
https://doi.org/10.1007/s10664-021-10104-3

Open-source software product line extraction
processes: the ArgoUML-SPL and Phaser cases

Rodrigo André Ferreira Moreira1 ·Wesley K. G. Assunção2,3 · Jabier Martinez4 ·
Eduardo Figueiredo1

Accepted: 9 December 2021
© The Author(s) 2022

Abstract
Software Product Lines (SPLs) are rarely developed from scratch. Commonly, they emerge
from one product when there is a need to create tailored variants, or from existing variants
created in an ad-hoc way once their separated maintenance and evolution become challeng-
ing. Despite the vast literature about re-engineering systems into SPLs and related technical
approaches, there is a lack of detailed analysis of the process itself and the effort involved.
In this paper, we provide and analyze empirical data of the extraction processes of two open-
source case studies, namely ArgoUML and Phaser. Both cases emerged from the transition
of a monolithic system into an SPL. The analysis relies on information mined from the
version control history of their respective source-code repositories and the discussion with
developers that took part in the process. Unlike previous works that focused mostly on the
structural results of the final SPL, the contribution of this study is an in-depth characteriza-
tion of the processes. With this work, we aimed at providing a deeper understanding of the
strategies for SPL extraction and their implications. Our results indicate that the source code
changes can range from almost a fourth to over half of the total lines of code. Developers
may or may not use branching strategies for feature extraction. Additionally, the problems
faced during the extraction process may be due to lack of tool support, complexity on man-
aging feature dependencies and issues with feature constraints. We made publicly available
the datasets and the analysis scripts of both case studies to be used as a baseline for extractive
SPL adoption research and practice.

Keywords Software product lines · Re-engineering · Mining software repositories ·
ArgoUML · Phaser

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems
(SPLC)

� Wesley K. G. Assunção
wesleyklewerton@gmail.com

Extended author information available on the last page of the article.

Published online: 8 April 2022

Empirical Software Engineering (2022) 27: 85

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10104-3&domain=pdf
http://orcid.org/0000-0002-7557-9091
mailto: wesleyklewerton@gmail.com

1 Introduction

Software Product Lines (SPL) (Northrop and Clements 2012) are not always developed
from scratch but emerge from an existing system or from existing variants (Berger et al.
2013). This kind of adoption is known as extractive adoption (Krueger 2001), which is
undertaken by a re-engineering process. Re-engineering processes to extract SPLs have
been analyzed from different perspectives. For instance, industrial cases present lessons
learned regarding organizational and technical aspects (Martinez et al. 2017), researchers
aim to increase the level of automation of the re-engineering steps (Assunċão et al. 2017),
and practitioners apply risk evaluation methods and cost models to measure the return on
investment (Ali et al. 2009).

In this work, we focus on the process and the effort required for extractive SPL adoption
and we fill the gap on the lack of comparable and reproducible research on the topic given
the confidentiality constraints of existing industrial cases reported in the literature (Martinez
et al. 2017). We can argue that there is still no evidence about the cost-effectiveness of using
automatic approaches for different re-engineering activities, and that ways to estimate the
re-engineering effort beforehand could be improved. We consider that the main reason is
that we lack baselines for comparison and empirical data providing clues for estimation.
As in other software engineering research fields, open-source software systems provide
valuable assets and information for extractive SPL adoption research (Martinez et al. 2017;
Wolfart et al. 2019).

In a previous work (Martinez et al. 2020), we analyzed empirical data of an existing
SPL extraction process: the ArgoUML monolithic architecture transition to ArgoUML-
SPL. This paper extends our previous work (Martinez et al. 2020) not only by expanding
the analysis and discussion about the ArgoUML to ArgoUML-SPL transition, but also by
reporting observations of the extractive SPL adoption in a second case study, namely Phaser.
ArgoUML1 is probably the most representative system that can be comparable to indus-
trial practices (Assunċão et al. 2017; Martinez et al. 2017). The transition from ArgoUML
to ArgoUML-SPL was an academic project, but it was focused on industry-strength prac-
tices (Couto et al. 2011). Phaser2, on the other hand, is an open-source 2D game framework
for Web browsers. It has been developed and maintained by a large community of JavaScript
developers, receiving frequent updates. The community of Phaser developers extracted an
SPL in version 2.3.0 aiming at enabling the game developers to pick and choose which
features they would like to use while developing and building their own game.

These systems were selected mainly because of their relevant size and the cross-cutting
features they contain. For instance, we selected Phaser because it is an open-source software
system maintained by a large community of developers. Moreover, ArgoUML-SPL was
extensively used for validating automatic or semi-automatic techniques for feature location
in families of systems (AL-Msie’deen et al. 2013; Assunċão et al. 2017; Eyal-Salman et al.
2013a, b, c, 2014; Linsbauer et al. 2013; Martinez et al., 2016, 2017, 2018; Michelon et al.
2021, 2021; Stru̇ber et al. 2019; Ziadi et al. 2012), extracting SPLs or composing new prod-
uct variants (Fischer et al. 2014; Klatt et al. 2014; Ziadi and Hillah 2018), and its artifacts
were used as source of information for reverse engineering studies (Linsbauer et al. 2014;
Martinez et al. 2015). These studies mainly used ArgoUML-SPL variants as a source of

1ArgoUML: http://argouml.tigris.org and ArgoUM-SPL: http://argouml-spl.tigris.org. Moved on July 2020
to https://github.com/argouml-tigris-org, https://github.com/argouml-tigris-org/argouml-spl, respectively.
2Phaser: http://phaser.io/

85 Page 2 of 35 Empir Software Eng (2022) 27: 85

http://argouml.tigris.org
http://argouml-spl.tigris.org
https://github.com/argouml-tigris-org
https://github.com/argouml-tigris-org/argouml-spl
http://phaser.io/

information. However, among these studies, there is no translation from the results to actual
operationalization of the re-engineering process. For instance, it is unclear what means e.g.,
fifty percent of precision compared to the effort (e.g., months) of performing manual loca-
tion because the metrics are not comparable. In the literature, we can find some pieces of
work, about other cases, describing the effort related to the duration (Ali et al. 2011; Dhun-
gana et al. 2011; Kolb et al. 2006; Zhang et al. 2011; Yang et al. 2009) and number of
developers (Hariri et al. 2013; Olszak and Jørgensen 2012; Otsuka et al. 2011) to conduct
the re-engineering process. However, only brief or no discussion is provided.

Current SPL research focuses mostly on the result of the re-engineering, not on the actual
process of obtaining an SPL. For instance, in the seminal publication where ArgoUML-
SPL was presented (Couto et al. 2011), the focus was on an in-depth characterization of the
extracted SPL in terms of size metrics, crosscutting metrics, crosscutting behavior analysis,
granularity metrics and analysis of where in the code structure the annotations were inserted
with more frequency. Contrary to the characterization of the structure of the extracted SPL,
in this work we contribute with a missing analysis and characterization on the process of
creating ArgoUML-SPL from the ArgoUML monolithic architecture. Additionally, we also
analyze the process of creating the Phaser-SPL aiming at providing a complementary set of
examples. These pieces of information will enable us to provide a deeper understanding of
the strategies for SPL extraction and their implications.

The contributions of this work are:

– A characterization of the processes where two software systems were transformed
into SPL. This characterization was possible using practices from the mining software
repositories field (Hassan 2008). The insights of this characterization can serve as an
experience report, describing the steps, artifacts, time taken, tools used, and problems
of two specific cases, for companies and practitioners willing to re-engineer an existing
monolithic system into an SPL. That is, practitioners can then have examples of how
other re-engineering processes were conducted.

– A publicly available dataset and analysis scripts3 to be used as a baseline for extrac-
tive SPL adoption research. This dataset includes a large amount of data for the two
illustrative and comprehensible examples of SPLs creations.

This paper is structured as follows. Section 2 presents background information and defi-
nitions used in this paper. Section 3 explains how we design the case studies and the relevant
differences between the ArgoUML and Phaser systems. Results are presented and analyzed
in Section 4, focusing on answering our research questions. Section 5 is devoted to broad
discussions on the results. Section 6 presents and analyses threats to the study validity. The
existing related literature and other pieces of work describing the re-engineering process is
presented in Section 7. Finally, Section 8 concludes and outlines future work directions.

2 Background

This section presents background information on diverse topics needed for a better
understanding of this work. Variability management in SPLs can be implemented with dif-

3https://zenodo.org/record/5519966.

Page 3 of 35 85Empir Software Eng (2022) 27: 85

https://zenodo.org/record/5519966

ferent approaches, where annotative or compositional approaches are the main subdivision
(Kästner et al. 2008). Sections 2.1 and 2.2 explain the annotative approach and feature inter-
actions, present in ArgoUML-SPL, while Section 2.3 presents the compositional approach,
used in Phaser. Section 2.4 presents a general introduction to the re-engineering process
towards SPLs. Finally, Sections 2.5 and 2.6 introduce the ArgoUML and Phaser case
studies.

2.1 Annotative SPLs

The annotative approach is a well-known technique for handling software variability (Babar
et al. 2010). It has long been used in programming languages like C (commonly known as
ifdef preprocessor directives), and it can also be used in object-oriented languages, such
as C++ (Hu et al. 2000) and Java. For example, the Java Preprocessor4 functionality is the
one used in ArgoUML-SPL. In this approach, annotative directives indicate pieces of code
that should be compiled/included or not based on the value of variables. The pieces of code
can be marked at the granularity of a single line of code or to a whole file. Feature toggling
is also a used annotative approach (Mahdavi-Hezaveh et al. 2021) where there is no need
of specific variability management libraries as the annotations are based on the standard if
clauses of the target programming language.

The code snippet in Listing 1 shows the use of preprocessor directives in ArgoUML-
SPL. In this example, the //#if defined(UseCaseDiagram) directive in line 5, for
instance, indicates the beginning of code belonging to the Use Case Diagram feature. On
the other hand, the directive in line 8 specifies the code of the State Diagram feature. The
#endif directives (e.g., lines 7 and 10) determine the end of code associated with each
feature. Each identifier, such as UseCaseDiagram in line 5, is associated with a Boolean
value defined in a configuration file for each product of ArgoUML-SPL. Its value indicates
the presence of the feature in a product and, consequently, the inclusion of the bounded
piece of code in the compiled product.

2.2 Feature Interactions

Feature interaction occurs when the behavior of one feature is influenced by the presence of
other features (Apel et al. 2013). The interaction may not be easily deduced from the behav-
iors of the involved features in isolation and this fact hinders modular reasoning. In fact, not
all feature interactions are undesired. One feature often communicates and cooperates with
other features to accomplish a task in concert. For instance, the ActivityDiagram feature is
lexically nested to the StateDiagram feature in several places of the ArgoUML-SPL code
(Couto et al. 2011). By inspecting the code, we observed that this nesting is due to the fact
that Activity Diagrams are a specialization of State Diagrams, as defined by the UML spec-
ification (Booch 2005). Another example is the Cognitive feature in ArgoUML which aim
is to support the correct UML modelling with predefined critics for each type of diagram, or
the Logging feature which aims to capture events in all features. Feature interactions exist
because of this expected cross-cutting behavior.

4javapp: http://www.slashdev.ca/javapp

85 Page 4 of 35 Empir Software Eng (2022) 27: 85

http://www.slashdev.ca/javapp

1 public final class DiagramFactory {
2 private DiagramFactory() {
3 super();
4 diagramClasses.put(DiagramType.Class,

UMLClassDiagram.class);
5 //#if defined(USECASEDIAGRAM)
6 diagramClasses.put(DiagramType.UseCase,

UMLUseCaseDiagram.class);
7 //#endif
8 //#if defined(STATEDIAGRAM)
9 diagramClasses.put(DiagramType.State,

UMLStateDiagram.class);
10 //#endif
11 //#if defined(DEPLOYMENTDIAGRAM)
12 diagramClasses.put(DiagramType.Deployment,

UMLDeploymentDiagram.class);
13 //#endif
14 //#if defined(COLLABORATIONDIAGRAM)
15 diagramClasses.put(DiagramType.Collaboration,

UMLCollaborationDiagram.class);
16 //#endif
17 //#if defined(ACTIVITYDIAGRAM)
18 diagramClasses.put(DiagramType.Activity,

UMLActivityDiagram.class);
19 //#endif
20 //#if defined(SEQUENCEDIAGRAM)
21 diagramClasses.put(DiagramType.Sequence,

UMLSequenceDiagram.class);
22 //#endif
23 }
24 ...
25 }

Listing 1 Example of variability management with annotative directives

2.3 Compositional SPLs

Compositional approaches to implement SPLs enable the addition of implementation frag-
ments in specified places of a system (Apel et al. 2009; Batory et al. 2004; Prehofer 2001;
Schaefer et al. 2010). With the compositional approach, we defined separated reusable
assets that are composed during derivation when features are selected. A relevant exam-
ple is FeatureHouse which is based on source code superimposition and merge (Apel
et al. 2009). Compositional or positive variability mechanisms include generative program-
ming (Czarnecki and Eisenecker 2000), feature-oriented programming (Batory et al. 2004;
Prehofer 2001), aspect-oriented programming (Kiczales et al. 1997) or delta-oriented pro-
gramming (Schaefer et al. 2010). In fact, it is also possible to combine compositional with
annotative techniques.

In Phaser, a compositional approach is used where features are separated in dedicated
JavaScript files, which are then merged during the build process if the features are selected.
Researchers have also investigated how to deal with JavaScript SPLs combining both com-
positional and annotative approaches (Santos et al. 2016). However, Phaser-SPL is based
on a dedicated Grunt workflow5 implemented by the Phaser developers. The code snippet
in Listing 2 was extracted from the Gruntfile. This example lists a subset of the available

5https://gruntjs.com/

Page 5 of 35 85Empir Software Eng (2022) 27: 85

https://gruntjs.com/

1 var modules = {
2 'intro': { 'description': 'Phaser UMD wrapper',
3 'optional': true, 'stub': false },
4 'phaser': { 'description': 'Phaser Globals',
5 'optional': false, 'stub': false },
6 'geom': { 'description': 'Geometry Classes',
7 'optional': false, 'stub': false },
8 'core': { 'description': 'Phaser Core',
9 'optional': false, 'stub': false },
10 'input': { 'description': 'Input Manager + Mouse

and Touch
11 Support', 'optional': false, 'stub':

false },
12 'gamepad': { 'description': 'Gamepad Input',
13 'optional': true, 'stub': false },
14 'keyboard': { 'description': 'Keyboard Input',
15 'optional': true, 'stub': false },
16 'components': { 'description': 'Game Object

Components',
17 'optional': false, 'stub': false },
18 'gameobjects': { 'description': 'Core Game Objects',
19 'optional': false, 'stub': false },
20 'bitmapdata': { 'description': 'BitmapData Game

Object',
21 'optional': true, 'stub': false },
22 'graphics': { 'description': 'Graphics and PIXI

Mask Support',
23 'optional': true, 'stub': false },
24 'rendertexture':{ 'description': 'RenderTexture Game

Object',
25 'optional': true, 'stub': false },
26 'text': { 'description': 'Text Game Object

(inc. Web
27 Support)', 'optional': true, 'stub':

false },
28 'bitmaptext': { 'description': 'BitmapText Game

Object',
29 'optional': true, 'stub': false },
30 'retrofont': { 'description': 'Retro Fonts Game

Object',
31 'optional': true, 'stub': false },
32 ...
33 };

Listing 2 Example of variability management with compositional approach

modules followed by a brief description, whether they are optional or not, and if they are
replaceable by a stub version. During the build process, the developers are able to define
which modules they would like to exclude from their build.

2.4 The Re-engineering Process

The process of extracting an SPL from legacy system variants is discussed in a mapping
study (Assunċão et al. 2017). This process covers some specific phases that are designed
to deal with commonalities and variabilities among the system variants. More specifically,
as results of that systematic mapping, the authors presented a generic process with three
phases commonly found in the primary sources. The generic process is presented in Fig. 1.

85 Page 6 of 35 Empir Software Eng (2022) 27: 85

Fig. 1 Generic re-engineering process, extract from Assunċão et al. (2017)

The three phases are: (i) detection, with the goal to identify features (Martinez et al. 2016;
Ziadi et al. 2012), which are building blocks of SPLs (Kang et al. 1990), available in each
the system variant and locate where such features are implemented (Rubin et al. 2013; Dit
et al. 2013); (ii) analysis, focus on discovering the relationship between features and rep-
resenting these relationships, mainly using a variability model, e.g., a feature model; and
(iii) transformation, based on the information of the previous two phases, implementation
artifacts are modified to describe variability, e.g., using annotative approaches or compo-
sitional approaches. Figure 1 depicts, on the left side, the system variants developed using
opportunistic reuse, e.g., clone-and-own practices (Fischer et al. 2014).

The main motivation of migrating to an SPL is to mitigate engineering problems related
to maintenance and evolution. This is a way to remove the technical debt related to defi-
cient variability management (Wolfart et al. 2021). The re-engineering process can take
place from a single system to allow systematic generation of a family of system vari-
ants (Krueger 2001) and this is the case of the two case studies considered in our study. In
such a situation, the motivation is to allow different configurations of products from a com-
mon base of artifacts, enabling systematic reuse. Through an extractive adoption of an SPL
(Krueger 2001), a company can reduce time-to-market for new products, growing its port-
folio of software products, and better fulfilling client demands. In this case, the extraction
should be conducted with the support of the available artifacts. Some studies highlight the
importance of high-level artifacts, such as feature models and SPL architectures (Assunção
et al. 2020; Knodel and Muthig 2005). Other studies describe the process based mainly on
source-code (Assunċão et al. 2017; Laguna and Crespo 2013).

In the generic process described in Fig. 1, it is not straightforward to decide when a
specific activity was completed. For instance, an SPL could have been re-engineered (i.e.,
variants can be derived) but it is difficult to assess its validity. Missing or incorrect imple-
mentations using the variability mechanisms, or non-foreseen feature interactions, can lead
to incorrect derived variants. SPL testing is a complex field (Engström and Runeson 2011)
given the combinatorial explosion of possible variants and the difficulties in test case design
and automation. As a simplification, we will consider that the reengineering covers the pro-
cess until variants can be derived with certain confidence, and it is the responsibility of
the SPL maintenance phase to address or try to automate the identification of derivation
problems including their fixing.

Page 7 of 35 85Empir Software Eng (2022) 27: 85

2.5 ArgoUML in a Nutshell

ArgoUML is an open-source tool that supports the edition of UML 1.4 diagrams and other
related functionalities, such as code-generation from UML diagrams or reverse engineering
UML diagrams from source code. Its initial release was in 1999 and the latest release was
v0.34 in 2011 with 120 KLoC of Java code. Along its history, over 150 developers con-
tributed to its development counting close to 20 thousand commits (from now on, we call
them revisions following the revision control terminology of SVN6). More than six thou-
sand issues were reported, from which around five thousand were closed7. Relevant fixes
were made around 2014 when the activity on its development was abandoned.

In 2010, an experienced developer and master student, supervised by two software
engineering researchers, initiated the re-engineering process of ArgoUML (v0.28.1) to
ArgoUML-SPL as part of his master thesis (Couto 2010), which is the basis of one of our
studies.

2.6 Phaser in a Nutshell

Phaser is an open-source 2D game framework used as a platform to develop HTML5 games
for both desktop and mobile (Photon Storm Ltd 2021). Phaser was first released in April
2013, as version 0.5.0, with the goal of allowing the quick creation of games and removing
some complexity imposed by the use of HTML5 purely. The first stable version, namely
1.0.0, was released after six months of massive enhancement and refactoring across the
entire codebase. In this work, we rely on the Phaser Community Edition8 (Phaser CE).
The latest version of Phaser CE is 2.16.0 and it was released in June 2020. Phaser CE was
originally called Phaser 2 and became community driven since version 2.7.3. According to
the lead developer, Phaser 2 was a milestone for the framework, promoting the development
of numerous games and popularizing the framework. However, with the advent of Phaser 3,
which is a complete restructuring of Phaser using a fully modular structure and combined
with a data-oriented approach, Phaser 2 was handed to the community of developers that
directly control it nowadays.

In this study we focus on the version 2.3.09 of Phaser, in which developers introduced the
ability of customizing Phaser with custom builds. According to Phaser documentation10,
“In previous versions [before 2.3.0] of Phaser we adopted something of a “kitchen sink”
approach, whereby lots of features were bundled in with no way to turn them off. This led
to some quite large build file sizes, even if you didn’t need lots of the capabilities present
in there.” The ability of creating custom Phaser builds enabled game developers to select
only those features they will use on their game application. For example, if the game being
developed does not have keyboard inputs, the developer can exclude the implementation
responsible for handling such a feature. This process of avoiding the inclusion of unused
features results in a smaller build file size, which is a benefit for the developers since it

6https://subversion.apache.org/
7http://argouml.tigris.org/project bugs.html. Stored (July 2020): https://github.com/argouml-tigris-org/
argouml/releases/tag/GITHUB IMPORT
8Available at: https://phaser.io/download/phaserce. Notice that Phaser-CE is not Phaser 3, which has a very
different architecture.
9https://github.com/photonstorm/phaser/releases/tag/v2.3.0
10http://phaser.io/tutorials/creating-custom-phaser-builds

85 Page 8 of 35 Empir Software Eng (2022) 27: 85

https://subversion.apache.org/
http://argouml.tigris.org/project_bugs.html
https://github.com/argouml-tigris-org/argouml/releases/tag/GITHUB_IMPORT
https://github.com/argouml-tigris-org/argouml/releases/tag/GITHUB_IMPORT
https://phaser.io/download/phaserce
https://github.com/photonstorm/phaser/releases/tag/v2.3.0
http://phaser.io/tutorials/creating-custom-phaser-builds

reduces the game’s loading time. A secondary benefit is that it reduces the size of the appli-
cation programming interface of the framework, but size reduction is the main goal of the
custom builds.

3 Study design

This section describes the methodology of our study in order to investigate the SPL extrac-
tion processes of ArgoUML-SPL and Phaser. Figure 2 describes the steps we followed.
Firstly, we defined the goal and research questions of our study (Section 3.1). Secondly,
we conducted the extraction of data regarding the re-engineering process (Section 3.2).
Then, during the discussion of the results, some questions were raised, leading us to contact
the developers in charge of the re-engineering for clarifications (Section 3.3). Finally, we
performed the analysis of the data and developer’s comments and reported in this paper.

3.1 Study Goal, Questions, andMetrics

The design of our case studies is based on the Goal/Question/Metric (GQM) approach (van
Solingen et al. 2002), as described below.

Study goal analyze the SPL extraction processes of two open-source systems for the pur-
pose of observing how the process was conducted with respect to the timeline, number and
size of the features, from the viewpoint of developers and maintainers.

Research questions (RQ) Guided by our study goal, we derived the following research
questions.

– RQ1: How has the source code of the systems changed during the re-engineering pro-
cesses? We discuss the modifications for turning the monolithic structure of the systems
into an architecture that allows dealing with variability and customization.

– Metric: LoC of each feature, percentage of LoC changes in the architecture,
features made optional, and interactions among features.

– RQ2: How was the operationalization of the re-engineering processes? Since the SVN
and GitHub repositories are our source of information, in this question we aim to
investigate if the features were extracted all in the same trunk, if there were branches,
and the number of revisions in the process. Also, we investigate aspects related to the
time, effort, and team involved in the extraction of the case studies. The goal of this
RQ is to provide insights for those willing to move from monolithic systems to SPL
architectures.

Goal and
RQs

Definition

Repository
Data

Extraction

Clarrification
with

Developers

Data analysis
and

Report

Fig. 2 Study Steps

Page 9 of 35 85Empir Software Eng (2022) 27: 85

– Metric: number of branches vs number of features (branching strategy), num-
ber of revisions per feature, number of months for each feature extraction,
number of people, and initial/final revisions.

– RQ3: What were the problems faced when conducting re-engineering processes of the
systems? Since the re-engineering process is a complex intellectual activity, it is an
error-prone task. Here we investigate which and how bugs were found after the SPL
extraction, and barriers found by the collaborators during the process.

– Metric: bugs found, inconsistencies detected, and feedback from developers.

3.2 Repository Data Extraction

Our study relies on data mined from version control systems of both systems. In the
ArgoUML-SPL case, we mined data from the SVN repository that was used as the version
control system during the re-engineering process. In the Phaser case, we mined data from
GitHub, since the system is hosted in this repository. Next we provide more details of the
extraction for each system.

3.2.1 ArgoUML-SPL extraction

A set of scripts were implemented to create a dataset and to automate the analysis11. From
the 156 revisions of the ArgoUML-SPL re-engineering process, we automatically identified
the SVN revisions with Java code changes (51 revisions) and we automatically downloaded
them. The rest of the revisions were mainly updates of the website content and SVN struc-
ture (e.g., empty folders’ creation). We then extended the ground-truth extractor of the
ArgoUML-SPL feature location benchmark (Martinez et al. 2018) to provide metrics on the
LoC of each feature and we ran it for each of the revisions. We also identified, for each LoC,
whether it was included as part of a feature or as part of the Core, i.e., the common part.

The initial revisions mention that the source code of the v0.28.1 release was used to
extract the ArgoUML-SPL. However, until revision 41, the repository does not have all
the source code, but only Java packages and classes where the annotations were included.
Starting from revision 41 the source code is complete (both Core and parts with optional
code) to build the software. To conduct our analyses in equal conditions for each revision,
for revisions prior 41, we included the missing Java classes from v0.28.1.

3.2.2 Phaser extraction

For the Phaser case study, firstly we evaluated the custom build creation process. It is done
via a Gruntfile12 that lists all the mandatory and optional features with a short description
of each one. Then, we investigated the “manifests”13 folder that contains json files, and
each json file lists a set of JavaScript source files (directory of each file). Each json file
inside the manifests folder maps a distinct collection of JavaScript source files into different
modules, and each of these modules we assumed to be the features of the system listed in
the Gruntfile. By extracting the JavaScript files from each of the json files, we are able to
map which source files belong to each of the system features.

11https://zenodo.org/record/5519966.
12More information at: https://gruntjs.com/sample-gruntfile
13More information at: https://webpack.js.org/concepts/manifest/

85 Page 10 of 35 Empir Software Eng (2022) 27: 85

https://zenodo.org/record/5519966
https://gruntjs.com/sample-gruntfile
https://webpack.js.org/concepts/manifest/

Firstly we needed to verify that our assumption was correct, thus we extracted the list
of features from the Gruntfile and the list of names of json files. Then, we matched the
features to their respective json files based on their names, followed by a manual validation
of the content of each json file and the description of the features provided in the Gruntfile.
There were 59 manifest files but 10 of them were stubs, and from the Gruntfile we extracted
43 features. Since the number of manifest files was higher than the number of features, it
suggested that for Phaser the relationship between them was not one-to-one.

Most of the features had a json file with exactly the same name as the feature, thus we
managed to successfully match all but three of the features from the Gruntfile with a distinct
json file. However, there were nine json files that did not have a corresponding feature.
The three remaining features were mapped to their corresponding json files by inspecting
their content and the feature description with six json files remaining. Therefore, a manual
evaluation of the extra json files in order to map to their respective features was required.
Once again, we conducted this evaluation by analyzing the description of the features and
the content of the extra json files.

We concluded that four out of the six remaining json files belonged to four distinct fea-
tures that already had corresponding json files. From the remaining two json files, one
corresponded to a feature - which was not explicitly included in the Gruntfile list of features
- that is automatically added to the build if two other features are enabled. The other json file
was a mandatory feature that was also not explicitly listed in the Gruntfile list of features.

Once each feature was mapped to its json files, we evaluated their evolution by measuring
the total LoC, number of JavaScript files listed in the json file, whether the feature was listed
in the Gruntfile or not, and if the feature was mandatory or optional. This process was done
using a set of Python scripts and 17 Phaser releases (from 2.0.0 to 2.16.0) downloaded from
the Phaser CE GitHub repository. We also used the software solution Perceval (Dueñas et al.
2018) for gathering information about the commits made during the same time frame.

3.3 Developer

We rely on the information that can be identified and analyzed from the version control sys-
tem. In addition, we aimed to contact the developers involved in the process to confirm our
findings or to request clarifications on certain aspects. For the ArgoUML-SPL case, we con-
tacted all the developers, project managers, and maintainers involved in the re-engineering
process. One of them is a co-author and the others were contacted by email or with per-
sonal interviews. For the Phaser case, we contacted the lead developer, Richard Davey14

and “samme”15, who is a very active developer that also responded to our questions16.

4 Results and Analysis

This section presents an overview of the processes conducted to re-engineer ArgoUML and
Phaser into SPLs, the results collected from the repositories of each system, and the analysis
in order to answer the posed research questions.

14https://github.com/photonstorm
15https://github.com/samme
16Through Phaser’s Discord server (An online group-chatting platform https://discord.gg/phaser) and
through email

Page 11 of 35 85Empir Software Eng (2022) 27: 85

https://github.com/photonstorm
https://github.com/samme
https://discord.gg/phaser

4.1 Overview of the ArgoUML and Phaser re-engineering processes

Figure 3 presents an overview of the re-engineering steps to extract an SPL from ArgoUML.
The developers used as input the ArgoUML CookBook17 and the source-code for con-
ducting four steps, represented by the gray rectangle in the figure. In the first step, the
documentation found in the ArgoUML CookBook was studied to identify how the system
architecture was designed and organized. This highlights the importance of the software
architecture for the re-engineering process. Then, to have a better understanding of the
actual system, a step for studying the source-code was also conducted. As a result of these
two steps, the developers had information about the packages implementing ArgoUML fea-
tures. Next, they started locating the features at the level of classes and methods. Finally,
the developers annotated the source code.

As a result of the re-engineering process, eight features were made optional by introduc-
ing Java annotations (see Section 2.1), which are similar to C ifdef preprocessor directives
but using a Java library for annotations4. Six features were related to diagrams and two were
representative cross-cutting features, namely Logging and Cognitive support. The lat-
ter is responsible for providing critics and warnings regarding UML model instances. This
re-engineering process was made in 156 commits, with contributions from three other devel-
opers. The latest revisions in 2014 consist only of fixes on the Java comments related to the
granularity types of the variability annotations (meta-data on the variability annotations).
Those revisions were made by a researcher on a study for consolidating ArgoUML variants
in an SPL (Klatt 2014).

Figure 4 presents an overview of the process to introduce customization in the Phaser
framework. The source of information used by developers for the re-engineering process
were: (i) the game objects, that represent features such as sprites, animation, collision, and
sound, to cite some; and (ii) the source code of Phaser 2.2.2.

As reported in the release notes9, the framework suffered with code duplication, “God
classes” structure, and “kitchen sink” approach. Then in the first phase of the process, the
developers analyzed the features and source code in order to plan the re-engineering. In
the second step, the features were modularized as Game Objects, with the purpose of turn-
ing the features into first-class citizens, i.e. individual JavaScript files, with regard to their
capabilities. Next, stub classes and hooks were created to manage dependencies and essen-
tial code minimally required by the applications. Finally, feature toggles (Mahdavi-Hezaveh
et al. 2021) were used to enable and disable features, allowing customized builds.

As mentioned in Section 2.4, the re-engineering process is followed by an SPL mainte-
nance phase where the derived variants are more in-depth analyzed regarding their validity.
For the two case studies, ArgoUML and Phaser, no automatic nor systematic means were
introduced for SPL testing as part of the re-engineering process validation. In the case of
ArgoUML-SPL, the existing source code of the tests (JUnit) were not included in the re-
engineering process. However, as it will be presented in Section 4.3, the SPL maintenance
phase identified and fixed bugs in some variants. It was much later, in 2020, when Fis-
cher et al. (2020) made the effort of trying to re-structure the ArgoUML tests to make them
aware and work for ArgoUML-SPL variability. However, they were not integrated in the
ArgoUML-SPL repository by adding them to the ArgoUML-SPL derivation pipeline. The

17https://argouml-tigris-org.github.io/tigris/wiki-argouml/wiki

85 Page 12 of 35 Empir Software Eng (2022) 27: 85

https://argouml-tigris-org.github.io/tigris/wiki-argouml/wiki

Study of
ArgoUML

Architecture

Developers

Study of
ArgoUML

Source-code

Find features
implementation

Annotate
features

implementation

Packages
with feature

implementation

ArgoUML
CookBook

ArgoUML
source-code

ArgoUML-SPL
source-code

Re-engineering Process

Fig. 3 Re-engineering process to extract ArgoUML-SPL from a monolithic version of ArgoUML, adapted
from Couto (2010)

reported success rate of the tests was 100%. Instructions for deriving and executing vari-
ants are described in the ArgoUML-SPL feature location benchmark website18 and so far
(including configurations exercised by the authors of the present paper) no further compi-
lation, runtime, or functional errors have been reported. In the case of Phaser, the authors
of the present paper, also generated a set of distinct configurations, and tried them, but it
is difficult to assess the existence of runtime bugs. Some inconclusive reports of runtime
problems exist regarding the custom build configurations19.

It is not straightforward to evaluate the extent at which deriving products in an SPL fash-
ion requires lower effort than modifying the original single-system. First, modifications per
variant (i.e., in a clone-and-own way) can be error-prone and the location of the removed
features cannot be directly reused in next variants. In the case of ArgoUML, the effort will
be similar to our reported effort for adding the variability annotations per feature. Successful
SPL specific products from ArgoUML-SPL have been extensively used for research pur-
poses, as referenced in Section 1. In the case of Phaser, the effort to remove features before
the feature modularization process could be significant and error-prone. Successful Phaser
custom builds have been used by the Phaser game development community when optimiz-
ing games with respect to the loading time. The use of a custom build for a given game can
be checked by comparing the loaded phaser.min.js (which include a JavaScript comment on
the version used) with the same file of the official archived release of Phaser20. As exam-
ple, the Garden Tales game21 used a v2.10.0 custom build22 of 536,496 characters while the
complete v2.10.023 weighted 824,392 characters.

18https://github.com/but4reuse/argouml-spl-benchmark
19https://www.html5gamedevs.com/topic/16720-custom-phaser-builds/
20https://phaser.io/download/archive
21http://phaser.io/news/2021/02/garden-tales
22https://games.softgames.com/garden-tales/js/custom-phaser.min.js
23https://github.com/photonstorm/phaser-ce/releases/download/v2.10.0/phaser.min.js

Page 13 of 35 85Empir Software Eng (2022) 27: 85

https://github.com/but4reuse/argouml-spl-benchmark
https://www.html5gamedevs.com/topic/16720-custom-phaser-builds/
https://phaser.io/download/archive
http://phaser.io/news/2021/02/garden-tales
https://games.softgames.com/garden-tales/js/custom-phaser.min.js
https://github.com/photonstorm/phaser-ce/releases/download/v2.10.0/phaser.min.js

Analyze features
and their

implementaion

Developers

Modularize
features as
components

Create stub
classes and

hooks

Make features
optional with

toggling strategy

Features in
individuals

JS files

Phaser custom
builds via Grunt

Re-engineering Process

Features
(game objects)

Phaser
source-code

Fig. 4 Re-engineering process to implement custom build on the Phaser framework

4.2 Making the Architecture Variable

For the ArgoUML, the evolution during the re-engineering process can be mainly analyzed
by checking the changes in the repository. Figure 5 shows the activity in the repository
from the day of the first revision until the latest. A vertical line, in October 2010, sepa-
rates two periods that we manually identified analyzing the revisions: the SPL extraction
itself with significant activity (135 revisions) and the SPL maintenance with sporadic com-
mits (21 revisions). Since the extraction of ArgoUML was a Master thesis research project,
the main developer (Marcus Couto) followed an explicit workflow for the SPL extraction,
matching his Master course agenda. That is, Marcus Couto and his supervisors planned to
extract the 8 optional features of ArgoUML-SPL in about 12 months. Once Marcus Couto

Fig. 5 Commits per month in ArgoUML-SPL extraction SVN

85 Page 14 of 35 Empir Software Eng (2022) 27: 85

finished the extraction and concluded his Master’s, we consider that ArgoUML started the
SPL maintenance period.

Figure 6 shows the evolution of the source code while transitioning to a variability-rich
system. In this case, the horizontal axis represents the different revisions where Java code
changes were made to make the architecture variable; e.g., revision 12 (R12) is the first one
with Java changes. Thus, Figure 6 shows time progression in terms of the relevant revisions.
The vertical axis corresponds to the percentage of the total LoC of ArgoUML and this way
we observe how the code base size evolves in terms of the Core feature and other optional
features. A vertical line (R135) also separates the two periods and we can observe how the
variable parts did not significantly change during the SPL maintenance period.

In the first revision, the code base corresponds almost completely to the core feature
(non-optional part of ArgoUML). As the re-engineering process advances, new optional
parts start to appear and grow. The final ArgoUML-SPL has eight optional features and 17
feature interactions, that are presented grouped in Fig. 6 as “Interactions”. We can observe
in Fig. 6 that after the last revision, the re-engineering process had an impact on 22.78% of
the source code, which corresponds to the features that became optional. The core/common
implementation of the ArgoUML-SPL represents 77.22% of the code. Measures on the LoC
of each feature and its interactions are reported later in Table 2.

The transition to the custom build architecture was different for Phaser. The ability to
create custom builds was introduced in version 2.3.0, and the subsequent versions either
introduced new features or converted existing features into optional ones. In the first version
with custom builds, i.e., 2.3.0, there were 21 optional features that grew to 31 until the
release of version 2.5.0. The final list of features with their respective version in which they
became optional is shown in Table 1.

In version 2.4.0, four optional features were added to the Gruntfile: Rope,
Tilesprite, Creature and Video, while Pixi became a mandatory feature. Only
Creature and Video were new features, Rope and Tilesprite were already mod-
ularized but were part of the Pixi feature. On the same commit that Pixi became a

Fig. 6 Evolution of the common Core and variable part during the ArgoUML-SPL extraction

Page 15 of 35 85Empir Software Eng (2022) 27: 85

Table 1 Optional features and respective release version in Phaser

Feature Version Feature Version

arcade 2.3.0 text 2.3.0

bitmapdata 2.3.0 tilemapcolision 2.3.0

bitmaptext 2.3.0 tilemaps 2.3.0

debug 2.3.0 tweens 2.3.0

gamepad 2.3.0 creature 2.4.0

graphics 2.3.0 rope 2.4.0

intro 2.3.0 tilesprite 2.4.0

keyboard 2.3.0 video 2.4.0

net 2.3.0 color 2.5.0

ninja 2.3.0 create 2.5.0

outro 2.3.0 dom 2.5.0

p2 2.3.0 flexgrid 2.5.0

particles 2.3.0 pixidefs 2.5.0

rendertexture 2.3.0 scale 2.5.0

retrofont 2.3.0 weapon 2.5.0

sound 2.3.0

mandatory feature, both Rope and Tilesprite were extracted from the manifest file of
feature Pixi, and became optional features on their own. However, both were composed of
a game object component and a Pixi component. This was only addressed in later stages
- in version 2.7.3, where the Pixi component was removed and its content merged with
the game object component, in order to cut down the number of internal classes and inheri-
tance. In version 2.5.0, seven features were added to the Gruntfile: Scale, Dom, Create,
Flexgrid, Color, Weapon and Pixidefs. Weapon was the only new feature, while
the others already existed and were modularized. Scale, Dom, Create and Color were
modularized as stubs, which means that, although they are optional and in theory can be
removed from the custom build, Phaser still requires certain functionalities from these fea-
tures in order to work properly. Stub features contain just the bare minimum of functions
that Phaser needs to work, greatly reducing the file size.

After version 2.5.0, the number of optional features remained constant throughout the
versions. The number of mandatory features listed in the Gruntfile did not change after
version 2.4.0, staying with 13 mandatory features during the evolution of the system. In
version 2.4.0 the feature Pixi, which is a 2D WebGL renderer, became mandatory due
to, according to Phaser’s lead developer, the amount of customization made to the library
in order to fix bugs. After that, it was not possible to swap with another Pixi version.
However, on the next version it was removed from the explicit list of mandatory features
in the Gruntfile, but remained a mandatory feature due to being automatically added to the
build also via the Gruntfile.

The activity in the repository of Phaser is presented in Fig. 7, from the day when the mod-
ularization of the system started. The first vertical line, in March 2015, indicates the release
of Phaser 2.3.0 allowing custom builds. The second vertical line highlights the release of
Phaser 2.5.0, in June 2016, that is the last version in which new optional features were
added. Comparing this figure with the monthly activity in the repository of ArgoUML-SPL
(Fig. 5), we can see that Phaser has much more activity. This was expected, since Phaser

85 Page 16 of 35 Empir Software Eng (2022) 27: 85

Fig. 7 Commits per month in Phaser CE

has a large community of developers and is widely used in practice. It is important to high-
light that Phaser 2 was handed to the community on 9th January 2017, when it became the
Phaser Community Edition. Since then, the main developer started working on developing
Phaser 3, which was released on 18th February 2018. As he was the main contributor to the
project, the amount of commits decreased following the release of Phaser 3.

Figure 8 presents the number of lines of code of each feature over the versions evalu-
ated. The optional features that were already implemented and modularized but were not
removable via Gruntfile in a specific version are represented by a bar with increased trans-
parency. Since the first three versions did not possess the ability to create custom builds via
Gruntfile, all the features are transparent. It is also worth noting that since the system was

Fig. 8 Evolution of optional features of Phaser CE

Page 17 of 35 85Empir Software Eng (2022) 27: 85

Fig. 9 Revision history graph of ArgoUML-SPL SVN. The eight extracted features were extracted in a
separated branch and then merged in the trunk. This figure illustrates four branches from where information
is available

also receiving new features over time, the vertical axis shows the actual number of lines of
each feature instead of the percentage of the total lines of code like the chart presented for
ArgoUML-SPL (Fig. 6).

The decrease in the number of lines from version 2.2.0 to version 2.3.0 called our atten-
tion (see Fig. 8). We could observe that there are two commits where many lines were
removed. The first one relates to the heavy customization of the Pixi library mentioned
by the lead developer. On this specific commit24 some Pixi files that were no longer used
in the Phaser build at the time, totaling 8100 deleted lines across 45 files. The second com-
mit25 refers to the restructuring of the core game objects and the use of the new components
“mixins”. There were over 4400 deletions across nine files.

4.3 Re-engineering Processes Operationalization

Analyzing the data of ArgoUML-SPL, we were able to analyze that the SPL tran-
sition consisted of “one feature at a time” process, using a branching strategy.
Figure 9 shows the revision history graph regarding the created branches. For four
features (SequenceDiagram, UseCaseDiagram, CollaborationDiagram, and
DeploymentDiagram), feature-specific branches were used before merging. Also, for
those branches, features were extracted in parallel (SequenceDiagram in parallel with
UseCaseDiagram, and CollaborationDiagram with DeploymentDiagram).
The extraction of ActivityDiagram started in R12, Logging in R17, and
Cognitive and StateDiagram both in R33. According to the feedback from the main
developer, the decision of creating branches per feature was taken since the beginning. How-
ever, we did not find evidence in the repository about branches for the first four features.
Hence, it was probably made without adding the branches in the SVN.

The team involved in ArgoUML-SPL extraction was small. Marcus Couto26 was
in charge of all the re-engineering process, except the UseCaseDiagram and
SequenceDiagram branches which were extracted by Camilo Ribeiro27. Eduardo
Figueiredo28 (an author of this paper) and Marco Tulio Valente29 were two experts super-
vising the extraction, acting like project managers, but not interacting directly with the
repository. Finally, Christian Kästner30 reported variability-related bug fixes that were

24https://git.io/JtNGO
25https://git.io/Jz4S2
26https://github.com/marcusvnac
27https://github.com/camiloribeiro
28https://github.com/emagno and https://orcid.org/0000-0002-6004-2718
29https://github.com/mtov and https://orcid.org/0000-0002-8180-7548
30https://github.com/ckaestne and https://orcid.org/0000-0002-4450-4572

85 Page 18 of 35 Empir Software Eng (2022) 27: 85

https://git.io/JtNGO
https://git.io/Jz4S2
https://github.com/marcusvnac
https://github.com/camiloribeiro
https://github.com/emagno
https://orcid.org/0000-0002-6004-2718
https://github.com/mtov
https://orcid.org/0000-0002-8180-7548
https://github.com/ckaestne
https://orcid.org/0000-0002-4450-4572

Ta
bl
e
2

D
ur

at
io

n
be

tw
ee

n
th

e
st

ar
to

f
th

e
ex

tr
ac

tio
n

un
til

th
e

fe
at

ur
e

an
d

th
ei

r
co

rr
es

po
nd

in
g

fe
at

ur
e

in
te

ra
ct

io
ns

go
ts

ta
bl

e

Fe
at

ur
e

Si
ze

F.
co

re
L

oC
In

te
ra

ct
.L

oC
R

ev
is

io
ns

(g
lo

ba
l)

–b
ra

nc
h–

D
at

es
dd

/m
m

/y
yy

y
(g

lo
ba

l)
M

on
th

s
(g

lo
ba

l)

A
ct

iv
ity

5,
95

0
20

8
12

→
13

2
03

/0
4/

20
10

–
27

/0
9/

20
10

5.
9

C
og

ni
tiv

e
28

,3
80

2,
06

9
33

→
13

2
(3

3
→

14
3)

03
/0

4/
20

10
–

27
/0

9/
20

10
(0

7/
10

/2
01

1)
5.

9
(1

8.
4)

C
ol

la
bo

ra
tio

n
2,

67
6

19
9

95
→

13
2

(9
5

→
14

8)
–9

5
→

11
5–

12
/0

8/
20

10
–

27
/0

9/
20

10
(0

8/
06

/2
01

4)
1.

53
(4

6.
53

)

D
ep

lo
ym

en
t

3,
24

3
1,

70
8

98
→

13
2

–9
8

→
13

2–
12

/0
8/

20
10

–
27

/0
9/

20
10

1.
53

L
og

gi
ng

2,
31

2
69

0
17

→
13

2
(1

7
→

15
2)

03
/0

4/
20

10
–

27
/0

9/
20

10
(1

6/
06

/2
01

4)
5.

9
(5

1.
16

)

Se
qu

en
ce

8,
43

7
42

0
80

→
12

3
(8

0
→

14
8)

–8
0

→
88

–
21

/0
6/

20
10

–
25

/0
9/

20
10

(0
8/

06
/2

01
4)

3.
2

(4
8.

26
)

St
at

e
8,

80
1

20
7

33
→

13
2

03
/0

4/
20

10
–

27
/0

9/
20

10
5.

9

U
se

C
as

e
5,

29
4

60
81

→
13

2
(8

1
→

15
6)

–8
1

→
89

–
21

/0
6/

20
10

–
27

/0
9/

20
10

(2
8/

06
/2

01
4)

3.
26

(4
8.

93
)

A
ve
ra
ge
:

4.
14

R
es

ul
ts

ar
e

pr
ov

id
ed

fo
r

th
e

SP
L

ex
tr

ac
tio

n
an

d,
se

pa
ra

te
ly

,f
or

th
e

w
ho

le
hi

st
or

y
in

cl
ud

in
g

m
ai

nt
en

an
ce

(g
lo

ba
l)

Page 19 of 35 85Empir Software Eng (2022) 27: 85

(a) number of feature core LoC (b) number of interaction LoC (c) number of months

Fig. 10 Box-plots of the size, interactions, and duration of feature implementations

solved in R143, and Benjamin Klatt31 improved the meta-data of the Java variability-related
annotations.

To analyze how time-consuming was the extraction of ArgoUML-SPL we measure time
from two dimensions. Firstly, the range of revisions in the repository since a feature started
to be extracted until its last change or revision to one of its feature interactions (i.e., until
the feature was completely stable). Secondly, the dates from this revision range are used to
calculate the number of months. Both time dimensions, together, provide a more complete
overview of the time involved in the extraction of each feature. Table 2 summarizes this
information, including an analysis of the activity on the trunk for the feature under-study
(i.e., LoC changes related to this feature or one of their feature interactions) during the
revision range.

We can observe interesting facts in Table 2. For instance, DeploymentDiagram was
the quickest extracted (only 1.53 months, 34 revisions). All the revisions were made in a
dedicated branch and, after its merge into the trunk (see Figure 9), no more changes were
made to this feature nor to any of its feature interactions. Contrary to this, Logging was the
feature that took more time to be globally stable. This cross-cutting feature had a sustained
activity in the trunk. The features CollaborationDiagram, SequenceDiagram,
and UseCaseDiagram had significant activity after their branches merged, that means
that their extraction was not completed between merging the branch and the start of the SPL
maintenance period.

Regarding feature interactions, in the last revision we could observe 17 different types
of interactions. Among these interactions, nine are related to the cross-cutting feature
Logging interaction with some diagram type, three involve the cross-cutting feature
Cognitive and a diagram type, and five are interactions only between diagrams. On aver-
age, each feature interaction has 2.64 revisions, commonly spread along the re-engineering
process. The size of these interactions varies, ranging from interactions implemented with
only one or two LoC, to one interaction with 1,653 LoC. Furthermore, Figs. 10a, 10b and
10c display the box-plots of the number of core LoC, interaction LoC and months.

31https://github.com/BenjaminKlatt

85 Page 20 of 35 Empir Software Eng (2022) 27: 85

https://github.com/BenjaminKlatt

(a) number of months (b) number of commits

Fig. 11 Box-plots of the duration and number of feature changes

For the Phaser case, there was no branching for specific features. According to the lead
developer, Richard Davey, all new features went into the “dev” branch and eventually were
merged to “master” when ready. There were very few branches due to the lead developer’s
preferences, and none of them were for specific features.

About the developers’ contributions, by evaluating the commits during the process of
adding new optional features to the Gruntfile (up until version 2.5.0), we noticed a huge dis-
crepancy between the main developer, who made over 2900 commits, while the developer
with the second highest number of commits made only 150, nearly 20 times fewer com-
mits. This directly relates to the fact that since most of the commits were made by the lead
developer, the strategy of using branches was not used as he preferred using the strategy
mentioned before.

Table 3 presents the optional features, the first and last version they were changed, the
respective dates of first and last change, the number of months between the interval and the
number of commits made. Additionally, Figs. 11a and 11b present the box-plots of the num-
ber of months and commits. Once the features were implemented, they were not changed
over many releases, which means low volatility of features (i.e., many inclusions and exclu-
sions). Interestingly, for Phaser the number of months to conduct the transition is quite
long in comparison to ArgoUML-SPL. However, as we have mentioned, the transition of
Phaser to an SPL was together with other common implementation and maintenance activ-
ities, differently from ArgoUML-SPL in which the developers focused only on extracting
the SPL.

We measured the correlation between the number of months and the number of com-
mits of the features by calculating the Spearman correlation coefficient, since our data does
not follow a Gaussian distribution. We calculated the correlation coefficient with the help
of the Scipy Python package32. With a correlation coefficient of 0.65 and a p-value of
7.4 x 10-̂5 (0.0074% probability of an uncorrelated system producing a dataset that has a

32https://docs.scipy.org/doc/scipy/index.html

Page 21 of 35 85Empir Software Eng (2022) 27: 85

https://docs.scipy.org/doc/scipy/index.html

Table 3 Version and duration between the start of the extraction until the feature and their corresponding
feature interactions got stable

Feature Versions Dates (dd/mm/yyyy) Months Commits

arcade 2.0.0 → 2.15.0 05-03-2014 – 15-05-2020 74.35 184

bitmapdata 2.0.0 → 2.15.0 02-03-2014 – 15-05-2020 74.45 171

bitmaptext 2.0.0 → 2.15.0 06-03-2014 – 15-05-2020 74.32 71

color 2.0.0 → 2.15.0 25-03-2014 – 15-05-2020 73.69 63

create 2.3.0 → 2.15.0 08-07-2015 – 15-05-2020 58.25 22

creature 2.3.0 → 2.15.0 13-04-2015 – 05-15-2020 61.07 59

debug 2.0.0 → 2.15.0 02-03-2014 – 01-06-2020 75.01 145

dom 2.1.0 → 2.15.0 10-11-2014 – 15-05-2020 66.13 30

flexgrid 2.0.0 → 2.15.0 05-09-2014 – 15-05-2020 68.30 31

gamepad 2.0.0 → 2.15.0 14-03-2014 – 15-05-2020 74.05 40

graphics 2.0.0 → 2.15.0 06-03-2014 – 09-06-2020 75.14 72

intro 2.0.0 → 2.7.3 14-03-2014 – 03-07-2017 39.65 9

keyboard 2.0.0 → 2.15.0 03-03-2014 – 15-05-2020 74.42 74

net 2.0.0 → 2.15.0 25-03-2014 – 15-05-2020 73.69 14

ninja 2.0.0 → 2.10.0 06-03-2014 – 22-05-2018 50.53 33

outro 2.0.0 → 2.15.0 10-03-2014 – 15-05-2020 74.18 23

p2 2.0.0 → 2.11.0 06-03-2014 – 01-10-2018 54.86 124

particles 2.0.0 → 2.15.0 11-03-2014 – 05-15-2020 74.15 119

pixidefs 2.2.0 → 2.15.0 17-02-2015 – 15-05-2020 62.88 23

rendertexture 2.0.0 → 2.15.0 14-03-2014 – 15-05-2020 74.05 28

retrofont 2.0.0 → 2.15.0 11-03-2014 – 15-05-2020 74.15 33

rope 2.0.0 → 2.15.0 14-03-2014 – 15-05-2020 74.05 59

scale 2.0.0 → 2.15.0 10-03-2014 – 15-05-2020 74.19 155

sound 2.0.0 → 2.15.0 02-03-2014 – 29-05-2020 74.91 156

text 2.0.0 → 2.15.0 06-03-2014 – 15-05-2020 74.32 165

tilemapcolision 2.2.0 → 2.15.0 17-02-2015 – 15-05-2020 62.88 41

tilemaps 2.0.0 → 2.15.0 02-03-2014 – 29-05-2020 74.90 163

tilesprite 2.0.0 → 2.15.0 07-03-2014 – 15-05-2020 74.28 85

tweens 2.0.0 → 2.15.0 03-03-2014 – 15-05-2020 74.42 89

video 2.2.0 → 2.15.0 05-03-2015 – 15-05-2020 60.42 64

weapon 2.4.0 → 2.11.0 03-06-2016 – 25-10-2018 28.71 48

Average: 67.76 77.19

Spearman correlation at least as extreme as the one computed from ours), indicating that the
relationship between number of commits and months has a relatively high correlation.

4.4 Error-proneness of the Process

In the context of re-engineering ArgoUML and Phaser into an SPL, we could identify some
problems during the conduction of the process. These problems are described per system in
the following.

85 Page 22 of 35 Empir Software Eng (2022) 27: 85

4.4.1 ArgoUML-SPL

Incomplete extraction. Around one year after finishing the ArgoUML-SPL re-engineering
process, a revision was made with a message describing variability-related bugs pointed out
by Christian Kästner. The bug fix consisted of seven Java classes where missing variability
annotations for the Cognitive feature were added.33 Two of the Java classes were completely
specific for the Cognitive feature, and in the other classes, the granularity was at method
and statement level. This feature is particularly difficult to locate, giving its cross-cutting
behavior. Failing to annotate all the source code related to a feature can lead to compile-
or runtime-errors, unexpected or incorrect behaviors, or the presence of dead code. These
bugs were found by a tool called LEADT (Location, Expansion, And Documentation Tool),
proposed by ?leadt,kastnerleadt (). ArgoUML-SPL was used as a subject system
to evaluate this tool, finding the bugs that were reported and fixed. This is a lesson learned
about how, as in other software engineering projects, unnoticed bugs might appear. As men-
tioned in Section 4.3, some issues have been treated as well after merging a feature branch
in the trunk during the extraction period.

Lack of tool support for variability consistency checks. Feature extraction is an error-
prone task. We can see how a typo SEQUENCEIAGRAM (missing D), introduced inconsis-
tencies in the system in R88 and R89. In addition, we observe evidence of feature name
refactorings, e.g., UMLSTATEDIAGRAM to STATEDIAGRAM in R119, and how it affects
also its feature interactions. More advanced tool support for checking the consistency of
variability information and for variability-aware refactoring will be desired. In this sense,
tool capabilities could have helped in solving these issues. As mentioned in Section 2.1, the
used tool in ArgoUML-SPL is Java Prepocessor (Javapp) which is not part of Java itself
but an external tool that parses Java source code identifying and handling comments with
specific keywords for variability management. This parsing and handling are only consid-
ered at derivation-time. Thus, being standard Java comments, no keywords highlighting,
auto-completion, nor consistency checks for the feature names is performed so the feature
naming error was unnoticed during a couple of revisions. Javapp is a very basic variability
management tool and its major advantage is that no external dependencies need to be added
to the Java source code itself for the derivation of variants. However, generally speaking, it
is acknowledged that SPL engineering lack of mature tool support (Horcas et al. 2019). For
instance, annotative approaches in Java are supported in FeatureIDE (Meinicke et al. 2017)
(v3.8.0) through its integration with Antenna and Munge. Using FeatureIDE with Antenna
could have identified the consistency check issue of the feature name through a warning in
the source code, but FeatureIDE with Munge does not have current support for it. Regard-
ing name refactoring, both Antenna and Munge allow renaming features with automatic
synchronization in the variability annotations.

4.4.2 Phaser

Managing feature dependencies As mentioned by Richard Davey, the biggest challenge
to make features optional was resolving dependency issues between modules. In version
2.5.0, seven new optional features were added to the Gruntfile. For illustration, we highlight
features Scale and Flexgrid. Scale is a manager that handles the scaling, resizing and

33https://github.com/argouml-tigris-org/argouml-spl/commit/a6014294bcd26376ce34089590e6e69267cd01bc

Page 23 of 35 85Empir Software Eng (2022) 27: 85

https://github.com/argouml-tigris-org/argouml-spl/commit/a6014294bcd26376ce34089590e6e69267cd01bc

alignment of the game size and Flexgrid is a grid manager that works in conjunction with
Scale. Before being added as an optional feature, Scale created a Flexgrid object
during ScaleManager initialization routine. This relationship was changed in version
2.5.0 in order that ScaleManager no longer creates a Flexgrid object if the class is not
available – excluded via custom build for example. In order to implement the custom builds
with different components, the developers have used feature toggles in some situations. For
example, the feature Scale has a feature toggle checking regarding the existence of the
feature Flexgrid. Other examples are in the implementation of the mandatory features
Input and Core. The former checks if features Keyboard and Gamepad are available
and the latter checks if the feature Graphics is available. This indicates that in order to
make a feature truly optional, it is pivotal to deal with features that depend on it or interact
with it, either by implementing cross-tree constraints or removing these dependencies by
making use of feature toggles. Otherwise, the derived product would not function properly,
since the removal of a certain feature might break another feature that depends on it.

Lack of feature constraints mechanism It is good practice to create cross-tree constraints
in an SPL. If an optional feature requires another optional feature to work properly, it should
not be possible to instantiate a custom build with an optional feature without its depen-
dencies. Although there is not any sort of list of dependencies between features with easy
access for the users of Phaser, there is a dependency resolver in the Gruntfile for a subset
of features. The Gruntfile script excludes certain features that the user has not excluded that
depend on other features that the user actually excluded. For example, if the user excluded
the feature Arcade Physics but did not exclude Particles or Weapon, the script
automatically removes them and warns the user through the console. Other than the ones
mentioned before, there is a third one that removes RetroFonts if the user excluded
RenderTexture as, similarly, RetroFonts depends on RenderTexture.

The constraints mentioned only remove features that the developer most likely “forgot”
to remove, since according to one developer, to make custom builds the users should be
familiar with the system and should know what they can remove and what they can not.
However, there is a special case where if the user did not exclude Arcade Physics nor
Tilemaps, the feature Timelap Collision is added to the build. This feature is not
listed in the Gruntfile to be excluded and is a compositional feature since it was part of the
arcade physics feature and was extracted from it into its own feature.

Lastly, it is possible to use stubs of certain features to greatly reduce the size of the
files. In order to make certain features optional, if the user excludes them when making a
custom build, instead of completely removing the feature, the stub version of the feature is
used instead. The stubs contain only the bare minimum of functions that Phaser needs to
work. However, there are some constraints for using stubs that were only specified in the
documentation of the commit where they were introduced. For example, developers should
not remove the feature DOM if they are using the full ScaleManager, which is the Scale
feature.

These untreated constraints rely on the hypothesis that since making a custom build is an
advanced activity, the user must know what he/she is doing. In order to remove features from
the build the user knows why he/she is removing that specific feature and the implications
of removing it. However, this is not a good practice and it is highly error-prone.

85 Page 24 of 35 Empir Software Eng (2022) 27: 85

5 Discussion

Next, the RQs presented in Section 3 are answered.
RQ1: How has the source code of the systems changed during the re-engineering processes?
Answer: There is a great difference between the re-engineering process of ArgoUML-

SPL and Phaser to make the architecture variable. The source code of ArgoUML was
incrementally changed in 135 revisions to achieve an initial SPL architecture, which was
then maintained until revision 156. ArgoUML-SPL has only eight optional features, corre-
sponding to 22.78% of code. On the other hand, for Phaser, the source code modifications
were directed towards handling dependencies between modules in order to make them
optional, since the feature modules were already modularized. This modularization was
observed in the size of the Phaser core (<40%), as the number of lines does not change
drastically, unlike in the ArgoUML-SPL case due to the extraction of features from the core.
Phaser was composed of 31 optional features introduced along three different releases. Dif-
ferently from ArgoUML-SPL that had the type of the features established beforehand, for
Phaser a feature was optional and became mandatory during the transition. Also, there were
some feature refinements, in which features were extracted/decoupled from other features.

RQ2: How was the operationalization of the re-engineering processes?
Answer: For ArgoUML-SPL, the developers adopted a big bang re-engineering process

in which developers relied on a stable version of the system and focused exclusively on
performing the transition to an SPL. Phaser followed a “strangler pattern” in which the
architecture was incrementally modified together with other common implementation and
maintenance activities of the systems’ life cycle. The developers in charge of ArgoUML-
SPL transition started using feature-specific branches to perform modifications and then
merging them into the trunk. In the case of Phaser, there were no feature branches, only a
“dev” branch that was used for all modifications and then merged into the master branch.
Regarding the time for the transitions, each feature of ArgoUML-SPL took 4.14 months on
average, while for Phaser it took 67.76. For both systems, few developers were in charge of
the re-engineering process, despite the large community of Phaser.

RQ3: What were the problems faced when conducting re-engineering processes of the
systems?

Answer: The problems found during the re-engineering process of ArgoUML-SPL were
related to incomplete extraction, resulting of the manual process of re-engineering a sys-
tem into an SPL. Also, we identified a problem related to variability consistency, in which
the name of a feature was misspelled and required a refactoring operation. For Phaser,
developers pointed out the complexity for managing feature dependencies, what is a com-
mon problem for variability management with compositional approach (see Section 2.3).
Another problem is related to feature constraints, as the Phaser developers have not used a
variability model to manage feature constraints. Based on this, the constraints were managed
mainly based on the expertise of developers.

6 Threats to Validity

One of the main concerns when performing case studies like ours is the validity of results
and their applicability to other contexts. We discuss some threats to the study validity based
on well-known guidelines and four categories of validity threats (Wohlin et al. 2012).

Page 25 of 35 85Empir Software Eng (2022) 27: 85

Construct Validity The construct validity reflects to what extent the operational measures
that are studied represent what the researchers have in mind and what is investigated accord-
ing to the research questions (Wohlin et al. 2012). In our study, the first and foremost threat
to construct validity concerns the choice of the analyzed projects. We opt to select two very
different projects to favor external validity, as discussed below. We also rely on project activ-
ity metrics, such as number of commits, branches, and bugs, as proxies for the extraction
processes. Despite not being designed for SPLs, they are fine-grained metrics that allowed
us to have a deep understanding of the processes. Also, to mitigate this threat, we comple-
mented and confirmed our analysis with feedback from the developers. Additionally, these
metrics have been used for evaluating characteristics of features in highly-configurable sys-
tems (Michelon et al. 2021). However, it is acknowledged that there is a lack of metrics
for the evolution of SPLs (Marques et al. 2019). In summary, we believe that this threat is
minimal and that our metrics capture, to some extent, the extraction process.

Internal Validity The internal validity is related to uncontrolled aspects that may affect the
study results (Wohlin et al. 2012). The execution of the study steps is a threat to the internal
validity, since a poor execution may result in the collection of incorrect data. For instance,
in the Phaser case study, we extracted the list of features from the Gruntfile and mani-
fest files. However, the Phaser developers may have documented configuration knowledge
in other documents which we are not aware of. Furthermore, compared to the ArgoUML
development, Phaser SPL extraction occurred while it received new features. This may have
polluted the data we collected. To mitigate these threats, we have contacted developers and
researchers involved in the development and extraction of both systems to verify the best
way of collecting correct data. As described in Section 3, we clarify that we designed our
study based on evidences of the re-engineering process, mainly the source code repository
where the re-engineering process took place. We used the developers mainly for clarifica-
tions or confirmations of our findings and analyses. We did this to mitigate the possible
subjectivity of relying only on the developers, in particular when both SPL re-engineering
processes took place several years ago, and they might have forgotten many details about it.

External Validity The external validity concerns the ability to generalize the results to
other environments, such as to industry practices (Wohlin et al. 2012). The diversity of
the projects, and their organizational factors, represent a relevant threat to external validity.
Regarding this validity threat, we focused the analysis on two open-source projects, namely
ArgoUML and Phaser. They are large and popular projects, including one that is highly
investigated in several research papers (ArgoUML, as it will be presented in next Section 7
on related work) and one that is maintained by an active community of software developers
(Phaser). Based on that, the study of these two systems helps to understand the phenomenon
we are investigating. The results can be generalized to projects with similar characteristics.

Conclusion Validity The conclusion validity concerns with issues that affect the ability
to draw the correct conclusions from the study (Wohlin et al. 2012). These results reflect
our perceptions and interpretations of the metrics collected from the ArgoUML and Phaser
projects. For instance, we concluded that the re-engineering process of Phaser required
a higher effort than the re-engineering process of ArgoUML-SPL based on source code
changes to make modular features and turn them into optional, aggravated with the iden-
tified fact that the re-engineering process was in parallel with maintenance and evolution

85 Page 26 of 35 Empir Software Eng (2022) 27: 85

activities. However, this conclusion could be different if other metrics were analyzed. To
mitigate the bias of relying on the interpretations of a single person, all authors participated
in the data analysis process and discussions on the main findings. Nonetheless, there may
be several other important aspects in the data collected, not yet discovered or reported by us.

7 RelatedWork

For a further investigation of pieces of work on the topic of extracting SPLs from mono-
lithic systems, we rely on information available at ESPLA34 catalog (Martinez et al. 2017).
ESPLA is a catalog of case studies on extractive software product line adoption that is
collaboratively maintained by the SPL community.

ArgoUML extensive use ArgoUML is one of the most common case studies used in
research of extractive adoption of SPLs (Assunċão et al. 2017; Martinez et al. 2017). Fol-
lowing the original paper of Couto et al. (2011) from 2011, which describes the extraction
of ArgoUML-SPL, many other pieces of work also deal with the same system. Regard-
ing the tasks and artifacts involving ArgoUML, the great majority of papers present feature
location techniques that were evaluated using the system source code. Overlap analysis
among ArgoUML variants source-code is presented in several papers (Eyal-Salman et al.
2013c; Linsbauer et al. 2013; Ziadi et al. 2012). For instance, Eyal-Salman et al. have stud-
ied feature location in ArgoUML based on formal concept analysis, information retrieval,
and hierarchical clustering (AL-Msie’deen et al. 2013; Eyal-Salman et al. 2013a, b, 2014).
A more specific work presented by Martinez et al. (2016) has focused on name suggestions
during feature location. Klatt et al. (2014) used ArgoUML as case study to deal with depen-
dency analysis for consolidating customized product copies. Still using source-code, Fischer
et al. (2014) proposed an approach for statically analyzing ArgoUML variants allowing the
composition of new products. In another recent work, Michelon et al. (2021) proposed a
hybrid strategy based on static and dynamic analysis for feature location in the source code
of ArgoUML, that was later compared to feature location techniques traditionally used for
fault location (Michelon et al. 2021).

Few studies are not based on source-code. For instance, Linsbauer et al. (2014) relied on
requirements, mainly related to configuration of features in variants of ArgoUML, as a basis
for reverse engineering feature models. Martinez et al. (2015) reverse engineered UML class
models from ArgoUML variants for conducting automatic extraction of model-based SPLs.
ArgoUML was used to evaluate the scalability of the approach given its size. Schultheiß
et al. also used the UML class models to evaluate n-way model matching techniques that
are meant to support variability mining (Schultheiß et al. 2021). The previously mentioned
works were interested in technical aspects, thus, they did not investigate the original re-
engineering process, nor they compared the effort required for the original extraction. In this
work, we are providing such a baseline for comparison. Feature location is a key activity
for later integrating the variability mechanism, and given that, in the original extraction, no
refactorings were needed to add the variability source code annotations, the effort reported
in this paper on the extraction process can be used for both feature location and extraction
process comparisons.

34https://but4reuse.github.io/espla catalog/

Page 27 of 35 85Empir Software Eng (2022) 27: 85

https://but4reuse.github.io/espla_catalog/

Extraction process analysis Other pieces of work related to this present study are based
on the analysis of the duration and number of people for conducting SPL extraction pro-
cesses. Table 4 presents the studies found on ESPLA catalog that describe these pieces of
information.

Kolb et al. (2006) describe the duration and number of people for improving the design
and implementation of an industrial Image Memory Handler (IMH) used in office appli-
ances, such as copier machines, printers, and multi-functional peripherals. Their goal was
to reuse IMH in an SPL. The process, mainly based on feature identification and refactor-
ings, took four months and was conducted by five people. The process was not very long
because the C source code was already annotated with ifdefs. Three open-source forum
systems were used by Yang et al. to manually identify features (Yang et al. 2009). During
two weeks two graduate students manually performed feature location on Java code and
SQL statements. The goal was to synthesize a variability model.

We found seven SPL extraction case studies in four different works published in 2011.
For instance, Ali et al. (2011) dealt with Java code of two open-source systems to be decom-
posed in features to be used in mobile devices. The authors call it miniaturization of a given
system. Basically, they performed feature identification, feature constraints discovery, and
extraction of reusable assets. The process took approximately 171 hours to recover the 830
feature traces for SIP and 135 hours to recover the 318 feature traces for Pooka. In the paper
of Dhungana et al. (2011), three industrial case studies were the basis for manual analy-
sis. These authors also performed feature identification, feature constraints discovery, and
extraction of reusable assets. These case studies took longer to conduct the process, namely
four years for Siemens VAI Steel Plant Automation Software, 2.5 years for IEC 61499
Industrial Automation System, and 1.5 year for BMD .NET-based Business Software.

Alcatel-Lucent IXM-PF, an industrial telecom software product family that had been
developed and maintained for more than ten years, was studied by Zhang et al. (2011).
This case study was used to incrementally extract an SPL from their variants. This pro-
cess took at least 1.5 years to achieve an initial success. The three studies aforementioned
do not describe the number of people involved in the re-engineering process. The indus-
trial case study of Fujitsu Kyushu Network Technologies described by Otsuka et al. (2011)
also had a long duration, namely more than one year and 100 engineers on average, about
300 engineers at a maximum, in development sites in four geographically distant locations.
Similar to previous studies, here the authors conducted manual work, with face to face meet-
ings, to conduct feature identification, feature location, and construction of reusable assets.
Olszak and Jørgensen (2012) dealt with BlueJ, an open-source project. The authors per-
formed feature identification in two hours, by inferring almost all program features from the
available user documentation. Then, they automatically create a class-preserving decompo-
sition, while leaving the decision about any further manual separation up to the developers.
Another study to identify features, and additionally feature recommendation, was conducted
by Hariri et al. (2013). The process relies on expert knowledge and manual effort, requiring
30 hours. There is no mention related to people involved in the process.

Related works summary As a summary, based on related work presented in this section,
we can see that ArgoUML is a case study extensively used for different purposes in the
context of extractive adoption of SPLs. Open-source software is commonly used as a subject
system for related studies in the topic of re-engineering application into SPLs. However,

85 Page 28 of 35 Empir Software Eng (2022) 27: 85

Ta
bl
e
4

St
ud

ie
s

th
at

m
en

tio
n

th
e

ef
fo

rt
fo

r
ex

tr
ac

tin
g

SP
L

s
fr

om
le

ga
cy

sy
st

em
s

R
ef

.
Y

ea
r

C
as

e
St

ud
y

D
ur

at
io

n
Pe

op
le

K
ol

b
et

al
.(

20
06

)
20

06
Im

ag
e

M
em

or
y

H
an

dl
er

(I
M

H
)

4
m

on
th

s
2

re
se

ar
ch

er
s,

2
st

ud
en

ts
,1

do
m

ai
n

ex
pe

rt

Y
an

g
et

al
.(

20
09

)
20

09
JF

or
um

,J
G

os
si

p
an

d
M

V
N

Fo
ru

m
2

w
ee

ks
fo

r
an

al
ys

is
of

al
lt

he
th

re
e

sy
st

em
s

2
gr

ad
ua

te
st

ud
en

ts

A
li

et
al

.(
20

11
)

20
11

SI
P

C
om

m
un

ic
at

or
17

1
ho

ur
s

to
re

co
ve

r
83

0
fe

at
ur

e
tr

ac
es

n/
a

A
li

et
al

.(
20

11
)

20
11

Po
ok

a
E

m
ai

lC
lie

nt
13

5
ho

ur
s

to
re

co
ve

r
31

8
fe

at
ur

e
tr

ac
es

n/
a

D
hu

ng
an

a
et

al
.(

20
11

)
20

11
Si

em
en

s
V

A
I

St
ee

lP
la

nt
A

ut
om

at
io

n
So

ft
w

ar
e

4
ye

ar
s

of
ca

se
st

ud
y

n/
a

D
hu

ng
an

a
et

al
.(

20
11

)
20

11
IE

C
61

49
9

In
du

st
ri

al
A

ut
om

at
io

n
Sy

st
em

2.
5

ye
ar

s
of

ca
se

st
ud

y
n/

a

D
hu

ng
an

a
et

al
.(

20
11

)
20

11
B

M
D

.N
E

T-
ba

se
d

B
us

in
es

s
So

ft
w

ar
e

1.
5

ye
ar

s
of

ca
se

st
ud

y
n/

a

Z
ha

ng
et

al
.(

20
11

)
20

11
A

lc
at

el
-L

uc
en

tI
X

M
-P

F
1.

5
ye

ar
s

fo
r

an
in

iti
al

su
cc

es
s

n/
a

O
ts

uk
a

et
al

.(
20

11
)

20
11

Fu
jit

su
K

yu
sh

u
N

et
w

or
k

Te
ch

no
lo

gi
es

m
or

e
th

an
1

ye
ar

10
0

en
gi

ne
er

s
on

an
av

er
ag

e

O
ls

za
k

an
d

Jø
rg

en
se

n
(2

01
2)

20
12

B
lu

eJ
2

ho
ur

s
fo

r
fe

at
ur

e
id

en
tif

ic
at

io
n

n/
a

H
ar

ir
ie

ta
l.

(2
01

3)
20

13
C

ol
la

bo
ra

tiv
e

So
ft

w
ar

e
Su

ite
(C

oS
S)

30
ho

ur
s

to
id

en
tif

y
ap

pr
ox

im
at

el
y

12
0

co
ar

se
-g

ra
in

ed
fe

at
ur

es
n/

a

Page 29 of 35 85Empir Software Eng (2022) 27: 85

to the best of our knowledge, our study is the first one to investigate Phaser, a real-world
case to make a system variable. We can find in the literature some other pieces of work
describing the effort related to the duration and number of developers to conduct the re-
engineering process. The industrial case studies are those that had a longer duration. Few
works describe the people that participated in the process. Despite the existence of many
studies in the topic of re-engineering legacy systems into SPLs, the most recent ones do not
provide these pieces of information about the effort for the extraction (Assunċão et al. 2017;
Martinez et al. 2017).

8 Conclusions

This paper revisited the transition processes from monolithic architecture into SPL of two
open-source software systems, namely ArgoUML and Phaser. We aim at providing insights
on the process for further researchers and practitioners on the effort required and the com-
mon problems in this kind of re-engineering process. Based on data mined from SVN and
Git repositories used during the re-engineering, we analyzed details on how these processes
were conducted and the SPL extraction impact on source code.

The results show that there is a great difference between the re-engineering process of
ArgoUML-SPL and Phaser. For instance, almost one fourth of the ArgoUML source code
was changed to tune features to optional, while for Phaser it was more than half of the sys-
tem. ArgoUML-SPL used a branching strategy and Phaser used only a development branch
and different releases. The transition of ArgoUML-SPL was “one feature at a time” in a big
bang strategy, on the other hand, the transition of Phaser was together with other engineering
activities and the type (mandatory or optional) changed for one feature. However, in both
cases, only a few developers were in charge of the re-engineering process. Problems were
found in the SPL extraction of both cases, related to lack of tools that led to incomplete and
inconsistent feature extractions, complexity on managing feature dependencies when using
compositional approach, and issues of not having a variability model to deal with feature
constraints.

We are aware that two case studies are not enough to obtain representative effort esti-
mations that can be used in general cases. Therefore, as further work, we aim to compare
the results with other SPLs extracted from monolithic architectures with the goal of aggre-
gating them towards more accurate effort and cost estimation means. Apart from that, we
reported two extraction processes and the decisions that the involved persons took with its
advantages and issues. This was reflected in the paper as it corresponds to our research
questions. However, more case studies are also needed for providing comprehensive and
concrete guidelines to support the decision-making process when facing SPL re-engineering
projects.

Acknowledgements We thank Open-Source committers M. Couto, M. T. Valente, B. Klatt and C. Kästner
for their feedback in ArgoUML-SPL, and R. Davey for his feedback in Phaser. This research was partially
funded by CNPq, grant no. 408356/2018-9; FAPPR, grant no. 51435; and FAPERJ PDR-10 Fellowship
202073/2020.

Funding Open access funding provided by Johannes Kepler University Linz.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

85 Page 30 of 35 Empir Software Eng (2022) 27: 85

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AL-Msie’deen R, Seriai A, Huchard M, Urtado C, Vauttier S, Salman HE (2013) Feature location in a col-
lection of software product variants using formal concept analysis. In: Safe and secure software reuse.
Springer, Berlin, pp 302–307

Ali MS, Babar MA, Schmid K (2009) A comparative survey of economic models for software product lines.
In: 2009 35Th euromicro conference on software engineering and advanced applications, pp 275–278

Ali N, Wu W, Antoniol G, Di Penta M, Guéhéneuc YG, Hayes JH (2011) Moms: Multi-objective
miniaturization of software. In: 27Th IEEE int. Conf. on software maintenance (ICSM), pp 153–162

Apel S, Kastner C, Lengauer C (2009) FEATUREHOUSE: Language-independent, automated software com-
position. In: Proceedings of the 31st International Conference on Software Engineering, ICSE ’09. IEEE
Computer Society, Washington, pp 221–231

Apel S, Kolesnikov S, Siegmund N, Kästner C, Garvin B (2013) Exploring feature interactions in the wild:
the new feature-interaction challenge. In: Proceedings of the 5th International Workshop on Feature-
Oriented Software Development, pp 1–8

Assunċão WKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A (2017) Reengineering legacy
applications into software product lines: a systematic mapping. Empir Softw Eng 22(6):2972–3016

Assunção WK, Vergilio SR, Lopez-Herrejon RE (2020) Automatic extraction of product line architecture
and feature models from uml class diagram variants. Inf Softw Technol 117:106198

Babar MA, Chen L, Shull F (2010) Managing variability in software product lines. IEEE Softw 27:89–91
Batory DS, Sarvela JN, Rauschmayer A (2004) Scaling step-wise refinement. IEEE Trans Softw Eng

30(6):355–371
Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wasowski A (2013) A survey of variability

modeling in industrial practice. In: The 7th int. Workshop on variability modelling of software-intensive
systems, vamos ’13. ACM, Pisa, pp 7:1–7:8

Booch G (2005) The unified modeling language user guide. Pearson Education India
Couto M (2010) Extracting software product lines: A case study using conditional compilation. Master’s

thesis, Pontifical Catholic University of Minas Gerais. https://homepages.dcc.ufmg.br/∼mtov/diss/2010
marcus.pdf

Couto MV, Valente MT, Figueiredo E (2011) Extracting software product lines: A case study using condi-
tional compilation. In: 15Th european conference on software maintenance and reengineering, CSMR
2011. IEEE Computer Society, Oldenburg, pp 191–200

Czarnecki K, Eisenecker UW (2000) Generative programming - methods, tools and applications. Addison-
Wesley. http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258

Dhungana D, Grünbacher P, Rabiser R (2011) The DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Autom Softw Eng 18(1):77–114

Dit B, Revelle M, Gethers M, Poshyvanyk D (2013) Feature location in source code: a taxonomy and survey.
J Softw Evol Process 25(1):53–95

Dueñas S, Cosentino V, Robles G, Gonzalez-Barahona JM (2018) Perceval: software project data at
your will. In: Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings. ACM, pp 1–4

Engström E., Runeson P (2011) Software product line testing – a systematic mapping study. Inf Softw
Technol 53(1):2–13

Eyal-Salman H, Seriai AD, Dony C (2013a) Feature-to-code traceability in a collection of software variants:
Combining formal concept analysis and information retrieval. In: IEEE 14Th international conference
on information reuse integration (IRI), pp 209–216

Eyal-Salman H, Seriai AD, Dony C (2013b) Feature-to-code traceability in legacy software variants. In: 39Th
euromicro conference on software engineering and advanced applications, pp 57–61

Page 31 of 35 85Empir Software Eng (2022) 27: 85

http://creativecommons.org/licenses/by/4.0/
https://homepages.dcc.ufmg.br/~mtov/diss/2010_marcus.pdf
https://homepages.dcc.ufmg.br/~mtov/diss/2010_marcus.pdf
http://www.addison-wesley.de/main/main.asp?page=englisch/book details&productid=99258

Eyal-Salman H, Seriai AD, Dony C, Al-msie’deen RA (2013c) Identifying Traceability Links between
Product Variants and Their Features. In: REVE: Reverse Variability engineering, Genova, pp 17–22

Eyal-Salman H, Seriai AD, Dony C (2014) Feature location in a collection of product variants: Combin-
ing information retrieval and hierarchical clustering. In: SEKE: Software Engineering and knowledge
engineering, Vancouver, pp 426–430

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Enhancing clone-and-own with systematic
reuse for developing software variants. In: IEEE International conference on software maintenance and
evolution, pp 391–400

Fischer S, Michelon GK, Ramler R, Linsbauer L, Egyed A (2020) Automated test reuse for highly
configurable software. Empir Softw Eng 25(6):5295–5332

Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013) Supporting domain anal-
ysis through mining and recommending features from online product listings. IEEE Trans Softw Eng
39(12):1736–1752

Hassan AE (2008) The road ahead for mining software repositories. In: 2008 Frontiers of software
maintenance. IEEE, pp 48–57

Horcas JM, Pinto M, Fuentes L (2019) Software product line engineering: a practical experience. In: Pro-
ceedings of the 23rd International Systems and Software Product Line Conference - Volume A, SPLC
’19, pp 164–176

Hu Y, Merlo E, Dagenais M, Lague B (2000) C/c++ conditional compilation analysis using symbolic
execution. In: 30Th int. Conference on software maintenance, ICSM ’00. ACM, New York

Kang K, Cohen S, Hess J, Novak W (1990) Peterson, a.: Feature-Oriented domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21, SEI CMU

Kästner C, Apel S, Kuhlemann M (2008) Granularity in software product lines. In: 30Th int. Conference on
software engineering, ICSE ’08. ACM, New York, pp 311–320

Kästner C, Dreiling A, Ostermann K (2011) Variability Mining with LEADT. Tech. Rep. 01/2011, Depart-
ment of Mathematics and Computer Science, Philipps University Marburg, Marburg. http://www.
uni-marburg.de/fb12/forschung/berichte/berichteinformtk

Kȧstner C, Dreiling A, Ostermann K (2014) Variability mining: Consistent semi-automatic detection of
product-line features. IEEE Trans Softw Eng 40(1):67–82

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes CV, Loingtier J, Irwin J (1997) Aspect-Oriented
programming. In: ECOOP, pp 220–242

Klatt B (2014) Consolidation of customized product copies into software product lines. Ph.D. thesis,
Karlsruhe Institute of Technology, Germany. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687

Klatt B, Krogmann K, Seidl C (2014) Program dependency analysis for consolidating customized product
copies. In: IEEE International conference on software maintenance and evolution, pp 496–500

Knodel J, Muthig D (2005) Analyzing the product line adequacy of existing components. In: 1St int.
Workshop on reengineering towards product lines. r2PL, pp 21–25

Kolb R, Muthig D, Patzke T, Yamauchi K (2006) Refactoring a legacy component for reuse in a software
product line: a case study. J Softw Maintenance Evol Res Practice 18(2):109–132

Krueger CW (2001) Easing the transition to software mass customization. In: Software product-family engi-
neering, 4th int. workshop, PFE 2001, Bilbao. Revised Papers, Lecture Notes in Computer Science, vol
2290, pp 282–293. Springer

Laguna MA, Crespo Y (2013) A systematic mapping study on software product line evolution: From
legacy system reengineering to product line refactoring. Sci Comput Programm 78(8), 1010–1034. Spe-
cial section on software evolution, adaptability, and maintenance - Special section on the Brazilian
Symposium on Programming Languages

Linsbauer L, Lopez-Herrejon ER, Egyed A (2013) Recovering traceability between features and code in
product variants. In: 17Th international software product line conference, SPLC ’13. ACM, New York,
pp 131–140

Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Feature model synthesis with genetic programming. In:
Search-based software engineering. Springer International Publishing, Cham, pp 153–167

Mahdavi-Hezaveh R, Dremann J, Williams L (2021) Software development with feature toggles: practices
used by practitioners. Empir Softw Eng 26(1)

Marques M, Simmonds J, Rossel PO, Bastarrica MC (2019) Software product line evolution: A systematic
literature review. Inf Softw Technol 105:190–208. https://doi.org/10.1016/j.infsof.2018.08.014. https://
www.sciencedirect.com/science/article/pii/S0950584918301848

Martinez J, Assunċȧo WKG, Ziadi T (2017) ESPLA: A catalog of extractive SPL adoption case studies. In:
Proceedings of the 21st Int. Systems and Software Product Line Conference, SPLC 2017, vol B. ACM,
Sevilla, pp 38–41

85 Page 32 of 35 Empir Software Eng (2022) 27: 85

http://www.uni-marburg.de/fb12/forschung/berichte/berichteinf ormtk
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinf ormtk
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
https://doi.org/10.1016/j.infsof.2018.08.014
https://www.sciencedirect.com/science/article/pii/S0950584918 301848
https://www.sciencedirect.com/science/article/pii/S0950584918 301848

Martinez J, Ordoṅez N, Tėrnava X, Ziadi T, Aponte J, Figueiredo E, Valente MT (2018) Feature location
benchmark with argouml SPL. In: Proceeedings of the 22nd int. Systems and software product line
conference - volume 1, SPLC 2018. ACM, Gothenburg, pp 257–263

Martinez J, Wolfart D, Assunċȧo WKG, Figueiredo E (2020) Insights on software product line extraction
processes: argoUML to argoUML-SPL revisited. In: SPLC ’20: 24Th ACM international systems and
software product line conference, vol A. ACM, Montreal, pp 6:1–6:6

Martinez J, Ziadi T, Bissyandé TF, Klein J, le Traon Y (2015) Automating the extraction of model-based soft-
ware product lines from model variants (t). In: 30Th IEEE/ACM international conference on automated
software engineering, pp 396–406

Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2016) Name suggestions during feature identification:
The variclouds approach. In: 20Th international systems and software product line conference, SPLC
’16. ACM, New York, pp 119–123

Meinicke J, Thüm T, Schröter R, Benduhn F, Leich T, Saake G (2017) Mastering Software Variability with
featureIDE. Springer

Michelon GK, Assunção WKG, Obermann D, Linsbauer L, Grünbacher P, Egyed A (2021) The life cycle of
features in highly-configurable software systems evolving in space and time. In: ACM SIGPLAN Inter-
national conference on generative programming: Concepts and experiences, GPCE 2021. Association
for Computing Machinery, New York, pp 2–15. https://doi.org/10.1145/3486609.3487195

Michelon GK, Linsbauer L, Assunção WK, Fischer S, Egyed A (2021) A hybrid feature location technique
for re-engineering single systems into software product lines. In: 15Th international working conference
on variability modelling of software-intensive systems, vamos’21

Michelon GK, Sotto-mayor B, Martinez J, Arrieta A, Abreu R, Assunċȧo WKG (2021) Spectrum-based
feature localization: a case study using argoUML. In: SPLC (A). ACM, pp 126–130

Northrop LM, Clements PC (2012) A framework for software product line practice version 5.0. Software
Engineering Institute, Carnegie Mellon University. http://www.sei.cmu.edu/plp/framework.html

Olszak A, Jørgensen BN (2012) Remodularizing java programs for improved locality of feature implemen-
tations in source code. Sci Comput Programm 77(3):131–151. Feature-Oriented Software Development
(FOSD 2009)

Otsuka J, Kawarabata K, Iwasaki T, Uchiba M, Nakanishi T, Hisazumi K (2011) Small inexpensive core asset
construction for large gainful product line development: Developing a communication system firmware
product line. In: 15Th int. Software product line conference, SPLC ’11, vol 2. ACM, New York, pp 20:1–
20:5

Photon Storm Ltd (2021) Phaser: desktop and mobile HTML5 game framework. http://phaser.io/
Prehofer C (2001) Feature-oriented programming: A new way of object composition. Concurr Comput Pract

Exper 13(6):465–501
Rubin J, Chechik M, Bettin J (2013) A survey of feature location techniques. In: Reinhartz-berger I, Sturm

A, Clark T, Cohen S (eds) Domain Engineering. Springer, Berlin, pp 29–58
Santos AR, do Carmo Machado I, de Almeida ES (2016) Riple-hc: javascript systems meets spl com-

position. In: 20Th international systems and software product line conference. ACM, pp 154–163.
https://doi.org/10.1145/2934466.2934486

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of software
product lines. In: Bosch J, Lee J (eds) Proceedings, Lecture Notes in Computer Science, vol 6287.
Springer, Jeju Island, pp 77–91

Schultheiß A, Bittner PM, Grunske L, Thu̇m T, Kehrer T (2021) Scalable n-way model matching using multi-
dimensional search trees. In: 24Th international conference on model driven engineering languages and
systems, MODELS 2021. IEEE, Fukuoka, pp 1–12

van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal question metric (GQM) approach. Wiley
Stru̇ber D, Mukelabai M, Kru̇ger J, Fischer S, Linsbauer L, Martinez J, Berger T (2019) Facing the truth:

benchmarking the techniques for the evolution of variant-rich systems. In: Proceedings of the 23rd Int.
Systems and Software Product Line Conference, SPLC 2019, vol A. ACM, Paris, pp 26:1–26:12

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in Software
Engineering, 1st edn. Springer Science & Business Media

Wolfart D, Assunçao WKG, Martinez J (2019) Open source software on the research of extractive adoption
of software product lines. In: Proceeedings of latin. science latinoware

Wolfart D, Assunċȧo WKG, Martinez J (2021) Variability debt: characterization, causes and consequences.
In: SBQS 2021: 20Th brazilian software quality symposium

Yang Y, Peng X, Zhao W (2009) Domain feature model recovery from multiple applications using data
access semantics and formal concept analysis. In: 16Th working conference on reverse engineering,
pp 215–224

Page 33 of 35 85Empir Software Eng (2022) 27: 85

https://doi.org/10.1145/3486609.3487195
http://www.sei.cmu.edu/plp/framework.html
http://phaser.io/
https://doi.org/10.1145/2934466.2934486

Zhang G, Shen L, Peng X, Xing Z, Zhao W (2011) Incremental and iterative reengineering towards soft-
ware product line: an industrial case study. In: 27Th IEEE int. Conf. on software maintenance (ICSM),
pp 418–427

Ziadi T, Frias L, da Silva MAA, Ziane M (2012) Feature identification from the source code of product
variants. In: 16Th european conference on software maintenance and reengineering, pp 417–422

Ziadi T, Hillah LM (2018) Software product line extraction from bytecode based applications. In: 23Rd
international conference on engineering of complex computer systems (ICECCS), pp 221–225

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Rodrigo André Ferreira Moreira is a Master’s student at the Fed-
eral University of Minas Gerais, Brazil. His current research interests
include software product lines and design pattern detection from
source code analysis.

Wesley K. G. Assunção is currently a University Assistant at
Johannes Kepler University Linz (JKU) - Austria, Post-Doctoral
researcher at Pontifical Catholic University of Rio de Janeiro (PUC-
Rio) - Brazil, and visiting professor at the Graduate Program in Com-
puter Science at Western Paranȧ State University (Unioeste) - Brazil.
Wesley received his M.Sc. in Informatics (2012) and Ph.D. in Com-
puter Science (2017) both from Federal University of Paranȧ (UFPR)
- Brazil. His areas of interest are Software Modernization, Variabil-
ity Management, Collaborative Engineering of Complex Systems,
Software Testing, and Search Based Software Engineering. He pub-
lished research papers, in collaboration with international researchers,
in conferences like ICSME, SANER, MSR, EASE, SPLC, SSBSE,
GECCO, to cite some, as well as in journals such as EMSE, IST, and
JSS. Wesley has also been serving as reviewers for many conferences
and journal, and as organizer of conference, symposiums, workshops,
competitions, and meetings. Website: https://wesleyklewerton.github.
io/

85 Page 34 of 35 Empir Software Eng (2022) 27: 85

https://wesleyklewerton.github.io/
https://wesleyklewerton.github.io/

Jabier Martinez is a research engineer in the Digital Trust Technolo-
gies (TRUSTECH) area of Tecnalia since 2018. His background is
on providing methods and tools for systems modelling and variability
management. After several years of industrial experience, he received
his PhD from the Luxembourg and Sorbonne Universities with a the-
sis about product line adoption and analysis. He co-organizes the
Reverse Variability Engineering (REVE) series of workshops.

Eduardo Figueiredo is an associate professor and head of the Soft-
ware Engineering Laboratory (LabSoft) at the Federal University of
Minas Gerais (UFMG) since 2010. He received his PhD degree in
Software Engineering from Lancaster University (UK) in 2009 and
was a visiting researcher at Carnegie Mellon University (CMU) in
2017. His research interests include configurable software systems,
empirical software engineering, and source code analysis. Website:
http://www.dcc.ufmg.br/∼figueiredo.

Affiliations

Rodrigo André Ferreira Moreira1 ·Wesley K. G. Assunção2,3 · Jabier Martinez4 ·
Eduardo Figueiredo1

Rodrigo André Ferreira Moreira
radro.rs@gmail.com

Jabier Martinez
jabier.martinez@tecnalia.com

Eduardo Figueiredo
figueiredo@dcc.ufmg.br

1 Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
2 Institute for Software Systems Engineering, Johannes Kepler University Linz (JKU), Linz, Austria
3 Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
4 Tecnalia, Basque Research and Technology Alliance (BRTA), Derio, Spain

Page 35 of 35 85Empir Software Eng (2022) 27: 85

http://www.dcc.ufmg.br/~figueiredo
http://orcid.org/0000-0002-7557-9091
mailto: radro.rs@gmail.com
mailto: jabier.martinez@tecnalia.com
mailto: figueiredo@dcc.ufmg.br

	Open-source software product line extraction processes: the ArgoUML-SPL and Phaser cases
	Abstract
	Introduction
	Background
	Annotative SPLs
	Feature Interactions
	Compositional SPLs
	The Re-engineering Process
	ArgoUML in a Nutshell
	Phaser in a Nutshell

	Study design
	Study Goal, Questions, and Metrics
	Study goal
	Research questions (RQ)

	Repository Data Extraction
	ArgoUML-SPL extraction
	Phaser extraction

	Developer

	Results and Analysis
	Overview of the ArgoUML and Phaser re-engineering processes
	Making the Architecture Variable
	Re-engineering Processes Operationalization
	Error-proneness of the Process
	ArgoUML-SPL
	Phaser
	Managing feature dependencies
	Lack of feature constraints mechanism

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Related Work
	ArgoUML extensive use
	Extraction process analysis
	Related works summary

	Conclusions
	References
	Affiliations

