities to real-time tasks has
been widely studied (Fineberg and Serlin 1967; Liu and Layland 1973; Leung and White-
head 1982; Audsley 1991; Tindell et al. 1994; George et al. 1996; Audsley 2001; Davis
and Burns 2007; Chu and Burns 2008; Davis and Burns 2009; 2011; Davis and Bertogna
2012; Davis et al. 2016; Zhao and Zeng 2017; Hatvani et al. 2018). Fineberg and Serlin
(1967) reported early work that relies on a simple system model, assuming, for example,
that all tasks arrive periodically, tasks run on a single processing core, tasks’ deadlines are
equal to their periods, and task executions are independent from one another. They pro-
posed a priority assignment method, named rate-monotonic priority ordering (RMPO), that
assigns higher priorities to the tasks with shorter periods. RMPO can find a feasible priority
assignment that guarantees periodic tasks to be schedulable when such priority assign-
ments exist (Liu and Layland 1973). Leung and Whitehead (1982) extended RMPO to relax
one of the underlying assumptions made in RMPO. Specifically, their priority assignment
approach, known as deadline-monotonic priority ordering (DMPO), accounts for task dead-
lines that can be less than or equal to their periods. In contrast to our work, however, these
methods are often not applicable to industrial systems that are not compatible with their
simplified system models. Recall from Section 3 that a realistic system typically consists
of both periodic and aperiodic tasks. Task executions depend on their relationships, i.e.,
resource dependencies and triggering relationships, with other tasks.

Audsley (2001) designed a priority assignment method, named optimal priority assign-
ment (OPA), that relies on an existing schedulability analysis method M . OPA guarantees

Page 9 of 49    142Empir Software Eng (2022) 27: 142



to find a feasible priority assignment that is schedulable according to M if such priority
assignments exist. OPA is applicable to more complex systems than those supported by the
methods mentioned above, i.e., RMPO and DMPO. Specifically, OPA can find a feasible
priority assignment even in the following situations: (1) First arrivals of periodic tasks occur
after some offset time (Audsley 1991). (2) Aperiodic tasks have arbitrary deadlines (Tin-
dell et al. 1994). (3) Task executions are scheduled based on a non-preemptive scheduling
policy (George et al. 1996). (4) Tasks run on multiple processing cores (Davis and Burns
2011). Unlike our approach that accounts for two objectives, safety margins and engineer-
ing constraints (see Section 3), OPA attempts to find a feasible priority assignment whose
only objective is to make all tasks schedulable. Note that such a feasible priority assignment
does not necessarily maximize safety margins as discussed in Section 3. Hence, a feasible
priority assignment obtained by OPA is often fragile and sensitive any changes in task exe-
cutions and unable to accommodate unexpected overheads in task execution times, which
are commonly observed in industrial systems (Davis and Burns 2007).

OPA has been extended by several works (Davis and Burns 2007; Chu and Burns
2008; Davis and Burns 2009; Davis and Bertogna 2012). Davis and Burns (2007) pre-
sented a robust priority assignment method (RPA) with a degree of tolerance for unexpected
overruns of task execution times. Chu and Burns (2008) introduced an extended OPA algo-
rithm (OPA-MLD) that minimizes the lexicographical distance between the desired priority
assignment and the one obtained by the algorithm. OPA-MLD enables important tasks
to have higher priorities. Davis and Bertogna (2012) proposed an RPA extension (FNR-
PA) to make RPA work when a system allows task preemption to be deferred for some
interval of time. Davis and Burns (2009) developed a probabilistic robust priority assign-
ment method (PRPA) for a real-time system to be less likely to violate its deadlines. Even
though the prior works mentioned above improve OPA to some extent, they assume that
task executions are independent of one another. In contrast to these existing approaches,
OPAM accounts for dependencies among task executions, i.e., resource dependencies and
triggering relationships (see our problem description in Section 3).

Some recent priority assignment techniques address scalability. Hatvani et al. (2018)
presented an optimal priority and preemption-threshold assignment algorithm (OPTA) that
attempts to decrease the computation time for finding a feasible priority assignment. OPTA
uses a heuristic to traverse a problem space while pruning infeasible paths to efficiently
and effectively explore the problem space. Zhao and Zeng (2017) introduced an effective
priority assignment framework (EPAF) that combines a commercial solver for integer lin-
ear programs and their problem-specific optimization algorithm. However, these methods
rely on simple system models that assume, for example, task executions to be independent
and running on a single processing core. Therefore, the applicability of these techniques is
limited. In contrast, recall from Sections 2 and 3 that our approach aims at scaling to com-
plex industrial systems while accounting for realistic system characteristics regarding task
periods, inter-arrival times, resource dependencies, triggering relationships, and multiple
processing cores.

Table 1 compares our work, OPAM, with the other priority assignment techniques men-
tioned above. As shown in the table, we note that prior works rely on system models that are
very restrictive. In particular, existing work assumes that task executions are independent of
one another. However, task dependencies such as resource dependencies and triggering rela-
tionships are commonly observed in industrial systems. In addition, we note that no existing
solution simultaneously accounts for safety margins and engineering constraints. Hence,
to our knowledge, OPAM is the first attempt to provide engineers with a set of equally

142   Page 10 of 49 Empir Software Eng (2022) 27: 142



Table 1 Comparing our work, OPAM, with existing priority assignment techniques with respect to the
properties captured in their underlying system models

Properties OPAM RMPO DMPO OPA OPA-MLD RPA FNR-PA PRPA OPTA EPAF

Periodic task ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Aperiodic task ◦ ◦ ◦ ◦ ◦ ◦
Resource dependency ◦
Triggering relationship ◦
Multi-core system ◦ ◦ ◦ ◦ ◦ ◦
Safety margin ◦ ◦ ◦ ◦
Engineering constraint ◦ ◦

viable priority assignments, allowing trade-off analysis with respect to the two objectives:
maximizing safety margins and satisfying engineering constraints.

Real-time analysis using exhaustive techniques. Constraint programming and model
checking have been applied to conclusively and exhaustively verify whether or not a sys-
tem meets its deadlines (Kwiatkowska et al. 2011; Di Alesio et al. 2012; Nejati et al. 2012;
Di Alesio et al. 2013). Existing research on priority assignment based on OPA rely on such
exhaustive techniques to prove the schedulability of a set of tasks for a given priority assign-
ment. We note that schedulability analysis is, in general, an NP-hard problem (Davis et al.
2016) that cannot be solved in polynomial time. As a result, exhaustive techniques based
on model checking and constraint solving are often not amenable to analyze large industrial
systems such as ESAIL – our motivating case study system – described in Section 2. To
assess if exhaustive techniques could scale to ESAIL, as discussed in Section 7.8, we per-
formed a preliminary experiment using UPPAAL (Behrmann et al. 2004), a model checker
for real-time systems. We observed that UPPAAL was not able to verify schedulability of
ESAIL tasks for a fixed priority assignment even after letting it run for several days (see
Section 7.8 for more details).

Search-based analysis in real-time systems. In real-time systems, most of the existing
works that use search-based techniques focus on testing (Wegener et al. 1997; Wegener
and Grochtmann 1998; Briand et al. 2005; Lin et al. 2009; Arcuri et al. 2010). Wegener
et al. (1997, 1998) introduced a testing approach based on a genetic algorithm that aims to
check computation time, memory usage, and task synchronization by analyzing the control
flow of a program. Briand et al. (2005) applied a genetic algorithm to find stress test sce-
narios for real-time systems. Lin et al. (2009) proposed a search-based approach to check
whether a real-time system meets its timing and security constraints. Arcuri et al. (2010)
presented a black-box system testing approach based on a genetic algorithm. Beyond test-
ing real-time systems, Nejati et al. (2013, 2014) developed a search-based trade-off analysis
technique that helps engineers balance the satisfaction of temporal constraints and keeping
the CPU time usage at an acceptable level. Lee et al. (2020b) combined a search algo-
rithm and machine learning to estimate safe ranges of worst-case task execution times
within which tasks likely meet their deadlines. In contrast to these prior works, OPAM
addresses the problem of optimally assigning priorities to real-time tasks while accounting
for multiple objectives regarding safety margins and engineering constraints, thus enabling
Pareto (trade-off) analysis. Further, OPAM uses a multi-objective, competitive coevolution-
ary search algorithm, which has been rarely applied to date in prior studies of real-time
systems, as discussed next.

Page 11 of 49    142Empir Software Eng (2022) 27: 142



Coevolutionary analysis in software engineering. Despite the success of search-based
software engineering (SBSE) in many application domains including software test-
ing (Wegener et al. 1997; Wegener and Grochtmann 1998; Lin et al. 2009; Arcuri et al.
2010; Shin et al. 2018), program repair (Weimer et al. 2009; Tan et al. 2016; Abdessalem
et al. 2020), and self-adaptation (Andrade and Macêdo 2013; Chen et al. 2018; Shin et al.
2020), coevolutionary algorithms have been applied in only a few prior studies (Wilkerson
and Tauritz 2010; Wilkerson et al. 2012; Boussaa et al. 2013). Wilkerson et al. (2010, 2012)
present a coevolution-based approach to automatically correct software. Their work intro-
duced a program representation language to facilitate their automated corrections. (Boussaa
et al. 2013) developed a code-smells detection approach. The main idea is to evolve two
competing populations of code-smell detection rules and artificial code-smells. Unlike these
prior works, we study the problem of optimally assigning priorities to tasks in real-time sys-
tems. To our knowledge, we are the first to address the priority assignment problem using a
multi-objective, competitive coevolutionary search algorithm.

5 Approach Overview

Finding an optimal priority assignment is an inherently interactive process. In practice, once
engineers assign priorities to the real-time tasks in a system, testers then stress the system
to find a condition, i.e., a particular sequence of task arrivals, in which a task execution
violates its deadline. Testers typically use a simulator or hardware equipment to stress the
system by triggering plausible worst-case arrivals of tasks that maximize the likelihood of
deadline misses. If testers find task arrivals that induce deadline misses, the task arrivals are
reported to engineers in order to fix the problem by reassigning priorities. This interactive
process of assigning priorities and testing schedulability continues until both engineers and
testers ensure that the tasks meet their deadlines.

For such intrinsically interactive problem-solving domains, we conjecture that coevolu-
tionary algorithms are potentially suitable solutions. A coevolutionary algorithm is a search
algorithm that mutually adapts one of different species, e.g., in our study, two popula-
tions of priority assignments and task-arrival sequences, acting as foils against one another.
Specifically, we apply multi-objective, two-population competitive coevolution (Luke 2013)
to address our problem of finding optimal priority assignments (see Section 3). In our
approach, the two populations of priority assignments and stress test scenarios, i.e., task-
arrival sequences, evolve synchronously, competing with each other in order to search for
optimal priority assignments that maximize the magnitude of safety margins from dead-
lines and the extent of constraint satisfaction. Note that better priority assignments enable
a system to achieve larger safety margins. Hence, those priority assignments have a higher
chance to pass stress test scenarios. This impacts the stress test scenarios because they need
to evolve as well, aiming at inducing deadline misses in the system.

Recall from Section 4 that most of the existing SBSE research relies on search algorithms
using a single population (Chen et al. 2018; Abdessalem et al. 2020; Shin et al. 2020).
However, such algorithms do not fit the problem of priority assignments targeted here. When
(1) two competing traits between task arrivals and priority assignments are encoded together
in an individual of a single population and (2) two contradicting fitness functions regarding
safety margins and deadline misses, which are exact opposites, assess such individuals, the
notion of Pareto optimality is not applicable. In that case, maximizing the magnitude of

142   Page 12 of 49 Empir Software Eng (2022) 27: 142



safety margins necessarily entails minimizing the magnitude of deadline misses. Hence, a
single population-based search algorithm cannot make Pareto improvements that maximize
safety margins (resp. deadline misses) while not minimizing deadline misses (resp. safety
margins). Specifically, the dominance relation over such individuals does not exist because
if an individual I is strictly better than another individual I ′ in one fitness value, I is always
worse than I ′ in the other fitness value. Hence, we are not able to obtain equally viable
solutions with respect to the contradicting objectives using such a method.

Figure 3 shows an overview of our proposed solution: Optimal Priority Assignment
Method for real-time tasks (OPAM). OPAM requires as input task descriptions defined by
engineers, which specify task characteristics and their relationships (see Section 3). Given
such input task descriptions, the “find worst task arrivals’ and “find best priority assign-
ments” steps aim at generating worst-case sequences of task arrivals and best-case priority
assignments, respectively. A worst-case sequence of task arrivals means that the magnitude
of deadline misses, i.e., the amounts of time from task deadlines to task completion times,
is maximized when tasks arrive as defined in the sequence. Note that if there is no deadline
miss, a task-arrival sequence is considered worst-case if tasks complete their executions as
close to their deadlines as possible. In contrast, a priority assignment is best-case when the
magnitude of safety margins is maximized. Beyond maximizing safety margins, the “find
best priority assignments” step accounts for satisfying engineering constraints in assigning
priorities to tasks. OPAM evolves two competing populations of task-arrival sequences and
priority assignments synchronously generated from the two steps. OPAM then outputs a
set of priority assignments that are Pareto optimal with regards to the magnitude of safety
margins and the extent of satisfying constraints. Hence, OPAM allows engineers to per-
form domain-specific trade-off analysis among Pareto solutions and is useful in practice to
support decision making with respect to their task design. For example, suppose engineers
develop a weakly hard real-time systems (Bernat and Burns 2001) that can tolerate occa-
sional deadline misses. In that case, engineers may consider a few deadline misses as less
important (as long as their consequences are negligible) than the overall magnitude of safety
margins in their trade-off analysis. Section 6 describes OPAM in detail.

6 Competitive Coevolution

Figure 4 describes the OPAM algorithm for finding optimal priority assignments, which
employs multi-objective, two-population competitive coevolution. The algorithm first
randomly initializes two populations A and P for task-arrival sequences and priority assign-
ments, respectively (lines 13–15). For A, OPAM randomly varies task arrivals of aperiodic
tasks to create psa task-arrival sequences, according to the input task descriptions D.
Regarding P, OPAM randomly creates psp priority assignments that may include one
defined by engineers if available.

Fig. 3 An overview of our Optimal Priority Assignment Method for real-time systems (OPAM)

Page 13 of 49    142Empir Software Eng (2022) 27: 142



Fig. 4 Multi-objective two-population competitive coevolution for finding optimal priority assignments

The two populations sequentially evolve during the allotted analysis budget (see line
17 in Figure 4). The best priority assignment is the one that makes tasks schedulable and
maximizes the magnitude of safety margins, while satisfying engineering constraints for a
given worst sequence of task arrivals. Hence, searching for the best priority assignments
involves searching for the worst sequences of task arrivals. We create two populations A and
P searching for the worst arrival sequences and the best priority assignments, respectively.
The fitness values of task-arrival sequences in A are computed based on how well they
challenge the priority assignments in P, i.e., maximizing the magnitude of deadline misses
(line 20). Likewise, the priority assignments in P are evaluated based on how well they
perform against the task-arrival sequences in A, i.e., maximizing the magnitude of safety
margins while satisfying constraints (line 25). Once the two populations are assessed against
each other, OPAM generates the next populations based on the computed fitness values
(lines 21 and 26). OPAM tailors the breading mechanisms of steady-state genetic algorithms
(GA) (Whitley and Kauth 1988) for A and NSGAII (Deb et al. 2002) for P.

OPAM uses two types of fitness functions, namely internal and external fitness evalua-
tions, which play a different and complementary role as described below. The two internal

142   Page 14 of 49 Empir Software Eng (2022) 27: 142



fitness evaluations in lines 20 and 25 of the listing in Figure 4 aim at selecting individuals
– task-arrival sequences and priority assignments – for breeding the next A and P popula-
tions. OPAM evaluates the external fitness for the P population of priority assignments to
find a best Pareto front (lines 28–31). As shown in lines 20 and 25, the internal fitness val-
ues of individuals in A (resp. P) are computed based on how they perform with respect to
individuals in P (resp. A). Hence, an individual’s internal fitness is assessed through interac-
tions with competing individuals. For example, a priority assignment in the first generation
may have acceptable fitness values regarding safety margins and constraint satisfaction with
respect to the first generation of task-arrival sequences, which are likely far from worst-
case sequences. However, priority assignment fitness may get worse in later generations as
the task-arrival sequences evolve towards larger deadline misses. Thus, if OPAM simply
monitors internal fitness, it cannot reliably detect coevolutionary progress as an individual’s
internal fitness changes according to competing individuals. The problem of monitoring
progress in coevolution has been observed in many studies (Ficici 2004; Popovici et al.
2012). To address it, OPAM computes external fitness values of priority assignments in P
based on a set E of task-arrival sequences generated independently from the coevolution
process. By doing so, OPAM can observe the monotonic improvement of external fitness for
priority assignments. We note that, in general, if interactions between two competing popu-
lations are finite and any interaction can be examined with non-zero probability at any time,
monotonicity guarantees that a coevolutionary algorithm converges to a solution (Popovici
et al. 2012).

We note that our approach for evolving task-arrival sequences is based on past
work (Briand et al. 2005), where a specific genetic algorithm configuration was proposed to
find worst-case task-arrival sequences. One significant modification is that OPAM accounts
for task relationships – resource-dependency and task triggering relationships – and a
multi-core scheduling policy based on simulations to evaluate the magnitude of deadline
misses.

Following standard practice (Ralph et al. 2020), the next sections describe OPAM in
detail by defining the representations, the scheduler, the fitness functions, and the evolu-
tionary algorithms for coevolving the task-arrival sequences and priority assignments. We
then describe the external fitness evaluation of OPAM.

6.1 Representations

OPAM coevolves two populations of task-arrival sequences and priority assignments. A
task-arrival sequence is defined by their inter-arrival time characteristics (see Section 3). A
priority assignment is defined by a function that maps priorities to tasks.

Task-arrival sequences. Given a set J of tasks to be scheduled, a feasible sequence of task
arrivals is a set A of tuples (j, atk(j)) where j ∈ J and atk(j) is the kth arrival time of a
task j . Thus, a solution A represents a valid sequence of task arrivals of J (see valid atk(j)

computation in Section 3). Let T = [0,T] be the time period during which a scheduler
receives task arrivals. The size of A is equal to the number of task arrivals over the T time
period. Due to the varying inter-arrival times of aperiodic tasks (Section 3), the size of A

will vary across different sequences.

Priority assignments. Given a set J of tasks to be scheduled, a feasible priority assignment
is a list

#»
P of priority pr(j) for each task j ∈ J . OPAM assigns a non-negative integer to

a priority pr(j) of j such that priorities are comparable to one another. The size of
#»
P is

Page 15 of 49    142Empir Software Eng (2022) 27: 142



equal to the number of tasks in J . Each task in J has a unique priority. Hence, a priority
assignment

#»
P is a permutation of all tasks’ priorities. We note that these characteristics of

priority assignments are common in many real-time analysis methods (Audsley 2001; Davis
and Burns 2007; Zhao and Zeng 2017) and industrial systems (e.g., see our six industrial
case study systems described in Section 7.2).

6.2 Simulation

OPAM relies on simulation for analyzing the schedulability of tasks in a scalable way. For
instance, an inter-arrival time of a software update task in a satellite system is approximately
at most three months. In such cases, conducting an analysis based on an actual scheduler
is prohibitively expensive. Also, applying an exhaustive technique for schedulability anal-
ysis typically doesn’t scale to an industrial system (e.g., see our experiment results using
a model checker described in Section 7.8). Instead, OPAM uses a real-time task schedul-
ing simulator, named OPAMScheduler, which applies a scheduling policy, i.e., single-queue
multi-core scheduling policy (Arpaci-Dusseau and Arpaci-Dusseau 2018), based on discrete
simulation time events. Note that we chose the single-queue multi-core scheduling policy
for OPAMScheduler since our case study systems (described in Section 7.2) rely on this
policy.

OPAMScheduler takes as input a feasible task-arrival sequence A and a priority assign-
ment

#»
P for scheduling a set J of tasks. It then outputs a schedule scenario as a set S of

tuples (j, atk(j), etk(j)) where atk(j) and etk(j) are the kth arrival and end time values
of a task j , respectively (see Section 3). For each task j , OPAMScheduler computes etk(j)

based on its WCET and scheduling policy while accounting for task relationships (see the
dp(j, j ′) resource-dependency relationship and the tr(j, j ′) task triggering relationship in
Section 3). To simulate the worst-case executions of tasks, OPAMScheduler assigns tasks’
WCETs to their execution times.

OPAMScheduler implements a single-queue multi-core scheduling policy (Arpaci-
Dusseau and Arpaci-Dusseau 2018), which schedules a task j with explicit priority pr(j)

and deadline dl(j). When tasks arrive, OPAMScheduler puts them into a single queue that
contains tasks to be scheduled. At any simulation time, if there are tasks in the queue and
multiple cores are available to execute tasks, OPAMScheduler first fetches a task j from
the queue in which j has the highest priority pr(j). OPAMScheduler then allocates task j

to any available core. Note that if task j shares a resource with a running task j ′ in another
core, i.e., the dp(j, j ′) resource-dependency relationship holds, j will be blocked until j ′
releases the shared resource.

OPAMScheduler works under the assumption that context switching time is negligible,
which is also a working assumption in many scheduling analysis methods (Liu and Layland
1973; Audsley 2001; Di Alesio et al. 2015). Note that the assumption is practically valid
and useful at an early development step in the context of real-time analysis. For instance,
our collaborating partner, LuxSpace, accounts for the waiting time of tasks due to context
switching between tasks through adding some extra time to WCET estimates at the task
design stage. Note that OPAM can be applied with any scheduling policy, including those
that account for context switching time and multiple queues.

6.3 Fitness functions

Internal fitness: deadline misses. Given a feasible task-arrival sequence A and a prior-
ity assignment

#»
P , we formulate a function, f d(A,

#»
P ), to quantify the degree of deadline

142   Page 16 of 49 Empir Software Eng (2022) 27: 142



misses regarding a set J of tasks to be scheduled. To compute f d(A,
#»
P ), OPAM runs

OPAMScheduler for A and
#»
P and obtains a schedule scenario S. We denote by distk(j) the

distance between the end time and the deadline of the kth arrival of task j observed in S and
define distk(j) = etk(j) − atk(j) + dl(j) (see Section 3 for the notation end time etk(a),
arrival time atk(j), and deadline dl(j)). We denote by lk(j) the last arrival index of a task
j in A. Given a set J of tasks to be scheduled, the f d(A,

#»
P ) function is defined as follows:

f d(A,
#»
P ) =

∑

j∈J,k∈[1,lk(j)]
2distk(j)

Note that f d(A,
#»
P ) is defined as an exponential equation. Hence, when all task executions

observed in a schedule scenario S meet their deadlines, f d(A,
#»
P ) is a small value as any

distance distk(j) between the task end time and the deadline of the kth arrival of task j is
a negative value. In contrast, deadline misses result in positive values for distk(j). In such
cases, f d(A,

#»
P ) is a large value. The exponential form of f d(A,

#»
P ) was precisely selected

for this reason, to assign large values for deadline misses but small values when deadlines
are met. By doing so, f d(A,

#»
P ) prevents an undesirable solution that would result into

many task executions meeting deadlines obfuscating a smaller number of deadline misses.
Following the principles of competitive coevolution, individuals in a population A of

task-arrival sequences need to be assessed by pitting them against individuals in the other
population P of priority assignments. We denote by f d(A,P) the internal fitness function
that quantifies the overall magnitude of deadline misses across all priority assignment

#»
P ∈

P, regarding a set J of tasks to be scheduled. The f d(A,P) fitness is used for breeding the
next population of task-arrival sequences. OPAM aims to maximize f d(A,P), defined as
follows:

f d(A,P) =
∑

#»
P ∈P

f d(A,
#»
P )/|P|

Internal fitness: safety margins. Given a feasible priority assignment
#»
P and a task-arrival

sequence A, we denote by f s(
#»
P ,A) the magnitude of safety margins regarding a set J

of tasks to be scheduled. The computation of f s(
#»
P ,A) is similar to the computation of

f d(A,
#»
P ) regarding the use of OPAMScheduler, which outputs a schedule scenario S. The

difference is that OPAM reverses the sign of f d(A,
#»
P ) as OPAM aims at maximizing the

magnitude of safety margins. Given a set J of tasks to be scheduled, the f s(
#»
P ,A) function

is defined as follows:

f s(
#»
P ,A) =

∑

j∈J,k∈[1,lk(j)]
−2distk(j) (i.e,−f d(A,

#»
P ))

Given two populations P and A of priority assignments and task-arrival sequences, sim-
ilar to internal fitness f d(A,P), priority assignments in P need to be assessed against
task-arrival sequences in A. We formulate an internal fitness function, f s(

#»
P ,A), to quantify

the overall magnitude of safety margins across all task-arrival sequences A ∈ A, regarding
a set J of tasks to be scheduled and a priority assignment

#»
P . OPAM relies on the f s(

#»
P ,A)

function to breed the next population of priority assignments. OPAM aims to maximize
f s(

#»
P ,A), which is defined as follows:

f s(
#»
P ,A) =

∑

A∈A
f s(

#»
P , A)/|A|

Page 17 of 49    142Empir Software Eng (2022) 27: 142



Internal fitness: constraints. Given a priority assignment
#»
P , we formulate an internal

fitness function, f c(
#»
P ), to quantify the degree of satisfaction of soft constraints set by

engineers. Such function is required as we recast the satisfaction of such constraints into
an optimization problem, in order to minimize constraint violations. Specifically, OPAM
accounts for the following constraint: aperiodic tasks should have lower priorities than those
of periodic tasks. Recall from Section 2 that engineers consider this constraint to be desir-
able. We denote by lp(

#»
P ) the lowest priority of periodic tasks in

#»
P . For a set J of tasks to

be scheduled, OPAM aims to maximize f c(
#»
P ), which is defined as follows:

f c(
#»
P ) =

∑

j∈J

{
lp(

#»
P ) − pr(j), if j is an aperiodic task

0, otherwise

Greater pr(j) values denote higher priorities. Given a priority assignment
#»
P , if pr(j) for

an aperiodic task j is lower than the priority of any of the periodic tasks, lp(
#»
P )−pr(j) is a

positive value. OPAM measures the difference between priorities of aperiodic and periodic
tasks. By doing so, f c(

#»
P ) rewards aperiodic tasks that satisfy the above constraint and

consistently penalizes those that violate it. Hence, OPAM aims at maximizing f c(
#»
P ).

External fitness: safety margins and constraints. To examine the quality of priority
assignments and monitor the progress of coevolution, OPAM takes as input a set E of task-
arrival sequences created independently from the coevolution process. Given a set E of
task-arrival sequences and a priority assignment

#»
P , OPAM utilizes f s(

#»
P ,E) and f c(

#»
P )

described above as external fitness functions for quantifying the magnitude of safety mar-
gins and the extent of constraint satisfaction, respectively. As E does not change over the
coevolution process, f s(

#»
P ,E) is used for evaluating a priority assignment

#»
P since it is not

impacted by the evolution of task-arrival sequences. Hence, external fitness functions ensure
that OPAM monitors the progress of coevolution in a stable manner. Given two populations
P and A of priority assignments and task-arrival sequences, we recall that the f d(A,P)

internal fitness function quantifies the overall magnitude of deadline misses across all pri-
ority assignments in P for the given sequence of task arrivals A. The f s(

#»
P ,A) internal

fitness function quantifies the overall magnitude of safety margins across all sequences of
task arrivals in A for the given priority assignments

#»
P . Hence, the internal fitness of A

(resp.
#»
P ) is assessed through interactions with competing individuals in P (resp. A). There-

fore, if OPAM relies only on the internal fitness functions, it cannot gauge the progress
of coevolution in a stable manner as an individual’s internal fitness depends on competing
individuals.

We note that soft deadline tasks also require to execute within reasonable execution time,
i.e., (soft) deadline. As the above fitness functions return quantified degrees of deadline
misses and safety margins, OPAM uses the same fitness functions for both soft and hard
deadline tasks.

6.4 Evolution: Worst-case task arrivals

The algorithm in Figure 5 describes in detail the evolution of task-arrival sequences in lines
18–21 of the listing in Figure 4. OPAM adapts a steady-state Genetic Algorithm (GA) (Luke
2013) for evolving task-arrival sequences. As shown in lines 8–14, OPAM first evaluates
each task-arrival sequence in the A population against the P population of priority assign-
ments. OPAM executes OPAMScheduler to obtain a schedule scenario S for a task-arrival
sequence Ai ∈ A and a priority assignment

#»
P l ∈ P (line 11). OPAM then computes the

142   Page 18 of 49 Empir Software Eng (2022) 27: 142



Fig. 5 A steady-state GA-based algorithm for evolving task-arrival sequences

internal fitness f d(Ai,P) capturing the magnitude of deadline misses (lines 12–14). We
note that a steady-state GA iteratively breeds offspring, assess their fitness, and then reintro-
duce them into a population. However, OPAM computes internal fitness of all task-arrival
sequences in A at every generation. This is because internal fitness is computed in relation
to P, which is coevolving with A.

Breeding the next population is done by using the following genetic operators:
(1) Selection: OPAM selects candidate task-arrival sequences using a tournament selection
technique, with the tournament size equal to two which is the most common setting (Gen-
dreau and Potvin 2010) (line 17 in Figure 5). (2) Crossover: Selected candidate task-arrival
sequences serve as parents to create offspring using a crossover operation (line 18).
(3) Mutation: The offspring are then mutated (line 19). Below, we describe our crossover
and mutation operators.

Crossover. A crossover operator is used to produce offspring by mixing traits of parent
solutions. OPAM modifies the standard one-point crossover operator (Luke 2013) as two
parent task-arrival sequences Ap and Aq may have different sizes, i.e., |Ap| �= |Aq |.
Let J = {j1, j2, . . . , jm} be a set of tasks to be scheduled. Our crossover operator first
randomly selects an aperiodic task jr ∈ J . For all i ∈ [1, r] and ji ∈ J , OPAM
then swaps all ji arrivals between the two task-arrival sequences Ap and Aq . Since J

Page 19 of 49    142Empir Software Eng (2022) 27: 142



is fixed for all solutions, OPAM can cross over two solutions that may have different
sizes.
Mutation operator OPAM uses a heuristic mutation algorithm. For a task-arrival sequence
A, OPAM mutates the kth task arrival time atk(j) of an aperiodic task j with a
mutation probability. OPAM chooses a new arrival time value of atk(j) based on
the [pmin(j), pmax(j)] inter-arrival time range of j . If such a mutation of the kth
arrival time of j does not affect the validity of the k+1th arrival time of j , the
mutation operation ends. Specifically, let d be a mutated value of atk(j). In case
atk+1(j) ∈ [d + pmin(j), d + pmax(j)], OPAM returns the mutated A task-arrival
sequence.

After mutating the kth arrival time atk(j) of a task j in a solution A, if the k+1th arrival
becomes invalid, OPAM corrects the remaining arrivals of j . Let o and d be, respectively,
the original and mutated kth arrival time of j . For all the arrivals of j after d, OPAM first
updates their original arrival time values by adding the difference d − o. Let T = [0,T] be
the scheduling period. OPAM then removes some arrivals of j if they are mutated to arrive
after T or adds new arrivals of j while ensuring that all tasks arrive within T.

As shown in lines 20–26 in Figure 5, the internal fitness of the generated offspring is
computed based on the P population. OPAM then updates the A population of task-arrival
sequences by comparing the offspring and individuals in A (line 27).

We note that when a system is only composed of periodic tasks, OPAM will skip evolv-
ing for worst-case arrival sequences as arrivals of periodic tasks are deterministic (see
Section 3). Nevertheless, OPAM will optimize priority assignments based on given arrivals
of periodic tasks. When needed, OPAM can be easily extended to manipulate offset and
period values for periodic tasks, in a way identical to how we currently handle inter-arrival
times for aperiodic tasks.

6.5 Evolution: Best-case priority assignments

Figure 6 shows the evolution procedure of priority assignments, which refines lines 23–
26 in Figure 4. OPAM tailors the Non-dominated Sorting Genetic Algorithm version 2
(NSGAII) (Deb et al. 2002) to generate a non-dominating (equally viable) set of priority
assignments, representing the best trade-offs found among the given internal fitness func-
tions. This is referred to as a Pareto nondominated front (Knowles and Corne 2000), where
the dominance relation over priority assignments is defined as follows: A priority assign-
ment

#»
P dominates another priority assignment

#»
P ′ if

#»
P is not worse than

#»
P ′ in all fitness

values, and
#»
P is strictly better than

#»
P ′ in at least one fitness value. NSGAII has been applied

to many multi-objective optimization problems (Langdon et al. 2010; Shin et al. 2018; Wang
et al. 2020).

OPAM maintains a population P of priority assignments as an archive that contains
the best priority assignments discovered during coevolution. Unlike a standard applica-
tion of NSGAII, in our study, we need to reevaluate the internal fitness values for priority
assignments in P at every generation as the internal fitness values are computed based on
the A population of task-arrival sequences, which coevolves. As shown in lines 9–16 in
Figure 6, OPAM first computes the internal fitness functions that measure the magnitude
of safety margins and the extent of constraint satisfaction. OPAM then sorts non-dominated
Pareto fronts (line 19) and assigns crowding distance (line 20) to introduce diversity among
non-dominated priority assignments (Deb et al. 2002).

142   Page 20 of 49 Empir Software Eng (2022) 27: 142



Fig. 6 An NSGAII-based algorithm for evolving priority assignments

For breeding the next population of priority assignments (line 21 in Figure 6, OPAM
applies the following standard genetic operators (Sivanandam and Deepa 2008) that have
been applied to many similar problems (Islam et al. 2012; Marchetto et al. 2016; Shin et al.
2018): (1) Selection. OPAM uses a binary tournament selection based on non-domination
ranking and crowding distance. The binary tournament selection has been used in the
original implementation of NSGAII (Deb et al. 2002). (2) Crossover. OPAM applies a
partially mapped crossover (PMX) (Goldberg and Lingle 1985). PMX ensures that the
generated offspring are valid permutations of priorities. (3) Mutation. OPAM uses a permu-
tation swap method for mutating a priority assignment. This mutation method interchanges
two randomly-selected priorities in a priority assignment according to a given mutation
probability.

Page 21 of 49    142Empir Software Eng (2022) 27: 142



For the generated population Pα of priority assignments, OPAM computes the two inter-
nal fitness functions (lines 22–29 in Figure 6). OPAM then sorts non-dominated Pareto
fronts for the union of the current P and next Pα populations (line 30), assign crowding dis-
tance (line 31), and select the best archive by accounting for the computed non-domination
ranking and crowding distance (line 32).

6.6 External fitness evaluation

Figure 7 shows an algorithm that computes the external fitness functions and finds the best
Pareto front, which refines lines 28–31 in Figure 4. To monitor the coevolution progress
in a stable manner, OPAM takes as input a set E of task-arrival sequences that are gen-
erated independently from the coevolution process. We use an adaptive random search
technique (Chen et al. 2010) to sample task-arrival sequences in order to create E. The adap-
tive random search extends the naive random search by maximizing the Euclidean distance
between the sampled points such that it maximizes the diversity of task-arrival sequences
in E.

As shown in lines 9–16 in Figure 7, OPAM computes the two external fitness values for
each priority assignment in the P population based on a given set E of task-arrival sequences.
OPAM then sorts non-dominated Pareto fronts for the union of the P population and the
current best Pareto front (line 17), assigns crowding distance (line 18), and selects the best
Pareto front by accounting for the computed non-domination ranking and crowding distance
(line 32). OPAM adopts NSGAII in order to maximize the diversity of priority assignments
in the best Pareto front.

Fig. 7 An algorithm for evaluating external fitness and finding the best Pareto front

142   Page 22 of 49 Empir Software Eng (2022) 27: 142



7 Evaluation

This section describes our evaluation of OPAM through six industrial case studies from
different domains and several synthetic subjects. Our full evaluation package is available
online (Lee et al. 2021).

7.1 Research questions

RQ1 (Sanity check): How does OPAM perform compared with Random Search? For
search-based solutions, this RQ is an important sanity check to ensure that success is not
due to the search problem being easy (Arcuri and Briand 2014). Our conjecture is that a
search-based algorithm, although expensive, will significantly outperform naive random
search (RS).

RQ2 (Coevolution): Is competitive coevolution suitable to find best-case priority assign-
ments? We conjecture that a coevolutionary algorithm is a suitable solution to address
the priority assignment problem since it is solved, in practice, through a competing
interactive process between the development and testing teams. To answer this RQ, we
compare OPAM with a sequential approach that first looks for worst-case sequences of
task arrivals and then tries to find best-case priority assignments.

RQ3 (Scalability): Can OPAM find (near-)optimal solutions for large-scale systems in a
reasonable time budget? In this RQ, we investigate the scalability of OPAM by conduct-
ing some experiments with systems of various sizes, including six industrial and several
synthetic subjects. We study the relationship between OPAM’s performance measures
and the characteristics of study subjects.

RQ4 (Usefulness): How do priority assignments generated by OPAM compare with pri-
ority assignments defined by engineers? OPAM can be considered useful only when it
finds priority assignments that show benefits over those defined (manually) by engineers
with domain expertise. This RQ therefore compares the quality of priority assignments
generated by OPAM with those defined by engineers. We further discuss the usefulness
of OPAM from a practical perspective, based on the feedback received from engineers in
LuxSpace.

7.2 Industrial study subjects

To evaluate RQs in realistic and diverse settings, we apply OPAM to six industrial study
subjects from different domains such as aerospace, automotive, and avionics domains.
Specifically, we obtained one case study subject from our industry partner, LuxSpace.
We found the other five industrial study subjects in the literature (Di Alesio et al. 2015),
which, consistent with the LuxSpace system, all assume a single-queue, multi-core, fixed-
priority scheduling policy. Note that OPAM uses the same scheduling policy (described in
Section 6.2) as in Di Alesio et al.’s work. This policy uses fixed priorities that are deter-
mined offline and therefore do not change dynamically. Table 2 summarizes the relevant
attributes of these subjects, presenting the number of periodic and aperiodic tasks, resource
dependencies, triggering relations, and platform cores. The subjects are characterized by
real-time parameters, e.g., periods, deadlines, and priorities, described in Section 3. We note
that all the study subjects are deadlock-free systems as they do not have circular resource
dependencies. Regarding task priorities, all tasks in the six subjects have fixed priorities,
which are defined by experts in their domains. The full task descriptions (including WCET,
inter-arrival times, periods, deadlines, priorities, and relationship details) of the subjects are

Page 23 of 49    142Empir Software Eng (2022) 27: 142



Table 2 Description of the six industrial subject systems: number of periodic and aperiodic tasks, resource
dependencies, triggering relations, and platform cores

Task types Relationships Platform

System Periodic Aperiodic Dependencies Triggering Cores

ICS 3 3 3 0 3

CCS 8 3 3 6 2

UAV 12 4 4 0 3

GAP 15 8 6 5 2

HPSS 23 9 5 0 1

ESAIL 11 14 0 0 1

available online (Lee et al. 2021). The main missions of the six subjects are described as
follows:

– ICS is an ignition control system that checks the status of an automotive engine and cor-
rects any errors of the engine (Peraldi-Frati and Sorel 2008). The system was developed
by Bosch GmbH.1

– CCS is a cruise control system that acquires data from vehicle sensors and maintains
the specified vehicle speed (Anssi et al. 2011). Continental AG2 developed the system.

– UAV is a mini unmanned air vehicle that follows dynamically defined way-points
and communicates with a ground station to receive instructions (Traore et al. 2006).
The system was developed in collaboration with the University of Poitiers France and
ENSMA.3

– GAP is a generic avionics platform for a military aircraft (Locke et al. 1990). The
system was designed in a joint project with Carnegie Mellon University, the US Navy,
and IBM4, aiming at supporting several missions regarding air-to-surface attacks.

– HPSS is a satellite system for two satellites, named Herschel and Planck (Mikučionis
et al. 2010). The two satellites share the same computational architecture, although they
have different scientific missions. Herschel aims at studying the origin and evolution of
stars and galaxies. Planck’s primary mission is the study of the relic radiation from the
Big Bang. ESA5 carried out the HPSS project.

– ESAIL is a microsatellite for tracking ships worldwide by detecting messages that ships
radio-broadcast (see Section 2). Luxspace, our industry partner, developed ESAIL in
an ESA project.

7.3 Synthetic study subjects

To investigate RQ3, we use synthetic subjects in order to freely control key parameters in
real-time systems. We create a set of tasks by adopting a well-known procedure (Emberson
et al. 2010) for synthesizing real-time tasks, which has been applied in many schedulability

1Bosch GmbH: https://www.bosch.com/
2Continental AG: https://www.continental.com
3ENSMA: https://www.ensma.fr/
4IBM: https://www.ibm.com/
5ESA: https://www.esa.int/

142   Page 24 of 49 Empir Software Eng (2022) 27: 142

https://www.bosch.com/
https://www.continental.com
https://www.ensma.fr/
https://www.ibm.com/
https://www.esa.int/


analysis studies (Davis et al. 2008; Zhang and Burns 2009; Davis and Burns 2011; Grass
and Nguyen 2018; Du̇rr et al. 2019).

Figure 8 describes a procedure that synthesizes a set of real-time tasks. For a given
number n of tasks and a target utilization ut , the procedure first generates a set U of task uti-
lization values by using the UUniFast-Discard algorithm (Davis and Burns 2011) (line 13).
The UUniFast-Discard algorithm is devised to give an unbiased distribution of utilization
values, where a utilization Uj ∈ U is a positive value and

∑
Uj ∈U Uj = ut .

The procedure then generates a set I of n task periods according to a log-uniform distri-
bution within a range [pdmin, pdmax], i.e., given a task period (random variable) Ij ∈ I,
log Ij follows a uniform distribution (line 14 in Figure 8). For example, when the minimum
and maximum task periods are pdmin = 10ms and pdmax = 1000ms, respectively, the pro-
cedure generates (approximately) an equal number of tasks in time intervals [10ms, 100ms]
and [100ms, 1000ms]. The parameter g is used to choose the granularity of the periods, i.e.,
task periods are multiples of g. Such a distribution of task periods provides a reasonable
degree of realism with respect to what is usually observed in real systems (Baruah et al.
2011).

As shown in lines 15–16 of the procedure in Figure 8, a set C of task WCETs are com-
puted based on the set U of task utilization values and the set I of task periods. Specifically,
a task WCET Cj ∈ C is computed as Cj = Uj · Ij .

As per line 17 of the listing in Figure 8, the procedure synthesizes a set S of tasks. A task
j is characterized by a period Ij and a WCET Cj and it is associated with a deadline dl(j)

and a priority pr(j). According to the rate-monotonic scheduling policy (Liu and Layland
1973), tasks’ deadlines are equal to their periods and tasks with shorter periods are given
higher priorities.

To synthesize aperiodic tasks, the procedure converts some periodic tasks to aperi-
odic tasks according to a given ratio γ of aperiodic tasks among all tasks (see line 19 in

Fig. 8 An algorithm for synthesizing a set of tasks

Page 25 of 49    142Empir Software Eng (2022) 27: 142



Figure 8). A range factor μ is used to determine maximum inter-arrival times of aperiodic
tasks. Specifically, for a task j to be converted, the procedure sets the minimum inter-
arrival time pmin(j) as pmin(j) = Ij . The procedure then selects a uniformly distributed
value x from the range (1, μ] and computes the maximum inter-arrival time pmax(j) as
pmax(j) = x · Ij .

7.4 Experimental Design

This section describes how we design experiments to answer the RQs described in
Section 7.1. We conducted four experiments, EXP1, EXP2, EXP3, and EXP4, as described
below.

EXP1. To answer RQ1, EXP1 compares OPAM with our baseline, which relies on random
search, to ensure that the effectiveness of OPAM is not due to the search problem being
simple. Our baseline, named RS, replaces GA with a random search for finding worst-
case sequences of task arrivals and NSGAII with a random search for finding best-case
priority assignments. Note that RS uses the same internal and external fitness functions (see
Section 6.3) and also maintains the best populations during search; however, it does not
employ any genetic operators, i.e., crossover and mutation. In EXP1, we applied OPAM and
RS to the six industrial subjects described in Section 7.2.

Recall from Section 6.3 that OPAM uses a set E of task-arrival sequences that are gen-
erated independently from the coevolution process in order to monitor the coevolution
progress in a stable manner. As OPAM and RS use the same set E of task-arrival sequences,
EXP1 first compares OPAM and RS based on E. In addition, EXP1 examines how well the
solutions, i.e., priority assignments, found by OPAM and RS perform with other sequences
of task arrivals. To do so, we create six sets of sequences of task arrivals for each study sub-
ject by varying the method to generate task-arrival sequences and the number of task-arrival
sequences. Note that task-arrival sequences generated by different methods are valid with
respect to the inter-arrival times defined in each study subject. Below we describe the six
sets of task-arrival sequences generated for each subject.

– T10
a : A set of task-arrival sequences generated by using an adaptive random search tech-

nique (Chen et al. 2010) that aims at maximizing the diversity of task-arrival sequences.
The T10

a set contains 10 sequences of task arrivals.
– T10

w : A set of task-arrival sequences generated by using a stress test case generation
method that aims at maximizing the chances of deadline misses in task executions. The
stress test case generation method extends prior work (Briand et al. 2005). The extended
method uses the fitness function regarding deadline misses and genetic operators that
OPAM introduces for evolving worst-case task-arrival sequences (see Section 6). The
T10

w set contains 10 sequences of task arrivals.
– T10

r : A set of task-arrival sequences generated randomly. The T10
r set has 10 sequences

of task arrivals.
– T500

a : A set of task-arrival sequences generated by using the adaptive random search
technique. The T500

a set contains 500 sequences of task arrivals.
– T500

w : A set of task-arrival sequences generated by using the stress test case generation
method. The T500

w set contains 500 sequences of task arrivals.
– T500

r : A set of task-arrival sequences generated randomly. The T500
r set has 500

sequences of task arrivals.

142   Page 26 of 49 Empir Software Eng (2022) 27: 142



EXP2. To answer RQ2, EXP2 compares OPAM with a priority assignment method, named
SEQ, that relies on one-population search algorithms. SEQ first finds a set of worst-case
sequences of task arrivals using GA with the fitness function that measures the magnitude of
deadline misses (see f d() in Section 6.3) and the genetic operators described in Section 6.4.
Given a set of worst-case task-arrival sequences obtained from GA, SEQ then aims at find-
ing best-case priority assignments using NSGAII with the fitness functions that quantify the
magnitude of safety margins and the degree of constraint satisfaction (see f s() and f c(),
respectively, in Section 6.3) and the genetic operators described in Section 6.5.

We note that SEQ does not use the external fitness functions as it does not coevolve task-
arrival sequences and priority assignments. Hence, the numbers of fitness evaluations of the
two methods are not comparable. To fairly compare OPAM and SEQ, we set the same time
budget for the two methods. Specifically, we first measure the execution time of OPAM for
analyzing each subject. We then split the execution time in half and set each half time as
the execution budget of the GA and NSGAII steps in SEQ for the corresponding subject. In
order to assess the quality of priority assignments obtained from OPAM and SEQ, we use
the sets of task-arrival sequences described in EXP1, i.e., T10

a , T10
w , T10

r , T500
a , T500

w , and
T500

r , which are created independently from the two methods.

EXP3. To answer RQ3, EXP3 examines not only the six industrial subjects but also 370 syn-
thetic subjects. We create the synthetic subjects to study correlations between the execution
time and memory usage of OPAM and the following parameters: the number of tasks (n), a
(part-to-whole) ratio of aperiodic tasks (γ ), a range factor for maximum inter-arrival times
(μ), and simulation time (T ), as described in Sections 7.3 and 6. We note that we chose to
control parameters n, γ , and μ because they are the main parameters on which engineers
have control to define tasks in real-time systems. Simulation time T obviously impacts the
execution time of OPAM as well. But EXP3 aims at modeling such correlations precisely
and providing experimental results. Regarding the other factors that define, for example,
task relationships and platform cores, we note significant diversity across the six industrial
subjects.

Recall from Section 7.3 that we use the task generation procedure presented in Figure 8
to synthesize tasks. For EXP3, we set some parameter values of the procedure as follows:
(1) Target utilization ut = 0.7, which is a common objective in the development of a
real-time system in order to guarantee the schedulability of tasks (Fineberg and Serlin
1967; Du̇rr et al. 2019). (2) The range of task periods [pdmin, pdmax] = [10ms, 1s], which
are common values in many real-time systems (Emberson et al. 2010; Baruah et al. 2011).
(3) The granularity of task periods g = 10ms in order to increase realism as most of the task
periods in our industrial subjects are multiples of 10ms. Because of some degree of random-
ness in the procedure of Figure 8, we create ten synthetic subjects per configuration. Below
we further describe how synthetic subjects are created for each controlled experiment.

EXP3.1. To study the correlations between the execution time and memory usage of OPAM
with the number of tasks n, we create nine sets of ten synthetic subjects such that no two
sets have the same number of tasks. Specifically, we create sets with 10, 15, ..., 50 tasks,
respectively. Regarding the ratio of aperiodic tasks, γ = 0.4 as, on average, the ratio of
aperiodic tasks to periodic tasks in our industrial subjects is 2/3. For the range factor, μ =
2, which is determined based on the inter-arrival times of aperiodic tasks in our industry

Page 27 of 49    142Empir Software Eng (2022) 27: 142



subjects. We set the simulation time T to 2s in order to ensure that any aperiodic task arrives
at least once during that time. We note that, given the maximum task period pdmax = 1s
and the range factor μ = 2, the maximum inter-arrival time of an aperiodic task is at most
2s (see Section 7.3).
EXP3.2. To study the correlations between the execution time and memory usage of OPAM
with the ratio of aperiodic tasks γ , we create ten sets of synthetic subjects by setting this
ratio to the following values: 0.05, 0.10, ..., 0.50. We set the number of tasks to 20 (n = 20),
which is the average number of tasks in our six industrial subjects. Regarding the other
parameters, range factor and simulation time, μ = 2 and T = 2s are set as discussed in
EXP3.1.
EXP3.3. To study the correlations between the execution time and memory usage of OPAM
with the range factor μ that is used to determine the maximum inter-arrival times, we create
nine sets of synthetic subjects by setting μ to 2, 3, ..., 10. We set the simulation time as
follows: T = 10s. This ensures that any aperiodic task arrives at least once during the
simulation time when μ is at most 10 (see Section 7.3). The other parameters, the number
of tasks and ratio of aperiodic tasks, n = 20 and γ = 0.4 are set as discussed in EXP3.1
and EXP3.2.
EXP3.4. To study the correlations between the execution time and memory usage of OPAM
with the simulation time T , we create nine sets of synthetic subjects by setting T to 2s, 3s,
..., 10s. The other parameters, e.g., the number of tasks, the ratio of aperiodic tasks, and the
range factor, n = 20, γ = 0.4, and μ = 2, are set as discussed in EXP3.1 and EXP3.2.

EXP4. To answer RQ4, EXP4 compares priority assignments optimized by OPAM and
those defined by engineers. We apply OPAM to the six industrial subjects (see Section 7.2)
which include priority assignments defined by practitioners. Note that we focus here on the
ESAIL subject in collaboration with our industry partner, LuxSpace; The other five subjects
are from the literature (Di Alesio et al. 2015) and hence we can only collect feedback from
practitioners for ESAIL.

7.5 Evaluationmetrics

Multi-objective evaluation metrics. In order to fairly compare the results of search algo-
rithms, based on existing guidelines (Li et al. 2020) for assessing multi-objective search
algorithms, we use complementary quality indicators: Hypervolume (HV) (Zitzler and
Thiele 1999), Pareto Compliant Generational Distance (GD+) (Ishibuchi et al. 2015), and
Spread (�) (Deb et al. 2002). To compute the GD+ and � quality indicators, following the
usual procedure (Li et al. 2020), we create a reference Pareto front as the union of all the
non-dominated solutions obtained from all runs of the algorithms being compared. Iden-
tifying the optimal (ideal) Pareto front is typically infeasible for a complex optimization
problem (Li et al. 2020). Key features of the three quality indicators are described below.

– HV is defined to measure the volume in the objective space that is covered by members
of a Pareto front generated by a search algorithm (Zitzler and Thiele 1999). The higher
the HV values, the more optimal the search outputs.

– GD+ is defined to measure the distance between the points on a Pareto front obtained
from a search algorithm and the nearest points on a reference Pareto front (Ishibuchi
et al. 2015). GD+ modifies General Distance (GD) (Veldhuizen and Lamont 1998) to
account for the dominance relations when computing the distances. The lower the GD+
values, the more optimal the search outputs.

142   Page 28 of 49 Empir Software Eng (2022) 27: 142



– � is defined to measure the extent of spread among the points on a Pareto front com-
puted by a search algorithm (Deb et al. 2002). We note that OPAM aims at obtaining
a wide variety of equally-viable priority assignments on a Pareto front (see Section 6).
The lower the Spread values, the more spread out the search outputs.

Interpretable metrics. The two external fitness functions described in Section 6 mainly
aim at effectively guiding search. It is, however, difficult for practitioners to interpret the
computed fitness values. Since they are not intuitive to practitioners, to assess the usefulness
of OPAM from a practitioner perspective, we measure (1) the safety margins from tasks’
completion times to their deadlines across our experiments and (2) the number of constraint
violations in a priority assignment. In addition, we measure the execution time and memory
usage of OPAM.

Statistical comparison metrics. To statistically compare our experiment results, we use
the Mann-Whitney U-test (Mann and Whitney 1947) and Vargha and Delaney’s Â12 effect
size (Vargha and Delaney 2000), which have been frequently applied for evaluating search-
based algorithms (Arcuri et al. 2010; Hemmati et al. 2013; Shin et al. 2018). Mann-Whitney
U-test determines whether two independent samples are likely or not to belong to the same
distribution. We set the level of significance, α, to 0.05. Vargha and Delaney’s Â12 mea-
sures probabilistic superiority – effect size – between search algorithms. Two algorithms
are considered to be equivalent when the value of Â12 is 0.5.

7.6 Parameter tuning and implementation

Parameters for coevolutionary search. For the coevolutionary search parameters, we set
the population size to 10, the crossover rate to 0.8, and the mutation rate to 1/|J |, where
|J | denotes the number of tasks. We apply these parameter values for both the evolution of
task-arrival sequences and priority assignments (see Section 6). These values are determined
based on existing guidelines (Arcuri and Fraser 2011; Sayyad et al. 2013) and previous
work (Lee et al. 2020b).

We determine the number of coevolution cycles (see Section 6) based on an initial exper-
iment. We applied OPAM to the six industrial subjects and ran OPAM 50 times for each
subject. From the experiment results, we observed that there is no notable difference in
Pareto fronts generated after 1000 cycles. Hence, we set the number of coevolution cycles
to 1000 in our experiments, i.e., EXP1, EXP2, and EXP3 described in Section 7.4.

Parameters for evaluating fitness functions. To evaluate external fitness functions, we
use a set of task-arrival sequences that are generated independently from the coevolution
process (see Section 6.6). We use an adaptive random search (Chen et al. 2010) to generate
a set E of task-arrival sequences, which varies task arrival times within the specified inter-
arrival time ranges of aperiodic tasks. We set the size of E to 10. From our initial experiment,
we observed that this is sufficient to compute the external fitness functions of OPAM under
a reasonable time, i.e., less than 15s. We note that E contains two default sequences of task
arrivals as follows: (seq. 1) aperiodic tasks always arrive at their maximum inter-arrival
times and (seq. 2) aperiodic tasks always arrive at their minimum inter-arrival times. By
having those two sequences of task arrivals as initial elements in E, the adaptive random
search finds other sequences of task arrivals to maximize the diversity of elements in E.

Page 29 of 49    142Empir Software Eng (2022) 27: 142



If a system contains only periodic tasks, the simulation time is often set as the least com-
mon multiple (LCM) of their periods to account for all possible arrivals (Peng et al. 1997).
However, as the six industrial subjects include aperiodic tasks, this is not applicable. For
the experiments with the six industrial subjects, we set the simulation time to the maximum
time between the LCM of periodic tasks’ periods and the maximum inter-arrival time among
aperiodic tasks. By doing so, all possible arrival patterns of periodic tasks are examined
and any aperiodic task arrives at least once during simulation. Recall from Section 6.4 that
OPAM varies arrival times of aperiodic tasks to find worst-case sequences of task arrivals.

We note that the parameters mentioned above can probably be further tuned to improve
the performance of our approach. However, since with our current setting, we were able to
convincingly and clearly support our conclusions, we do not report further experiments on
tuning those values.

Implementation. We implemented OPAM by extending jMetal (Durillo and Nebro 2011),
which is a metaheuristic optimization framework supporting NSGAII and GA. We con-
ducted our experiments using the high-performance computing cluster (Varrette et al. 2014)
at the University of Luxembourg. To account for randomness, we repeated each run of
OPAM 50 times for all experiments. Each run of OPAM was executed on a different node
(equipped with five 2.5GHz cores and 20GB memory) of the cluster, and took less than 16
hours.

7.7 Results

RQ1. Figure 9 shows the best Pareto fronts obtained with 50 runs of OPAM and RS, for the
six industrial study subjects described in Section 7.2. The fitness values presented in the fig-
ures are computed based on each subject’s set E of task-arrival sequences (see Section 7.6),
which is created independently from OPAM and RS. Figures 9a, c, d, e, and d indicate that
OPAM finds significantly better solutions than RS for ICS, UAV, GAP, HPSS, and ESAIL.
Regarding CCS (see Figure 9b), it is difficult to conclude anything based only on visual
inspection. Hence, we compared Pareto fronts obtained by OPAM and RS using the three
quality indicators HV, GD+, and �, described in Section 7.5.

Figure 10 depicts distributions of HV (Figure 10a), GD+ (Figure 10b), and �

(Figure 10c) for the six industrial subjects. The boxplots in the figures present the distribu-
tions (25%-50%-75%) of the quality values obtained from 50 runs of OPAM and RS. The
quality values are computed based on the Pareto fronts obtained by the algorithms and each
subject’s set E of task-arrival sequences (see Section 7.6). In the figures, statistical compar-
isons of the two corresponding distributions are summarized using p-values and Â12 values,
as described in Section 7.5, under each subject name.

As shown in Fig. 10a and b, OPAM obtains better distributions of HV and GD+ compared
to RS for all six subjects. All the differences are statistically significant as the p-values are
below 0.05. Regarding �, as depicted in Fig. 10c, OPAM yields higher diversity in Pareto
front solutions than RS for the following subjects: UAV, GAP, and HPSS. For ICS, CCS,
and ESAIL, OPAM and RS obtain similar � values. From Fig. 10a and b, and Table 2,
we also observe that the higher the number of aperiodic tasks in a subject, the larger the
differences in HV and GD+ between OPAM and RS. Hence, for these two quality indicators,
OPAM outperforms RS more significantly for more complex search problems. Note that the
number of aperiodic tasks is one of the main factors that drives the degree of uncertainty in
task arrivals.

142   Page 30 of 49 Empir Software Eng (2022) 27: 142



Fig. 9 Pareto fronts obtained by OPAM and RS for the six industrial subjects: (a) ICS, (b) CCS, (c) UAV,
(d) GAP, (e) HPSS, and (f) ESAIL. The fitness values are computed based on each subject’s set E of task-
arrival sequences (see Section 7.6). The points located closer to the bottom left of each plot are considered
to be better priority assignments when compared to points closer to the top right

Given the Pareto priority assignments obtained by OPAM and RS, we further assessed
the quality values of the solutions by evaluating them with different sets of task-arrival
sequences. As described in Section 7.4, we created six test sets of task-arrival sequences
for each subject by varying the sequence generation methods and the number of task-arrival
sequences in a set (see T10

a , T10
w , T10

r , T500
a , T500

w , and T500
r described in Section 7.4).

Table 3 reports the average quality values measured by HV, GD+, and � based on 50 runs of
OPAM and RS with the different test sets of task-arrival sequences. The results indicate that
OPAM significantly outperforms RS in most comparison cases. Specifically, out of a total
of 108 comparisons, OPAM outperforms RS 87 times (see the blue-colored cells related

Page 31 of 49    142Empir Software Eng (2022) 27: 142



Fig. 10 Comparing OPAM and RS using the three quality indicators: (a) HV, (b) GD+, and (c) �. The
boxplots (25%-50%-75%) show the quality values obtained from 50 runs of OPAM and RS. The quality
values are computed based on the Pareto fronts obtained by the algorithms and each subject’s set E of task-
arrival sequences (see Section 7.6)

142   Page 32 of 49 Empir Software Eng (2022) 27: 142



to OPAM in Table 3). Regarding �, RS outperforms OPAM for the CCS subject (see the
gray-colored cells related to RS in Table 3). As shown in Table 2, CCS has only 3 aperiodic
tasks and RS was therefore able to find better solutions with respect to � for such a simple
subject.

RQ2. To compare OPAM and SEQ, we first visually inspect the best Pareto fronts obtained
from 50 runs of OPAM and SEQ for the six study systems described in Section 7.2 by
varying the test sets of task-arrival sequences for each subject (see T10

a , T10
w , T10

r , T500
a ,

T500
w , and T500

r described in Section 7.4), which are created independently from OPAM and
SEQ. Overall, we observed that OPAM finds significantly better priority assignments in
most cases. For example, Figure 11 depicts the best Pareto fronts obtained by OPAM and
SEQ when the fitness values are computed based on each subject’s test set T500

a of 500 task-
arrival sequences, which are generated with adaptive random search. The results clearly
show that OPAM outperforms SEQ with respect to producing more optimal Pareto fronts
for ICS, CCS, UAV, HPSS, and ESAIL. For GAP, the visual inspection is not sufficient to
provide any conclusions. Hence, we further compare OPAM and SEQ based on the quality
indicators described in Section 7.5.

Table 4 compares the quality values measured by HV, GD+, and � for the six study sub-
jects. To fairly compare the priority assignments obtained by OPAM and SEQ, we assess
them with the test sets of task-arrival sequences for each subject (see T10

a , T10
w , T10

r , T500
a ,

T500
w , and T500

r described in Section 7.4). Table 4 reports the average quality values com-
puted based on 50 runs of OPAM and SEQ. In Table 4, the statistical comparison of the two
corresponding distributions are reported using p-values and Â12 values.

As shown in Table 4, we compared OPAM and SEQ 108 times by varying the study
subjects, the quality indicators, the number of task-arrival sequences, and the task-arrival
sequence generation methods. Out of 108 comparisons, OPAM significantly outperforms
SEQ 63 times. Specifically, out of 36 HV comparisons, OPAM obtains better HV values
than SEQ 28 times. For ICS (6 HV comparisons), the differences in HV values between
OPAM and SEQ are not statistically significant. In only one HV comparison for CCS, SEQ
outperforms OPAM (see the gray-colored cell related to HV and CCS in Table 4). To inter-
pret these results, one must recall from Table 2 that ICS and CCS have only three aperiodic
tasks that impact the degree of uncertainty in task arrivals and therefore represent simple
cases. Out of 36 GD+ comparisons, OPAM outperforms SEQ 32 times. SEQ outperforms
OPAM only two times for CCS. Hence, overall, the results indicate that OPAM outperforms
SEQ, in terms of generating more optimal Pareto fronts, when the subjects feature a con-
siderable degree of uncertainty in task arrivals and therefore make our search problem more
complex. Otherwise differences are not statistically or practically significant. Regarding �,
which focuses on the diversity of solutions on the Pareto front, SEQ outperforms OPAM
24 times out of 36 comparisons (see the gray-colored cells related to � in Table 4). How-
ever, since OPAM produces enough alternative priority assignments spreading across Pareto
fronts (as visible from the solutions obtained by OPAM in Figure 11), these differences in
� have limited implications in practice.

Page 33 of 49    142Empir Software Eng (2022) 27: 142



Table 3 Comparing OPAM and RS using the three quality indicators: HV, GD+, and �. Average quality
values computed based on 50 runs of OPAM and RS using the different sets of task-arrival sequences (see
Section 7.4)

142   Page 34 of 49 Empir Software Eng (2022) 27: 142



Table 3 (continued)

RQ3. Table 5 reports the average execution times and memory usage required to run OPAM
for the six industrial subjects, over 50 runs. As shown in Table 5, finding optimal priority
assignments for ESAIL requires the largest execution time (≈15.5h) and memory usage
(≈2.9GB), compared to the other subjects. We note that such execution time and memory
usage are acceptable as OPAM can be executed offline in practice.

Figures 12 and 13 show, respectively, the execution times and memory usage from
EXP3.1 (a), EXP3.2 (b), EXP3.3 (c), and EXP3.4 (d), described in Section 7.4. The box-
plots in the figures show distributions (25%-50%-75%) obtained from 50 × 10 runs of
OPAM for a set of 10 synthetic subjects, which are created with the same experimental set-
ting. Regarding the execution time of OPAM, Figures 12a and d show that the execution
time of OPAM is linear both in the number of tasks and simulation time. As for the mem-
ory usage of OPAM, results in Figures 13a and d indicate that memory usage is linear both
in the number of tasks and in the simulation time. However, the results depicted in Fig-
ures 12b, c, 13b, and c indicate that there are no correlations between OPAM execution time
and memory usage and the following two parameters: ratio of aperiodic tasks and range fac-
tor. Therefore, we expect OPAM to scale well as the numbers of tasks and simulation time
increase.

Page 35 of 49    142Empir Software Eng (2022) 27: 142



Fig. 11 Pareto fronts obtained by OPAM and SEQ for the six industrial subjects: (a) ICS, (b) CCS, (c) UAV,
(d) GAP, (e) HPSS, and (f) ESAIL. The fitness values are computed based on each subject’s set T500

a of task-
arrival sequences (see Section 7.4). The points located closer to the bottom left of each plot are considered
to be better priority assignments when compared to points closer to the top right

RQ4. Figure 14 compares, with respect to external fitness (see the f s() and f c() fitness
functions and the set E of sequences of task arrivals described in Section 6.6), the Pareto
solutions obtained by OPAM against the priority assignments defined by engineers for

142   Page 36 of 49 Empir Software Eng (2022) 27: 142



Table 4 Comparing OPAM and SEQ using the three quality indicators: HV, GD+, and �. Average quality
values computed based on 50 runs of OPAM and SEQ using the different sets of task-arrival sequences (see
Section 7.4)

Page 37 of 49    142Empir Software Eng (2022) 27: 142



Table 4 (continued)

the six industrial subjects: ICS (Figure 14a), CCS (Figure 14b), UAV (Figure 14c), GAP
(Figure 14d), HPSS (Figure 14e), and ESAIL (Figure 14f).

As shown in the figure, the solutions obtained by OPAM clearly outperform the priority
assignments defined by engineers regarding the two external objectives: the magnitude of
safety margins and the extent to which constraints are satisfied.

Table 6 summarizes safety margins from the task executions of ESAIL when using one of
our priority assignments optimized by OPAM and the one defined by engineers at LuxSpace.
Note that we focus on ESAIL as it is not possible to access the engineers who developed the
other five industrial subjects reported in the literature (Locke et al. 1990; Traore et al. 2006;
Peraldi-Frati and Sorel 2008; Mikučionis et al. 2010; Anssi et al. 2011). For comparison,
we chose the bottom-left solution in Fig. 14f since it is optimal for the constraint fitness,
which is the same as the fitness value of the priority assignment defined by engineers, and
the differences in safety margin fitness among our solutions are negligible.

As shown in Table 6, our optimized priority assignment significantly outperforms the
one of engineers. Our solution increases safety margins, on average, by 5.33% compared

Table 5 Execution times and memory usage required to run OPAM for the six industrial subjects. Average
values computed based on 50 runs of OPAM are reported

Subject Execution time (s) Memory usage (MB)

ICS 104.34 89.97

CCS 165.50 111.85

UAV 1455.35 312.85

GAP 2819.03 730.29

HPSS 226.98 127.77

ESAIL 55844.23 2879.79

142   Page 38 of 49 Empir Software Eng (2022) 27: 142



Fig. 12 Execution times of OPAM when varying the values of the following parameters: (a) number of tasks
n, (b) ratio of aperiodic tasks γ , (c) range factor μ, and (d) simulation time T . The boxplots (25%-50%-75%)
show the execution times obtained from 500 runs of OPAM, i.e., 50 runs for each of the 10 synthetic subjects
with the same configuration

to the engineers’ solution. For aperiodic tasks, our solution decreases safety margins by
0.01% (4.2ms difference) when the safety margins being compared are the maximum mar-
gins observed in both solutions (see the maximum safety margins, 59710.3ms obtained by
engineers’ solution and 59707.2ms obtained by OPAM, in Table 6). Such a small decrease
is however negligible in the context of ESAIL as the maximum safety margin obtained by
our solution is still large, i.e., ≈1m. For periodic tasks, we note that our solution increases
safety margins by 208.09% when the safety margins being compared are the minimum
margins observed in both solutions (see the minimum safety margins, -44.5ms obtained by
engineers’ solution and 48.1ms obtained by OPAM, in Table 6). Note that the minimum
safety margin of -44.5ms obtained with the engineers’ solution indicates that a task vio-
lates its deadline. In the context of ESAIL, which is a mission-critical system, such gain in
safety margins in the executions of periodic tasks is important because the hard deadlines
of periodic tasks are more critical than the soft deadlines of aperiodic tasks.

Investigating practitioners’ perceptions of the benefits of OPAM is necessary to adopt
OPAM in practice. To do so, we draw on the qualitative reflections of three software engi-
neers at LuxSpace, with whom we have been collaborating on this research. They have had
four to seven years of experience developing satellite systems at LuxSpace, with more than

Page 39 of 49    142Empir Software Eng (2022) 27: 142



Fig. 13 Memory usage of OPAM when varying the values of the following parameters: (a) number of tasks
n, (b) ratio of aperiodic tasks γ , (c) range factor μ, and (d) simulation time T . The boxplots (25%-50%-75%)
show the memory usage obtained from 500 runs of OPAM, i.e., 50 runs for each of the synthetic subjects
with the same configuration

50 years of collective experience in companies. All the reflections are based on observa-
tions made throughout our interactions. The engineers at LuxSpace deemed OPAM to be an
improvement over their current practice as it allows them to perform domain-specific trade-
off analysis among Pareto solutions and is useful in practice to support decision making
with respect to their task design. Encouraged by the promising results, we are now applying
OPAM to new systems in collaboration with LuxSpace.

7.8 Threats to Validity

To mitigate the main threats that arise from not accounting for random variation, we com-
pared OPAM against RS under identical parameter settings. We present all the underlying
parameters and provide the full package of our experiments to facilitate replication. Also, we

142   Page 40 of 49 Empir Software Eng (2022) 27: 142



Fig. 14 Comparing Pareto solutions obtained by OPAM and priority assignments defined by engineers for
the six industrial subjects: (a) ICS, (b) CCS, (c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The points located
closer to the bottom left of each plot are considered to be better priority assignments when compared to
points closer to the top right

ran OPAM 50 times for each study subject and compared results using statistical analysis,
i.e., Mann-Whitney U-test and Vargha and Delaney’s Â12.

We note that there are prior studies that aim at optimizing priority assignments such as
OPA (Audsley 1991) and RPA (Davis and Burns 2007). However, to our knowledge, none
of the existing works offer ways to analyze trade-offs among equally viable priority assign-
ments with respect to safety margins and the satisfaction of constraints. Nevertheless, we
attempted to compare OPAM with an extension of an existing method, e.g., RPA (Davis and
Burns 2007). To do so, we first applied an exhaustive schedulability analysis technique to
the ESAIL subject – our motivating case study – in order to verify whether the ESAIL tasks

Page 41 of 49    142Empir Software Eng (2022) 27: 142



Table 6 Comparing safety margins from the task executions of ESAIL when using our optimized priority
assignment and the one defined by engineers

Periodic tasks Aperiodic tasks All tasks

Engineer Min -44.5 9.4 -44.5

Max 1879.7 59710.3 59710.3

Avg. 126.6 52.6 78.1

Median 82.1 9.4 48.1

OPAM Min 48.1 9.4 9.4

Max 1879.7 59707.2 59707.2

Avg. 129.8 57.2 82.3

Median 85.7 9.4 48.1

% Difference Min 208.09% 0.00% 121.12%

Max 0.00% -0.01% -0.01%

Avg. 2.53% 8.89% 5.33%

Median 4.38% 0.00% 0.00%

∗Unit of time: ms

are schedulable for a given priority assignment. Note that existing priority assignment tech-
niques are built on such schedulability analysis methods, which are therefore a prerequisite.
We chose UPPAAL (Behrmann et al. 2004), a model checker, for schedulability analysis as
it has been used in real-time system studies (Mikučionis et al. 2010; Yu et al. 2010; Yal-
cinkaya et al. 2019). However, our experiment results using UPPAAL for ESAIL showed
that it was not able to complete the analysis task, even after 5 days of execution, for a single
priority assignment. We were therefore not able to perform experimental comparisons with
existing priority assignment methods. Since this evaluation is not the main focus of this arti-
cle, we point the reader to the UPPAAL specification of ESAIL available online (Lee et al.
2021).

Recall from Section 6.2 that OPAM assigns tasks’ WCETs to their execution times when
it simulates the worst-case executions of tasks while varying task arrival times. In many
real-time systems studies (Briand et al. 2005; Guan et al. 2009; Lin et al. 2009; Anssi et al.
2011; Zeng et al. 2014; Di Alesio et al. 2015; Du̇rr et al. 2019), static WCETs are often used
instead of varying task execution times for the purpose of real-time analysis. For example,
practitioners typically use WCETs to estimate the lowest bound of CPU utilization required
to properly apply the rate monotonic scheduling policy (Fineberg and Serlin 1967) to their
systems. Similarly, OPAM assumes that near-worst-case schedule scenarios can be simu-
lated by assigning tasks’ WCETs to their execution times and varying tasks’ arrival times
using search. A near-worst-case schedule scenario entails that the magnitude of deadline
misses is maximized when tasks execute as per this scenario. Under this working assump-
tion, we were able to empirically evaluate the sanity, coevolution, scalability, and usefulness
aspects of OPAM (see Section 7). The results indicate that OPAM is a promising and useful
tool. However, the formal proof of whether or not the WCET assumption holds in the system
model described in Section 3 requires complex analysis, accounting for varying task arrival
times, triggering relationships, resource dependencies, and multiple cores. When task exe-
cution times need to be varied during simulation, engineers can adapt OPAM by utilizing
Monte-Carlo simulation (Kroese et al. 2014) to account for such variations.

142   Page 42 of 49 Empir Software Eng (2022) 27: 142



The main threat to external validity is that our results may not generalize to other systems.
We mitigate potential biases and errors in our experiments by drawing on real industrial
subjects from different domains and several synthetic subjects. Specifically, we selected
two subjects from the aerospace domain, two from the automotive domain, and two from
the avionics domain. The positive feedback obtained from LuxSpace and the encourag-
ing results from our industrial case studies indicate that OPAM is a scalable and practical
solution. Furthermore, we believe OPAM introduces a promising avenue for addressing the
problem of priority assignment by applying coevolutionary algorithms, even for systems
that use other scheduling policies, e.g., priority inheritance. In order for OPAM to sup-
port different scheduling policies, the main requirement is to replace the existing simulator
(described in Section 6) with a new simulator supporting the desired scheduling policy. In
our approach, the coevolution part of OPAM is separated from the scheduling policy, which
is contained in the simulator. Hence, we deem the expected changes for the coevolution
part of OPAM to be minimal. Future studies are nevertheless necessary to investigate how
OPAM can be adapted to find near-optimal priority assignments for other real-time systems
in different contexts.

8 Conclusion

We developed OPAM, a priority assignment method for real-time systems, that aims to find
equally viable priority assignments that maximize the magnitude of safety margins and the
extent to which engineering constraints are satisfied. OPAM uses a novel approach, based
on multi-objective, competitive coevolutionary search, that simultaneously evolves different
species, i.e., populations of priority assignments and stress test scenarios, that compete with
one another with opposite objectives, the former trying to minimize chances of deadline
misses while the latter attempts to maximize them. We evaluated OPAM on a number of syn-
thetic systems as well as six industrial systems from different domains. The results indicate
that OPAM is able to find significantly better solutions than both those manually defined by
engineers based on expert knowledge and those obtained by our baselines: random search
and sequential search. Further, OPAM scales linearly with the number of tasks in a system
and the time required to simulate task executions. Execution times on our industrial systems
are practically acceptable.

In the future, we will continue to study the problem of optimal priority assignment by
accounting for (1) priority assignments that change dynamically, (2) WCET value ranges
that account for non-deterministic computation times, (3) interrupt handling routines that
execute differently compared to real-time tasks, and (4) hybrid scheduling policies that
combine multiple standard policies. We also plan to develop a real-time task modeling
language to specify task characteristics such as resource dependencies, triggering relation-
ships, engineering constraints, and behaviors of real-time tasks and to facilitate real-time
system analysis, e.g., optimal priority assignment and schedulability analysis. In addition,
we would like to incorporate additional analysis capabilities into OPAM in order to verify
whether or not a system satisfies the required properties, e.g., schedulability of tasks and
absence of deadlocks, for a given priority assignment. For example, statistical model check-
ing (Legay et al. 2010) may allow us to verify whether tasks meet their deadlines for a given
priority assignment with a probabilistic guarantee. In the long term, we plan to more conclu-
sively validate the usefulness of OPAM by applying it to additional case studies in different
application domains.

Page 43 of 49    142Empir Software Eng (2022) 27: 142



Acknowledgements We thank Yago Isasi Parache, LuxSpace, for his support in conducting our industrial
case study. This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 694277), and NSERC of
Canada under the Discovery and CRC programs. The experiments presented in this paper were carried out
using the HPC facilities of the University of Luxembourg (Varrette et al. 2014) – see hpc.uni.lu.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2020) Automated repair of feature interac-
tion failures in automated driving systems. In: Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis (ISSTA’20), pp 88–100

Andrade SS, Macêdo RJdA (2013) A search-based approach for architectural design of feedback control
concerns in self-adaptive systems. In: Proceedings of the 2013 IEEE 7th international conference on
self-adaptive and self-organizing systems (SASO’13), pp 61–70

Anssi S, Tucci-Piergiovanni S, Kuntz S, Gérard S, Terrier F (2011) Enabling scheduling anal-
ysis for AUTOSAR systems. In: Proceedings of the 14th IEEE international symposium on
Object/Component/Service-Oriented real-time distributed computing (ISORC’11), pp 152–159

Arcuri A, Briand LC (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Software Testing, Verification and Reliability 24(3):219–250

Arcuri A, Fraser G (2011) On parameter tuning in search based software engineering. In: Proceedings of the
3th international symposium on search based software engineering (SSBSE’11), pp 33–47

Arcuri A, Iqbal MZ, Briand LC (2010) Black-box system testing of real-time embedded systems using ran-
dom and search-based testing. In: Proceedings of the IFIP international conference on testing software
and systems (ICTSS’10), vol 6435, pp 95–110

Arpaci-Dusseau RH, Arpaci-Dusseau AC (2018) Operating Systems: Three Easy Pieces, 1st edn., Arpaci-
Dusseau Books

Audsley NC (1991) Optimal priority assignment and feasibility of static priority tasks with arbitrary start
times. Tech. rep. Dept. Computer Science, University of York

Audsley NC (2001) On priority assignment in fixed priority scheduling. Inform Process Lett 79(1):39–44
Baruah SK, Burns A, Davis RI (2011) Response-time analysis for mixed criticality systems. In: Proceedings

of the 2011 IEEE 32nd real-time systems symposium (RTSS’11), pp 34–43
Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL. In: Formal methods for the design of real-

time systems: international school on formal methods for the design of computer, communication, and
software systems, pp 200–236

Bernat G, Burns A (2001) Weakly hard real-time systems. IEEE Trans Comput 50(4):308–321
Boussaa M, Kessentini W, Kessentini M, Bechikh S, Ben Chikha S (2013) Competitive coevolutionary

code-smells detection. In: Proceedings of the 5th international symposium on search based software
engineering (SSBSE’13), pp 50–65

Briand LC, Labiche Y, Shousha M (2005) Stress testing real-time systems with genetic algorithms. In: Pro-
ceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05), pp 1021–
1028

Chen T, Li K, Bahsoon R, Yao X (2018) FEMOSAA: Feature-guided and knee-driven multi-objective
optimization for self-adaptive software. ACM Transactions on Software Engineering and Methodology
27(2):1–50

Chen TY, Kuo FC, Merkel RG, Tse TH (2010) Adaptive Random Testing: The ART of test case diversity.
Journal of Systems and Software 83(1):60–66

Chu Y, Burns A (2008) Flexible hard real-time scheduling for deliberative AI systems. Real-Time Systems
40(3):241–263

142   Page 44 of 49 Empir Software Eng (2022) 27: 142

http://hpc.uni.lu
http://creativecommons.org/licenses/by/4.0/


Davis RI, Bertogna M (2012) Optimal fixed priority scheduling with deferred pre-emption. In: Proceedings
of the 2012 IEEE 33rd real-time systems symposium (RTSS’12), pp 39–50

Davis RI, Burns A (2007) Robust priority assignment for fixed priority real-time systems. In: Proceedings of
the 28th IEEE international real-time systems symposium (RTSS’07), pp 3–14

Davis RI, Burns A (2009) Robust priority assignment for messages on Controller Area Network (CAN).
Real-Time Systems 41(2):152–180

Davis RI, Burns A (2011) Improved priority assignment for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems. Real-Time Systems 47(1):1–40

Davis RI, Zabos A, Burns A (2008) Efficient exact schedulability tests for fixed priority real-time systems.
IEEE Trans Comput 57(9):1261–1276

Davis RI, Cucu-Grosjean L, Bertogna M, Burns A (2016) A review of priority assignment in real-time
systems. Journal of Systems Architecture 65:64–82

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation 6(2):182–197

Di Alesio S, Gotlieb A, Nejati S, Briand LC (2012) Testing deadline misses for real-time systems using
constraint optimization techniques. In: Proceedings of the 2012 IEEE 5th international conference on
software testing, verification and validation (ICST’12), pp 764–769

Di Alesio S, Nejati S, Briand LC, Gotlieb A (2013) Stress testing of task deadlines: A constraint programming
approach. In: Proceedings of the IEEE 24th international symposium on software reliability engineering
(ISSRE’13), pp 158–167

Di Alesio S, Briand LC, Nejati S, Gotlieb A (2015) Combining genetic algorithms and constraint pro-
gramming to support stress testing of task deadlines. ACM Transactions on Software Engineering and
Methodology 25(1):1–37

Durillo JJ, Nebro AJ (2011) JMetal: A java framework for multi-objective optimization. Advances in
Engineering Software 42(10):760–771

Du̇rr M, Bru̇ggen GVD, Chen KH, Chen JJ (2019) End-to-end timing analysis of sporadic cause-effect chains
in distributed systems. ACM Transactions on Embedded Computing Systems 18(5s):1–24

Emberson P, Stafford R, Davis RI (2010) Techniques for the synthesis of multiprocessor tasksets. In: Pro-
ceedings of the 1st international workshop on analysis tools and methodologies for embedded and
real-time systems (WATERS’10), pp 6–11

Ficici SG (2004) Solution concepts in coevolutionary algorithms. Ph.d. thesis, Brandeis University, Depart-
ment of Computer Science, Waltham, MA

Fineberg MS, Serlin O (1967) Multiprogramming for hybrid computation. In: Proceedings of the AFIPS fall
joint computing conference (AFIPS’67), pp 1–13

Gendreau M, Potvin JY (2010) Handbook of Metaheuristics. Springer
George L, Rivierre N, Spuri M (1996) Preemptive and non-preemptive real-time uniprocessor scheduling.

Research Report RR-2966, INRIA, projet REFLECS
Goldberg DE, Lingle R (1985) Alleleslociand the traveling salesman problem. In: Proceedings of the 1st

international conference on genetic algorithms, pp 154–159
Grass W, Nguyen THC (2018) Improved response-time bounds in fixed priority scheduling with arbitrary

deadlines. Real-Time Systems 54(1):1–30
Guan N, Stigge M, Yi W, Yu G (2009) New response time bounds for fixed priority multiprocessor schedul-

ing. In: Proceedings of the 2009 30th IEEE international real-time systems symposium (RTSS’09),
pp 387–397

Hatvani L, Afshar S, Bril RJ (2018) Optimal priority and threshold assignment for fixed-priority preemption
threshold scheduling. ACM SIGBED Review 15(1):43–49

Hemmati H, Arcuri A, Briand LC (2013) Achieving scalable model-based testing through test case diversity.
ACM Transactions on Software Engineering and Methodology 22(1):1–42

Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2015) Modified distance calculation in generational distance
and inverted generational distance. In: Proceedings of the 8th international conference on evolutionary
multi-criterion optimization (EMO’15), pp 110–125

Islam MM, Marchetto A, Susi A, Scanniello G (2012) A multi-objective technique to prioritize test cases
based on latent semantic indexing. In: Proceedings of the 2012 16th European conference on software
maintenance and reengineering (CSMR’12), pp 21–30

Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution
strategy. Evolutionary Computation 8(2):149–172

Kroese DP, Brereton TJ, Taimre T, Botev ZI (2014) Why the Monte Carlo method is so important today.
Wiley Interdisciplinary Reviews: Computational Statistics 6:386–392

Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. In:
Proceedings of the 23rd international conference on computer aided verification (CAV’11), pp 585–591

Page 45 of 49    142Empir Software Eng (2022) 27: 142



Langdon WB, Harman M, Jia Y (2010) Efficient multi-objective higher order mutation testing with genetic
programming. Journal of Systems and Software 83(12):2416–2430

Lee H, Lee J, Yeom I, Woo H (2020a) Panda: Reinforcement learning-based priority assignment for multi-
processor real-time scheduling. IEEE Access 8:185570–185583

Lee J, Shin SY, Nejati S, Briand LC, Parache YI (2020b) Schedulability analysis of real-time systems with
uncertain worst-case execution times. arXiv:abs/2007.10490

Lee J, Shin SY, Nejati S, Briand LC (2021) [Evaluation package] Optimal priority assignment method for
real-time systems. https://github.com/SNTSVV/OPAM

Legay A, Delahaye B, Bensalem S (2010) Statistical model checking: An overview. In: Proceedings of the
international conference on runtime verification (RV’10), pp 122–135

Leung JYT, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation 2(4):237–250

Li M, Chen T, Yao X (2020) How to evaluate solutions in Pareto-based search-based software engineering?
A critical review and methodological guidance. IEEE Transactions on Software Engineering

Lin M, Xu L, Yang LT, Qin X, Zheng N, Wu Z, Qiu M (2009) Static security optimization for real-time
systems. IEEE Transactions on Industrial Informatics 5(1):22–37

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM 20(1):46–61

Liu JWS (2000) Real-Time Systems, 1st edn. Prentice Hall PTR
Locke CD, Vogel DR, Lucas L, Goodenough JB (1990) Generic avionics software specification. Tech. rep.,

DTIC Document
Luke S (2013) Essentials of Metaheuristics. 2nd edn, Lulu, available for free at http://cs.gmu.edu/∼sean/

book/metaheuristics/
LuxSpace (2021) ESAIL. https://luxspace.lu/triton-2/
Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than

the other. Annals of Mathematical Statistics 18(1):50–60
Marchetto A, Islam MM, Asghar W, Susi A, Scanniello G (2016) A multi-objective technique to prioritize

test cases. IEEE Transactions on Software Engineering 42(10):918–940
Meneghini IR, Guimarães FG, Gaspar-Cunha A (2016) Competitive coevolutionary algorithm for robust

multi-objective optimization: The worst case minimization. In: Proceedings of the 2016 IEEE congress
on evolutionary computation (CEC’16), pp 586–593

Mikučionis M, Larsen KG, Rasmussen JI, Nielsen B, Skou A, Palm SU, Pedersen JS, Hougaard P (2010)
Schedulability analysis using UPPAAL: Herschel-Planck case study. In: Proceedings of the interna-
tional symposium on leveraging applications of formal methods, verification and validation (ISoLA’10),
pp 175–190

Nejati S, Briand LC (2014) Identifying optimal trade-offs between CPU time usage and temporal constraints
using search. In: Proceedings of the 2014 international symposium on software testing and analysis
(ISSTA’14), pp 351–361

Nejati S, Di Alesio S, Sabetzadeh M, Briand LC (2012) Modeling and analysis of CPU usage in safety-
critical embedded systems to support stress testing. In: Proceedings of the 15th international conference
of model driven engineering languages and systems (MODELS’12), vol 7590, pp 759–775

Nejati S, Adedjouma M, Briand LC, Hellebaut J, Begey J, Clement Y (2013) Minimizing CPU time shortage
risks in integrated embedded software. In: Proceedings of the 28th IEEE/ACM international conference
on automated software engineering (ASE’13), pp 529–539

Peng D, Shin KG, Abdelzaher TF (1997) Assignment and scheduling communicating periodic tasks in
distributed real-time systems. IEEE Transactions on Software Engineering 23(12):745–758

Peraldi-Frati MA, Sorel Y (2008) From high-level modelling of time in MARTE to real-time scheduling
analysis. In: Proceedings of the MODELS’08 workshop on model based architecting and construction
of embedded systems (ACES-MB), vol 503, pp 129–144

Popovici E, Bucci A, Wiegand RP, De Jong ED (2012) Coevolutionary principles. In: Handbook of natural
computing. Springer, pp 987–1033

Ralph P, bin Ali N, Baltes S, Bianculli D, Diaz J, Dittrich Y, Ernst N, Felderer M, Feldt R, Filieri A, de França
BBN, Furia CA, Gay G, Gold N, Graziotin D, He P, Hoda R, Juristo N, Kitchenham B, Lenarduzzi V,
Martı́nez J, Melegati J, Mendez D, Menzies T, Molleri J, Pfahl D, Robbes R, Russo D, Saarimäki N,
Sarro F, Taibi D, Siegmund J, Spinellis D, Staron M, Stol K, Storey MA, Taibi D, Tamburri D, Torchiano
M, Treude C, Turhan B, Wang X, Vegas S (2020) Empirical standards for software engineering research.
2010.03525

Sayyad AS, Goseva-Popstojanova K, Menzies T, Ammar H (2013) On parameter tuning in search based soft-
ware engineering: A replicated empirical study. In: Proceedings of the 2013 3rd international workshop
on replication in empirical software engineering research (RESER’13), pp 84–90

142   Page 46 of 49 Empir Software Eng (2022) 27: 142

http://arxiv.org/abs/abs/2007.10490
https://github.com/SNTSVV/OPAM
http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
https://luxspace.lu/triton-2/


Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prioritization for acceptance testing
of cyber physical systems: A multi-objective search-based approach. In: Proceedings of the 27th ACM
SIGSOFT international symposium on software testing and analysis (ISSTA’18), pp 49–60

Shin SY, Nejati S, Sabetzadeh M, Briand LC, Arora C, Zimmer F (2020) Dynamic adaptation of software-
defined networks for IoT systems: A search-based approach. In: Proceedings of the IEEE/ACM 15th
international symposium on software engineering for adaptive and self-managing systems (SEAMS’20),
pp 137–148

Sivanandam SN, Deepa SN (2008) Introduction to Genetic Algorithms, 1st edn. Springer, Berlin
Tan SH, Yoshida H, Prasad MR, Roychoudhury A (2016) Anti-patterns in search-based program repair.

In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering (FSE’16), pp 727–738

Tindell KW, Burns RA, Wellings A (1994) An extendible approach for analyzing fixed priority hard real-time
tasks. Real-Time Systems 6(2):133–151

Traore K, Grolleau E, Cottet F (2006) Simpler analysis of serial transactions using reverse transactions. In:
Proceedings of the international conference on autonomic and autonomous systems (ICAS’06), p 11

Vargha A, Delaney H (2000) A critique and improvement of the “CL” common language effect size statistics
of McGraw and Wong. Journal of Educational and Behavioral Statistics 25(2):101–132

Varrette S, Bouvry P, Cartiaux H, Georgatos F (2014) Management of an academic HPC cluster: The UL
experience. In: Proceedings of the 2014 international conference on high performance computing &
simulation (HPCS’14), pp 959–967

Veldhuizen DAV, Lamont GB (1998) Multiobjective evolutionary algorithm research : A history and analysis.
Tech. RepTR–98–03, Air Force Institute of Technology, Wright-Patterson AFB

Wang P, Huang J, Cui Z, Xie L, Chen J (2020) A gaussian error correction multi-objective positioning model
with NSGA–II. Concurrency and Computation: Practice and Experience 32(5):1–16

Wegener J, Grochtmann M (1998) Verifying timing constraints of real-time systems by means of evolutionary
testing. Real-Time Systems 15(3):275–298

Wegener J, Sthamer H, Jones BF, Eyres DE (1997) Testing real-time systems using genetic algorithms.
Software Quality Journal 6(2):127–135

Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic program-
ming. In: Proceedings of the 31st international conference on software engineering (ICSE’09), pp 364–
374

Whitley D, Kauth J (1988) GENITOR: A different genetic algorithm. In: Proceedings of the 1988 rocky
mountain conference on artificial intelligence, pp 118–130

Wilkerson JL, Tauritz D (2010) Coevolutionary automated software correction. In: Proceedings of the 12th
annual conference on genetic and evolutionary computation (GECCO’10), pp 1391–1392

Wilkerson JL, Tauritz DR, Bridges JM (2012) Multi-objective coevolutionary automated software correction.
In: Proceedings of the 14th annual conference on genetic and evolutionary computation (GECCO’12),
pp 1229–1236

Yalcinkaya B, Nasri M, Brandenburg BB (2019) An exact schedulability test for non-preemptive self-
suspending real-time tasks. In: Proceedings of the 2019 design, automation & test in europe conference
& exhibition (DATE’19), pp 1228–1233

Yu F, Li G, Xiong N (2010) Schedulability analysis of multi-processor real-time systems using UPPAAL.
In: Proceedings of the 2nd international conference on information science and engineering (ICISE’10),
pp 1–6

Zeng H, Natale MD, Zhu Q (2014) Minimizing stack and communication memory usage in real-time
embedded applications. ACM Transactions on Embedded Computing Systems 13(5s):1–25

Zhang F, Burns A (2009) Schedulability analysis for real-time systems with EDF scheduling. IEEE Trans
Comput 58(9):1250–1258

Zhao Y, Zeng H (2017) The virtual deadline based optimization algorithm for priority assignment in fixed-
priority scheduling. In: Proceedings of the 2017 IEEE real-time systems symposium (RTSS’17), pp 116–
127

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength
pareto approach. IEEE Transactions on Evolutionary Computation 3(4):257–271

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 47 of 49    142Empir Software Eng (2022) 27: 142



Jaekwon Lee is a Ph.D. candidate at the Interdisciplinary Centre for
Security, Reliability and Trust (SnT), University of Luxembourg. He
received his M.S. in Computer Engineering from Chungbuk National
University (South Korea) in 2015. His research interests are in search-
based software engineering, empirical software engineering, and
machine learning.

Seung Yeob Shin is a Research Scientist at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT), University of Lux-
embourg. He received his Ph.D. degree from the Laboratory for
Advanced Software Engineering Research (LASER) in the Col-
lege of Information and Computer Sciences at the University of
Massachusetts Amherst in 2016. His research interests are in soft-
ware engineering, focusing on model-driven software development,
search-based software engineering, empirical software engineering,
and analysis of complex systems.

Shiva Nejati is an Associate Professor at the School of Electri-
cal Engineering and Computer Science of the University of Ottawa
and a part-time Research Scientist at the SnT Centre for Security,
Reliability, and Trust, University of Luxembourg. From 2009 to
2012, she was a researcher at Simula Research Laboratory in Nor-
way. She received her Ph.D. degree from the University of Toronto,
Canada in 2008. Nejati’s research interests are in software engi-
neering, focussing on model-based development, software testing,
analysis of cyber-physical systems, search-based software engineer-
ing and formal and empirical software engineering methods. Nejati
has coauthored over 50 journal and conference papers, and regularly
serves on the program committees of international conferences in the
area of software engineering. She has for the past ten years been
conducting her research in close collaboration with industry partners
in telecommunication, maritime, energy, automotive and aerospace
sectors.

142   Page 48 of 49 Empir Software Eng (2022) 27: 142



Lionel C. Briand is professor of software engineering and has shared
appointments between (1) The University of Ottawa, Canada and (2)
The SnT centre for Security, Reliability, and Trust, University of Lux-
embourg. In collaboration with colleagues, over 25 years, he has run
many collaborative research projects with companies in the automo-
tive, satellite, aeropsace, energy, financial, and legal domains. Lionel
has held various engineering, academic, and leading positions in six
countries. He was one of the founders of the ICST conference (IEEE
Int. Conf. on Software Testing, Verification, and Validation, a CORE
A event) and its first general chair. He was also EiC of Empirical Soft-
ware Engineering (Springer) for 13 years and led, in collaboration
with first Victor Basili and then Tom Zimmermann, the journal to the
top tier of the very best publication venues in software engineering.

Lionel was elevated to the grades of IEEE Fellow and ACM
Fellow for his work on software testing and verification. He was
granted the IEEE Computer Society Harlan Mills award and the
IEEE Reliability Society engineer-of-the-year award for his work on

model-based verification and testing, respectively in 2012 and 2013. He received an ERC Advanced grant in
2016 – on the topic of modelling and testing cyber-physical systems – which is the most prestigious individ-
ual research award in the European Union. Most recently, he was awarded a Canada Research Chair (Tier 1)
on ”Intelligent Software Dependability and Compliance”. His research interests include: software testing and
verification, applications of AI in software engineering, model-driven software development, requirements
engineering, and empirical software engineering.

Affiliations

Jaekwon Lee1,2 · Seung Yeob Shin1 · Shiva Nejati1,2 · Lionel C. Briand1,2

Jaekwon Lee
jaekwon.lee@uni.lu

Shiva Nejati
snejati@uottawa.ca

Lionel C. Briand
lionel.briand@uni.lu

1 SnT, University of Luxembourg, Kirchberg, Luxembourg
2 University of Ottawa, Ottawa, Canada

Page 49 of 49    142Empir Software Eng (2022) 27: 142

http://orcid.org/0000-0001-9025-7173
mailto: jaekwon.lee@uni.lu
mailto: snejati@uottawa.ca
mailto: lionel.briand@uni.lu

	Optimal priority assignment for real-time systems: a coevolution-based approach
	Abstract
	Introduction
	Contributions.
	Organization.


	Motivating case study
	Problem description
	Task.
	Task relationships.
	Scheduler.
	Schedulability.
	Problem.



	Related Work
	Priority assignment.
	Real-time analysis using exhaustive techniques.
	Search-based analysis in real-time systems.
	Coevolutionary analysis in software engineering.



	Approach Overview
	Competitive Coevolution
	Representations
	Task-arrival sequences.
	Priority assignments.


	Simulation
	Fitness functions
	Internal fitness: deadline misses.
	Internal fitness: safety margins.
	Internal fitness: constraints.
	External fitness: safety margins and constraints.


	Evolution: Worst-case task arrivals
	Evolution: Best-case priority assignments
	External fitness evaluation

	Evaluation
	Research questions
	Industrial study subjects
	Synthetic study subjects
	Experimental Design
	EXP1.
	EXP2.
	EXP3.
	EXP4.


	Evaluation metrics
	Multi-objective evaluation metrics.
	Interpretable metrics.
	Statistical comparison metrics.


	Parameter tuning and implementation
	Parameters for coevolutionary search.
	Parameters for evaluating fitness functions.
	Implementation.


	Results
	RQ1.
	RQ2.
	RQ3.
	RQ4.


	Threats to Validity

	Conclusion
	References
	Affiliations


