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Abstract
Context: Machine learning (ML) software systems are permeating many aspects of our life,
such as healthcare, transportation, banking, and recruitment. These systems are trained with
data that is often biased, resulting in biased behaviour. To address this issue, fairness testing
approaches have been proposed to test ML systems for fairness, which predominantly focus on
assessing classification-based ML systems. These methods are not applicable to regression-
based systems, for example, they do not quantify the magnitude of the disparity in predicted
outcomes, which we identify as important in the context of regression-based ML systems.

Method: We conduct this study as design science research. We identify the problem
instance in the context of emergency department (ED) wait-time prediction. In this paper,
we develop an effective and efficient fairness testing approach to evaluate the fairness of
regression-based ML systems. We propose fairness degree, which is a new fairness mea-
sure for regression-based ML systems, and a novel search-based fairness testing (SBFT)
approach for testing regression-based machine learning systems. We apply the proposed
solutions to ED wait-time prediction software.

Results: We experimentally evaluate the effectiveness and efficiency of the proposed
approach with ML systems trained on real observational data from the healthcare domain.
We demonstrate that SBFT significantly outperforms existing fairness testing approaches,
with up to 111% and 190% increase in effectiveness and efficiency of SBFT compared to
the best performing existing approaches.

Conclusion: These findings indicate that our novel fairness measure and the new approach
for fairness testing of regression-based ML systems can identify the degree of fairness in
predictions, which can help software teams to make data-informed decisions about whether
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such software systems are ready to deploy. The scientific knowledge gained from our work
can be phrased as a technological rule; to measure the fairness of the regression-based ML
systems in the context of emergency department wait-time prediction use fairness degree
and search-based techniques to approximate it.

Keywords Fairness testing · Software testing · Search-based software testing · Software
fairness · Machine learning · Bias

1 Introduction

Machine learning (ML)-based systems are an important infrastructure that enables our soci-
ety’s digital transformation, replacing many dangerous, difficult and tedious tasks with
automation, with the catch that the resultant decisions, if unchecked, may have a profoundly
negative impact on individuals and organisations. Machine learning systems impact us in
very deep and personal ways, and are permeating many aspects of life, including healthcare,
education, banking, employment and transportation. Such software systems decide how we
purchase online (Mattioli 2012), who gets a loan (Olson 2011), what kind of medical diag-
nosis and treatment we receive (Strickland 2016), and are incorporated into criminal justice
systems to determine who goes to jail and who is set free (Ferral ).

In recent years, concerns about biased machine learning systems (i.e., software systems
that have a machine learning component, and which wrongfully discriminate against certain
individuals or groups of individuals in favour of others Friedman and Nissenbaum 1996)
have been growing. For example, facial recognition systems often perform poorly on female
and African–American faces (Klare et al. 2012). YouTube’s automatic captions for men’s
speech are more accurate than women’s (Tatman 2017). Assistant robots in aged-care centres
create anxiety in older people when robots work to keep older people happy with pleasant
conversations by not telling them the truth (Sharkey 2020). Natural language processing
tools for detecting hate speech online are biased against African–American people (Ghaf-
fary 2019). Amazon software decided not to offer same-day delivery to predominantly
minority neighbourhoods (Ingold and Soper 2016a). Staples offered online discounts to
customers only in wealthier and more affluent neighbourhoods (Hardawar 2012). These
examples highlight the importance of the fairness measures in order to quantify the degree of
bias in the machine learning systems and fairness testing approaches in order to ensure that
machine learning systems do not exhibit biases in their predictions and recommendations.

Various fairness measures have been introduced. For example, conditional statistical
parity (Corbett-Davies et al. 2017), equal opportunity (Hardt et al. 2016), counterfactual
fairness (Chiappa 2019) and equalised odds (Hardt et al. 2016). However, these fairness
measures are only applicable to classification-based ML systems (i.e., machine learn-
ing systems that use classification techniques)—which are not purposely designed for
regression-based ML systems (i.e., machine learning systems that use regression tech-
niques). In addition, different fairness measures always capture different aspects of bias.
Thus, their suitability is still context and domain dependent (Mehrabi et al. 2019). For exam-
ple, Dieterich et al. (Dieterich et al. 2016) found that COMPAS (i.e., an ML system used
by some U.S.A. courts to predict the likelihood of a defendant becoming a recidivist) is not
biased when using the disparate impact as the fairness measure, but later is considered unfair
when evaluated using other measures (e.g., the equality of error rates (Angwin et al. 2016)).

Similarly, various fairness testing approaches have been introduced in the software
engineering literature (Zhang et al. 2020). The goal of these fairness testing approaches
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is to generate discriminatory inputs, which are the test cases that expose biases (i.e.,
individual discrimination, group discrimination, and causal discrimination) in the ML-
based system under test (SUT). To generate the discriminatory inputs, black-box fairness
testing approaches have been proposed, e.g., random test generation (Themis (Galhotra
et al. 2017)), directed test generation (Aequitas (Udeshi et al. 2018)), symbolic genera-
tion (Aggarwal et al. 2019), as well as white-box fairness testing approaches (Zhang et al.
2020). However, these fairness testing approaches are primarily designed for classification-
based ML systems, but not for regression-based ML systems.

Regression-based ML systems use regression techniques to predict continuous val-
ues (e.g., patient wait-time estimation). Since the nature of the predicted outcomes of
regression-based ML systems is different from classification-based ML systems (i.e., con-
tinuous vs binary), existing fairness measures and fairness testing approaches may not be
directly applicable, and also not yet effective and efficient. In particular, existing fairness
measures for classification-based ML systems are indicative of the number of test cases that
exhibit different outcomes (TRUE → FALSE or FALSE → TRUE) for two similar inputs
except the difference of a sensitive attribute such as gender. However, for regression-based
ML systems, the difference of the predicted outcomes is not binary, but continuous—which
is challenging to determine if two predicted continuous outcomes are different or not to be
considered as unfair. Thus, one common approach is to use a threshold to determine if a test
input is considered discriminatory, i.e., the difference of two predicted outcomes is greater
than the threshold (Udeshi et al. 2018). Nevertheless, existing fairness testing approaches
that leverage these fairness measures only indicate the number of the discriminatory inputs,
without quantifying the magnitude of the difference of the two predicted outcomes.

Recently, Berk et al. (2017) introduced a fairness measure for regression-based ML sys-
tems as the average differences of predicted outcomes for two similar inputs which differ
in the value of the sensitive attribute, without considering the maximum difference of the
two predicted outcomes. Thus, the Berk’s fairness measure may underestimate the pos-
sible worst case of unfairness of the SUT. Therefore, the extremely worst cases may go
unnoticed during testing if the existing fairness measures are used, making the users of the
regression-based ML systems vulnerable to unfair predictions (e.g., female patients are esti-
mated to wait longer than male patients based on the estimation of an emergency department
wait-time prediction). To the best of our knowledge, none of the existing fairness measures
and testing approaches can estimate the possible worst case of unfairness of the ML-based
system under test.

In this paper, we propose (1) a new fairness measure called fairness degree, which is
defined as the maximum difference in the predictions for two inputs that are identical except
for a sensitive attribute (e.g., gender); and (2) a novel Search-Based Fairness Testing (SBFT)
approach to estimate the fairness degree of the ML-based system under test. In contrast to
existing fairness testing approaches, SBFT is the first search-based approach designed to test
fairness in any machine learning system by employing a genetic algorithm. It has an efficient
fitness evaluation procedure which uses an archiving approach for values that are more likely
to lead to bias revealing inputs, and a fast local search procedure that improves the search for
high quality test inputs that reveal biases. Then, we evaluate the effectiveness and efficiency
of our SBFT approach in terms of discovering fairness degree and compare with four exist-
ing fairness testing approaches (i.e., Aequitas Udeshi et al. (Udeshi et al. 2018), Themis
(Galhotra et al. 2017), symbolic generation (Aggarwal et al. 2019) and random testing).

Our study follows a design science research approach. Fairness metrics for regression-
based ML systems are rare and the existing ones ignore to quantify the magnitude of
outcome difference. We identify the real problem instance in the context of emergency
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department (ED) wait-time prediction. We propose a novel fairness metric, i.e., fairness
degree, to quantify the degree of bias in a regression-based ML system and a novel search-
based fairness testing technique to estimate the fairness degree of an ML system. The
proposed solutions are implemented and applied to ED wait-time prediction software. The
scientific knowledge gained from our work can be phrased as a technological rule; to
measure the fairness of the regression-based ML systems in the context of ED wait-time
prediction use fairness degree and search-based techniques to approximate it.

Through an experimental evaluation on 12 emergency department wait-time prediction
models based on regression techniques trained from over 1.3 million patient records from
12 hospitals (i.e., the largest emergency department patient datasets to date), we address the
following two research questions:

RQ1 How effective is SBFT? SBFT is more effective than the baseline approaches,
yielding a statistically higher fairness degree with large effect sizes at 10, 7, and 10
hospitals for the sensitive attributes country of birth, Indigenous status, and gender,
respectively.

RQ2 How efficient is SBFT? SBFT is significantly more efficient than the baseline
approaches with large effect sizes at 11, 5, and 6 hospitals for the sensitive attributes
country of birth, Indigenous status, and gender, respectively.

These results confirm that our SBFT approach outperforms the state-of-the-art fairness
testing approaches in terms of finding fairness degree of ML software systems based on
regression techniques. Thus, we expect that our SBFT approach can help software teams
to identify the degree of fairness in predictions and make data-informed decisions about
whether such software systems are ready to deploy.

Novelty & Contributions The novelty and contributions of this paper are as follows:

1. We propose a fairness measure called fairness degree that describes the worst case
behaviour of a regression-based ML system.

2. We propose a search-based fairness testing approach that effectively and efficiently
estimates the fairness degree of a regression-based ML system.

3. The results of our experimental evaluation on 12 emergency department wait-time mod-
els demonstrate that SBFT is more effective and efficient in terms of finding fairness
degree compared to the state-of-the-art fairness testing approaches.

Paper Organisation The organisation of this paper following Section 1, the introduction,
is as follows. Section 2 provides the context of emergency department wait-time prediction
software used in this study. Section 3 describes the design science research approach under-
taken for this study. Section 4 formally defines the proposed fairness measure, i.e., fairness
degree. Section 5 describes SBFT, our proposed approach to estimate the fairness degree of
a regression-based ML system. Section 6 experimentally evaluates SBFT. Section 7 posi-
tions our study amongst related work. Section 8 outlines the threats to validity of our study.
Section 9 concludes the paper.

2 Context

AI-enabled healthcare software is being adopted by the healthcare industry, aiming for
improved efficiency, reduced costs and errors, and improvements to both patient satisfaction
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and experience. It has been estimated that the market value of healthcare software is pro-
jected to reach around $29.9 billion by 2023, with a compound annual growth rate (CAGR)
of 7.4% from 2018 to 2023.

With the wave of the global COVID-19 pandemic, emergency departments (ED) in
many countries are currently overwhelmed and overcrowded due to an unpredictable and
unscheduled influx of patients.1 Overcrowded EDs, usually caused by overcrowded hos-
pitals, jeopardise patient safety and are associated with increased death rates (Di Somma
et al. 2015). When EDs are overcrowded, this also cascades back to community health,
taking ambulances off the road whilst they are unable to offload patients into ED beds.
Patients have limited access to information about ED waiting time and hospital capacity.
This lack of transparency from healthcare facilities has negative consequences on patient
satisfaction and can make a difficult patient journey much harder for consumers of health-
care (Walker et al. 2020). Hospitals throughout the world have started to deploy AI-enabled
healthcare software to support EDs in improving patient satisfaction, healthcare manage-
ment, and clinical practices. Patient waiting time for healthcare services is identified as one
of the key measurements of a responsive healthcare system (Sun et al. 2017), according
to the World Health Organization (WHO), and a well-designed and resourced healthcare
system should not have long queues for consultations and treatments. Wait times are often
highly politicised, for both acute and elective care.

In this paper, we focus on a regression-based machine learning system, which is used
in EDs for patient wait-time prediction (aka. ED Software). ED Software provides patients
attending the ED at hospitals with an estimated time that they would have to wait before
being seen by a doctor or other provider. ED Software is currently being used in hospitals
across Melbourne, Australia to estimate the wait time for new patients seeking care (Walker
et al. 2021).

Machine learning to predict ED patient wait-times is useful to keep patients informed
about the expected wait time before being treated by a doctor (Shah et al. 2015). Such wait-
time predictions can also be used to raise awareness of the current flow of waiting patients,
improve capacity planning, and identify system bottle-necks (Strobel et al. 2021). The accu-
racy of the patient wait-time predictions is one of the key factors used in hospitals to better
manage patients’ expectations. An overestimated wait-time can cause a patient to decide to
delay seeking critical treatment whereas an underestimated wait-time can negatively impact
patient experience (Soremekun et al. 2011).

According to the WHO’s global strategy on digital health 2020–2025, AI-enabled health-
care software that are used to support decision-makers must ensure the ethical use of
technology. In addition, ED clinicians perceive the role of the ED to be a safety net for
healthcare for all patients equally, treating anyone at anytime, without judgement. Thus, ED
Software should not exhibit any discrimination bias in patient wait-time predictions.

Therefore, ED Software should produce similar wait-time estimations for patients who
have the same clinical urgency, arriving at the same time with the same number of patients
ahead of them in the queue. This should be the case regardless of individual sensitive
attributes (e.g., gender, country of birth, indigenous status, race, religion). Discrimination
bias embedded in the prediction models in the ED Software could have a negative impact
on patient satisfaction, regardless of the number of patients affected. Patients and fami-
lies cope better with expected waits than unexpected waits and are disappointed by longer
than expected waits. Hospitals that seek to attract more patients (fee-for-service funding)

1https://www.japantimes.co.jp/news/2021/01/09/national/overloaded-hospitals-japan-coronavirus/
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may find customers choosing alternative facilities if their wait-time is overestimated and
generate low net promoter scores and ill-will when the wait time is underestimated (also
losing customers). Hospitals with block funding also suffer when wait-time predictions are
inaccurate, due to reduced patient satisfaction and increased aggression and complaints.
Therefore, the use of existing fairness measures (Berk et al. 2017) (e.g., the average differ-
ences of predicted outcomes for two similar inputs which differ in the value of the sensitive
attribute) may hinder the extreme cases of unfairness, leading to a poor understanding of
the ultimate worst case of unfairness of an ML-based system under test and sub-optimal
decision-making if such unfair systems are deployed. Thus, a novel fairness degree to
indicate the absolute worst case of unfairness by an ML-based system is critically needed.

3 Research Methodology

We conduct this study as design science research. Runeson et al. (2020) designed a visual
abstract template to help identify the design science constructs in software engineering
research. We use this template to communicate our research methodology as shown in
Fig. 1. According to Runeson et al. (2020), there are three main constructs of design science
research; i) technological rule, ii) its instantiation in terms of a real problem–solution pair,
and iii) the empirical or theoretical support for problem conceptualisation and the solution
design.

Fig. 1 Visual abstract for the paper
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The scientific knowledge gained from our work can be phrased as a technological rule;
to measure the fairness of the regression-based ML systems in the context of ED wait-time
prediction use fairness degree and search-based techniques to approximate it.

We understand through the literature that fairness metrics for regression-based ML sys-
tems are rare and the existing ones ignore to quantify the magnitude of outcome difference.
The real problem instance is identified in the context of emergency department wait time
prediction, where extreme errors mean patients either wait longer than the predictions or
leave the EDs in case of over-estimations. We propose a novel fairness metric called fair-
ness degree to measure the maximum difference of the outcomes of two identical inputs
except for their membership in two different protected groups (Section 4). To find the fair-
ness degree of an ML system, we propose a novel search-based fairness testing technique
(Section 5). The proposed solutions are implemented and applied to ED wait-time prediction
software.

The relevance of the research, the rigour of the research activities, and the novelty of
the technological rule in relation to the underpinning research will be discussed in the
Conclusion (Section 9).

4 Fairness Degree for Regression-Based Machine Learning Systems

A regression-based machine learning system can be formally defined as:

Definition 1 A regression-based machine learning system is a software system that has a
machine learning component where the explanatory variables (or instances) are denoted by
x ∈ X, the target variables (or labels) by y ∈ Y = [−∞, +∞], and the predicted variables
are denoted by ŷ ∈ Ŷ = [−∞, +∞], where y and ŷ are continuous.

We consider the case where each instance x contains a sensitive feature s and its value
is denoted as xs . An example of a sensitive feature is gender, and its value can be female,
male, or non-binary.

In regression-based machine learning systems, the target and predicted values are contin-
uous, and the same value is not likely to occur even twice in the data, which makes it hard
to determine whether the system is fair or not.

Berk et al. (2017) introduced the first measure for fairness of the regression-based ML
systems. The measure is called individual fairness, and estimates how similarly a model
treats two similarly labelled instances, which differ in the value of the sensitive feature.

For every cross pair (xi, yi) ∈ g1 and (xj , yj ) ∈ g2, where g1 and g2 are groups from the
same population that are different in terms of the sensitive attribute s (e.g., women, men),
individual fairness measures how differently the machine learning model treats xi and xj ,
weighted by a function of |yi − yj |.

f = 1

|g1||g2|
∑

(xi ,yi )∈g1, (xj ,yj )∈g2

d(yi, yj )(xi − xj )
2 (1)

where d is a fixed non-negative function decreasing in |yi − yj |, which takes care of
cancellation issues.

More specifically, individual fairness states that the fairness penalty for overestimating
several of one group’s labels cannot be mitigated by overestimating several of the other
group’s labels. However, this averaging over the instances has a smoothing effect, and hides
the impact of outliers.
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Previous research shows that assuring machine learning fairness depends more on how
fairness is defined than on how it is implemented (Corbett-Davies and Goel 2018), which
explains why the issue that has received the most attention in the ML fairness literature is the
definition of fairness (Selbst et al. 2019). Indeed, several definitions of fairness have been
introduced, such as conditional statistical parity (Corbett-Davies et al. 2017), equal oppor-
tunity (Hardt et al. 2016), counterfactual fairness (Chiappa 2019), equalised odds (Hardt
et al. 2016), etc.

Feldman et al. (2015), formalise the Equal Employment Opportunity Commission’s 80%
rule into a formal measure of fairness called disparate impact, which is used in U.S. law
to encode unintentional bias. Disparate impact measures if a decision making process has
widely different outcomes for different groups, even as it appears to be neutral. In the
well known debate about the COMPAS risk score, the creators argued that COMPAS was
fair because the test accuracy was equalised across groups (Dieterich et al. 2016), which
was estimated by the disparate impact measure. Instead, ProPublica journalists demon-
strated that COMPAS was not fair because another important measure of fairness, known
as equality of error rates was violated (Angwin et al. 2016).

This example highlights that existing fairness definitions are simplifications that cannot
fully capture the range of existing and overlapping notions of fairness in all philosophi-
cal, legal, and sociological contexts. Hence, the suitability of a fairness measure is context
dependent (Mehrabi et al. 2019) and must be carefully selected.

Without discounting the importance of avoiding a systemic bias on the whole popula-
tion, outliers, where the predictions deviate by a large margin from reality, deserve special
attention. In other words, minimising extreme deviations in predictions is as important as
avoiding systemic bias.

In the context of ED Software, this could mean that the wait-time was grossly over-
estimated, so the patient may decide to delay treatment or go to another clinic, or
underestimated, where the patient may decide to wait and not receive timely treatment (Stro-
bel et al. 2021). Deciding to go to another clinic as a result of overestimation may have
negative impacts if the selected clinic is not a specialist one. Not receiving timely treatment
due to underestimation can also be detrimental to health. Existing fairness measures do not
address this issue, hence we propose a new measure of fairness, which we call fairness
degree, and a search-based fairness testing (SBFT) approach that serves for approximating
the fairness degree of a machine learning system.

Fairness degree describes the worst-case behaviour of a regression-based machine learn-
ing system. It indicates that the machine learning system is more biased (i.e., less fair) if the
fairness degree is higher. Formally,

Definition 2 Given a machine learning system, the fairness degree is measured by the
maximum difference in the predicted values by the machine learning system for all pairs of
instances (xi, xj ) that are identical apart from the sensitive attribute, i.e., xs

i �= xs
j .

D = max∀i,j
|yi − yj |; xs

i �= xs
j and xk

i = xk
j ,∀k �= s (2)

In the case of the ED Software, we would expect the machine learning model to predict
similar wait-times for two patients who are identical apart from the sensitive attribute; e.g.,
it is reasonable to assume that a woman would not need to wait longer than a man to be
seen by a doctor, given that all relevant circumstances (urgency, age, etc.) are the same.
A larger value of D indicates that the ED Software is more biased. More specifically, this
means that there are two patients who are identical except they are members of two different
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groups (e.g., male and female), and one of them is overestimated a wait-time of D minutes
compared to the other.

Identifying the fairness degree of a machine learning system can be computationally
expensive for large input spaces. This calls for a more effective method for testing such sys-
tems, which provides motivation for our Search-Based Fairness Testing approach introduced
in the next section.

5 Search-Based Fairness Testing

Search-Based Fairness Testing (SBFT) is the first approach for testing regression-based
machine learning systems. The key research challenge SBFT addresses is the identification
of test inputs that reveal large bias for regression-based machine learning systems in order
to estimate the fairness degree of the system in an efficient way. The optimisation problem
is formulated as:

Maximise |yi − yj | (3)

s.t . xk
i = xk

j ,∀k �= s (4)

xs
i �= xs

j . (5)

where xs
i and xs

j are the values of the sensitive attribute. Existing test generation techniques
for fairness use no guidance to find test inputs that can expose the fairness degree of the
machine learning system. For example, Aequitas (Udeshi et al. 2018) uses a predefined
threshold to identify test inputs that are discriminatory, i.e., if a test input reveals a fairness
degree above the threshold it is considered discriminatory. Aequitas considers all test inputs
that are discriminatory as equally important, hence this approach is not suitable for finding
inputs that maximise the fairness degree.

The proposed approach SBFT is presented in Algorithm 1. It is based on a genetic algo-
rithm, and introduces new enhancements to make the search more efficient and effective in
identifying test inputs that reveal the fairness degree. In the next subsections, first we intro-
duce the solution representation, and discuss the fitness evaluation and caching of sensitive
variables which helps speed up the evaluation of the fairness degree of a machine learning
system (Section 5.1). Next, we discuss the search steps with introducing the genetic opera-
tors used to create the new offspring from parent solutions and select individuals to the next
population (Section 5.2).

5.1 Solution Representation and Fitness Evaluation

In SBFT, a solution to the optimisation problem is a test input, which is defined as xi =
{x1

i , x2
i , xs

i , . . . , x
N
i }, where each variable xk

i ; k ∈ [1, N ] can be an integer, categorical
variable or real number. The variables representing the sensitive attributes are defined with
the superscript letter s (i.e., xs

i ).
The fitness of a test input xi is measured by the individual fairness degree, defined as

di = |yi − yj |; xk
i = xk

j ,∀k �= s and xs
i �= xs

j (6)

where yi and yj are the outputs of the inputs xi and xj , which are only different in terms of
their sensitive attributes.

Page 9 of 36    79Empir Software Eng (2022) 27: 79



79   Page 10 of 36 Empir Software Eng (2022) 27: 79



To measure the individual fairness degree of a test input, SBFT changes the value of the
variable representing the sensitive attribute, keeping everything else the same (for example,
flipping the value of the variable representing gender from female to male). Not all sensitive
attributes have only two values. For instance, country of birth can take 293 values in the ED
software system. It would be inefficient to exhaustively sample every value of the sensitive
attribute to evaluate the fitness like in Aequitas. Therefore, SBFT maintains a cache of two
values of the sensitive attribute which expose the current fairness degree of the system.
To evaluate the fitness of a test input, SBFT either uses the cache with a probability of
pc (lines 18-20) or chooses two random values for the sensitive attribute with a (1 − pc)
probability (lines 21-23). If the fitness of the test input is greater than the current fairness
degree, it updates the cache with the new values (lines 25-26).

5.2 The Search Steps and Genetic Operators

SBFT starts with an initial M number of random test inputs as the initial population (line 5).
Solutions are then evaluated using the fitness function defined by procedure EVALUATE-
FITNESS in line 17, and explained in Section 5.1. SBFT applies the crossover, mutation
and selection operators to evolve the population of test cases until a termination criteria is
met (lines 9 to 15). Test cases with the highest fitness, as defined in (6) are more likely to
reproduce and survive to the next generation.

SBFT generates an offspring population (line 9) by calling the procedure GENERA-
TEOFFSPRING in line 28. Parents are selected using the roulette wheel selection strategy
(line 21) (McMinn 2004). This way test cases with higher fitness are more likely to be
selected as parents, hence to reproduce. Next, the selected parents are crossed-over to
produce two children with a certain probability pcr (line 32).

Formally, given two parents

xi = {x1
i , xs

i , . . . , x
N
i }

xj = {x1
j , xs

j , . . . , x
N
j }

the uniform crossover operator may produce two children

x′
i = {x1

j , xs
i , . . . , x

N
j }

x′
j = {x1

i , xs
j , . . . , x

N
i }

where each variable is swapped with a probability of 0.5 except for the sensitive variables,
which remain the same. The crossover operator helps the search focus on high-quality areas
of the search, exploiting existing information in the current population.

SBFT uses a uniform mutation operator. It mutates each variable of one of the two chil-
dren x′

i with a certain probability pμ (line 33), by randomly choosing a new value for each
variable in the range of all possible values. Given

x′
i = {x1

j , xs
i , . . . , x

N
j }

the uniform mutation operator creates a new solution

x′′
i = {x′1

j , x
s
i , . . . , x

′N
j }

This mutation operator helps the search algorithm explore new areas of the search space,
thus preventing the search from becoming trapped in local optima.
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Each variable of the second child x′
j is mutated with a probability pμ by randomly

choosing a new value in the range of the values of its parents (line 34). Given

x′
j = {x1

i , xs
j , . . . , x

N
i }

the mutated solution is

x′′
j = {x′1

i , x
s
j , . . . , x

′N
i }; x′′

j
k ∈ [min(xk

i , xk
j ), max(xk

i , xk
j )],∀k �= s

This mutation operator helps the search to further exploit the information of the selected
parents, which are already one of the best solutions in the current population. Similar to the
crossover operator, both mutation operators do not change the sensitive variables.

In the preliminary experiments, we find that the search is likely to get trapped in local
optima, hence produce sub-optimal solutions. Therefore, SBFT generates a small number
of random test inputs every iteration to include as a seed in the population (line 36). This is
done with the focus on increasing the exploration capabilities of SBFT.

Once the offspring population is generated, SBFT merges it with the current population
(line 10) and selects the best M test inputs to the next population (elitism) (line 13). Finally,
SBFT performs a local search on the best solution of the selected population by calling
the procedure LOCALSEARCH in line 39 to find a better solution in the neighbourhood of
the current best solution (line 14). For each variable in the best solution (line 40), the local
search changes the value of it by δ ∈ {−1, 1} (line 43), and updates the best solution if the
fitness of the new solution is better than the current best solution (lines 44-46). The local
search explores the neighbourhood of the best solution in a more systematic way than the
crossover operator to find the local optimum. Thus, it adds another layer of exploitation of
the best solutions for the search in SBFT.

6 Experimental Evaluation

We design a set of experiments to evaluate the effectiveness and efficiency of SBFT. Effec-
tiveness is assessed based on the fairness degree exposed of the system under test (SUT) at
the end of the search process, which is the maximum fitness as found during the search. The
approach that discovers higher fairness degree of the SUT compared to other approaches is
considered more effective. Efficiency, on the other hand is the rate at which the approaches
discover fairness degree of the SUT. The baseline approaches are presented in Section 6.1,
details of the ED Software, i.e., emergency department wait-time prediction models, used
as the experimental subjects are given in Section 6.2, experimental settings are described in
Section 6.3, and the results are presented in Section 6.4. In essence, with these experiments,
we aim to answer the following research questions:

RQ1 How effective is SBFT? The effectiveness of SBFT in discovering fairness degree of
the SUT is compared to the baseline approaches described in Section 6.1. All approaches are
executed against 12 ED Software built for 12 hospitals (Section 6.2) for the same amount
of execution time, and the final fitness, as measured by (6) is reported for each hospital and
sensitive attribute. We perform statistical tests (as described in Section 6.3) to determine
whether differences in performance are statistically significant.

RQ2 How efficient is SBFT? We measure efficiency using the Area Under Curve (AUC)
of the fairness degree over the execution time for each testing approach. Figure 2 illustrates
this.

79   Page 12 of 36 Empir Software Eng (2022) 27: 79



Fig. 2 Area Under the Curve (AUC)

A large AUC value indicates that the approach is fast at finding a higher fairness degree.
Both the x (execution time) and y (fairness degree) axes of the curve are normalised in the
range 0 to 1.

6.1 Baseline Approaches

We use the state-of-the-art Aequitas fully directed approach (Udeshi et al. 2018),
Themis (Galhotra et al. 2017), symbolic generation (SG) (Aggarwal et al. 2019) and random
testing as baselines for comparison.

We employ a threshold of 10 minutes for Aequitas, which is a parameter used to
determine if a test input is discriminatory. The global search of Aequitas is run until a dis-
criminatory input is found, then a local search is run on that input. These steps are repeated
until the allocated execution time runs out.

In Themis, causal discrimination detection technique is used as it is appropriate to our
context. Both Themis and SG are developed with the focus on classification-based machine
learning systems. Therefore, we utilise a similar method as in Aequitas to determine if a test
input is discriminatory, i.e., a threshold of 10 minutes.

Since the tool for symbolic generation approach is not publicly available, we re-use the
tool developed by Zhang et al. (2020) for their experimental evaluation, which can be found
at https://github.com/pxzhang94/ADF. The authors (Aggarwal et al. 2019) suggest to use
a random seed in the symbolic generation approach in the absence of training data, which
is the case in our ED models. Thus, we allocate the first 10% of the execution time, i.e.,
12 minutes, to generate a random seed in every run of SG. In addition, we replace the
decision tree classifier with a decision tree regressor to generate the decision tree as the ED
models are regression-based ML systems. For all the other parameters, we use the same
values as used in Zhang et al. (2020), which are from the best performance setting according
to Aggarwal et al. (2019).
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6.2 ED Patient Wait-Time Estimation Models

In our experiments, we use the twelve ED patient wait-time estimation models provided by
Walker et al. (2021). The 12 ED models are built for 12 hospitals. Due to the highly-sensitive
nature of the patient datasets, we do not have access to the datasets and the implementation
source code. Instead, we only have access to the model objects as Python pickle files. Next,
we describe the implementation details as provided by Walker et al. (2021).

A total of 1,930,609 patient records from 12 hospitals is collected from each hospital.
The patient records for each hospital were sorted by their arrival time in chronological order.
The 1,388,509 patient records from 2017-18 are used to build ED models using a random
forest regression technique, while the 542,100 patient records in 2019 are used to evaluate
the ED models using a time-wise hold-out validation approach. Table 1 presents a sum-
mary of the 13 variables based on the Victorian Minimum Emergency Dataset (VEMD)
and 6 additional variables to approximate the resource and capacity in real-time (i.e., age,
patients in triage queue, patients awaiting a provider, admitted patients awaiting departure,
ambulance offload queue, and average wait-time of the last k patients). The 19 variables
in Table 1 are considered as independent variables (X ), while the patient wait-time is con-
sidered as dependent variable (Y). Due to the ethical concerns, we anonymise the hospital
names by using H1 to H12 to denote the twelve hospitals in our study.

To avoid any administrative data entry errors, Walker et al. (2021) removed the wait time
outliers from the datasets according to the following criteria: (1) the wait-time exceeding the
maximum of 360 minutes; and (2) the wait-time exceeding the predefined statistical outlier
threshold value (defined as 1.5 times the interquartile range (IQR = Q3 - Q1) over Q3) (n =
13,612 (0.7%)).

6.3 Experimental Settings

We consider three sensitive attributes: Country of birth, Indigenous status, and Gender.
Country of birth can take 293 values (e.g., Australia), and Indigenous status (e.g., Aboriginal
but not Torres Strait Islander origin) and gender (e.g., Male) can take 6 and 4 values respec-
tively. We evaluate SBFT against the baselines for the three attributes separately. Each of
the five approaches are given an execution time of 120 minutes. To account for the random-
ness of SBFT and the baseline approaches, we repeat the experiments 20 times. Then, we
conduct non-parametric Mann-Whitney U-Test with the significance level (α) 0.05 (Arcuri
and Briand 2014) to check for statistical significance of the differences. If p-value < 0.05,
then the differences are statistically significant.

In addition, we conduct Vargha and Delaney’s Â12 statistical test (Vargha and Delaney
2000) to compute the effect size of such differences. The Â12 statistic indicates the proba-
bility of one algorithm producing a larger value than another algorithm. We consider there
is a small effect size if 0.58 ≤ Â12 < 0.65, medium effect size if 0.65 ≤ Â12 < 0.75, and
large effect size if Â12 ≥ 0.75. If Â12 = 0.50, then the two algorithms are equivalent, and
the effect size is negligible if 0.50 < Â12 < 0.58 (Panichella et al. 2015).

SBFT has various parameters to be configured. We use irace, iterated racing for auto-
matic algorithm configuration, to automatically tune the parameters of SBFT (López-Ibánez
et al. 2016). The following parameter settings produced the best results: population size
M = 100, crossover probability pcr = 0.75, mutation probability pμ = 0.70, rate of random
test insertion ri = 0.10, probability of using cache pc = 0.50.
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Table 1 A summary of the studied independent variables

Variables Type of variables

Advanced care directive alert Categorical

Arrival time Date/Time (Integer)

Arrival transport mode Categorical

Campus code Categorical

Insurance status Categorical

Preferred language Categorical

Referred by Categorical

Triage category (according to Australasian Triage Scale) Categorical

Type of usual accommodation Categorical

Type of visit Categorical

Age (used instead of date of birth to preserve privacy) Continuous (Integer)

Patients in triage queue Continuous (Integer)

Patients awaiting a provider Continuous (Integer)

Admitted patients awaiting departure Continuous (Integer)

Ambulance offload queue Continuous (Integer)

Average wait-time of the last k-patients Continuous (Real)

Sensitive variables

Country of birth Categorical

Indigenous status Categorical

Gender Categorical

We implement SBFT, Aequitas, random testing and Themis in a prototype tool in order
to experimentally evaluate them. The prototype tool is available at the online appendix,
https://github.com/search-based-fairness-testing.

6.4 Results

6.4.1 RQ1: How effective is SBFT?

To address RQ1, we use the fairness degree measure (Definition 2) to quantify the effective-
ness of SBFT when comparing to the baseline approaches, i.e., Aequitas, random testing,
Themis and SG. We compute the fairness degree discovered by each studied approach given
an execution time of 2 hours. Since the studied approaches are non-deterministic, we repeat
the experiments 20 times prior to conducting statistical tests to determine whether such
differences in results are statistically significant.

Table 2 shows a statistical summary and results of statistical tests of fairness degree
produced by the studied approaches for the 12 hospitals and the three sensitive attributes.
We observe that overall, SBFT is more effective than the baseline approaches, yielding
a statistically higher fairness degree with large effect sizes at 10, 7, and 10 hospitals for
country of birth, Indigenous status, and gender, respectively.

In particular, for country of birth, SBFT discovers that the fairness degree of the ED
Software at hospital H5 is 44.94 minutes on average, which is 38.01 (+548.5%), 23.64
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Â
12

p-
va

lu
e

Â
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(+111.0%), 22.55 (+100.7%) and 15.46 (+52.4%) minutes higher than what symbolic gen-
eration, Aequitas, Themis and random testing found. SBFT finds the highest fairness degree
of the ED Software at hospital H7, which is 48.85 minutes on average, for the sensitive
attribute, Indigenous status. On the other hand, there is no hospital where SBFT performs
worse than the baselines in terms of effectiveness for any sensitive attribute.

6.4.2 RQ2: How efficient is SBFT?

To address RQ2, we quantify the efficiency of each studied approach using the area under
curve (AUC) of fairness degree that is discovered over time, as described under RQ2 in
Section 6. Similar to RQ1, we allocate 2 hours of execution time for all of the studied
approaches. We compute the fairness degree of each studied approach at every second. For
each studied approach, we draw a line plot of fairness degree (y-axis) and execution time (x-
axis), and compute the area under curve. A large AUC value indicates that an approach can
discover large fairness degree early. Finally, we use Mann-Whitney U-Test and Â12 statistic
to statistically determine the most efficient studied approach.

Table 3 shows a statistical summary and results of statistical tests of AUC for the studied
approaches for the 12 hospitals and the 3 sensitive attributes. We observe that overall, SBFT
is more efficient than the baseline approaches, yielding statistically higher AUC values with
large effect sizes at 11, 5, and 6 hospitals for country of birth, Indigenous status, and gender,
respectively.

In particular, for country of birth, SBFT has an AUC value of 0.90 on average at hospital
H5, which is 0.85 (+1700.0%), 0.59 (+190.3%), 0.55 (+157.1%) and 0.36 (+66.7%) higher
than symbolic generation, Aequitas, Themis and Random Testing. In some cases, SBFT
achieves AUC values closer to 1.0, e.g., at H3 and H7 for Indigenous status, suggesting
that they converge to the final fairness degree of the ED Software very early in the search.
We observe that SBFT discovers the highest fairness degree of 48.85 minutes at H7 for
indigenous status. These findings show that SBFT can effectively find the largest fairness
degree in a very efficient manner (i.e., discovered in the early stage of the search).

Symbolic generation (SG) has the worst performance compared to all the other
approaches. In particular, it discovers the fairness degree of the ED Software only up to
7.91 minutes on average for any sensitive attribute at any hospital. We find that SG gener-
ates only 8 test inputs on average for an execution time of 2 hours across the three sensitive
attributes and the 12 hospitals. This is significantly lower than the number of test inputs
generated by the other four approaches, for example, SBFT and random testing generate
around 14000 test inputs. The symbolic generation approach is significantly slowed down at
its local explainer. SG uses LIME (Ribeiro et al. 2016) as the local explainer and LIME pro-
duces an execution path for each test input generated. To produce the path, LIME randomly
samples a large number of inputs in the neighbourhood of the generated test input (i.e., 5000
inputs is the default value), and executes the ED Software for each of these inputs, which is
computationally expensive.

Figure 3 shows the fairness degree improvements of the five approaches over execu-
tion time at hospital H5 for the sensitive attribute country of birth. We observe that SBFT
finds better test cases compared to the baseline methods early in the search, and keeps this
advantage throughout the execution time, with a steady improvement in solution quality.
Aequitas, Themis and random testing, on the other hand, have long plateaus where fitness
does not improve for many iterations and there are sudden large increments in the fairness
degree. This behaviour is expected for Themis and random testing because both of them are
based on random search techniques. The local search procedure in Aequitas considers all the
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Fig. 3 Fairness degree improvement over execution time at hospital H5 for country of birth

test inputs with individual fairness degree above the threshold, i.e., 10 minutes, as equally
important. It searches the neighbourhood of test inputs that have individual fairness degree
of more than the threshold in the hope of finding more similar test inputs in terms of their
fairness degree. This results in the local search discovering new test inputs that have a sim-
ilar individual fairness degree to the ones found in the global search, which is responsible
for exploration.

We observe that SBFT and random testing generate 14,455 and 14,341 test inputs on
average for an execution time of 2 hours for the sensitive attribute country of birth. On the
other hand, Aequitas only generates 100 test inputs on average. Such significant differences
in the number of generated test inputs is due to the exhaustive nature of the sampling process
of Aequitas. The fitness evaluation in Aequitas is slower than SBFT and random testing
because of its exhaustive nature. Aequitas samples every possible value of the sensitive
variable to evaluate the fitness of a test input. Thus, when a sensitive attribute has many
possible values, e.g., country of birth which has a total of 293 possible values, Aequitas is
much slower than SBFT and random testing. We observe the same problem in the fitness
evaluation of Themis, which only generates 96 test inputs on average for country of birth.
The fitness evaluation in Themis is similar to Aequitas such that Themis samples every
possible value of the sensitive attribute until the input is determined as discriminatory, i.e.,
difference of predicted outputs is greater than the threshold.

Further analysis into the results show that SBFT is not only better at finding a higher fair-
ness degree of ED Software, but also at generating test cases with higher individual fairness
degree as measured by (6). Figures 4, 5 and 6 show the distributions of the individual fair-
ness degree of the test cases generated by the studied approaches for each hospital as violin
plots for the sensitive attributes country of birth, Indigenous status and gender, respectively.
We exclude the test cases with individual fairness degree less than one minute in the anal-
ysis. According to the Mann-Whitney U-Test, SBFT generates test cases with significantly
higher individual fairness degree compared to the baseline approaches at 7, 6 and 3 hospitals
for country of birth, Indigenous status and gender, respectively. Descriptive statistics are
provided in the online appendix, https://github.com/search-based-fairness-testing. We can
also clearly see in the violin plots that SBFT has a higher third quartile and there are more
test cases above the third quartile at hospitals H2, H3, H5 and H7 for country of birth, H3
and H7 for Indigenous status, and H11 for gender. This suggests that the test cases gener-
ated by SBFT have higher individual fairness degree than the ones generated by the baseline
approaches.
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Fig. 4 Individual fairness degree distributions as discovered by each approach for country of birth

6.5 Discussion

Healthcare delivery is biased in favour of certain population groups. These favoured groups
will experience better outcomes for the same diseases, when compared to other populations

Fig. 5 Individual fairness degree distributions as discovered by each approach for Indigenous status
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Fig. 6 Individual fairness degree distributions as discovered by each approach for gender

(higher survival rates and less long-term disability). The reasons for this are many, and bias
exists at decision points the whole way along some patients’ journeys through illness, from
recognising the first symptoms to final long-term treatment. This creates biased derivation
health datasets. Machine learning algorithms may well learn these biases and produce biased
outputs when applied to health questions or scenarios. There is a risk of not only continuing
to propagate these endemic biases, but also amplifying them as machine learning algorithms
are incorporated into healthcare decision making.

In health, a woman with heart attack symptoms might not be advised to seek immediate
medical care (Bairey Merz et al. 2017) whereas a man might be encouraged to call an
ambulance and attend a heart hospital for immediate care (McSweeney et al. 2016; Udell
et al. 2018). In a time-critical condition such as a heart attack, this will increase the woman’s
risk of dying or having a larger area of damage to her heart compared to the outcome had
she received aggressive, immediate treatment (Mehta et al. 2016; Stehli et al. 2021).

Favoured groups in healthcare tend to be middle-aged men, who speak the main language
of their country, are of the majority racial group, and have high affluence and health liter-
acy (Juergens et al. 2016; Wechkunanukul et al. 2016). Groups who fare less well include
women, older people, those with cultural and linguistic diversity compared to the majority
of the country, and those with low affluence and low health literacy (Vogel et al. 2021).

In order to understand if machine learning is generating biased outputs prior to deploying
them in the real world, it is important to be able to detect the biases. Once the biases are
detectable, machine learning could have the potential to mitigate against biases rather than
amplifying the inequities.

Fairness is recognised as a critical non-functional attribute of machine learning sys-
tems (Horkoff 2019). Recent work has focused on improving ML fairness, finding that
removing sensitive features such as gender and ethnicity is not sufficient to ensure fair
outcomes (Kamishima et al. 2011), which highlights the importance of fairness testing
approaches. Our novel approach for fairness testing in regression-based machine learning
systems can help software teams to identify the degree of fairness in predictions and make
data-informed decisions about whether such software systems are ready to deploy.
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In this study, we demonstrate the use of fairness degree to measure the biases in
regression-based ML systems from the healthcare domain, i.e., emergency department wait-
time prediction. We can draw some parallels between the new measure of fairness degree
and existing work on worst-case analysis pertaining to quality attributes such as reliabil-
ity (Bishop and Bloomfield 2002) and performance (Puschner and Burns 2000; Cortellessa
et al. 2005; Ramamoorthy and Ho 1980). For example, Cortellessa et al. (2005) devise a
methodology for estimating performance-based risk factors for software systems, which
originate from violations of performance requirements, i.e., performance failures. The work
introduces annotated UML diagrams to estimate the performance failure probability, which
is combined with the failure severity estimate, thus enabling the determination of risky sce-
narios. The bias degree has a similar goal as it aims at identifying the most risky scenarios
with respect to fairness.

Puschner and Burns (Puschner and Burns 2000) present an overview of worst case exe-
cution time analysis for safety critical real-time systems. Such analysis forms the basis for
establishing confidence into the timely operation of a real-time system. When it comes to
fairness, the fairness degree can be considered as a worst case analysis, as it aims at deter-
mining the highest bias that a system exhibits. Worst-case performance analysis is relevant
specifically for safety critical real-time systems, such as robotics or cars (e.g., response time
of the software component controlling the break pedal in a car), and may not be as relevant
in software systems that do not need perform safety critical and real-time actions. Similarly,
the fairness degree is an important metric that should be considered when developing soft-
ware systems that are used in life-critical scenarios, such as the problem domain considered
in this paper.

Fairness degree can also be used to measure the biases in other ML systems, such
as the crime prediction algorithms, e.g., the risk of an individual re-offending (recidi-
vism) (Angwin et al. 2016), personalised price prediction algorithms (Mahdawi 2018),
patient risk-score predicting algorithms (Ledford 2019), and face detection algorithms, e.g.,
to crop a human face in an image (Hern 2020). For example, face detection algorithms
detect the specific position of human faces in an image using a bounding box, i.e., draw-
ing a rectangular box surrounding the human face in the image. The output is a bounding
box marked by the (x, y) coordinates of the centre of the box along with its height and
width. Given a face detection algorithm, it is reasonable to assume that it outputs the same
bounding box ((x, y), height and width) for two exactly identical faces except for a sensi-
tive attribute like the skin colour (e.g., light skin and dark skin), if not that means the face
detection algorithm is biased against individuals based on their skin colour. The concept of
fairness degree can be leveraged to measure the maximum difference of (x, y) coordinates
of the detected boxes (also height and width) for two identical faces which are different only
from a sensitive attribute, like skin colour.

7 Related Work

7.1 Fairness of Machine Learning Systems

“Humans are inscrutable in a way that algorithms are not” (Mullainathan 2019). As soft-
ware is created by people, it is inevitable that these biases will end up in code, resulting in
biased software. Indeed, it is becoming increasingly evident that machine learning systems
are vulnerable to bias, which render their decisions “unfair”. In the context of decision-
making, fairness is the absence of any favouritism toward an individual or a group based
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on their inherent or acquired characteristics (Mehrabi et al. 2019). In other words, an unfair
machine learning system is one whose decisions are skewed toward a particular group of
people (Binns 2018).

Unlike humans, however, software can be tested, creating the potential for new forms of
transparency and hence opportunities to detect biases that are otherwise unavailable (Galho-
tra et al. 2017). For example, in 2016, Amazon.com, Inc. used software to determine which
parts of the United States it would offer free same-day delivery. The decisions made by the
software prevented minority neighbourhoods from benefiting from this offer, often when
every surrounding neighbourhood could participate (Ingold and Soper 2016b).

7.2 Bias Detection and Mitigation Techniques

The machine learning community has been working on developing techniques for bias
detection and mitigation for ML-based systems (Kamiran and Calders 2012; Calmon et al.
2017; Biswas and Rajan 2020). For example, IBM AI Fairness 360 toolkit (Bellamy et al.
2019) provides state-of-the-art bias detection techniques with 71 fairness metrics, such as
disparate impact, which is the ratio between the probability of unprivileged group getting
a favourable prediction and the probability of privileged group getting a favourable predic-
tion. Similar to IBM AI Fairness 360, fairkit-learn (Johnson et al. 2020) is a toolkit that
helps practitioners to reason about and understand fairness. In addition, it can also evalu-
ate multiple models by computing the optimal trade-offs between fairness and performance
of models. However, such toolkits only detect bias using the existing datasets, but are not
able to detect bias by discovering discriminatory inputs via exploring the search space of all
possible inputs.

Bias mitigation algorithms can be classified into pre-processing (fix the data), in-
processing (fix the classifier), and post-processing (fix the predictions) techniques. Pre-
processing techniques do not change the model, but only work on the dataset before training
so that models can produce fairer predictions. For example, a reweighing technique (Kami-
ran and Calders 2012) and a disparate impact remover technique (Feldman et al. 2015).
Zhang and Harman (2021) recommend that an enlarged feature set substantially improves
both model accuracy and fairness, while extending the training dataset when the feature
set is small could result in more unfairness by the trained model. In-processing techniques
modify the ML model to mitigate the bias in the original model prediction. For example, an
adversarial debiasing technique (Zhang et al. 2018). Post-processing techniques aim to mod-
ify the prediction results instead of the ML models or the input data. Fairway (Chakraborty
et al. 2020) is an example of a technique that combines pre-processing and in-processing
bias mitigation techniques. Although various techniques have been proposed in the
machine learning community, such techniques are not designed for bias discovery in ML
models.

7.3 Fairness Testing

Fairness testing of ML-based systems is still at an early stage. The existing fairness testing
techniques are primarily focused on classification-based ML systems (Galhotra et al. 2017;
Udeshi et al. 2018; Aggarwal et al. 2019; Zhang et al. 2020). Among those techniques, only
Aequitas (Udeshi et al. 2018) is designed to work with regression-based ML systems. In
addition, Galhotra et al. (2017) suggest ways of extending Themis to work with continu-
ous variables as outputs, however, both papers limit their experimental evaluations only to
systems with binary outputs.
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Udeshi et al. (2018) proposed Aequitas, a directed test generation technique focusing on
the individual fairness of the SUT. Aequitas starts with a global search and then performs a
local search on the discriminatory inputs identified in the global search to find further dis-
criminatory inputs. Their approach considers a discrimination threshold for the difference
of two outputs to determine discrimination, thereby making it compatible with regression-
based ML systems. Aequitas directs the local search only by considering whether the recent
inputs are discriminatory or not, and it considers all the inputs that are discriminatory as
equally important. This is opposite to the concept of fairness degree, which considers the
extreme deviations in predictions are important.

Aequitas exploits the inherent robustness property of machine learning models, i.e., the
output of the model should have low variation for small perturbations in the input (Udeshi
et al. 2018). While this works for its intended task, i.e., maximising the number of discrim-
inatory inputs found, we argue the Aequitas approach is ineffective in terms of discovering
fairness degree. The local search in Aequitas does small perturbations on the inputs iden-
tified in the global search. According to the robustness property, the inputs identified in
the local search should behave similarly to the ones identified in the global search, hence,
the local search fails to make use of the inputs provided by the global search in order to
maximise the observed fairness degree. In contrast, SBFT employs a genetic algorithm to
incrementally maximise the fairness degree. In particular, SBFT evolves a population of test
inputs through exploration and exploitation via mutation, crossover and a fast local search
procedure.

Themis (Galhotra et al. 2017) is a random test generation technique that targets group
and causal discrimination of the SUT. Its causal discrimination detection technique can be
used to detect violations of individual fairness, hence, to find fairness degree. Unlike SBFT,
Themis searches for test inputs randomly without any guidance to maximise the fairness
degree of the SUT.

Aggarwal et al. (2019) propose a black-box testing technique called symbolic generation
which focuses on individual fairness of classification-based ML systems. Their approach
uses symbolic execution, which systematically generates test inputs, together with local
explanation, which approximates the path in the model for a corresponding input. The sym-
bolic generation approach is very slow at the local explainer. When LIME (Ribeiro et al.
2016) produces an execution path for a corresponding input in each iteration, it randomly
samples a large number of inputs in the neighbourhood, e.g., 5000, and executes the model
for each of these inputs. This is a time consuming task compared to the fast searching proce-
dures used in SBFT which only executes the model to evaluate fairness degree. As a result,
symbolic generation spends a large percentage of its allocated execution time to build deci-
sion tree paths, while SBFT utilises a large part of the execution time to explore the search
space for high quality test inputs that reveal biases.

Zhang et al. (2020) proposed a white-box testing technique called adversarial discrimina-
tion finder (ADF) to detect individual discriminatory instances in classification-based ML
systems. It was specifically designed for systems built with deep neural networks (DNNs).
In contrast, SBFT is a black-box testing technique that does not require the internal details
of the model under test, which enables testing of third party ML systems where the mod-
els are not accessible (Angwin et al. 2016). Unlike ADF, the concept of SBFT is not model
dependent and can be applied to any regression-based ML system.

FairTest (Tramer et al. 2017) is a testing tool that detects statistically significant associ-
ations between sensitive attributes and an output of a model and generates an interpret-able
bug report. These associations are called unwarranted associations and characterised as fair-
ness bugs in the paper. FairTest needs an existing dataset as input to generate the bug report.
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The datasets used to train and test ML models often contain highly sensitive information,
e.g., in healthcare domain, and are rarely available to practitioners at the time of testing.
Unlike FairTest, SBFT does not require ground-truth datasets, and it evolves an initial pop-
ulation of random test inputs to maximise the identified fairness degree of the system under
test.

Unlike other testing approaches (Galhotra et al. 2017; Udeshi et al. 2018; Aggarwal et al.
2019; Zhang et al. 2020; Tramer et al. 2017), TILE (Sharma and Wehrheim 2019) tests fair-
ness of ML algorithms at the learning stage. It applies four metamorphic transformations on
training data; i) permutation of training data instances, ii) permutation of feature ordering,
iii) shuffling of feature names and iv) renaming of feature values, and claims the algorithm
is fair when the application of transformations results in equivalent predictors. In contrast
to TILE, SBFT is intended to use at the prediction stage where the models are already built.

7.4 Situation Testing

The concept of fairness degree relates to situation testing. Situation testing is a systematic
research procedure used in the legal field to analyse discriminatory treatment on an individ-
ual (Bendick 2007). In situation testing, pairs of individuals who are similar to each other
except for their membership in two different protected groups are sent out to decision mak-
ers. Then, the decisions each pair receive are used to analyse the discriminatory behaviour.
Fairness degree also checks the difference of outcomes for two individuals who are identical
to each other except for their membership in two protected groups. In contrast to situation
testing, fairness degree focuses on the maximum difference in the outcomes.

Luong et al. (2011) first used situation testing for discrimination discovery of a dataset
in a classification setting. They used k-NN approach to find out similar individuals in a
dataset. Zhang et al. (2016) followed a similar approach for discrimination discovery using
Causal Bayesian Networks to find out similar individuals. Chakraborty et al. (2021) pro-
posed to train a logistic regression model on the dataset and then flip the value of the
sensitive attribute for every data point to find out if the outcome changes. The original data
input was considered biased if the outcome was changed. As opposed to these works, SBFT
does not require a dataset and explores the search space of all valid test inputs to find out the
fairness degree of the ML system under test. In contrast to Luong et al. (2011) and Zhang
et al. (2016), SBFT considers two individuals are similar only if they are identical except
for a sensitive attribute. These discrimination discovery techniques based on situation test-
ing are designed for classification-based ML systems (Luong et al. 2011; Zhang et al. 2016;
Chakraborty et al. 2021). However, it is difficult to determine if two outcomes are differ-
ent enough to be considered biased in a regression setting. We address this problem by
introducing a novel fairness measure, fairness degree.

7.5 Fairness Measures for Machine Learning Systems

Underpinning the efforts for fair ML systems are an ever increasing array of fairness
measures which aim to quantify fairness. Any measure, however, will undoubtedly have
limitations. Indeed, the implication of “measurement” is problematic as it implies a
straightforward process (Barocas et al. 2018).

Several studies have developed and applied fairness measures to evaluate ML systems.
The most well known example is the report by ProPublica (Angwin et al. 2016) on the
COMPAS algorithm. COMPAS (Dieterich et al. 2016) was used for recidivism prediction,
and it was shown that it had higher false positive rates for African American defendants

Page 27 of 36    79Empir Software Eng (2022) 27: 79



than European American groups, which was interpreted as the tool was biased (Angwin
et al. 2016). The false positive metric has also been used to measure the fairness of credit
scoring algorithms (Hardt et al. 2016) and child welfare services (Chouldechova et al.
2018). Other studies have focused on Area Under the Curve (AUC) as a measure of fairness
(Siegel 2003).

Aside from the philosophical and ethical debates on defining fairness, creating gener-
alised definitions of fairness is difficult. Metrics usually either emphasise individual (e.g.,
everyone is treated equal), or group fairness. Existing fairness measures can be broadly
categorised into group fairness and individual fairness (Caton and Haas 2020), with the
following examples standing out in the literature.

– Demographic parity (Dwork et al. 2012) - group - the likelihood of a positive outcome
should be the same independent of the value of the protected attribute.

– Conditional statistical parity (Corbett-Davies et al. 2017) - group - people in both
protected and unprotected groups should have equal probability of being assigned to a
positive outcome given a set of legitimate factors.

– Equalised odds (Hardt et al. 2016) - group - the probability of being correctly assigned
a positive outcome and the probability of incorrectly being assigned a positive outcome
should be the same independent of the value of the protected attribute.

– Equal opportunity (Hardt et al. 2016) - group - the protected and unprotected groups
should have equal true positive rates.

– Fairness through unawareness (Grgic-Hlaca et al. 2016) - individual - an algorithm
is fair as long as the sensitive attributes are not explicitly used in the decision-making
process.

– Fairness through awareness (Dwork et al. 2012) - individual - any two individuals
who are similar should receive a similar outcome.

– Counterfactual fairness (Chiappa 2019) - individual - a decision is fair towards an
individual if it is the same in both the actual world and a counterfactual world where
the individual belonged to a different demographic group.

All of these measures were developed and applied to classification-based machine
learning systems, and cannot be directly applied to regression-based machine learning
systems.

7.6 Search-Based Software Testing

Search-based software testing techniques have been applied to a plethora of testing prob-
lems such as unit testing (e.g., EvoSuite (Fraser and Arcuri 2013), AUSTIN Lakhotia et al.
2013), end-to-end testing of Android apps (e.g., Sapienz (Mao et al. 2016)), functional test-
ing (Wegener and Bühler 2004), security testing (Del Grosso et al. 2005), etc. EvoSuite is
a state-of-the-art unit test generation tool which generates JUnit test suites for Java pro-
grams to optimise code coverage by employing metaheuristic search methods like genetic
algorithms (Panichella et al. 2015). EvoSuite has been shown to be effective at not only
achieving high code coverage (Panichella et al. 2018), but also finding bugs (Perera et al.
2020). Sapienz is an automated Android testing tool that optimises test sequences, max-
imising coverage and fault revelation, which has been successfully deployed in production
at Facebook (Alshahwan et al. 2018). Prior to our work, search-based methods have not
been applied in the area of fairness testing. SBFT is the first approach that generates bias
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revealing test inputs to optimise the observed fairness degree of a machine learning system
by employing a search-based technique.

8 Threats to Validity

Construct Validity The new measure introduced in this paper tackles a particular context of
regression-based machine learning systems. While we do not claim that the fairness degree
covers all fairness concerns of such systems, a threat to the validity of the results is the
appropriateness of inferences made on the basis of such measure.

The SBFT approach is an approximate method. It effectively and efficiently searches the
search space of potential test inputs via exploration and exploitation techniques to find the
fairness degree of the SUT. However, it does not provide a guarantee that the final identified
fairness degree is the actual fairness degree, i.e., absolute worst case, of the SUT, which is
always greater than or equal to the fairness degree discovered by SBFT. Our experimental
evaluation on an ML system in the healthcare domain demonstrates that SBFT is more
effective and efficient than the existing approaches at finding fairness degree.

Another construct threat to validity relates to the definition of our fairness degree. Our
proposed fairness degree measures the maximum difference in the predicted values by the
machine learning system, while the existing fairness measure by Berk et al. (2017) considers
the average differences. However, these two measures have their own advantages and dis-
advantages. The advantage of the maximum difference is to highlight the ultimate worst
case of the unfairness of an ML-based system under test, but the maximum difference
may be biased due to the outlier data. However this threat is mitigated in our experimental
evaluation since the outliers in the patient datasets were removed prior to building the ED
wait-time models (as mentioned in Section 6.2). On the other hand, while the average dif-
ference (Berk et al. 2017) is not sensitive to the outliers, it does not reveal what is the worst
case of the unfairness of the ML-based system under test, which is the primary focus of our
paper.

Internal Validity To account for the non-deterministic behaviour of the five algorithms, we
repeat the experiments 20 runs and carry out rigorous statistical analysis, i.e., two-tailed
non-parametric Mann-Whitney U-Test (Arcuri and Briand 2014) and Vargha and Delaney’s
Â12 statistic (Vargha and Delaney 2000), to draw conclusions from the results.

All algorithms are implemented in the same tool. The baseline approaches, Aequitas,
Themis and symbolic generation, are implemented as described in the original papers (Gal-
hotra et al. 2017; Udeshi et al. 2018; Aggarwal et al. 2019). Thus, any confounding
effects due to different implementations or use of tools are mitigated in our experimental
evaluation.

External Validity We evaluate SBFT using 12 ED wait-time prediction models for 12 hos-
pitals with three different sensitive attributes. While the results cannot be generalised to
all regression-based machine learning systems, the concept behind our proposed SBFT
approach does not depend on the ED Software used in our experimental evaluation. Thus,
future work can explore if our SBFT is effective and efficient in other regression-based
machine learning systems.
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SBFT supports three variable types for the test inputs: integer, real and categorical. While
other input types, such as strings, images, sounds or videos are not directly handled in
the current version of SBFT, the core concepts of our algorithm are independent of the
input variable types. SBFT will be able to handle these types of variables by incorporating
additional techniques to create valid inputs.

9 Conclusion

We present a new approach for evaluating the fairness of regression-based machine learn-
ing systems, which includes a new measure called fairness degree and a new automated
testing approach for testing regression-based machine learning systems for fairness, called
Search-Based Fairness Testing. Our approach is motivated by a machine learning system
from the healthcare domain, which is used to predict wait times in an emergency department
(ED Software). Existing fairness testing approaches are not designed for regression-based
machine learning systems, and SBFT is the first approach that tackles this important prob-
lem. Such systems are being used in life critical situations such as the prediction of wait
times in emergency departments. In our experimental evaluation, we observed differences of
up to 48 minutes in the prediction of wait-times for patients that are identical apart from the
sensitive attribute. Such errors in predictions may result in patients delaying critical treat-
ment when the wait time is overestimated, hence it is important that we test such machine
learning systems for the fairness degree, which analyses the worst case behaviour.

Our study follows a design science research approach. Runeson et al. (Runeson et al.
2020) proposed that the contributions of a design science research be assessed with respect
to relevance, rigour and novelty. In regard to relevance of the research, we observe the
problem in a real-world regression-based ML system; ED wait-time prediction software and
evaluate the proposed solutions on 12 ML systems from healthcare domain. In Section 6.5,
we discussed other regression-based ML systems that our proposed solutions can be applied
to. In regard to the rigour of the research activities, we evaluate the proposed solutions on
12 ED Software from healthcare domain, which were built using nearly 1.9 million patient
records from 12 hospitals. Each ED Software was evaluated for three sensitive attributes.
The proposed SBFT technique was compared against four alternative solutions. We use
two-tailed non-parametric Mann-Whitney U-Test and Vargha and Delaney’s Â12 statistic to
draw conclusions from the results. In regard to the novelty of the technological rule, the
proposed SBFT technique discover up to 48 minutes of fairness degree, which could go
unnoticed if an existing fairness measure was used due to the smoothing effect (averaging)
or not quantifying the magnitude of outcome difference. In the context of EDs, this could
mean patients delaying treatments because they did not want to wait. The alternative fairness
testing techniques are not as effective and efficient as SBFT to measure the fairness degree
for regression-based ML system.

The context is subtle and the impacts are nuanced. Overall, the continued exposure to
bias adds up and influences health outcomes - more like a thousand cuts rather than one
big event. In this scenario, our approach searches for test cases that expose the maximum
difference in wait time prediction by the ED Software for patients that are identical apart
from the sensitive attribute. We demonstrate that SBFT discovers discriminatory inputs of
larger margins in terms of fairness degree compared to the baseline approaches. SBFT is
also more efficient than the baseline approaches for discovering discriminatory inputs. In
the future, we plan to investigate a new study from ambulance wait-time prediction software
and work on other measures of fairness for regression-based machine learning systems.
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