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Abstract
The ever-growing need for customization creates a need to maintain software systems in
many different variants. To avoid having to maintain different copies of the same model,
developers of modeling languages and tools have recently started to provide implementation
techniques for such variant-rich systems, notably variability mechanisms, which support
implementing the differences between model variants. Available mechanisms either fol-
low the annotative or the compositional paradigm, each of which have dedicated benefits
and drawbacks. Currently, language and tool designers select the used variability mecha-
nism often solely based on intuition. A better empirical understanding of the comprehension
of variability mechanisms would help them in improving support for effective modeling.
In this article, we present an empirical assessment of annotative and compositional vari-
ability mechanisms for three popular types of models. We report and discuss findings
from a family of three experiments with 164 participants in total, in which we stud-
ied the impact of different variability mechanisms during model comprehension tasks.
We experimented with three model types commonly found in modeling languages: class
diagrams, state machine diagrams, and activity diagrams. We find that, in two out of
three experiments, annotative technique lead to better developer performance. Use of the
compositional mechanism correlated with impaired performance. For all three consid-
ered tasks, the annotative mechanism was preferred over the compositional one in all
experiments. We present actionable recommendations concerning support of flexible, tasks-
specific solutions, and the transfer of established best practices from the code domain
to models.
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1 Introduction

Variant-rich systems can offer companies major strategic advantages, such as the abil-
ity to deliver tailor-made software products to their customers. Still, when developing a
variant-rich system, severe challenges may arise during maintenance, evolution, and analy-
sis, especially when variants are developed in the naive clone-and-own approach, that is, by
copying and modifying them (Pohl et al. 2005). The typical solution to these challenges is to
manage variability by using dedicated variability representations, capturing the differences
between the variants (van der Linden et al. 2007). An important type of variability repre-
sentation are variability mechanisms, which are used to avoid duplication and to promote
reuse when implementing variability in assets such as code, models, and requirements doc-
uments. Over more than three decades, researchers have developed a plethora of variability
mechanisms, albeit mostly for source code (Apel et al. 2013; Berger et al. 2014a; Van Gurp
et al. 2001).

As companies begin to streamline their development workflows for building variant-rich
systems, they recognize a need for variability management in all key development artifacts,
including models. The use of models is manifold, ranging from sketches of the system
design, to system blueprints used for verification and code generation. The car industry
is particularly outspoken on their need for model-level variability mechanisms (Famelis
et al. 2015). For example, General Motors named support for variation in UML models as a
major requirement (Flores et al. 2012), and Volkswagen reported large numbers of complex,
cloned variants of Simulink models in their projects (Schlie et al. 2017). Beyond automotive,
the need for model-level variability has been documented for power electronics, aerospace,
railway technology, traffic control, imaging, and chip modeling (Berger et al. 2020).

Recognizing this need, researchers have started building variability mechanisms for mod-
els. Variability mechanisms are now available both for UML (Apel et al. 2009; Czarnecki
and Antkiewicz 2005; Schwägerl et al. 2015) and Domain-Specific Modeling Languages
(DSMLs1 (Alférez et al. 2019; Anjorin et al. 2014; Heidenreich et al. 2008; Mussbacher
et al. 2012; Strüber and Schulz 2016; Tolvanen and Kelly 2011; 2019a; White et al.
2009; Zschaler et al. 2009)). Building on these results, researchers have started to address
advanced problems such as the migration of a set of “cloned-and-owned” model variants to
a given mechanism (Assunção et al. 2017; Martinez et al. 2015; Rubin and Chechik 2013;
Schlie et al. 2017; Wille et al. 2017), and efficient analysis of large sets of model variants
(Classen et al. 2010; Czarnecki and Pietroszek 2006; Peldszus et al. 2018). Adoption in sev-
eral industrial DSMLs has demonstrated the general feasibility of model-level variability
mechanisms in practice (Tolvanen and Kelly 2019b).

While variability mechanisms for source code are reasonably well understood (Berger
et al. 2014a; Melo et al. 2016; Van Gurp et al. 2001), language and tool designers are offered
little guidance on selecting the most effective variability mechanism for their purposes. In
fact, there is a lack of evidence to support the preference of one mechanism over the other. In
line with previous studies on code-level mechanisms (Feigenspan et al. 2013; Fenske et al.
2017; Krüger et al. 2019; Melo et al. 2016), we argue that comprehensibility is a decisive
factor for the efficiency of a variability mechanism—for any maintenance and evolution
activity (e.g. bugfixing, feature implementations), the developers first need to understand
the existing system. A better empirical understanding of the comprehension of variability
mechanisms could support the development of more effective modeling languages and tools.

1DSMLs allow modeling software systems from different domains using domain-specific notations.
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To this end, we present an empirical study of variability representations in models.
We report on a family of three experiments in which we studied how the choice of vari-
ability mechanism affects performance during model comprehension tasks. We consider
comprehension tasks for three popular model types2: class diagrams, state machine dia-
grams, and activity diagrams. The experiments are fully randomized, and employ student
developers from three countries. We consider two selected variability mechanisms that are
representative for the two main types distinguished in the literature (Kästner et al. 2011):
Annotative mechanisms maintain an integrated, annotated representation of all variants.
Examples include preprocessor macros (Spencer and Collyer 1992) (for code) and model
templates (Czarnecki and Antkiewicz 2005) (for models). Annotative mechanisms are con-
ceptually simple, but can impair understandability, since they clutter model or code elements
with variability information (Melo et al. 2016; Spencer and Collyer 1992). Compositional
mechanisms allow to compose a set of smaller sub-models to form a larger model. Exam-
ples include feature-oriented programming (Apel and Kästner 2009) (for code) and model
refinement (Faitelson and Tyszberowicz 2017) (for models). Compositional mechanisms are
appealing, as they establish a clear separation of concerns, but they involve a composition
step which might be cognitively challenging. We aimed to shed light on the impact of these
inherent trade-offs.

We focus on three model types used in various modeling languages: class diagrams, state
machine diagrams, and activity diagrams. The diagrams are three commonly used types of
UML models, popular both in academia and industry. Class diagrams play a significant role
in domain and system analysis and design. They are representative for a wide array of visual
languages modeling domain concepts, such as Entity-Relationship diagrams (ER diagrams,
Chen (1976)), and they can be used for generating the architecture of a system (Assunção
et al. 2020). State machine diagrams model system behavior in terms of the different states
a system exists in. They play an important role in software verification (Ali et al. 2007).
Activity diagrams also model behavior, but in contrast to state machine diagrams, they model
the interaction between the user and the system. Both state machine diagrams and activity
diagrams are representative of other behavioral representations such as sequence diagrams
(which model a system in terms of sequential interactions between actors), and can also be
used for code generation and system verification (Gessenharter and Rauscher 2011).

We make the following contributions:

– We present our findings on a family of experiments, each investigating how the choice
of variability mechanism affects the comprehensibility of different model-related tasks
for three popular model types.

– We present a quantitative analysis of correctness, the completion time, and subjective
assessments of our participants for six model comprehension tasks.

– We present a qualitative analysis of participant responses, adding rationale to explain
the observed results.

– Based on our synthesized findings, we propose recommendations for language and
tools developers.

– We provide a replication package (Mahmood et al. 2021) that includes our experimental
material, anonymized responses, and analysis scripts.

2In this paper, we use the terms diagram and model interchangeably. In modeling languages such as UML,
models can consist of a single diagram. The difference between such a model and the contained diagram is
then not essential.
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This paper considerably extends our earlier conference paper (Strüber et al. 2020)
that presented the first of our three experiments, focusing on class diagrams (73 partici-
pants). Based on these earlier results, we designed, performed, and analyzed two follow-up
experiments, keeping the methodological setup of the first experiment, while varying the
considered modeling languages. The results add nuance and additional insights, while
largely confirming the findings from the first experiment. Based on the results, we are
able to derive conclusion about a broader class of modeling languages and based on more
observations (from 164 participants).

We present the first empirical study of variability mechanisms for models that inves-
tigates the effect of different mechanisms in a controlled experiment. While earlier
empirical studies considered the comprehensibility of code-level variability mechanisms
(see Section 8), their generalizability to models is unclear. Code usually has a tree-like
structure and is expressed in textual notations. Modeling languages support the structuring
of models in a graph-like manner and usually have graphical notations. Since different rep-
resentations are known to affect performance during decision-making tasks (Vessey 1991),
specifically, software engineering tasks (Acreţoaie et al. 2018; Labunets et al. 2017), we
argue that the comprehensibility of model variability mechanisms requires a dedicated
investigation. In the scope of models, related work is on experience reports in variability
modeling (e.g., Alférez et al. 2019; Berger et al. 2014b; Garcı́a et al. 2019) and controlled
experiments outside the scope of variability (e.g., Acreţoaie et al. 2018; Nugroho 2009;
Ramadan et al. 2020).

2 Background

There has been a recent surge of interest in dedicated variability mechanisms for mod-
els. Lifting the related distinction from code-level mechanisms, two main types are
distinguished: Annotative mechanisms represent variability with an annotated integrated
representation of all variants. Mechanisms in this category are model templates (Czarnecki
and Antkiewicz 2005; Heidenreich et al. 2008; Taentzer et al. 2017), union models (Alwid-
ian and Amyot 2019), and the top-down approach (Kühn and Cazzola 2016). Compositional
mechanisms represent variability by composing variants from smaller sub-models (from
here referred to as model fragments). Available approaches mostly differ in their model frag-
ment syntax and composition semantics. Examples are delta modeling (Clarke et al. 2010),
model superimposition (Apel et al. 2009), refinement (Faitelson and Tyszberowicz 2017;
White et al. 2009), components (Zschaler et al. 2009), and the bottom-up approach (Kühn
and Cazzola 2016).

To illustrate the role of both types of mechanisms in industry, we refer to a recent survey
of variability support in 23 DSMLs (Tolvanen and Kelly 2019b). It describes four strategies
being used: First, a model represents one variant (9 languages); second, elements are reused
across models by referencing (10 languages); third, multi-level modeling is used for captur-
ing variability (1 language); fourth, elements have so-called presence conditions (explained
shortly, 3 languages). The first strategy is considered as a baseline in our experiments. The
second and third one are compositional, as they spread differences between variants across
several smaller models. The fourth one is annotative.

We selected the two variability mechanisms for our experiments based on the following
criteria: (M1) The mechanism has a graphical syntax. (M2) The mechanism is supported
by available tools. (M3) The mechanism has been described in the scientific literature. The
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rationale for M1 was to study variability mechanisms in the widespread graphical represen-
tation of our considered model types. Support by tools (M2) and available literature (M3)
may contribute to the transfer of existing research results to industrial practice, and allow
practitioners to test the mechanisms in available prototypes.

Based on these criteria, as an annotative mechanism, we identified model templates
(implemented in FeatureMapper (Heidenreich et al. 2008), SuperMod (Schwägerl et al.
2015), and Henshin (Strüber and Schulz 2016)). For compositional, we identified two exist-
ing approaches fulfilling the criteria: Delta modeling (implemented by DeltaEcore (Seidl
et al. 2014) and SiPL (Pietsch et al. 2015)) and model refinements (implemented by
eMoflon (Anjorin et al. 2014)). We decided to consider model refinements, as they
implement the compositional paradigm in the most straightforward way (delta modeling
supports deletions, which increases its expressiveness, but requires more complex syntax
and semantics).

Example. We illustrate the specific variability mechanisms used in our experiments with
a simple example, inspired by Schaefer (2010). The same example was also used in the
experiment to introduce the variability mechanisms to the participants.

The example represents a simple cash desk system that exists in three similar, but differ-
ent variants. Figure 1 depicts the individual variants using separate class diagrams: Variant
var1 consists of a CashDesk with a KeyBoard and a Display. Variant var2 has addi-
tionally exactly one CardReader connected to the CashDesk. Variant var3 replaces the
Keyboard with a Scanner and makes the CardReader optional (multiplicity 0..1
instead of 1).

The depicted representation of listing variants individually is used as a baseline in the
first of our experiments, referred to as the “enumerative mechanism.” This solution is
frequently applied in practice (Tolvanen and Kelly 2019b), where it leads to severe main-
tenance drawbacks. For example, a bug found in one of the variants must be fixed in all
variants separately. The goal of the variability mechanisms presented below is to simplify
working with such similar, but distinct variants.

Annotative Variability. The annotative mechanism considered in our experiments is model
templates (Czarnecki and Antkiewicz 2005). Like annotative mechanisms in general, it com-
bines all model variants into a single model with annotations. The left-hand side of Fig. 2
shows a model template for our example: a class diagram that represents the three variants
of the cash desk system. Parts of the class diagram are annotated with presence conditions,
stating the variants in which the part occurs. For brevity, we define a presence condition
as a list of configuration options (disjunction). For example, the presence condition <<
var1,var2>> indicates that the annotated part is present when either the configuration

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

1

CashDesk Scanner

Display

var3

CardReader

0..1

Fig. 1 Three variants of a cash desk system

Empir Software Eng (2022) 27: 72 Page 5 of 38    72



CashDesk Scanner

Display
CardReader0..1

Keyboard
var1,var2

var1,var2

var2,var3

var2,var3 1

var3

var2

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk Keyboard

var1

CashDesk CardReader

var2

Fig. 2 Annotative and compositional variability

option var1 or var2 is selected. The absence of a presence condition denotes that the part
is contained in all variants.

Colors are used in the following way: Elements (classes and associations) with a black
outline occur in all variants, elements with a grey outline occur in two or more variants,
elements with a colored outline belong to precisely one variant, whose annotation is also
depicted with the same color. The use of colors to distinguish elements goes back to the
original paper that introduced model templates (Czarnecki and Antkiewicz 2005). Colors
may be crucial for comprehensibility. In the case of code-level variability mechanisms,
Feigenspan et al. (2013) found that colors support understanding of annotative variability.
We are interested to determine if this finding also applies to models.

Individual variants are derived from the combined model as follows: The user sets one
of the configuration options as active. The concrete model is derived by removing all those
elements whose presence condition does not contain the configuration option. For example,
selecting the configuration option var1 leads to the model variant var1 in Fig. 1.

Compositional Variability. The compositional mechanism we considered is refine-
ment (Anjorin et al. 2014). Like all compositional mechanisms, refinement provides (i) a
means of decomposing variants into smaller building blocks, and (ii) a means of merging
building blocks to form complete variants. This allows for sharing and reuse of common
parts in different variants. The building blocks are visually shown as a network, as depicted
in the right-hand side of Fig. 2. Commonalities of var1 and var3, as well as var2 and
var3 have been extracted into separate “super” class diagrams. These diagrams have a
dashed border, as they only represent commonalities and are “abstract” in the sense that they
are not complete variants. Composition of diagrams is denoted using an inheritance arrow,
e.g., var2 is formed by combining var1, the elements specified in var2, and the elements
in the common super class of var3 and var2. As the example demonstrates, multiple
super class diagrams (see var3) and transitive composition (see var2) are possible.

Deriving individual variants is a two-step process. First, a union of the contents of the
variant and all its transitive parents is computed; this results in a single, flat class diagram
(with no parents). Second, a merge operator is used to combine elements that should be
the same. For class diagrams, this operator combines all elements with the same name. The
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merge operator also defines how to resolve conflicts: for class diagrams, a common subtype
must exist for nodes to be merged, and multiplicities of merged edges are combined by
taking the maximum of lower bounds and minimum of upper bounds. For example, when
the variant var1 is selected, it is merged with its parent (top class diagram with dashed
lines). Building the union of both class diagrams and merging the cash desk elements leads
to the model variant var1 in Fig. 1.

Considered Model Types. In our experiment family, we cover three types of models: class
diagrams, state machine diagrams, and activity diagrams. Our rationale is three-fold: These
model types: (i) are commonly taught in undergraduate education, allowing our partici-
pants to work with languages they are already familiar with; (ii) are widely used in industry
(Langer et al. 2014; Petre 2013), indicating their representativeness, (iii) together are suited
to capture three essentially different concerns: static structure, dynamic behavior from the
internal system perspective, and dynamic behavior in interaction with the user.

In each of these model types, variability can be implemented using the annotative and
compositional mechanisms illustrated in the example above. We now discuss each model
type and any necessary customizations required to accommodate the model type in our
considered mechanisms.

Class diagrams have a pronounced role in system design and analysis. In code gener-
ation contexts, they are used to generate data management components (e.g., large parts
of enterprise web and mobile apps can be generated from class models (Kulkarni et al.
2002; Moreno et al. 2007; Vaupel et al. 2014)), object-oriented code in roundtrip engi-
neering scenarios (Bruneliere et al. 2010), and ample Model-Driven Engineering (MDE)
tooling in modeling platforms, such as the Eclipse Modeling Framework (EMF (Steinberg
et al. 2008)). Class models can be supported via model templates and model refinement in
a straightforward day, as shown in the example above.

State machine diagrams capture the dynamic behavior of a system, focusing on one of its
entities or objects, in terms of its possible states and the transitions between the states, based
on certain well-defined events. Like class diagrams, they play an important role in code
generation (Chauvel and Jézéquel 2005; Domı et al. 2012). Expressing variability in state
machine diagrams using model templates is straightforward, based on assigning presence
conditions to states and transitions. Model refinement can be applied in a similar way as
for class diagrams. One additional complication arises with hierarchical state machines,
where merging must respect the nesting of states as defined in different model fragments.
In principle, multiple model fragments can make conflicting contributions to the merge
result (for example, if there is a fragment with state A nesting a substate B, and another
fragment with a state B nesting a substate A). We designed our examples to avoid such
situations.

Activity diagrams, like state machine diagrams, also capture the dynamic behavior of a
software system. However, in contrast to state machine diagrams, activity diagrams provide
means to model user and user-visible activities, as well as the flow between them. Activity
diagrams allow modeling overlapping activities (fork), or activities that need coordination
(merge). Expressing variability in activity diagrams using model templates is straightfor-
ward (Reuys et al. 2006), based on assigning presence conditions to activities. Model
refinement can be applied in a similar way as before. One complication concerns the merg-
ing of flow: if the same activity appears in different fragments with different subsequent
activities, one needs to define how the arising conflict is resolved. For our experiments, we
defined a conflict-resolution rule that an actual activity always overrides an ending node.
Figure 3 depicts an example: the left fragment consists of the functionality of withdraw and
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Enter amount

Withdraw money

Eject card

Eject card

Print receipt

[Print receipt 
selected]

[else]
Enter amount

Withdraw money

Eject card

Print receipt

[else]

[Print receipt 
selected]

Fig. 3 Model refinement rule for activity diagrams: ending activities are overwritten by decision nodes

the middle fragment composes the activities for printing receipts. When merging both frag-
ments, the final activity in the left fragment is overwritten by the decision node (represented
as a diamond) in the middle fragment. The right fragment shows the merged form of both
fragments.

3 Overview on Our Family of Experiments

We performed a family of three experiments, illustrated in the high-level overview in Fig. 4.
Our experiment family consisted of two independent variables: the considered model type
and variability mechanism. The former was varied between experiments, i.e., each exper-
iment focused on a single model type. The latter was varied within each experiment, i.e.,
each experiment compared multiple variability mechanisms on the same model type.

We considered three variability mechanisms—annotative, compositional, and enumera-
tive—where the enumerative mechanism (a simple listing of all variants) was considered the
baseline. In all three experiments, we adopted a within-subject design, where each partici-
pant used each considered variability mechanism on all tasks. We considered three widely
used models types—class diagrams, state machine diagrams, and activity diagrams—as
discussed and motivated in Section 2.

Experiment 1: Class diagrams
3 domains

73  par�cipants
3 variability mechanisms

Task metrics
Correctness Time

[0..6] [min]

Subjec�ve metrics

Understandability 
of mechanism

[1..5]

Difficulty of tasks 
using mechanism

[1..5]

Preferred mechanism per task type
[Annota�ve, Composi�onal, 
Enumera�ve, No preference]

Experiment 2: State diagrams
2 domains

65  par�cipants
2 variability mechanisms

Experiment 3: Ac�vity diagrams
2 domains

26  par�cipants
2 variability mechanisms

Task type 1 
Understanding variants

Task type 2 
Comparing two variants

Task type 3 
Comparing all variants

Task types

Setup:
• Fully randomized design 

(within-subjects)
• Selec�on of systems 

informed by literature and 
experience

• Three task types, two tasks 
per task type per domain

Observa�on
(Dependent variables)Model type

Diam Circ
Tri

Variability mechanism

Annota�ve Composi�onal

Enumera�ve

Interven�on
(Independent variables)

Fig. 4 Methodology overview
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In Experiment 1, we considered all three variability mechanisms. Based on some impor-
tant observations from the experiment 1 (explained shortly), we decided to not consider the
enumerative mechanism in the remaining experiments. This allowed us to have a more in-
depth comparison and reflection of annotative and compositional variability in experiments
2 and 3, based on more intricate tasks.

In every experiment, our participants worked with example models from certain domains,
derived from the literature and our experiences. To avoid learning effects based on answers
of previously completed tasks, we varied the considered example domain for each variability
mechanism. Consequently, the number of considered domains in each experiment matched
the number of variability mechanisms: three in Experiment 1, two in Experiment 2 and
Experiment 3.

Prior to the experiments, as a preparatory study, we conducted a further experiment
(explained shortly in Section 4) to shape the design of our materials and tasks. The goal was
to assess the suitability of our experimental tasks and to derive potential improvements of
the setup.

To recruit a significant number of participants, we involved students as participants, due
to their representativeness as stand-ins for practitioners (Salman et al. 2015). The partici-
pants came from four different universities in Germany (two universities), Netherlands, and
Sweden. We shortly discuss demographic aspects of our participants. In each experiment,
we randomly divided participants into n groups (n = number of variability mechanisms).
For subject allocation, we used a Latin square design (Melo et al. 2016; Montgomery 2017)
to ensure that each participant used every distinct variability mechanism and domain exactly
once, as to avoid learning effects.

To ensure homogeneity, we kept other aspects constant across our experiments as far as
possible: training material, goals and research questions, experimental design, task types,
task metrics, subjective assessments, analysis, and participant selection. We used different
domains in each experiment, deliberately to make the results generalizable. We customized
the individual tasks according to the domains, keeping the task types unchanged. To analyze
comprehensibility, we designed three task types: Understanding variants, comparing two
variants, and comparing all variants. Our detailed methodology and analysis is described in
Section 5 and 6, respectively.

The considered domains were varied between the experiments: In Experiment 1 and
Experiment 3, we chose intuitively understandable examples that inherently lend them-
selves towards being expressed with the considered model type. To this end, we derived
the domains by taking inspiration from literature. The domain choice in Experiment 3 also
incorporated participant feedback from previous iterations of the experiment. In Experiment
2, we derived two sub-domains from a software project considered in the course that the
participants were recruited from. This was useful because it allowed us to conclude that all
participants were familiar with the considered domains.

4 Preparatory Study

We conducted a preparatory study to evaluate our experimental design and identify possible
issues and other amendable aspects. The study was performed on a population of 28 students
(disjoint from the population of our experiment). The students were familiar with class
models, the model type used in the experiment.
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The tasks considered were bug-finding tasks, a typical task type for assessing the use-
fulness of visual representations (Melo et al. 2016; Strüber et al. 2019). Participants were
handed a textual requirement specification, together with design models implementing the
requirements with one of the given variability mechanisms. The design models contained
a number of deviations from the textual requirements (bugs), which the participants were
asked to identify. We also asked the participants to suggest potential improvements to the
experiment using an open-ended question.

To provide meaningful example domains, we considered the existing literature. The first
example represented a phone product line with phones being conditionally capable of mak-
ing incoming and outgoing calls (Apel et al. 2009). The second example represented a
project management system with managers, employees, and tasks (Fahrenberg et al. 2014).
Students obtained a virtual instruction sheet and a link to an explanation video for the used
variability mechanisms. The students were asked to complete the entire questionnaire in
30 min.

From this preparatory study we drew three main conclusions: First, example models
with 3 to 4 classes, and 3 or 4 variants each were too simple to demonstrate a difference
between both mechanisms. This conjuncture was supported by one participant’s written
recommendation to “create [more] complicated examples with 6 or 7 classes and not so
easy ones.”

Second, despite our efforts to provide clear requirements, a participant asked us to
be “more specific and less ambiguous with the requirement specifications.” Ambiguity is
an inherent risk to experimental validity since its effect is hard to quantify (it is unclear
how many participants assume a different understanding than intended). Another recur-
rent comment was that reading the descriptions was tiring, threatening the completion rate.
Therefore, we decided to switch the nature of the used tasks in the main experiment to
comprehension tasks that do not rely on additional artifacts.

Third, the provided instruction video was viewed as redundant, as it showed only the
information that was available on the instruction sheet. In the actual experiments, we
decided to omit the instruction video.

5 Methodology

In this section, we present the detailed experimental methodology for our family of three
experiments, each of which is focusing on one model type. Our experimental materials and
data, including the raw data, are publicly available via our replication package (Mahmood
et al. 2021).

5.1 Experimental Setup

As explained in Section 3, to ensure uniformity, we reused some components of our experi-
ment in all three executions: goals and research questions, training material, task types, task
metrics, subjective assessment, quantitative feedback, and data analysis. In this section, we
elaborate these common components of our experiments.

Research Questions. Our goal was to study the effect of variability mechanisms on model
comprehension. Towards this goal, we formulated and investigated the following research
questions:
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RQ1 To what extent do variability mechanisms impact the efficiency of model
comprehension?

We studied the effect of annotative and compositional mechanisms on the ability to solve
model comprehension tasks correctly and quickly.

RQ2 How are variability mechanisms perceived during comprehension tasks?

We studied the perceived understandability and difficulty to complete model comprehen-
sion tasks depending on the used variability compositional mechanism, based on subjective
assessments.

RQ3 How are participant preferences for variability mechanisms distributed over
different task types?

We elicited qualitative and quantitative data about the participants’ subjective preferences
by asking them to choose a preferred mechanism and explain the choice.

Experimental Design. We applied a cross-over trial, a variant of the within-subject
design (Jones and Kenward 2003), in which all participants are sequentially exposed to
each treatment. The treatments in our case were the use of the different variability mecha-
nisms during comprehension tasks. The main benefit of the chosen design is its efficiency
in enhancing statistically valid conclusions for a given number of participants. The design
also reduces the influence of confounding factors, such as participant expertise, because
each participant serves as their own control.

A main threat to this kind of study design are learning effects: during the experiments,
participants might transfer experience gained by solving one task to other tasks. We mit-
igated this threat by using a Latin square design (Melo et al. 2016; Montgomery 2017).
Participants were randomly distributed across equally sized groups, such that each partici-
pant experimented with each variability mechanism and each domain once. Each group was
assigned one of several paths through the experiment, based on the different possible com-
binations of domains and variability mechanisms. For example, consider the three paths for
Experiment 1, which included the variability mechanisms annotative (Ann), compositional
(Com), and enumerative (Enu), and three domains d1, d2, and d3:

– Enu d1→Ann d2→Com d3 (path 1),
– Com d1→Enu d2→Ann d3 (path 2), and
– Ann d1→Com d2→Enu d3 (path 3).

Following our Latin square design, to avoid bias related to the complexity of the
considered domains, the order of domains was fixed between paths.

Figure 5 shows the design and flow of our questionnaire. Each module corresponded to
one element of the above-mentioned paths, and consisted of one model, its description, and
six tasks. We discuss further threats and mitigation strategies in Section 7.

Training Material. The participants received training material in the form of handouts
elaborating the variability mechanisms before beginning the experiments (available in repli-
cation package (Mahmood et al. 2021), intro documents in folder material). In the training
material, we elaborated the variability mechanisms and presented different representations
of the illustrative example shown in Section 2. We also showed how variants can be derived
by giving valid feature selections (annotative) or composing different sub-models (composi-
tional). We reused the same training material across all experiments, with small adjustments.
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Fig. 5 Questionnaire design for our experiments, with n = 3 for experiment 1, and n = 2 for experiments 2
and 3

Specifically, we extended the material for Experiment 3 (activity diagrams), where the com-
position required an extra step, i.e., when merging two activity diagrams, decision nodes
overwrite ending activities.

Preliminary Assessment. In the questionnaires (available in replication package (Mah-
mood et al. 2021), folder questionnaires), before the actual tasks, we asked the students to
self-assess their expertise in three relevant categories using five-point Likert scales: Model
type (the baseline technology of our experiment), programming (to argue for the repre-
sentatives of our findings), and the considered variability mechanisms (the experimental
treatment). The five-point scale consisted of positive integers from 1–5, 1 representing
the lowest value, and 5 representing the highest. Table 1 shows a summary of participant
self-assessment ratings for the three experiments.

Task Types and Tasks. While designing tasks, we aimed for representativeness. We
designed task types to depict common activities performed by developers in variant-rich sys-
tems. For each domain represented using a given variability mechanism, participants were
required to perform tasks of three types. Every task type consisted of two concrete tasks.
Below, we discuss the three task types, provide an argument for their representativeness,
and give examples for the concrete tasks per task type.

Task Type 1 (“understanding variants”) required participants to map elements of the
model (classes, states or activities) to variants. This task type is inspired by feature location:
a common activity where parts of an artifact (code or model) implementing a feature has
to be identified. Tasks of this type followed the style: “Which variants have the elements X

Table 1 Technical background of our participants

Exp. Experience with

MType Prog. Ann. Com. Enu.

1 3.47 ± 0.60 3.62 ± 0.74 1.73 ± 0.87 1.86 ± 1.03 1.87 ± 0.93

2 2.84 ± 0.58 3.42 ± 0.74 2.26 ± 0.73 2.52 ± 0.77 –

3 3.39 ± 0.64 4.0 ± 0.46 2.1 ± 0.8 2.3 ± 0.86 –

Ratings on a 5-point Likert scale. 1: lowest 5: highest.

Exp.: Experiment MType: Model type Prog: Programming Ann: Annotative Variability Com: Composi-
tional Variability Enu: Enumerative Variability
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and Y? List all such variants, or write none otherwise.” Consider the Phone management
domain in the first experiment (in the replication package (Mahmood et al. 2021), mate-
rial/exp1/Ship.pdf ), we formulated the following task for task type 1: How many variants
have both the classes “Camera” and “Video”?

Task Type 2 (“comparing two variants”) required participants to differentiate two
variants in terms of the elements they consist of. Specifically, they needed to list the non-
overlapping elements of two given variants. In practice, such a task is performed to deeply
understanding how two closely related variants differ. Tasks of this type followed the style:
“How do the two variants Var1 and Var2 differ? List all differing elements if there are any.’
As an example, consider the Robocode domain in the second experiment (see the replica-
tion package (Mahmood et al. 2021), material/exp2/Boat.pdf ), where we formulated the
following task for task type 2: Which state(s) does [the robot variant] ”Grizzlyman” have
that [variant] “Toxitonic” doesn’t have? List all such states if there are more than one.

Task Type 3 (“comparing all variants”) involved a broader comparison, e.g., list-
ing elements belonging to all variants. Such a task type is performed when trying
to understand the entire variant space. Tasks of this type resembled the following
style: “Which elements are included in all variants?” To reduce effort in the case
of larger examples, we specified a pre-selection of a obvious elements and asked
the participants to fill in the remaining ones. For example, consider the third exper-
iment with activity diagrams as the featured model type (replication package (Mah-
mood et al. 2021), material/exp3/Train.pdf ). We formulated the following task for task
type 3: What is the longest possible path of activities you can have in any of the
products, from a start to an end activity? Please list all activities that the path consists of
(excluding start and end activities) in order. If there are multiple longest paths, pick one.

Task types in the questionnaire were represented as sub-sections of the modules (Fig. 5),
where each sub-section consisted of two tasks. Each task consisted of one concrete question
that the participants were asked to answer, as illustrated in the previous examples.

Dependent Variables. For measuring efficiency (RQ1), we elicited two metrics: correct-
ness and completion time. The correctness of a task type was the aggregate correctness of its
two concrete tasks. For each task, we evaluated the responses using a scale of 0–1 as follows:
Correct responses received a score of 1, partially correct 0.5, and incorrect 0. The responses
were evaluated against oracles that the authors produced. For each task type per sub-system,
the primary and secondary authors iteratively solved each individual task until they reached
a consensus (which formed the oracle). In majority of the cases, both the authors had the
same responses. As a margin of error, we also checked if the responses to one task were
consistently different than our oracles. This was never the case in our experiments.

A response was deemed partially correct if it included some but not all correct elements,
or some correct and some incorrect ones. The scores of both tasks of a task type were
summed up to obtain the correctness score in the range 0–2. This resulted in a total of three
correctness scores per participant. For completion time, we asked the participants to log the
starting and ending times of each module (Fig. 5), which we converted to the completion
time in minutes.

To address RQ2, we asked the participants to assess the understandability of each mech-
anism and the difficulty of addressing each task type using each mechanism. Specifically,
we asked the following questions:

(S1) How easy did you find it to understand each mechanism?
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(S2) How difficult was it to answer the questions on “Understanding variants” (tasks 1
and 2) for each mechanism?
(S3) How difficult was it to answer the questions on “Comparing two variants” (tasks 3
and 4) for each mechanism?
(S4) How difficult was it to answer the questions on “Comparing all variants” (tasks 5
and 6) for each mechanism?

Following the common practice for subjective responses, we captured the response on a
5-point Likert scale for each mechanism. The points represented increasing levels of diffi-
culty (from 1 easiest to 5 hardest). We used the same labels for the Likert scales for S1-S4,
specifying explicitly for each question that 1 means very easy, and 5 means very difficult.

We aimed to investigate two hypotheses: that (i) all variability mechanisms are perceived
to be equally understandable, and (ii) while performing tasks of each task type, participants
experienced equal difficulty using all variability mechanisms. For the former, we conducted
a statistical analysis to compare the understandability of different variability mechanisms
included in the experiment. For the latter, we conducted dedicated statistical analyses to
compare difficulty ratings per variability mechanism given by the participants for each task
type.

For RQ3, we asked the participants to specify their preferred mechanism per task type.
To gain deeper insight into the rationale, and complement the quantitative information with
qualitative data, we also asked our participants to elaborate on their choice of preferred
mechanism—a setup inspired by mixed-method research (Bergman 2011). We used the
following questions:

(S5) Which mechanism do you prefer for each of the three task types?
(S6) Can you explain your subjective preferences (intuitively)?

The answer to S5 was specified by selecting one of the literals Annotative, Composi-
tional, Enumerative, None for each of the task types. To collect the qualitative data in S6,
we kept S6 open-ended.

Analysis. For hypothesis testing, we used the Wilcoxon signed-rank test (Wilcoxon 1945)
which we applied to the task and subjective metrics, following recommendations according
to which this test can in fact be applied to Likert-scale data (De Winter and Dodou 2010).
We used the standard significance threshold of 0.05. Two measurements involved multiple
comparisons (correctness and difficulty; each for 3 different task types). For these met-
rics, we applied the Bonferroni correction (Abdi 2007), yielding a corrected significance
threshold of 0.017, obtained by dividing 0.05 by 3. We employed the A12 score for assess-
ing effect size following Vargha and Delaney’s original three interpretations (Vargha and
Delaney 2000): A12 ≈ 0.56 = small; A12 ≈ 0.64 = medium; and A12 ≈ 0.71 = large. All
tests were executed with R.

For assessing the qualitative data, one of the authors used inductive coding to tag the par-
ticipants’ comments from one of the experiments with relevant keywords. Afterwards, two
other authors verified the tags and suggested improvements in the tags. Based on the discus-
sion and feedback with the two authors, the author tagged the comments for the remaining
two experiments. The tags were useful to identify interesting aspects, and their frequency
helped to identify the redundant concerns.

Participants. The participants were recruited from undergraduate and graduate courses at
various universities. Our rationale for recruiting students is their suitability as stand-ins for
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practitioners: students can perform involving unfamiliar software engineering tools equally
well as practitioners (Salman et al. 2015). The students were recruited from courses with
completed previous lectures and homework assignments on models featuring in the exper-
iment. Before the experiment, it was pointed out that participation in the experiment was
entirely voluntary, and data would be stored anonymously. To encourage participation, a gift
card raffle was offered as a prize to interested participants.

5.2 Experiments

We now discuss the individual aspects of our experiments: model types, domains, partici-
pant demographics, and application of the Latin square design.

Experiment 1 was focused on class diagrams. In this experiment, in addition to the
annotative and compositional mechanisms considered in all experiments, we included the
enumerative mechanism as a baseline for comparison.

To select the systems, we specified a set of criteria that a subject system would need to
fulfill: (C1) The system has been introduced in previous literature. (C2) The system com-
prises several variants. (C3) The system has not been introduced in a context related to a
particular variability mechanism. The rationale of these criteria was to select systems that
represent real variability, rather than making up artificial examples on the spot. As a result,
we derived variability-enriched class diagrams for three domains: Simulink, a project man-
agement system, and a phone system. These domains were identified from literature based
on their familiarity to the authors (convenience sampling (Wohlin et al. 2012)). For the
former two domains, we were aware of several available variants in the literature. To sys-
tematically identify available variants, we performed database searches in Google Scholar,
IEEExplore, and ACM’s Digital Library, with the search strings “Project Management meta-
model” and “Simulink meta-model.” The considered variants of Phone correspond to the
feature model from the original paper.

Simulink (Karris 2006) is a block-based modeling language that is widely applied in the
design of embedded and cyber-physical systems. The absence of an official specification has
given rise to the emergence of various variants. The Project Management (PM) (Fahrenberg
et al. 2014) product line represents a family of software systems for project management,
with concepts such as projects, activities, tasks, persons, and roles. The Phone product line,
introduced by Benavides et al. (2010), represents a family of software systems for mobiles
phones with various hardware functionalities, such as different cameras and displays.

For each domain, we designed three class diagrams: one per variability mechanism. With
three mechanisms (Enu, Ann, com) and three domains (d1, d2, d3), following a Latin square
design (Melo et al. 2016; Montgomery 2017), the paths were:

– Enu d1→Ann d2→Com d3 (path 1),
– Com d1→Enu d2→Ann d3 (path 2), and
– Ann d1→Com d2→Enu d3 (path 3).

We recruited 73 participants, all of which were BSc students in a German university.
The students were recruited from courses with completed previous lectures and homework
assignments on class models. In line with our strategy to recruit students familiar with class
models, students expressed an average level of expertise, amounting to 3.47 (mean) ± 0.60
(standard deviation). The self-reported programming expertise of 3.62 ± 0.74 was compa-
rable. In contrast, the self-reported expertise in variability mechanisms was considerably
lower, amounting to 1.73 ±0.87 in annotative mechanisms, 1.86 ±1.03 in compositional
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mechanisms, and 1.87 ±0.93 in enumerative mechanisms. The homogenous experience of
our participants is beneficial for the validity of our findings, by countering a possible threat
related to different previous knowledge. In the light of our justification for selecting students
as participants (based on evidence for their suitability as stand-ins for developers (Salman
et al. 2015)), our sample is representative for developers with similar experience levels in
modeling and variability mechanisms.

Participants were randomly divided into three groups, and assigned one of the above-
mentioned paths, allowing them to experiment with each variability mechanism and each
domain once. Each participant was required to perform three tasks types for the three mod-
els, each represented using a different variability mechanism. At the end, the participants
were asked to provide their subjective assessments and preferences (S1–S6), and rationale
for their choices.

Experiment 2 considered state machine diagrams as model type. Both considered
domains were based on the robotics programming game Robocode (Hartness 2004). The
rationale was that students were involved with Robocode as a course project and were, there-
fore, familiar with it. Moreover, Robocode bots possessed considerable variability (Martinez
et al. 2018), which allowed us to model state machines that were reasonably complex. Our
considered domains represented two high-level features of Robocode robots, each using a
separate state machine diagram. For each domain, we designed two state machines: one
using the annotative mechanism, and another one using the compositional mechanism.

We recruited 65 students from a Swedish university (63 Bsc, 2 PhD). Participants were
divided into two groups, and assigned into those randomly. In the preliminary assessment,
on average, the participants rated their experience with state machine diagrams to be 2.846
±0.587. Participants also gave an average rating of 3.42 ±0.749 to their programming expe-
rience. The self-reported experience of participants for the two variability mechanisms was
considerably lower: 2.26 ±0.73 for annotative, and 2.52 ±0.77 for compositional. These
ratings are, however, comparable to each other, and do not indicate any bias towards a
particular mechanism.

Following our Latin square design, we exposed both sub-domains (d1, d2) to the groups
in the same order, and reversed the order of the variability mechanism they were represented
with.

– Com d1 →Ann d2 (path 1),
– Ann d1 →Com d2 (path 2).

Experiment 3 was focused on activity diagrams as model type. We designed activity
diagrams for two domains: a Flight reservation system (FRS) and an Email service provider
(ESP). We created them upon our experience and by taking inspiration from the literature.

The participants in this experiment were 26 MSc students studying at a Dutch univer-
sity. Participants were randomly allocated into two groups. Participants indicated an average
experience of 3.39 ±0.64 with activity diagrams, and 4.0 ±0.6 with programming. The
mean scores for experiences with both variability mechanisms were significantly lower: 2.1
±0.8 and 2.3 ±0.86 for annotative and compositional mechanisms respectively. The high
ratings for experiences with activity diagrams and programming can be explained by our
participants being MSc students, who have undergone significant practice with software
design and implementation. The lower ratings for both variability mechanisms are also rea-
sonable, since they were not taught in detail in the course. However, the ratings are close to
one another, reducing any possible biases in the results.
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Table 2 Correctness scores for experiment 1 (class diagrams)

Task type Annotative Compositional Enumerative

Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev

1: Tracing elements to variants 1.7/2 2.0/2 0.6 1.5/2 2.0/2 0.7 1.7/2 2.0/2 0.6

2: Comparing two variants 1.5/2 1.5/2 0.6 1.5/2 1.5/2 0.6 1.6/2 1.5/2 0.4

3: Comparing all variants 1.6/2 2.0/2 0.7 1.2/2 1.0/2 0.7 1.5/2 2.0/2 0.7

Total 4.8/6 5.0/6 1.3 4.2/6 4.5/6 1.4 4.9/6 5.0/6 1.1

Mdn: Median, St.dev: Standard deviation

We designed two activity diagrams per domain, each represented using a different vari-
ability mechanism. With two domains (d1, d2), the paths after applying our Latin square
design were:

– Ann d1→Com d2 (path 1).
– Com d1→Ann d2 (path 2),

6 Results

We now present the results from our experiments, structured along our research questions.
For each, we have one subsection presenting the relevant results from all three experiments.
This supports a direct comparison of our observations along our two independent variables
(modeling language and variability mechanisms).

6.1 RQ1: Efficiency

In RQ1, we studied the effect of annotative and compositional mechanisms on efficiency,
that is, the ability of our participants to solve model comprehension tasks correctly and
quickly. To this end, we computed correctness scores and completion time based on the
task responses, collected in the modules of our questionnaire (see Fig. 5). As explained in
Section 5, the correctness score of a task type ranged between 0 and 2, based on aggregating
the scores for the two questions in each task type. The completion time was determined by
measuring the difference between the starting and ending time for completing all tasks for
one particular variability mechanism.

Table 3 Correctness scores for experiment 2 (state machine diagrams)

Task type Annotative Compositional Enumerative

Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev

1: Tracing elements to variants 1.2/2 1.0/2 0.8 1.2/2 1.0/2 0.7 – – –

2: Comparing two variants 1.0/2 1.0/2 0.8 1.1/2 1.0/2 0.8 – – –

3: Comparing all variants 1.2/2 1.0/2 0.8 0.8/2 1.0/2 0.7 – – –

Total 3.4/6 3.0/6 2.0 3.1/6 3.0/6 1.8 – – –

Mdn: Median, St.dev: Standard deviation
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Table 4 Correctness scores for experiment 3 (activity diagrams)

Task type Annotative Compositional Enumerative

Mean Mdn Sdt.dev Mean Mdn St.dev Mean Mdn St.dev

1: Tracing elements to variants 1.4/2 1.5/2 0.6 1.2/2 1.0/2 0.6 – – –

2: Comparing two variants 1.4/2 1.5/2 0.6 0.9/2 1.0/2 0.7 – – –

3: Comparing all variants 1.4/2 1.5/2 0.5 0.9/2 1.0/2 0.6 – – –

Total 4.2/6 4.0/6 1.0 3.0/6 3.0/6 1.3 – – –

Mdn: Median, St.dev: Standard deviation

Correctness. Tables 2, 3 and 4 provide a high-level overview of the correctness scores.
Each table corresponds to one experiment and model type, and shows mean scores, median
scores (Mdn), and standard deviations (St.dev) per task type and variability mechanism.
A complementary, more detailed overview is offered by Fig. 6a to c which visualize the
distribution of scores obtained for each task.

Considering class diagrams (Experiment 1, Table 2), the participants generally performed
equally well with the annotative and the enumerative mechanisms. In contrast, the use of
the compositional mechanism lead to a noticeable drop in mean performance. Hypothe-
sis testing showed that the difference for compositional to other types was significant for
task types 1 and 3. For type 1, we found p = 0.01 for the comparison to annotative, with
a medium-ranged effect size of A12 = 0.62 (p = 0.02 for the comparison to enumerative,
surpassing the corrected threshold). For type 3, we found p < 0.01 when comparing compo-
sitional to both annotative and enumerative, with medium effect sizes (A12 = 0.66 and 0.64,
respectively). We did not find significant differences between the mechanisms for type 2.
Annotative and enumerative do not differ significantly in any considered case.

The similar results obtained for annotative variability and the baseline (enumerative) for
this and the following RQs motivated us to focus in experiments 2 and 3 on the comparison
between annotative and compositional variability. Our rationale was that by not considering
enumerative, we could allocate more time to annotative and compositional, which we could
use for more involved questions within the task types that would allow a more in-depth
comparison between these mechanisms.

Consequently, in Experiment 2 and Experiment 3, we observed lower average correct-
ness scores than in Experiment 1. With state machine diagrams (Experiment 2, Table 3),
there were no prominent differences between the results for annotative and compositional
mechanisms for type 1 (1.2 vs 1.2) and 2 (1.0 vs 1.1). A significant difference was evi-
dent for the most complex task type, type 3, where annotative outperformed compositional
with a score of 1.2 vs. 0.8. For type 3, hypothesis testing revealed a significant difference
in performance using annotative and compositional with p = 0.01 and medium effect size
(A12 = 0.61). We did not find significant differences between the mechanisms for types 1
and 2. An explanation is offered by the nature of the considered examples: Answering the
questions was possible without an in-depth understanding of how the composition operator
works. Hence, an inherent disadvantage of the compositional mechanism does not manifest
itself in these examples. For task type 3, where we find statistically different results, this
concern does not apply.

With activity diagrams (Experiment 3, Table 4), the differences were more pronounced.
Participants performed better using annotative mechanism for type 1 (1.4 vs 1.2), type 2 (1.4
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Fig. 6 Correctness scores for all three experiments A: Annotative C: Compositional E: Enumerative)

vs 0.9) and type 3 (1.4 vs 0.9). Hypothesis testing reveals significant differences for all task
types, with p < 0.01 for all types. The effect size of this comparison was small-to-medium
for type 1 (A12 = 0.59), medium-to-large for type 2 (A12 = 0.67) and large for type 3
(A12 = 0.76). In the overall performance, the participants on average achieved a score 1.3
times higher with annotative than with compositional mechanism (4.2 vs 3.0). Compared to
experiment 2, one noteworthy aspect that adds to the explanation of these findings is that
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Table 5 Completion times (in minutes) of our participants for all three experiments

Exp Mechanism Min Mn Mdn Max St.dev

1 Annotative 3 6.6 6 15 2.6

Compositional 4 8.8 8 17 3.2

Enumerative 3 7.1 6 19 3.1

2 Annotative 3 10.4 10 23 4.3

Compositional 5 11.3 11 22 3.7

3 Annotative 3 14.2 14 28 6.1

Compositional 8 16.8 14 32 6.7

Mn: Mean, Mdn: Median, St.dev: Standard deviation

performing the tasks required a better understanding of the involved composition algorithm,
since relevant information was spread over several composition fragments.

Completion Time. Table 5 provides an overview of the completion times of participants
for solving all tasks in all experiments. According to this data, the average time taken for
performing tasks using annotative mechanism was always less than time taken using other
mechanisms. Figure 7a, b, and c represent the distribution of completeness times taken by
participants using different variability mechanisms for Experiment 1, 2, and 3 respectively.

In line with the observations about correctness, the speed of performing tasks was high-
est in experiment 1, due to the simpler tasks in each task type, which allowed us to consider
the enumerative baseline solution in addition to annotative and compositional variabil-
ity. The participants were fastest on average when using the annotative mechanism (mean
completion time: 6.6 min), somewhat faster, but not significantly so than when using enu-
merative (7.1 min, p = 0.12). Participants, however, tasks took significantly longer when
using the compositional mechanism (8.8 min). The differences between compositional and
both annotative and enumerative were highly significant with p < 0.001. The effect size was
large when comparing compositional and annotative (A12 = 0.71) and medium-to-large for
compositional to enumerative (A12 = 0.67).

E

C

A

5.0 10.0 15.0

(a) Completion times (Experiment 1)

C

A

5.0 10.0 15.0

(b) Completion times (Experiment 2)

C
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5.0 10.0 15.0

(c) Completion times (Experiment 3)

Fig. 7 Completion time in minutes for (a) Experiment 1 (b) Experiment 2 and c) Experiment 3. Y-axis:
Variability mechanisms (A: Annotative C: Compositional E: Enumerative) X-axis: Time taken in minutes
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In experiment 2, participants took roughly the same amount of time on average using the
annotative and compositional mechanisms (10.4 vs 11.3). Hypothesis testing showed that
the difference between times taken using both mechanisms was not significant (p > 0.25).
These observations are in line with the correctness-related ones, in which only one of the
considered task types (the most difficult one) lead to significant differences.

In experiment 3, participants were faster in performing their tasks on average using the
annotative mechanism than with the compositional one (14.2 vs 16.8 min). However, this
difference is not significant (p > 0.38). Contrasted with the significant differences in the
correctness scores for all three task types, we find that the tendencies of both observations
agree, but the implications for correctness appear to be greater than those for completion
time.

6.2 RQ2: Subjective Perception

We report on the participant’s subjective perceptions of understandability and difficulty
to complete the tasks, based on our subjective assessment questions (S1–S4 in our ques-
tionnaire; see Fig. 5). The questions in this category were answered on a five-item Likert
scale, with lower scores indicating better results. Table 6 gives an overview of the results,

Table 6 Participant perceptions (understandabilitya and difficultyb ratings) for Experiment 1, 2, and 3

Exp Quality Annotative Compositional Enumerative

Mean Mdn St.dev Mean Mdn St.dev Mean Mdn St.dev

1 Understandability 2.6/5 3/5 1.1 3.2/5 3/5 1.1 2.2/5 2/5 1.2

Difficulty Task type 1 2.3/5 2/5 1.2 3.1/5 3/5 1.2 2.3/5 2/5 1.1

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 2.2/5 2/5 1.2

Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 2.5/5 2/5 1.1

2 Understandability 3.0/5 3/5 1.0 2.9/5 3/5 0.9 – – –

Difficulty Task type 1 2.6/5 3/5 1.0 2.6/5 3/5 1.0 – – –

Task type 2 2.6/5 3/5 0.9 2.6/5 2/5 0.9 – – –

Task type 3 2.9/5 3/5 1.0 2.9/5 3/5 1.0 – – –

3 Understandability 2.7/5 2/5 1.3 3.4/5 3/5 1.1 – – –

Difficulty Task type 1 2.3/5 2/5 1.0 3.2/5 3/5 0.9 – – –

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 – – –

Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 – – –

aScores on a 5-point Likert scale with 1: very easy, 5: very hard to understand
b Scores on a 5-point Likert scale with 1: very easy, 5: very difficult to perform task

Mdn: Median, St.dev: Standard deviation
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Fig. 8 Subjective perceptions of our participants. Y-axis: Variability mechanisms (A: Annotative C:
Compositional E: Enumerative)

which are refined by the visualizations in Fig. 8a to c. The figures also include the exact
formulations of all questions.

In Experiment 1 (class diagrams, Fig. 8a), enumerative was considered the easiest to
understand (mean: 2.2), followed by the annotative mechanism (mean: 2.6). Compositional
mechanism was the hardest to understand (mean: 3.2). The differences between the under-
standability of all three mechanisms were significant, with varying effect size measures: for
enumerative vs. annotative, p = 0.006 with A12 = 0.61 (small to medium effect); for com-
positional vs. annotative, p = 0.004 with A12 = 0.66 (medium effect); for enumerative vs.
compositional, p ≤ 0.001, with A12 = 0.73 (large effect).

The difficulty rating was fully consistent with both the objective task metrics (RQ1) and
the understandability ratings. Regarding difficulty, annotative and enumerative were con-
sidered to be less difficult than compositional for all task types. Comparing the annotative
and enumerative mechanism, the given mean ratings were approximately equal, amounting
to 2.3, 2.5, 2.5 for annotative, and 2.3, 2.2, 2.5 for enumerative. We did not find statistical
significance for this comparison, reinforcing our decision to not consider enumerative in the
follow-up experiments. In contrast, the mean ratings for compositional of 3.1, 3.0 and 3.2
were much higher, indicating lower understandability. In all comparisons of compositional
to another mechanism, we found significance. In all cases but one (task type 2, annotative
vs. compositional: p = 0.03; A12 = 0.62), the p-value was below 0.003 and the effect size
between A12 = 0.65 and 0.69, indicating a medium-to-large effect.

In experiment 2 (state machine diagrams, Fig. 8b), for understandability, participants
gave approximately similar ratings to both annotative and compositional (3.0 vs. 2.9). The
difference was not statistically significant. Considering difficulty, the mean scores per task
type were identical (2.6, 2.6, 2.9 vs. 2.6, 2.6, 2.9), implying no statistically significant dif-
ference, largely consistent with the correctness scores and completion times for the same
experiment (RQ1). Still, task type 3 gave rise to the only case in all our data where subjec-
tive assessment and objective performance were not aligned: the reported difficulty levels
do not differ, while the correctness scores do so with statistical significance.

In experiment 3 (activity diagrams, Fig. 8c), participants considered annotative to be
notably more understandable than compositional (2.7 vs. 3.4). The difference was statis-
tically significant (p = 0.3), with A12 = 0.68 (medium-to-large effect size). Concerning
difficulty, annotative was considered to be easier than compositional for all task types
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(2.3, 2.5, 2.5 vs 3.2, 3.0, 3.2). The difference for type 2 was significant, with p = 0.005,
and A12 = 0.73 (large effect). These observations agreed with the correctness scores and
completion times in RQ1.

The subjective perceptions of our participants largely agreed with the objective perfor-
mance measurements: In two of the three experiments, participants found the annotative
mechanism more understandable and easier to work than the compositional one. The
annotative mechanism was found (non-significantly) harder to understand, but equally
easy to work with as the baseline (enumerative variability, Experiment 1).

6.3 RQ3: Subjective Preferences

We report on our participants’ preferences, based on questions S5 and S6 in our question-
naire (see Fig. 5). In S5, we asked our participants to specify a preferred mechanism per
task type (quantitative data). In S6, we asked them for textual feedback to explain the ratio-
nale for their preferences (qualitative data). In what follows, first, we present and discuss the
distribution of preferences (S5), before explaining our observations based on the provided
rationale (S6).

6.3.1 Quantitative Distribution of Subjective Preferences

Figure 9 and Table 7 provide an overview of our quantitative data: the percentages of
selected answers when asked to specify a preferred variability mechanism per task type. For
Experiment 1, we find that the preferences varied strongly between the tasks. Annotative
was preferred by most participants for task types 1 and 3, albeit with only a moderate to
slight difference to the enumerative mechanism: 50.7% vs. 34.2% for type 1, and 43.8% vs.
42.5% for type 3. In contrast, the enumerative mechanism was preferred with a large mar-
gin for task type 2, comparing two variants (which are explicitly present in the enumerative
representation). Compositional came in last in all comparisons, with percentages between
12.3% and 15.1%. Participants generally expressed a preference; the no-preference option
was only selected in 1.4% of all cases. Intuitively, the preference for enumerative for type 2
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Fig. 9 Preference distributions of our participants in Experiment 1–3 (from left to right)
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Table 7 Distribution of preferred
mechanisms per task type Task type Ann. Com. Enu. None

Experiment 1

1 Understanding variants 50.7% 13.7% 34.2% 1.4%

2 Comparing two variants 26.0% 15.1% 57.5% 1.4%

3 Comparing all variants 43.8% 12.3% 42.5% 1.4%

Experiment 2

1 Understanding variants 58.6% 33.8% – 7.6%

2 Comparing two variants 52.3% 41.5% – 6.2%

3 Comparing all variants 46.2% 41.5% – 12.3%

Experiment 3

1 Understanding variants 78.3% 8.7% – 13.0%

2 Comparing two variants 78.3% 21.7% – 0%

3 Comparing all variants 78.3% 17.4% – 4.3%
Ann: Annotative Variability
Com: Compositional Variability
Enu: Enumerative Variability

is not surprising: in a comparison between two variants, explicitly representing the variants
seems beneficial. Based on the preference of annotative for type 1 and 3, we hypothesize
that this representation is suitable for tasks that require a good overview of all variants and
the ability to trace elements to variants.

For Experiment 2, participants’ preferences were consistent with their understandabil-
ity ratings per mechanism. Participants preferred annotative over compositional for all task
types: 58.6% vs. 33.8% for type 1, 52.3% vs. 41.5% for type 2, and 46.2% vs. 41.5% for
type 3. The more pronounced preference of annotative for type 1 and 2 can be attributed
to the consolidated view it offers, making it easier to understand and compare variants
(also confirmed by the subjective assessments presented shortly). A considerable number
of participants selected the no-preference option, especially for type 3 (12.3%). While this
percentage is higher than in the other two experiments, one might still find it surprisingly
low: Even though there were hardly any differences in the subjective assessment of under-
standability and difficulty (with low standard deviations), most participants still specified a
preference. One could interpret this finding as supporting a role of personal inclination or
taste in preferring a mechanism.

For Experiment 3, the differences were far more distinguished. The cleary majority of
the participants preferred annotative over compositional for all task types (78.3% vs. 8.7%
for type 1, 78.3% vs. 21.7% for type 2, and 78.3% vs. 17.4% for type 3). For type 1, 13%
of the participants chose the no-preference option. The preferences were consistent with
both the correctness scores and difficulty ratings. These observations are in line with our
previous findings for this experiment, in which annotative was found easier to use and lead
to better efficiency for all task types.
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6.3.2 Qualitative Explanations of Subjective Preferences

To obtain additional insights, we asked the participants to explain their preferences intu-
itively using an open-ended question. Based on our manual assessment performed on the
answers, we discuss the recurring aspects deemed as relevant by the participants below.
Importantly, some of the reported aspects could be mitigated when working with proper tool
support. Indeed, our findings might be useful for informing the question of what improved
visualizations should focus on, as we further discuss in Section 6.4.

Conciseness. Models created using the annotative mechanism offer a consolidated view,
where all variants of the domain are concisely shown as a single model. Eight of our partic-
ipants mentioned this as a benefit: “In the annotative one you had all the information asked
on the first look; comparing was easy since the different [variants] were all in the same
diagram.” With compositional, the models were modular in nature. This however made the
models scattered, and therefore, hard to deal with. Five of our participants remarked that
the modularity made the models clearer and eased the tasks: “It [was] easier to conduct
direct comparisons between different products in the [compositional mechanism], due to its
modular nature.” However, the scatteredness of the models was linked to difficulty in per-
forming tasks: “[using compositional, you] need to look at a lot of screens/windows.” A
related aspect mentioned by four of our participants was that the co-located presentation of
information made the information readily available, and helped in performing tasks: “The
enumerative shows all required parts at once and you don’t have to look really close to see
all required parts and connections.”

Understandability. Eight of our participants found enumerative mechanism easy to under-
stand and work with: “the enumerative variant is the easiest.” None of the participants
found it difficult to deal with. 26 of our participants found annotative easier to under-
stand and follow: “Annotative is simple to understand and just beautiful.” Two participants
remarked that annotative mechanism was intuitive: “[Annotative] is ... way more intuitive,
it gives a better overview.” In contrast, six participants found annotative to be hard to man-
age, mainly because of the cluttered models: “The main reason why I had some challenges
with the [annotative] version was probably because the text was so clustered and hard
to read.” Five of our participants found compositional to be easier to understand, either
because they were already familiar with the mechanism, or they liked the modular structure:
“It was easier to understand compositional because of their modularity in my opinion.” 15
of our participants experienced difficulty in understanding the compositional mechanism,
mainly because of its scattered nature: “The compositional one seems more scrambled, and
therefore a bit harder to follow and get a complete picture of.”

Familiarity. We observed that familiarity is a factor in preferring one mechanism over the
other, if only in a participant’s initial assessment. Specifically, we observed two interesting
aspects of familiarity. First, participants preferred mechanisms they had experience with:
“Since I haven’t worked with [annotative] variability before it was easier to grasp the com-
positional version.” Second, once participants experienced with a particular mechanism,
they changed their preferences along the way: “At first the annotative was hard (it took a
while to understand what the starting state was), but once I understood it, it was easier to
handle than the compositional one.”
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Scalability. In their explanation of why they preferred a particular variability mechanism,
several participants extrapolated from the considered case to more complex ones, and fore-
saw potential issues with the scalability of the notation. “[In enumerative,] although you
need more models/space, you can see everything relatively easy. However, if you have maybe
like 20 variants, enumerative is probably not the way to go.”, “last the Enumerative, the
6 variants were okay but when there are even more it is to much” [sic], and finally “The
problem with the Compositional was [the] bigger and more complex it gets, it is harder to
understand in a short time.”

Efficiency. Participants preferred mechanisms which they found quicker to work with,
based on their subjective impressions. We observed three relevant dimensions. First,
participants favoured the mechanisms which offered readiness; having readily available
information at one look made the tasks easier. The mechanisms favoured with this ratio-
nale were enumerative and annotative: “The enumerative shows all required parts at once
and you don’t have to look really close to see all required parts and connections,” and “In
[compositional], you have to follow a path to find the differences, where as with [anno-
tative], you can see it right away.” Second, four participants expressed that the additional
step of combining fragments to create variants in compositional was intensive: “Since you
do not have to think about how to compose diagrams I think that annotative is easier.”
Third, the scattered nature of compositional models made the tasks repetitive, an aspect
two of our participants found laborious: “The tagged approach of [annotative] does not
require me to mentally jump back and forth across the diagram like I have to do whilst using
compositional diagrams.”

Labels. When creating models, we deliberately chose labels that differed from the names
of the model elements to make the models reasonably complex. An example from the Email
Service Provider domain is Security, which was the label used to map the activities encrypt
email and decrypt email. Participants rendered labels to be useful, especially in annotative
models: “the labels with variant on classes [were] very [helpful].” Labels in the models
with annotative mechanism were even more favoured, owing to their arrangement, which is
collocated with model elements: “The feature placement in the annotative mechanism was
more localized, making it feel better to work with.”

Colors. A design choice was to show the feature names in the annotative representa-
tion in distinguished colors, based on previous recommendations for code-level mech-
anisms (Feigenspan et al. 2013). Doing so balances out a disadvantage of annotative
representations: the use of labels increases information density and visual crowding (Whit-
ney and Levi 2011), thus affecting readability. In line with these findings, participants noted
that it was “easier to compare classes in Annotative because of colors”, and that “the
colouring of annotative diagrams make [task type 1] really easy”.

Overview. We observed that participants chose mechanisms which offered a good overview
of the variants. Overview of variants is partially similar to our task type 1 (understanding
variants), however, it has a broader relevance to other model-related tasks such as compar-
ison. Six of our participants preferred annotative, explaining that it gave a good overview:
“It seems easier for me to ... get a fuller understanding of the system when reading the
annotative mechanism.” Two participants preferred enumerative, and one participant com-
positional with this rationale. Two of our participants experienced difficulty in getting an
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overview with the compositional mechanism: “There were many more places to look when
comparing with the compositional mechanism and it became a bit difficult to overview.”

Flow. In both behavioural model types (state machine diagrams and activity diagrams), par-
ticipants strongly preferred annotative, expressing that the flow of the model made the tasks
easier. 11 participants expressed their preference for annotative: “[It was] easier to under-
stand how everything is connected with the annotative.” None of the participants found
compositional to be helpful in understanding flow, seven expressing that compositional
made it hard to perform tasks because it did not support understanding flow: “I felt it was
harder to navigate with the compositional statechart diagram.”

Task Specific. Participants’ preferences changed with task types. One participant com-
mented: “[task type 1 and task type 2] require more memorization about which features are
active and which actions belong to them. As such, I prefer the compositional mechanism for
these tasks, which is less cluttered and more cleanly displays only those sub-diagrams that
are useful for a particular product. For the task type 3, it is likely that every feature will be
enabled in at least one product. This means that you need to form a mental image of the
diagram where all features are enabled. The fact that this is already contained in the anno-
tative diagram is now an advantage. The compositional mechanism however, does not do
this and as such requires more mental gymnastics in order to reason about a comparison of
all products.”

Additional Aspects. Two of our participants experienced uncertainty, both with composi-
tional: “At first glance Compositional seemed easy but I was never 100% sure about my
answers concerning it.” Two of our participants expressed that compositional mechanism
assisted them to see only the relevant parts of the models: “Compositional does the work of
ignoring the unimportant parts for me; the boxes for each feature only contains the relevant
state. .” One participant observed that models are harder to create with the compositional
mechanism: “compositional based [...] is harder to construct and implement than the anno-
tation based.” Two participants preferred annotative because it provided less information
to be processed by the brain: “[With compositional] you need to remember a lot of things,
product names and it’s features [..] Therefore I prefer the annotative notation, because you
have to remember less mandatory features.”

We propose related recommendations in Section 6.4.

6.4 Discussion and Recommendations

The objective and subjective differences between variability mechanisms observed in our
study can be considered by tool and language developers for improving user experience, an
important prerequisite for MDE adoption (Abrahão et al. 2017). We discuss our findings in
the light of derived recommendations.
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Provide Flexible, Task-Oriented Representations. We find that there is no globally prefer-
able variability mechanism—indeed, the “best” mechanism may depend on the task to be
performed. Tool and language developers can support user performance and satisfaction by
providing multiple representations, tailored to the task at hand. We propose to consider a
spectrum of solutions, each trading off the desirable qualities flexibility and simplicity: As
the most simple, but least flexible solution, one can augment a given representation with
task-specific, read-only views, e.g., given an annotative representation, generate individual
enumerated variants (or a subset thereof, see below). A second, more advanced solution is
to make these additional representations editable, which offers more flexibility, but gives
rise to a new instance of the well-known view-update problem (Czarnecki et al. 2009)—-the
particular challenge here is to deal with the implications of layout changes. The third, most
advanced solution is projectional editing (Behringer et al. 2017), in which developers inter-
act with freely customizable representations of an underlying structure. Projectional editing
offers the highest degree of flexibility, but poses a learning threshold to users for adapting
to a new editing paradigm.

Support the Simple Solution, for Appropriate Use-Cases. Our participants preferred the
simple enumerative solution for a subset of tasks. While being commonly applied in prac-
tice (e.g., in 9 out of 23 cases studied by Tolvanen and Kelly (2019b)), this solution is
inherently problematic: In small to moderate product lines, organizations struggle with the
propagation of changes between cloned variants (Schlie et al. 2017). In large product lines,
considering a distinct model for each of thousands of variants is simply infeasible. Instead,
we suggest to address use-cases that involve a clearly defined subset of variants: In staged
configuration processes (Czarnecki et al. 2005; Schroeter et al. 2012), such subsets are
derived by incrementally reducing the variant space, thus obtaining partial configurations of
the system. Variability viewpoints (Kaufmann et al. 2014), which are applied at companies
like Daimler, reduce the variant space based on the perspective of a specific stakeholder. To
address theses use cases, we suggest to provide support for selecting and interacting with a
subset of enumerated variants, while using a proper variability mechanism for maintaining
the overall system.

Use Colors, and Use Them Carefully. In line with the existing literature (Feigenspan et al.
2013), we find that colors can be helpful for mitigating the drawbacks of annotative tech-
niques. However, relying on colors in an unchecked way is undesirable due to the prevalence
of color-blindness. Up to 8% of males and 0.5% of females of Northern European descent
are affected by red-green color blindness (Chan et al. 2014). A recommendation for lan-
guage and tool designers is to avoid representations that solely rely on color, and to use
dedicated color-blindness simulators such as Sim Daltonism (https://michelf.ca/projects/
sim-daltonism/) to check their tools. A further issue with colors might be scalability, in a sit-
uation when there are many variation points that would need to be shown in different colors.
A mitigation would be to flexibly reassign colors depending on the current screen focus, but
even this approach would have limitations there is a need for a high number of annotation
colors inside the same screen. Alternative visualization aids (for example, filtering) could
be combined with coloring and are highly desirable.

Composition: the Whole is More Than the Sum of Its Parts. Participants struggled with
compositional mechanisms especially in tasks that required them to understand how frag-
ments interact with each other. In the case of behavior modeling (Experiment 2 and
3), the observed performance differences are more pronounced when participants had
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to understand cross-fragment flow of activities or states. To be able to solve the tasks,
they essentially had to execute the composition algorithm in their mind. Potentially, this
drawback of compositional mechanisms can be balanced out by providing special visual-
izations that illustrate the composition of (subsets of) fragments. Such visualizations would
reduce cognitive load during model comprehension and would also allow to provide instant
feedback upon changes.

Structured Overview of Recommendations. Based on our results and the considerations
in this section, we derive a structured overview of recommendations to tool developers and
users, which we outline in Table 8. As the main factors that should determine the selection
of the variability mechanism, we identify the expected number of variants and the expected
type of tasks. This is because we saw different optimal (best-perfoming and preferred) mech-
anisms depending on the task type, and because the enumeration of variants, which works
particularly well for comparing two variants, does not scale to large variant sets. To distin-
guish small from large variant sets, we use a size threshold of 10, based on the magnitude
of the variant sets considered in our experiments. For small large sets, we propose to use
either annotative or enumerative, depending on the tasks most likely to occur. For large sets,
the considerations in the beginning of this section are particularly relevant: flexible, task-
specific editing support can be used to show the information currently of interest. This helps
to balance out scalability issues, notably the scalability issue with colors in the annotative,
and the issue with having an overly large set of variants in the enumerative mechanism.

7 Threats to Validity

We discuss the threats to validity of our study, following the recommendations by Wohlin
et al. (2012).

External Validity. Our experiment focuses on class models, state machine diagrams, and
activity diagrams, three ubiquitous model types. We discuss representativeness and practi-
cal relevance in MDE contexts in Section 2. Furthermore, we consider only two variability
mechanisms in our comparison, an annotative and a compositional one. While studying
a broader selection of modeling languages and mechanisms is left to future work, the

Table 8 Overview of recommendations derived from our results

Expected number of variants Expected type of tasks Recommendation

Small Large Comparing all variants, Comparing two

(<10) (≥10) understanding variants

individual variants

• • Annotative or enumerative

• • Enumerative

• • • Annotative or enumerative

• • Flexible

• • Flexible

• • • Flexible
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qualitative data presented in Section 6.3.2 is not necessarily specific to these model types
and mechanisms, and yields a promising outlook on generalizability.

Another issue is whether our results generalize to larger systems, specifically, those with
more variants and model elements. Since the number of variants grows exponentially with
the number of features, the enumerative representation will eventually be outperformed
by the other ones. We discuss possible roles for the enumerative representation in larger
systems in Section 6.4.

Finally, external validity is threatened by our sample of participants, made up of stu-
dents with limited prior experience with variability mechanisms. Student participants can
be representative stand-ins for practitioners in experiments that involve new development
methods (Salman et al. 2015). While considering a broader spectrum of experience levels
would be worthwhile, we arguably focus on a critical population: In a given organization,
consider the onboarding of a new team member with a similar experience level to our par-
ticipants. Poor comprehension would pose a major hurdle to becoming productive, and,
therefore, pose a risk for the organization. As mitigation measures, we established via our
questionnaire that our participants had no unacceptable advantage of being much more
familiar with either compositional or annotative variability, and selected subject domains
that were either simple or already known to the students from previous course units (thus
avoiding potential misunderstandings as a source of error).

Internal Validity. Within-subject designs help to elicit a representative number of data
points to support statistically valid conclusions. We addressed their drawbacks as follows:
To address learning effects, we applied counterbalancing. Between the different groups, we
distributed the order of variability mechanisms equally, while keeping the domain and task
order constant. To balance the assignment of participants to classes, we randomized the
assignment.

To avoid researcher bias in the selection of our examples, we selected domains that
were not used before with a specific variability mechanism. Studying comprehension in
larger models is desirable, but has some principle limitations with regard to the amount of
information that participants can be exposed to in the scope of an experiment (participant
fatigue).

A possible source of bias is our choice of subject domains: a particular domain might
have been used in previous teaching units to explain a particular variability mechanism,
which would give an unfair advantage to these mechanism. We intentionally selected
domains that were simple and/or known to the students. However, to our knowledge, they
were not used to teach particular variability mechanisms. Using our questionnaire, we asked
our students to specify their previous knowledge about variability mechanisms, and did not
find a noteworthy difference between the mechanisms.

Construct Validity. We operationalized comprehensibility with comprehension tasks, argu-
ing for the importance of the considered tasks in Section 5. The choice of tasks was informed
by our pre-study, in which we encountered trade-offs regarding participant fatigue and
confounding factors when using more demanding tasks (Section 4). Since we find signifi-
cant performance differences between mechanisms, the difficulty level of our tasks seems
appropriate; however, other tasks might exist (e.g. understanding a single feature and its
context), and task completion could also be facilitated if users are supported by specialized
tools (e.g. query engines). Generally, systematic knowledge on the design space of model
comprehension tasks would help to maximize realism in comprehension experiments, but
such knowledge is currently lacking.
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Our setup did not involve tools, representing an unavoidable trade-off: While having the
participants use a tool environment would have been more realistic, it would have lead to
confounding factors related to usability obstacles and participants’ familiarity with the tool.
On the other hand, working with a printout that could be derived from a tool (like in our
experiments) also has some significant commonalities to working with the tool. We study
the question of how well users can comprehend models in a particular visual representation.
Given that the representation looks the same in the tool and on printout, we believe that
construct validity for our results and recommendations is established. Notably, while ade-
quate tool support might be able to mitigate some issues of particular representations, the
developers of these tools should at least be aware of these issues.

Colors were only used in the annotative representation, where their usefulness (for dis-
tinguishing elements from different variants) seems more obvious than in the compositional
one (where such elements are already distinguished by being contained in different mod-
ules). A follow-up study for studying the impact of colors in different representations might
provide additional insight.

Subjective measures are generally less reliable than objective ones. However, previous
findings suggest that they are correlated with objective performance measurements (Gopher
and Braune 1984). In fact, we find an agreement between the subjective and objective
measurements performed in our experiments.

Conclusion Validity. Towards supporting conclusion validity, we used robust statistical
tests. We report effect sizes and, to deal with threats related to multiple comparisons, applied
a conservative correction to the considered significance threshold. Threats arising from ran-
dom irrelevancies outside the experimental setting are reduced in experiments 1 and 2,
which were administered with all participants in the same room. Experiment 3, adminis-
tered during the COVID19 pandemic, is more prone to such irrelevancies, which, however,
would equally apply to all treatments.

8 RelatedWork

Annotative vs. Compositional Variability. Annotative approaches are traditionally seen as
inherently problematic. Spencer and Collyer (1992), for example, argues that #ifdef usage
in C as a means to cope with variability is harmful, leading to convoluted, unreadable,
and unmaintainable code (the infamous “#ifdef hell”). Spencer appeals to basic principles
of good software engineering: explicit interfaces, information hiding, and encapsulation.
Kästner et al. (2011) argue that compositional approaches tend to promise advantages,
which, however, only become manifest under rather specific assumptions. They emphasize
that only empirical research can provide conclusive evidence.

Aleixo et al. (2012) compare both mechanism types in the context of Software Process
Line engineering, i.e., applying concepts and tools from SPL engineering to software pro-
cesses. They compare two established tools: EPF Composer, which uses a compositional
mechanism, and GenArch-P, which uses an annotative one. Similar to our conclusions, they
report that the annotative mechanism performs better, especially with regards to a crite-
rion the authors call adoption, i.e., how much knowledge is required to initially apply the
mechanism.

Empirical Studies of Variability Mechanisms. Krüger et al. (2019) present a compara-
tive experimental study of two variability mechanisms: decomposition into classes, and
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annotations of code sections. They find that annotations have a positive effect on program
comprehension, while the decomposition approach shows no significant improvement and,
in some cases, a negative effect. While these findings are in line with ours, this study focuses
on Java programs, and compares the considered mechanisms to a different baseline, pure
OO code without any traces of variants. In our case, we considered the frequent case in
industry of copied and reused model variants.

Fenske et al. (2017) present an empirical study based on revision histories from eight
open-source systems, in which they study the effect of #ifdef preprocessors to maintain-
ability. They analyze maintainability in terms of change frequency, which is known to be
correlated with error-proneness and change effort. In contrast to the traditional belief, they
find that a negative effect of #ifdefs to maintainability cannot be confirmed.

Santos et al. (2019) study the effect of using two code-level variability representations:
feature-oriented programming (FOP) and conditional compilation (CC), on program com-
prehension. In their case, they focus on debugging task–a different scope than in our case.
Specifically, they investigate the impact of FOP and CC on various maintenance tasks
involving bug-finding. They conclude that there is no significant difference between the
correctness, understanding, and response time of using both representations.

Feigenspan et al. (2013) study the potential of background colors as an aid to sup-
port program comprehension of source code with #ifdef preprocessors. In three controlled
experiments with varying tasks and program sizes, they find that background colors con-
tributed to better program comprehension and were preferred by the participants. We base
the use of color in our experiments on these findings, and confirm them for the previously
unconsidered case of a model-level variability mechanism.

Empirical Studies of Model Comprehension. Labunets et al. (2017) study graphical and
tabular models representations in security risk assessment. In two experiments, they find
that participants prefer both representations to a similar degree, but perform significantly
better when using the tabular one. The authors build on cognitive fit theory (Vessey 1991)
to explain their findings: tables represent the data in a more suitable way for the considered
task. Like we do, this study supports the need for task-tailored representations.

Nugroho (2009) studies the effect of level of detail (LoD) on model comprehension. In
an experimental evaluation with students, the author finds that a more detailed representa-
tion contributes to improved model understanding. Ramadan et al. (2020) find a positive
effect to comprehension of security and privacy aspects when graphical annotations are
included in the considered models. Our results are in line with these findings, since the anno-
tative mechanism includes the names of the associated variants as one point of additional
information.

Acreţoaie et al. (2018) empirically assess three model transformation languages with
regard to comprehensibility. They consider a textual language and two graphical ones, one
of which uses stereotype annotations to specify change actions in UML diagrams. They
observe best completion times and lowest cognitive load when using the graphical language
with annotations, and best correctness when using the textual language. Studying this trade-
off further, by studying variability mechanisms in graphical and textual representations,
would be an interesting extension of our work.

Model-Level Variability. There are two main research directions of variability engineering
at the model level: variability modeling and model-level variability mechanisms. The for-
mer focuses on the modeling of the problem space (e.g., features and their relationships);
the latter, which is the scope of this paper, focuses on the solution space (implementation of
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variability in domain models). Regarding variability modeling, there is a number of expe-
rience reports from various domains. Alférez et al. (2019) observe that existing variability
modeling approaches do not suffice to capture a number of aspects of video domain, includ-
ing numeric parameters, multifeatures and constraints. They qualitatively compare a set of
13 approaches based on their ability to support the above-mentioned aspects, and present a
new textual variability modeling language (VM) for modeling videos. Berger et al. inves-
tigate variability modeling of topological spaces (Berger et al. 2014b). They share their
experiences from modeling large-scale fire alarm systems using UML2 class diagrams, and
show that class diagrams are an effective tool to model topological variability to generate
configurator tools. Garcı́a et al. (2019) give an experience report on the modeling of vari-
ability in robotic applications. They use feature models as a notation for defining variability
of robotic applications in various dimensions, such as environment, hardware, and mission
variability.

Most existing work on model-level variability mechanisms focuses either on particular
mechanisms (see Section 2) or the use of such mechanisms for other tasks; e.g., product
line testing (Reuys et al. 2006) and product derivation (Ziadi and Jézéquel 2006). Kühn and
Cazzola (2016) compare two particular approaches to variability engineering in DSLs along
three dimensions–feasibility, scalability, and sustainability—based on intuitive arguments.
In summary, the impact of variability mechanisms on model comprehension has not been
investigated yet in an empirical study. Our study is the first to use a controlled experiment
to produce systematic evidence on the impact of variability representations on model com-
prehension, and as such, can be used to guide the choice of variability mechanisms when
modelling the static and dynamic structure of product lines.

9 Conclusion

We presented a family of controlled experiments, in which we studied the effect of
the variability mechanisms of two fundamental kinds—annotative and compositional
mechanisms—on model comprehension. Our considered model types—class diagrams,
state machine diagrams, and activity diagrams—are among the most popular and common
models used in software engineering. We conducted the study with student participants with
relevant background knowledge. For models with a scope and size similar to our examples
and for similar tasks, we can conclude that:

– Annotative variability resulted in better comprehensibility than compositional variabil-
ity for all task types.

– Compositional mechanism can impair comprehensibility in tasks that require a good
overview of all variants.

– Annotative variability is preferred over the compositional one by a majority of the
participants for all task types in all model types.

– The preferred variability mechanism depends on the task at hand.

We presented several recommendations to language and tool developers. We discuss a
spectrum of solutions for maintaining several task-tailored representations. Having such
solutions is especially important in large systems where maintaining a separate model per
variant is infeasible, but developers might still want to interact with (sets of) variants of
interest in a particular task. We endorse the recommendation to use colors for improv-
ing comprehension in annotative variability, and discuss its limitations. If a compositional
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mechanism is desired, users should be supported with visualizations, instead of being
required to perform composition in their minds.

We envision four directions of future work. First, we want to understand the effect of
tools to model comprehension. Second, we wish to systematically explore the space of typ-
ical tasks during model comprehension. Additional experiments would allow us to come
up with a catalog of task-specific recommendations for variability mechanism use. Third,
we are interested in broadening the scope of our experiments to take different modeling
languages into account, including textual ones, which represent a middle ground between
traditional programming languages and graphical modeling languages, and transforma-
tion languages, for which many different reuse mechanisms have recently been developed
(Chechik et al. 2016; Strüber and Anjorin 2016). Fourth, further insight from our collected
data could be obtained by performing sub-group analysis. Questions of interest are the effect
of prolonged interaction of developers with different model types on their performance
for the three task types, and the effect of mechanisms on the types of errors made by our
participants (e.g., false negatives vs. false positives).
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Apel S, Batory D, Kästner C, Saake G (2013) Feature-oriented software product lines: concepts and
implementation

Assunção WK, Vergilio SR, Lopez-Herrejon RE (2017) Discovering software architectures with search-
based merge of uml model variants. In: ICSR. Springer, pp 95–111

Assunção WK, Vergilio SR, Lopez-Herrejon RE (2020) Automatic extraction of product line architecture
and feature models from uml class diagram variants. Inf Softw Technol 117(106):198

Behringer B, Palz J, Berger T (2017) Peopl: projectional editing of product lines. In: ICSE. IEEE
Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later: a

literature review. Inf Syst 35(6):615–636
Berger T, Pfeiffer RH, Tartler R, Dienst S, Czarnecki K, Wasowski A, She S (2014a) Variability mechanisms

in software ecosystems. Inf Softw Technol 56(11):1520–1535
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Domı E, Pérez B, Rubio ÁL et al (2012) A systematic review of code generation proposals from state machine

specifications. Inf Softw Technol 54(10):1045–1066
Fahrenberg U, Acher M, Legay A, Waşowski A (2014) Sound merging and differencing for class diagrams.

In: FASE
Faitelson D, Tyszberowicz SS (2017) UML diagram refinement (focusing on class- and use case diagrams).

In: ICSE, pp 735–745
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Pohl K, Böckle G, van Der Linden FJ (2005) Software product line engineering: foundations, principles and

techniques. Springer Science & Business Media
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Vml*—a family of languages for variability management in software product lines. In: International
conference on software language engineering. Springer, pp 82–102

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empir Software Eng (2022) 27: 72 Page 37 of 38    72



Affiliations
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