
https://doi.org/10.1007/s10664-021-10097-z

A conceptual model for unifying variability in space
and time: Rationale, validation, and illustrative
applications

Sofia Ananieva1 · Sandra Greiner2 · Timo Kehrer3,4 · Jacob Krüger5,6 ·
Thomas Kühn7 · Lukas Linsbauer8 · Sten Grüner9 ·Anne Koziolek7 ·
Henrik Lönn10 · S. Ramesh11 ·Ralf Reussner7

© The Author(s) 2022

Abstract
With the increasing demand for customized systems and rapidly evolving technology, soft-
ware engineering faces many challenges. A particular challenge is the development and
maintenance of systems that are highly variable both in space (concurrent variations of
the system at one point in time) and time (sequential variations of the system, due to
its evolution). Recent research aims to address this challenge by managing variability in
space and time simultaneously. However, this research originates from two different areas,
software product line engineering and software configuration management, resulting in non-
uniform terminologies and a varying understanding of concepts. These problems hamper
the communication and understanding of involved concepts, as well as the development of
techniques that unify variability in space and time. To tackle these problems, we performed
an iterative, expert-driven analysis of existing tools from both research areas to derive a con-
ceptual model that integrates and unifies concepts of both dimensions of variability. In this
article, we first explain the construction process and present the resulting conceptual model.
We validate the model and discuss its coverage and granularity with respect to established
concepts of variability in space and time. Furthermore, we perform a formal concept anal-
ysis to discuss the commonalities and differences among the tools we considered. Finally,
we show illustrative applications to explain how the conceptual model can be used in prac-
tice to derive conforming tools. The conceptual model unifies concepts and relations used in
software product line engineering and software configuration management, provides a uni-
fied terminology and common ground for researchers and developers for comparing their
works, clarifies communication, and prevents redundant developments.

Keywords Product lines · Variability · Version control · Revision management

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems
(SPLC)

� Sofia Ananieva
ananieva@fzi.de

Extended author information available on the last page of the article.

Empirical Software Engineering (2022) 27: 101

Accepted: 29 November 2021 /Published online: 30 May 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10097-z&domain=pdf
http://orcid.org/0000-0001-8481-8288
http://orcid.org/0000-0001-7312-2891
mailto: ananieva@fzi.de

1 Introduction

Modern software systems exist in many variations to fulfill, for instance, different customer
requirements, hardware limitations, and regulations (Apel et al. 2013; Pohl et al. 2005;
Estublier 2000; Stănciulescu et al. 2015). Each variation may be distinguished based on
which dimension it stems from Conradi and Westfechtel (1998), Ananieva et al. (2019b),
and Strüber et al. (2019). First, variations can be implemented as feature options in a system.
This allows developers to mass-customize products of the system by enabling or disabling
its features, which represent abstract concepts to describe user-visible functionalities (Apel
et al. 2013). The concepts relating to such variability in space are extensively studied in the
context of software product line engineering (SPLE) (Apel et al. 2013; Pohl et al. 2005). As
a concrete example, the Linux kernel has more than 15,000 feature options that allow devel-
opers to use it in embedded systems, servers, operating systems, or distributed computer
clusters. Second, variations may be the result of a system’s evolution. More precisely, a spe-
cific feature is only available in a system after it has been developed, and previous revisions
can be deployed without that feature. The concepts relating to such variability in time are
studied in the context of software configuration management (SCM) (Estublier 2000) and
version control systems (VCSs) (Ruparelia 2010).

The missing foundation and tooling for supporting the evolution of variability proactively
during a system’s development has led to numerous approaches in the software product
line (SPL) community that each tackle a subset of the resulting problems (Kröher et al.
2018; Gamez and Fuentes 2011; Dintzner et al. 2016; Nunes et al. 2012; Passos et al. 2013;
Schulze et al. 2016). For example, retroactively mining feature evolution information from
VCSs is only necessary, because VCSs do not support or track feature evolution proac-
tively (Kröher et al. 2018; Dintzner et al. 2016). Not explicitly tracking variability evolution
may also incur additional costs (Krüger and Berger 2020). Unfortunately, common VCSs
(e.g., Git) do not have a feature concept at all. Instead, variability is managed by creat-
ing one branch per product, which requires a high manual effort to maintain the products
via merging between branches (Conradi and Westfechtel 1998). Simply combining existing
approaches for managing both variability dimensions does also not suffice, since developers
need to deal with a heterogeneous tool landscape (e.g., a VCS; potentially multiple vari-
ability mechanisms, such as a preprocessor and a build system as in the Linux kernel; and
variability mining tools)—which hampers cross-dimensional variability modeling and anal-
yses, for instance, for capturing the volatility (i.e., frequency of change) of a feature. The
combination of SPLE and SCM, and thus explicit proactive management of variability in
space and time during a system’s development, aims at solving these problems and has only
recently received increasing attention (Berger et al. 2019; Linsbauer et al. 2018; Nieke et al.
2019; Strüber et al. 2019; Thüm et al. 2019; Krüger et al. 2020; Kehrer et al. 2021).

A prerequisite for advancing this combination and avoiding redundant research is a
well-defined and established understanding of the concepts and relations of both areas. Par-
ticularly, both areas rely on varying, but also synonymous, terms to refer to their concepts.
For instance, “configuration” in SPLE refers to a valid selection of features (we call this a
feature configuration), while in SCM it refers to a particular revision of the system (we call
this a revision configuration). Such ambiguities can cause various problems that require a
conceptual model to provide a unified understanding of both areas. For example, several
literature reviews (Pereira et al. 2015; Bashroush et al. 2017; Ruparelia 2010; Linsbauer
et al. 2017a) indicate a growth of research and tools from either research area that tackle the
same problems using the same concepts. By providing a unified understanding of the terms,

101 Page 2 of 53 Empir Software Eng (2022) 27: 101

concepts, and relations established in both areas, a conceptual model supports researchers
and developers in comparing their works, clarifying communication and reducing redun-
dant research. As a consequence, it helps to proactively avoid many of the problems tackled
in research on variability evolution and mining (e.g., the mining of feature evolution from
source code repositories (Dintzner et al. 2016; Kröher et al. 2018)). In our previous work
(Ananieva et al. 2019b; Ananieva et al. 2020), we described how we constructed a concep-
tual model relating the concepts of SPLE and SCM to provide a unified foundation of both
areas, while also introducing hybrid concepts that emerge from the combination of variabil-
ity in space and time. To derive the conceptual model, we systematically elicited concepts
of 10 tools (cf. Section 4) from SPLE (e.g., FeatureIDE (Meinicke et al. 2017)), SCM (e.g.,
Git (Loeliger and McCullough 2012)), and both areas (e.g., ECCO (Fischer et al. 2015)).
We interviewed developers and experts of these tools to identify the concepts and relations
used. During a series of workshops, we constructed the model and adopted four ontology-
based metrics (Guizzardi et al. 2005) to validate its coverage and granularity. In this article,
we extend upon our previous work by providing additional insights regarding our construc-
tion and validation processes. Moreover, we add static semantics to the conceptual model,
improve its description, provide detailed examples on the validation and practical use of the
model, and conduct a formal concept analysis (FCA) to illustrate and discuss how the tools
we analyzed relate to each other and to the conceptual model.

In more detail, our contributions in this article are (extensions are highlighted in italics):

– We report how we constructed the conceptual model for unifying concepts of variability
in space and time as well as their relations (Section 2).

– We explain the conceptual model, its properties, and its concepts (Section 6).
– We define static semantics, such as well-formedness rules, of the conceptual model

using the object constraint language (OCL) (Section 6.3).
– We explain the design decisions that had major impact on the terminology and structure

of the conceptual model (Section 6.1).
– We provide an empirical validation of the conceptual model to show how well it covers

existing tools (Section 7).
– We extend our qualitative analysis by also including the well-formedness rules. Equiv-

alently to concepts and relations, we provide and discuss a mapping between the rules
and each tool (Section 7.1).

– We add details to our quantitative analysis. Specifically, we provide concrete examples
to illustrate how each metric is applied to compare a tool to the conceptual model. Fur-
thermore, we present additional results by providing each metric result per variability
in space, time, and both (Section 7.2).

– We conduct an FCA of the conceptual model and the tools we analyzed, discussing how
tools can be compared and on what dimensions of variability they focus. (Section 7.3).

– We add illustrative applications of the conceptual model to show how to use the model
in practice when developing conforming tools (Section 8).

– We publish an open-access repository with all data relating to the construction,
validation, and analysis of the conceptual model.1

The conceptual model and our examples provide a foundation for guiding researchers and
developers in obtaining a unified perspective on the concepts of variability in space and

1https://doi.org/10.5281/zenodo.5751916

Page 3 of 53 101Empir Software Eng (2022) 27: 101

https://doi.org/10.5281/zenodo.5751916

time. Consequently, it supports scoping, implementing, and communicating new research
and tools that aim to combine both dimensions.

2 Background

In this section, we first describe an exemplary product line that we use as running example
throughout this article. Using this example, we then explain variability in space and time
(which we refer to as variability dimensions), as well as the combination of both. Finally,
we introduce an initial version of the conceptual model that we developed during a Dagstuhl
seminar (Berger et al. 2019) and extended systematically to obtain the conceptual model we
describe in this article.

2.1 Running Example: Pick and Place Unit

The pick and place unit (PPU) is a demonstrator for the evolution in industrial plant automa-
tion2 introduced by Vogel-Heuser et al. (2014). Its purpose is to take work pieces from a
stack and move them around a shop floor via conveyor belts and a crane. As running exam-
ple in this article, we use excerpts of the PPU control software product line. Particularly, in
our example, the PPU comprises the mandatory component crane and a stack from which
the work items are taken. The PPU software product line implements the operational con-
trol for these components. The crane moves work pieces that have been placed on the stack,
and can utilize either a micro switch or an inductive sensor. Optionally, the stack may be
extended with an optical sensor. In the following sections, we exemplify the implementation
of the PPU, particularly highlighting the inherent variability of the system.

2.2 Variability in Space

Variability in space enables developers to systematically engineer a configurable system
based on principles, methods, and concepts of SPLE (Parnas 1976; Clements and Northrop
2001; Pohl et al. 2005; Apel et al. 2013). In general, SPLE distinguishes between problem
space and solution space (Apel and Kästner 2009). The problem space involves concepts to
describe the domain, such as requirements and the variability of the product line (e.g., via
feature models (Kang et al. 1990; Czarnecki et al. 2012; Batory 2005; Nešić et al. 2019)).
The solution space involves concepts to implement the product line. Within a product line,
a platform comprises all implementation artifacts, which are mapped to their corresponding
features and can be configured (e.g., enabled or disabled) to automatically derive a cus-
tomized system. For this purpose, the provided feature configuration is checked against the
dependencies specified in the problem space (e.g., in a feature model) to ensure that it is
valid (i.e., fulfills all dependencies). In this article, we use the term feature in its classical
sense: A feature is “a prominent or distinctive user-visible aspect, quality, or characteris-
tic of a software system or systems” (Kang et al. 1990) that must be “implemented, tested,
delivered, and maintained” (Kang et al. 1998).

2https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/

101 Page 4 of 53 Empir Software Eng (2022) 27: 101

https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/

PPU

Crane Stack

MicroSwitch InductiveSensor OpticalSensor

¬OpticalSensor ¬InductiveSensor

mandatory

optional

OR group

XOR group

Fig. 1 Simplified feature model of the PPU

How a customized system is derived from the platform depends on the employed variabil-
ity mechanism (Apel and Kästner 2009; Svahnberg et al. 2005; Gacek and Anastasopoules
2001). Annotative mechanisms (Apel et al. 2009a) rely on a single code base from which
unwanted features are removed. Essentially, the developers implement a superimposition of
all systems in the product line, and annotate the implementation artifacts with presence con-
ditions. A presence condition is a Boolean expression over features, for example, in the form
of preprocessor directives. To derive a concrete system, implementation artifacts whose
presence conditions are not satisfied by the specified feature configuration are removed.
Conversely, compositional variability mechanisms (Bosch 2010) extend a core system with
features to derive a different, customized system. For this purpose, implementation artifacts
are contained in feature modules (e.g., components) that summarize all artifacts relating
to a specific presence condition (i.e., a feature or feature interaction). To derive a concrete
system, a composer merges all modules specified in the feature configuration based on a
defined feature order. Finally, transformational (a.k.a. delta-oriented) mechanisms (Schae-
fer et al. 2010) implement variability based on a core product and delta modules. In contrast
to feature modules, a delta module comprises a sequence of delta operations and a presence
condition. Delta operations can be used to add or remove implementation artifacts. To derive
a customized system, the delta operations of all delta modules whose presence conditions
are fulfilled by the feature configuration are applied in a specified order.

In Fig. 1, we capture the variability in space of our PPU example using a feature model
that incorporates the mandatory features Crane and Stack, the optional feature OpticalSen-
sor, and an alternative group allowing the crane to possess either a MicroSwitch or an
InductiveSensor. Finally, the cross-tree constraint¬OpticalSensor ∨ ¬InductiveSensor

below the actual model prohibits that the features OpticalSensor and InductiveSensor can
coexist.

In Listings 1 and 2, we display an initial implementation of the PPU. For this example,
we use an annotative variability mechanism based on preprocessor directives (i.e., ,

) that encapsulate the optional lines of the source code. For example, the annotation
in Line 2 in Listing 1 represents the presence condition MicroSwitch ∧ ¬InductiveSensor
that guards Lines 3 and 4. Consequently, these lines are only included if the feature
MicroSwitch is enabled and the feature InductiveSensor is not enabled. Further examples
are the directives in Lines 2 and 4 in Listing 2, where Line 3 is only part of a system if the
feature OpticalSensor is enabled in a feature configuration. Otherwise, Line 6 will be part
of the system, due to the annotations in Lines 5 and 7.

Page 5 of 53 101Empir Software Eng (2022) 27: 101

Listing 1 Crane.java in its first revision

2.3 Variability in Time

Variability in time involves concepts related to the evolution of a system. Concretely, SCM
is concerned with VCSs that developers can use to manage software evolution and collab-
orative development. While some (academic) VCSs support versioning of almost arbitrary
artifacts (Conradi and Westfechtel 1998), those established in practice (e.g., SVN Pilato
et al. 2008 or Git Loeliger andMcCullough 2012) version files only. Developers can retrieve
a local copy of the system from a common storage (i.e., a repository) and propagate local
changes back to that storage. Each state (e.g., a commit) of the local copy that is propagated
to the storage is referred to as a revision, which is marked with a (numbered) label to allow
developers to restore a specific state. In contrast to feature configurations in SPLE, a system
at a specific state (i.e., a revision configuration) can be restored without knowing whether
that state is fully functional or incorporates specific patches and features.

For instance, Listings 1 and 2 in the running example represent the first revision of the
PPU propagated to a VCS. Then, another developer retrieves that revision, modifies their
local copy, and propagates these modifications back to the storage. In this scenario, the code
we exemplify in Listing 3 represents (part of) the second revision. Concretely, this revision
extends the implementation of the class Stack (i.e., in Lines 8–10).

2.4 Variability in Space and Time

In practice, concepts of variability in space and time are always connected: A product line
evolves over time, and a VCS can manage various features or systems in separated branches
or forks (Stănciulescu et al. 2015; Rubin and Chechik 2013; Krüger 2019). However, the
combination of both dimensions has been examined less often and missing systematic tool
support may cause inconvenient scenarios. For example, implementing and maintaining
individual systems in branches introduces maintenance overheads if these systems must be
synchronized (e.g., when propagating features or bug fixes between branches) (Dubinsky

Listing 2 Stack.java in its first revision

101 Page 6 of 53 Empir Software Eng (2022) 27: 101

Listing 3 Stack.java in its second revision

et al. 2013; Rubin and Chechik 2013; Kehrer et al. 2014; Krüger and Berger 2020). In
contrast, many existing solutions for SPLE only support variability in space. Consequently,
these solutions require developers to integrate an additional VCS to support variability in
time, but that VCS is typically unaware of the variability in space. More advanced tools
for managing both dimensions simultaneously and consistently are missing, and thus key
functionalities, such as tracing the evolution of individual features, are hardly available.

Considering variability in space and time simultaneously may solve such problems. In
this direction, Westfechtel et al. (2001) proposed the uniform version model that aims to
unify concepts of SPLE and SCM. The uniform version model introduces the version as an
abstract unification that can either be a customized system (variability in space) or a revision
(variability in time). To ensure consistency, this model prescribes a specific development
process, which however contradicts the practical use of most contemporary tools. For that
reason, the uniform version model cannot serve as a conceptual model to cover and advance
the state of the art.

In the running example, the implementation of the class Stack is modified, resulting in
a second revision. Inside the class, the feature OpticalSensor is modified. In the first revi-
sion (cf. Listing 2), only the constructor exists while the second revision (cf. Listing 3) adds
an exchange mechanism by introducing the method exchangeOpticalSensor() in Line 9.
Consequently, the second revision revises not only the class Stack, but also the feature Opti-
calSensor; thus involving both variability dimensions: One specific feature (variability in
space) is changed and thereby evolves from the first to the second revision (variability in
time). Therefore, this modification is typically considered to represent a feature revision.

When using tools that do not manage variability in space and time simultaneously, such
feature revision (i.e., a combination of variability in space and time) may involve multiple
actions, such as adding an entirely new feature, refactorings, or bug fixes—making it hard
for developers to understand and manage the variability of both dimensions.

2.5 Initial Conceptual Model

At a Dagstuhl Seminar on the topic ofUnifying Version and Variability Management (Berger
et al. 2019), a subgroup of its participants (Ananieva et al. 2019a) organized concepts of
variability in space and time into a UML class model. We refer to the resulting model as

Page 7 of 53 101Empir Software Eng (2022) 27: 101

Versioned Item

Fragment

Atom Aggregate

1..*

*

*

Revision Space Revision

*

* successorpredecessor *

System� Space

Versioned System

Product Line

Product

�realization*

*

1

*

*

*

Variant Space

0..1

1

Variation Point

Concepts for�Variability in Space

Concepts for�Variability in TimeCommon Concepts

Fig. 2 The initial conceptual model for unifying concepts of variability in space (green) and in time (orange)
with common concepts (white) (Ananieva et al. 2019b)

initial conceptual model (Ananieva et al. 2019b). Based on interviews with tool developers
and discussions during follow-up workshops, we refined the initial conceptual model by
relying on the knowledge of experts in the area of managing both variability dimensions
simultaneously (Ananieva et al. 2020). In the following, we briefly introduce the initial
conceptual model that we display in Fig. 2, which served as starting point for constructing
the conceptual model we describe in this article.

The initial conceptual model distinguishes the Revision Space from the Variant
Space as well as from the System Space, and categorizes all elements according
to the variability dimension they belong to. The Revision Space involves concepts
relating only to variability in time, namely a Versioned System that is composed of
Revisions. In contrast, the Variant Space covers variability in space, incorporat-
ing a Product Line from which Products can be derived by selecting Variation
Points that are implemented by arbitrary Fragments (e.g., lines of code, model ele-
ments). The Fragment is the main concept of those common to both, variability in space
and time. Finally, a Versioned Item connects both variability dimensions and the
common concepts, essentially enabling version control on all concepts. The initial model
documents the concepts and relationships existing in each variability dimension. However, it
provides no unification of these concepts, does not represent concepts used in contemporary
tools, and was not systematically constructed. The conceptual model we present in this arti-
cle considerably advances on this initial one, building on a systematic empirical process for
the construction and validation. As a result, the conceptual model improves the unification
of concepts, incorporates new concepts, and allows to understand as well as compare con-
temporary tools. In this article, we further extend our contributions on the conceptual model
we presented in the previous conference paper (Ananieva et al. 2020) by defining static
semantics, reasoning on specific design decisions, and explaining how to use the model in
practice.

101 Page 8 of 53 Empir Software Eng (2022) 27: 101

3 State of the Art

In this section, we introduce and discuss the state of the art of conceptual models in the
areas of SPLE and SCM, as well as related surveys of variability in space and time.

Conceptual Models for Variability in Space The SPLE community has designed multi-
ple processes and conceptual models to define the terminology used to specify variability
in space (Pohl et al. 2005; Apel et al. 2013; Northrop 2002). Despite these efforts, even
within the SPLE community varying terminologies have evolved, for example, resulting in
the synonymous use of product and variant. A particular technique of SPLE to unify
terminology and provide a common conceptual model or ontology for a domain is vari-
ability modeling, and particularly the de-facto standard feature modeling (Czarnecki et al.
2006; Johansen et al. 2010; Czarnecki et al. 2012; Schaefer et al. 2012; Nešić et al. 2019).
However, while this technique exists, the terminology of variability in space has never been
unified, and the conceptual model we describe tackles this problem with an even broader
perspective. Particular limitations of existing processes and models are their missing capa-
bilities to describe systems that allow for variability in space and time, and their limited
independence of implementation specifics.

Conceptual Models for Variability in Time Similarly to SPLE, conceptual models and tax-
onomies for SCM have been proposed (Conradi andWestfechtel 1998; MacKay 1995; Pilato
et al. 2008; Ruparelia 2010). The most prominent concept to specify and capture variability
in time is arguably the version model, which describes how the versions in a SCM system are
managed. However, as Conradi and Westfechtel (1998) show, each SCM system employs
its own version model with varying terminology and conceptual differences. While a map-
ping between the concepts and terms of different SCM systems exists, we are not aware of
an actual conceptual model providing a unified terminology to specify variability in space
and time.

Related Surveys of Variability in Space and Time The closest research to the conceptual
model is the work of Conradi and Westfechtel (1998) who extend the version models iden-
tified towards capturing the relation of variability in space and time. Building on this idea,
Westfechtel et al. (2001) introduce the uniform version model, which provides a common
model for basic SCM and SPLE concepts. In some regards, this model is highly flexible and,
as a consequence, overly generic. However, some aspects are intertwined with implementa-
tion details, such as propositional logic and deltas to manage variability. In contrast, we aim
to devise a unified conceptual model that is as specific as possible, while still covering all
relevant concepts dealing with variability in space and time without focusing on implemen-
tation options. Schwägerl (2018) builds upon the uniform version model, replacing some of
the concepts and partly describing an own conceptual model. In contrast to our work, the
goal was to develop a specific tool (i.e., SuperMod), which we analyzed to derive a gen-
eral conceptual model for capturing variability in space and time; independent of concrete
implementation details of a certain tool. Similarly to our work, Linsbauer et al. (2017a) sur-
vey variation control systems, some of which support variability in space and time. So, we
included this type of tools in our analysis, too. Other researchers compared tools for SPLE
or SCM (Pietsch et al. 2020; Pereira et al. 2015; Bashroush et al. 2017; Ruparelia 2010; Gal-
ster et al. 2014). In contrast to the conceptual model, these works focus on classifying and
comparing the identified tools instead of unifying their concepts and relations. They do not
perform a unification to derive a unified conceptual model for variability in space and time.

Page 9 of 53 101Empir Software Eng (2022) 27: 101

4 Contemporary Variability Tools

In this section, we introduce the tools we analyzed to construct the conceptual model. First,
we describe the key criteria for selecting the tools. Then, we present the tools according to
the supported variability dimension.

4.1 Tool Selection

For constructing the conceptual model, we examined a representative set of available and
commonly used tools. These tools cover i) solely the dimension of variability in space, ii)
solely the dimension of variability in time, or iii) both dimensions jointly. Moreover, the
tools must iv) allow to specify the problem space as well as implement the solution space,
and v) be available as well as usable. Thus, we did not consider tools that support only the
solution space (e.g., pure variability mechanisms, such as FeatureHouse (Apel et al. 2009b))
or only the problem space (e.g., variability modeling or analysis (Asikainen et al. 2006;
Gheyi et al. 2008; Schobbens et al. 2007; Beek et al. 2019)).

A recent study (Horcas et al. 2019) of available and usable tools for SPLE shows that
only 19% out of the 97 examined tools are usable, and only a small subset of the 97 tools
offers support for problem and solution space. The study also demonstrates that many of
the discontinued tools, such as FeatureHouse (Apel et al. 2009b), have been integrated as
variability mechanisms into FeatureIDE (Kästner et al. 2009; Meinicke et al. 2017). Since
we examined FeatureIDE, we considered many concepts of such tools.

Regarding the tools that support only variability in space, we covered each category of the
main variability mechanisms (i.e., annotative, transformational, and compositional) through
at least one tool. In addition to FeatureIDE, we also included an industrial tool for which
we could interview a tool expert and access openly available documentation. For tools that
support only variability in time, we analyzed the two most pervasive VCSs, Git and SVN. To
reflect on tools that aim to manage variability in space and time simultaneously, we selected
variation control systems (Linsbauer et al. 2021) that are (still) available and are grounded
in a profound conceptual basis. For instance, SuperMod and VaVe both allow for versioning
of models, instead of only text files, and apply different paradigms to represent and compute
changes. While SuperMod employs a state-based comparison to create symmetric deltas,
VaVe monitors changes and computes directed deltas. Overall, we incorporated diverse per-
spectives while addressing the unification of both variability dimensions for designing the
conceptual model.

Note that some of the selected tools can be used in combination. For example, an SPLE
tool may integrate a VCS for supporting the evolution of the product line. We did not con-
sider these combinations in the construction process of the conceptual model, since they are
covered implicitly by considering each tool individually. Particularly, in contrast to the tools
supporting both dimensions explicitly, these (artificial) combinations do not contribute new
concepts of variability in space and time.

4.2 Tools for Variability in Space

As described in Section 2, annotative, compositional, and transformational variability mech-
anisms exist in SPLE. We selected and present three SPLE tools in the following, each
covering at least one mechanism.

101 Page 10 of 53 Empir Software Eng (2022) 27: 101

FeatureIDE (Kästner et al. 2009; Meinicke et al. 2017) originates from academia and is a
tool platform supporting the development of product lines based on the Eclipse platform.
The tool includes not only extensive feature modeling, but also implementation, configura-
tion, and testing support. FeatureIDE implements annotative and compositional variability
mechanisms, covering these two mechanisms in our analysis.

pure::variants (Beuche 2013) is an industrial SPLE tool. While pure::variants builds on
the Eclipse platform and covers different variability mechanisms as well, the tool focuses
on the annotative mechanism in the form of preprocessor directives. We consider the
pure::variants evaluation edition, which is why we may not have obtained all insights.
However, a main advantage of including pure::variants is its design for practitioners from
industry, which allowed us to incorporate the practical and industrial perspective in our
model. There are other proprietary tools similar to pure::variants, such as Gears from
BigLever (Krueger and Clements 2012), which we did not consider in this work due to
availability reasons.

SiPL (Pietsch et al. 2015, 2017, 2019) supports the implementation of model-based product
lines based on a transformational variability mechanism. SiPL uses delta modules to capture
variability in space, differing from the previous tools. Compared to other delta-oriented
SPLE tools, a unique characteristic of SiPL is that the notion of a delta is refined in an
edit script (Kehrer et al. 2013) generated by comparing models. Moreover, edit scripts are
an essential prerequisite for several quality-assurance techniques, which aim to detect and
mitigate design flaws in the delta-oriented implementation of a product line.

4.3 Tools for Variability in Time

As representative tools for variability in time, we considered SVN and Git as well-
established and widely used VCSs, covering a centralized and a decentralized system,
respectively.

Subversion (SVN) (Pilato et al. 2008) is a centralized VCS (i.e., one central repository is
stored on a server). SVN allows users to checkout one state of this repository into a local
workspace, implement changes, and commit them directly to the central repository. Each
commit results in a new revision, which is numbered sequentially. Thus, developers may
check out a specific revision into their local workspace. SVN supports branching of the
central repository as well as merging of branches.

Git (Loeliger and McCullough 2012), in contrast to SVN, supports decentralized version-
ing (i.e., every user has their own copy of the entire repository evoking a distributed network
of repositories). As such, Git supports local operations (e.g., a commit of changes to the
local repository) as well as distributed operations (e.g., the clone operation that creates a
local copy of the entire remote repository, the push and pull operations that are used to
synchronize between clones of the repository).

4.4 Tools for Variability in Space and Time

In the following, we introduce the five contemporary tools that manage variability in space
and time simultaneously that we analyzed.

Page 11 of 53 101Empir Software Eng (2022) 27: 101

ECCO (Fischer et al., 2014, 2015; Linsbauer et al., 2016, 2017b) was initially designed for
re-engineering cloned systems into a product line, thereby computing mappings between
features and fragments of implementation artifacts. The tool evolved to support feature revi-
sions based on the common checkout/modify/commit workflow for distributed software
development. Upon commit, ECCO assigns presence conditions consisting of feature revi-
sions to the corresponding artifact fragments, and thus combines concepts for variability in
space and time.

SuperMod (Schwägerl andWestfechtel 2016; 2019) is based on the uniform version model
(Westfechtel et al. 2001), consequently unifying temporal revisions and spatial variants
as versions. A product line is developed product-wise, meaning that the product space
(workspace) is populated with the feature model and the model artifacts belonging to one
revision and feature configuration. The version space comprises an internal repository hold-
ing the superimposition of all product line elements annotated with logical expressions over
features and revisions. Similar to Git, SuperMod builds on the checkout/modify/commit
workflow locally, and allows multi-user development by pushing/pulling the local state to
one remote repository server.

DeltaEcore (Seidl et al. 2014b; 2014c) is a tool-suite for model-based SPLE based on a trans-
formational variability mechanism. The tool automatically derives delta languages, which
are used to express the delta operations to the common core of the product line. Develop-
ers specify these delta operations to define how to transform a system from one state into
another, building on the delta language that can parse the programming language of the sys-
tem. DeltaEcore can be used in conjunction with a hyper feature model (Seidl et al. 2014a),
which extends the notion of individual features with revisions (in contrast to revisions of
the whole system, which are not explicitly supported).

DarwinSPL (Nieke et al. 2017) copes with variability in space and time, while integrating
contextual information that restricts the configuration space of the product line. For product
derivation, it integrates with DeltaEcore. In contrast to DeltaEcore, DarwinSPL captures the
evolution of the whole system with a temporal feature model, and thus supports the planning
for the future evolution of a product line.

VaVe (Ananieva et al. 2018) integrates the management of VAriants (space) and VEr-
sions (time). It builds on VITRUVIUS (Klare et al. 2021; Kramer et al. 2013), a view-based
framework that supports consistent system development by providing multiple languages
to preserve consistency between views. Specifically, VaVe aims to extend VITRUVIUS

with capabilities for variability management by introducing the problem space and extend-
ing the original consistency preserving mechanisms with variability-related consistency
preservation regarding problem space and solution space.

5 Construction Process

In this section, we describe the construction process of the conceptual model for unifying
variability in space and time, which we show in Fig. 3. We followed an informed design
methodology inspired by the work of Ahlemann and Riempp (2008) who propose iterative
steps, such as expert interviews and refinements of the model until consensus is reached.
Therefore, we made the deliberate choice to include all available tools fitting our key criteria

101 Page 12 of 53 Empir Software Eng (2022) 27: 101

Dagstuhl Seminar
(19191)

Expert
Interviews 1st Workshop 2nd Workshop

1
+ + +

Initial
Conceptual

Model

Construction
Mapping

Unified
Conceptual

Model

refinement

2 3 4

Fig. 3 Construction process of the unified conceptual model

in the construction process of the unified model. In the following, we describe each step of
the construction process.

5.1 Dagstuhl Seminar (19191)

During a Dagstuhl seminar on Software Evolution in Time and Space: Unifying Version and
Variability Management (Berger et al. 2019), we developed the initial conceptual model as
introduced in Section 2.5 and shown in Fig. 2 (cf. step). The initial model documents
concepts for variability in space (e.g., Feature) and in time (e.g., Revision) as well as
their relations. However, this initial model does not address the unification of these concepts.

5.2 Expert Interviews

Following an empirical construction process for unifying concepts of variability in space
and time, the initial model served as input to expert interviews (cf. step). In particular,
we (specifically, the first author of this article) conducted semi-structured interviews with
one tool expert per tool. The goal was to understand to what extent the initial model captures
concepts of contemporary tools and what adaptations were needed to derive a unified model.

We invited tool experts that are closely involved in the conceptual design or implemen-
tation of the respective tool, and thus are among the most knowledgeable experts for each
tool. Most of the tool experts are researchers from academia, while we also involved one
expert from industry. Note that we did not conduct interviews on Git and SVN, because these
are widely used and extensive documentation is available.

One week before each interview, we provided the blank interview guide to each tool
expert and completed the guide jointly during the interview. Subsequently, we conducted a
follow-up inspection of the documented answers to ensure completeness and consistency.
The eight interviews took 83 minutes on average.

The interview guide involved four parts. In the first part, we introduced the initial con-
ceptual model and definitions of the involved concepts. The second part asked for a mapping
of concepts of the initial model onto constructs of the expert’s tool (to create a construction
mapping) based on the following questions:

– What are the main constructs of the tool?
– For every concept in the model, what are the semantically equivalent tool constructs?
– Is there a tool construct not represented by any concept of the model?

Page 13 of 53 101Empir Software Eng (2022) 27: 101

During the third part, we elicited the main use cases of each tool and its scope to distinguish
the tools from each other. Finally, the fourth part encompassed tool operations (e.g., code
analysis) to obtain a holistic understanding of each tool.

5.3 ConstructionMapping

The expert interviews resulted in a construction mapping for each tool, where tool constructs
were mapped to the concepts of the initial conceptual model. Based on the construction
mappings, we performed informed improvements to the initial conceptual model. For exam-
ple, we decided whether new model concepts needed to be introduced and existing ones
removed, merged, or split up, by discussing how these concepts mapped to constructs of the
studied tools. In the following, we describe the insights gained from these mappings.

Overall, we could map the majority of tool constructs to at least one concept in the
initial conceptual model. However, we also identified tool constructs that did not map to
any concepts of the model. These constructs were Feature and Constraint. Moreover,
we observed that some tools (i.e., DeltaEcore, DarwinSPL, ECCO, SuperMod, VaVe) do
not distinguish the concepts of Versioned System and Product Line and, instead,
represent both as a single construct (i.e., Product Line in DeltaEcore and DarwinSPL,
Repository in ECCO and SuperMod, System in VaVe). Finally, we found that many
tools involve a construct for the Mapping between Fragments and Features as well
as for the Configuration. However, in the initial conceptual model, these constructs are
only implicit: the realization relation between Variation Point and Fragment
represents the Mapping, whereas the ternary association between Product, Product
Line, and Variation Point aligns with the Configuration.

5.4 Workshops

The construction mappings served as input to a series of closed, dedicated workshops
organized for building the unified conceptual model. Participants involved tool experts we
interviewed before, authors of this article, and further researchers of the SPLE and SCM
communities that became aware of this effort during the presentation of the initial concep-
tual model (Ananieva et al. 2019b) and voiced their interest to participate. During these
workshops, the initial model was gradually refined into the unified conceptual model we
present in this article. Specifically, we conducted two workshops (cf. steps 3 and 4). The
first workshop was a one-day open discussion with loose moderation involving 15 partic-
ipants. It was based on the prepared interview results and impulse questions. The second
workshop involved 12 participants and lasted 1.5 hours. It included a presentation of the
preliminary conceptual model based on the results of the first workshop, followed by a dis-
cussion of open issues and the opportunity for each participant to voice suggestions for
improvement.

During both workshops, we gradually modified the initial conceptual model to obtain
the unified model we present in Section 6. Major changes involved the unification of con-
cepts that we found to be represented by a single construct in tools. For example, a tool that
deals with variability either in space or in time involves the Product Line construct or
the Versioned System construct, respectively. Tools that deal with both variability in
space and time do not represent the two concepts with two constructs, but instead represent
both as one unified construct. In other words, no tool involves an individual construct for

101 Page 14 of 53 Empir Software Eng (2022) 27: 101

both of the two concepts. Furthermore, we added concepts or made them explicit. For exam-
ple, many tools involve constructs for constraining valid configurations. However, this was
not reflected in any concept of the initial model. Another example addresses the mapping
between Fragment and Variation Point, which was only represented implicitly in
the initial model as an association. Considering the significance this concept carries in most
of the tools, we made the Mapping concept explicit. Additionally, we generalized some
concepts that were previously assigned to one dimension only to also apply to the other
dimension. For example, the concept Configuration was only connected to variability
in space, which we extended to also refer to variability in time. Finally, we introduced new
hybrid concepts and relations that do not exist in tools that focus on only one variability
dimension.

6 The Conceptual Model

In this section, we first explain design decisions that mainly impacted the terminology and
structure of the conceptual model. Then, we present the unified conceptual model and define
additional static semantics of the model in the form of well-formedness rules.

6.1 Design Decisions

During the workshops, we discussed and agreed on the terminology and several design
decisions, which we present in the following.

Terminology Regarding terminology, we aimed for generic and unambiguous names that
are not associated with either SPLE or SCM terminology. This especially affected the nam-
ing of concepts representing variability in space, time, or both. Since the term Variation
Point is associated with SPLE and generally used in the implementation context, and the
term Variant is ambiguous as it represents either a Product or in case of the Orthogo-
nal Variability Model (Pohl et al. 2005) an Option of a Variation Point, we chose
the generic term Option to refer to any kind of variation in space, time, or both.

Our second decision on the terminology affected the use of concepts that serve as con-
tainers for other concepts. In the initial conceptual model, these concepts were Product
Line and Versioned System (associated with SPLE and SCM, respectively). As
described in Section 5, the tools we analyzed do not distinguish between the two and rep-
resent both through a single construct. The term Repository is often associated with
persistence, which is not relevant on a conceptual level. Therefore, we agreed on the term
Unified System (as it represents a container for the concepts of space, time, or both).

Modeling Pragmatics The following design decisions relate to the modeling itself. First,
we decided on the structure of the concept Fragment. Most tools structure Fragments
as trees (e.g., ECCO, GIT), some as graphs (e.g., DeltaEcore). Since a graph structure is
a generalization of a tree structure, we decided to model Fragments as a graph (i.e.,
Fragments may reference an arbitrary number of further Fragments).

Second, we were concerned with the different types of revisions. System Revisions
and Feature Revisions are not the same, since they represent Revisions of dif-
ferent concepts (i.e., Unified System and Feature, respectively). Therefore, we
introduced the concept of System Revision as counterpart to Feature Revision
to clearly differentiate between both types of revision.

Page 15 of 53 101Empir Software Eng (2022) 27: 101

Third, we focused on Constraints. A preliminary version of the conceptual model
allowed to define Constraints not only on Features and Feature Revisions,
but additionally on System Revisions. However, in none of the selected tools
Constraints operate on System Revisions. We thus introduced the concept
Feature Option as super-class of Feature and Feature Revision to define
Constraints only over these concepts.

Fourth, we discussed the dependency between Feature Revision and Feature.
Since a Feature Revision cannot exist without the respective Feature, we decided
to use a composition relation. This way, we aimed to explicitly highlight the strong
dependence of a Feature Revision on its respective Feature.

Finally, versioning could additionally be applied to concepts that depend on versioned
concepts, for instance, to Configuration or Mapping, which depend on Option.
However, this would introduce cycles (i.e., Mappings and Configurations are both
changed by Options, but they also refer to Options). This is also reflected by the fact
that no tool versions these two concepts. We decided to align the conceptual model with the
selected tools. However, this decision is a candidate for future adaptations, depending on
how new tools that integrate variability in space and time may be designed.

Additional minor decisions involved that we avoided interfaces that are specific to the
respective implementation and which we therefore did not consider relevant on the con-
ceptual level. Nonetheless, we used abstract classes to ensure that Feature Option and
Revision can only be instantiated with their respective sub-classes, namely System
Revision, Feature Revision, and Feature.

6.2 Concepts and Relations

In Fig. 4, we show the conceptual model comprising concepts for variability in space
(green), concepts for variability in time (orange), concepts for variability in both dimen-
sions (purple), and unified concepts (white). We use lighter colors and italic font for abstract
concepts. Relations are colored analogously. The model comprises two parts: The left side
shows the problem space in SPLE, namely the abstraction of the domain, which is equivalent
to the version space in SCM. The right side shows the solution space in SPLE, namely the
actual implementation, which is equivalent to the product space in SCM (Conradi and West-
fechtel 1998). Interestingly, all concepts for variability in space, time, or both are located
in the problem space (left side of the model). All concepts in the solution space and on the
border of both spaces are unified concepts, which are independent of the involved variabil-
ity dimensions. In the following, we explain the model gradually from left to right, starting
with concepts for variability in space followed by concepts for variability in time. Then, we
introduce concepts for both dimensions. Finally, we conclude with the unified concepts.

Concepts and Relations for Variability in Space The conceptual model represents vari-
ability in space using three concepts: Feature Option (abstract), Feature, and
Constraint.

A Feature Option is an abstract concept with two concrete specializations, one
being the Feature. A Feature represents a configuration option in space that can be
selected or deselected. Example: The PPU involves six Features in total, for example,
Crane or Stack.

Another concept for variability in space is the Constraint. Constraints express
which Feature Options can, must, or must not be selected together. Constraints
can be expressed in various ways, for example, as an arbitrary expression (e.g., a

101 Page 16 of 53 Empir Software Eng (2022) 27: 101

configs*
Configuration

Unified System

Mapping

us us

us us
Fragment

Product

<<derive>>

refs
System Revision

us

Option
*opts

*opts

<<derive>>

Revision

*succs

Constraint

preds*

*constrs

Feature Option

Feature Revision

*opts

Feature
feat

revs**feats

 Problem Space (SPLE) / Version Space (SCM) Solution Space (SPLE) / Product Space (SCM)

*fragments

*

*

**revs
*constrs

enables

enables

Concepts for Variability in Space Concepts for Variability in Time Unified ConceptsConcepts for Variability in Space & Time

Fig. 4 UML class diagram of the conceptual model for unifying concepts for variability in space and time

propositional formula) defined over Feature Options to constrain which combi-
nations of Feature Options are valid. Example: In the PPU, the cross-tree con-
straint ¬OpticalSensor ∨ ¬InductiveSensor of the feature model exemplifies one
Constraint.

Concepts and Relations for Variability in Time The conceptual model covers variability in
time using two concepts: Revision (abstract) and System Revision.

A Revision describes evolution over time and relates to its predecessor and successor
revisions. The structure of multiple directly succeeding and preceding Revisions rep-
resents branches and merges. A Revision is an abstract concept and can be specialized
into a System Revision, which represents the state of the whole system at a particu-
lar point in time. Note that the conceptual model does not enforce a certain notion of time.
Instead, it uses the concept Revision as an abstract representation of time. A concrete
implementation of the concept Revision (i.e., when building a concrete tool as we illus-
trate in Section 8) could employ sequential revision numbers (as SVN does), hashes (as Git
does), real time, wall-clock time (as DarwinSPL does), or any other representation of time.
Example: The PPU example involves revisions at two different points in time. System
Revisions are used to refer to these points in time. Specifically, in the example, we refer
to the earlier state as System Revision 1 and to the later state as System Revision
2, with the latter being a successor of the former.

Concepts and Relations for Variability in Space and Time Concepts for variability in
space and time are hybrid concepts not present in tools focusing solely on one dimension.

A Feature Revision represents variability in space and time as a combination of
Feature Option and Revision. It is another specialization of Feature Option
(next to Feature) and of Revision (next to System Revision). It represents the
state of one particular Feature at one point in time. Example: In the PPU, the modification
of the Feature OpticalSensor in class Stack (cf. Listing 3) can be considered a Feature
Revision of the Feature OpticalSensor in addition to a System Revision of the
entire PPU.

In contrast to a Feature Revision, which is local to a Feature, a System
Revision also determines which Feature Options (i.e., Features and Feature
Revisions) and Constraints are enabled. Example: The System Revision 1

Page 17 of 53 101Empir Software Eng (2022) 27: 101

of the PPU enables the Feature Revision 1 of the Feature OpticalSensor, while
System Revision 2 enables Feature Revision 2 of the FeatureOpticalSensor.

Unified Concepts and Relations While concepts for variability in space and time are only
relevant if both dimensions are involved simultaneously, unified concepts are relevant for
either dimension at all times.

The central concept in the conceptual model is the Unified System. It contains
most other concepts and essentially represents the developed system. Example: In the PPU
example, the Unified System would simply represent the PPU in its entirety.

An Option is a high-level abstraction of any variation in space, time, or both of a
Unified System in the problem space. It manifests either as Feature (variability in
space), System Revision (variability in time), or Feature Revision (both).

A Fragment is the core concept to describe the implementation of a Unified
System. Depending on the granularity and system, a Fragment may be an entire file, a
single element, or a line of text (e.g., in source code, documentation, models, or delta mod-
ules). We specify neither the level of granularity nor the purpose of Fragments to keep
the conceptual model as generic as possible. Example: Every line in a Java file (e.g., in List-
ing 2), the file itself, or the containing folder may represent Fragments, depending on the
implementation of the respective tool.

A Mapping connects Options with Fragments, and thus connects the solution
space (Fragments) and the problem space (Options). A concrete representation of a
mapping can, for example, be an expression (e.g., a propositional formula) over Options.
It is possible that such Mapping expressions only consist of Boolean constants to govern
the presence or absence of Fragments (e.g., core or dead Fragments). Example: Line 2
in Listing 1 represents a Mapping of a Fragment (i.e., the line of code) to Options,
namely MicroSwitch && !InductiveSensor .

The Configuration exists in different forms in both areas, SCM and SPLE (cf.
Section 1). To align both perspectives, we unify its meaning: a Configuration is
a selection of Options used to derive a specific Product. Example: In the PPU, a
Configuration may select the first Feature Revision of the Features Crane
and Stack, and the second Feature Revision of the Feature OpticalSensor.

In contrast to the previous concepts, Products are not contained in the Unified
System. Based on a Configuration, a Product is derived by tool-specific mecha-
nisms (e.g., delta modules) that are part of the tool’s behavior. Such mechanisms specify
which and how Fragments are composed.

6.3 Static Semantics

The expressiveness of UML class diagrams is limited to their static structure and not suf-
ficient to express more complex well-formedness rules. The following additional rules are
needed to also include static semantics of the studied tools in the unified model, which we
identified and collected during interviews and discussions with the tool experts. For exam-
ple, the revision graph in Git must be acyclic. Next, we first introduce auxiliary definitions
that we then use to specify well-formedness rules using OCL (Object Management Group
2014).

Auxiliary Definitions In Listing 4, we specify three auxiliary definitions to simplify
some of the well-formedness rules. The first definition specifies an operation that col-
lects all Options contained in a Unified System. These Options can be System

101 Page 18 of 53 Empir Software Eng (2022) 27: 101

Listing 4 Auxiliary definitions for well-formedness rules

Revisions, Features, and Feature Revisions. The second definition speci-
fies an operation that collects all System Revisions in a Configuration. The
third definition collects all Feature Options in a Configuration, which can be
Features and Feature Revisions.

Well-Formedness The following ten well-formedness rules specify static semantics of
the conceptual model. In particular, these rules are concerned with the revision graph,
the Unified System, and the relationship between Feature Options, System
Revisions, and Constraints. Finally, we specify a well-formedness rule on a
Configuration.

We display the first three rules in Listing 5, which specify the well-formedness of the
revision graph:

Rule 1 ensures that a bidirectional relationship exists between every direct predecessor
and successor of a Revision. Consequently, each direct predecessor of a Revision
r references the Revision r as successor. Equivalently, each direct successor of a
Revision r references r as a predecessor.

Rule 2 ensures that the revision graph must be a directed acyclic graph (DAG). Accord-
ingly, the transitive closure over the successor revisions may not include the Revision
itself.

Rule 3 ensures that a revision graph can only contain Revisions of the same type
(i.e., either System Revisions or Feature Revisions). In other words, a
revision graph is not allowed to intermingle Feature Revisions with System
Revisions. Additionally, all Revisions of a revision graph must be contained in the
same container (i.e., the Unified System for System Revisions or Feature
for Feature Revisions).

In Listing 6, we introduce well-formedness rules that ensure the use of concepts
belonging to the same Unified System:

Rule 4 ensures that all Options in a Configuration must be contained in the
enclosing Unified System. Consequently, there can be no Configuration that
refers to Options that belong to other instances of a Unified System than the
Configuration.

Page 19 of 53 101Empir Software Eng (2022) 27: 101

Listing 5 Well-formedness of the revision graph

Rule 5 ensures that all Fragments and Options in a Mapping must be con-
tained in the enclosing Unified System. Consequently, this rule forbids the use of
Fragments and Options belonging to other instances of a Unified System than
the Mapping.

Rule 6 ensures that all Feature Options in a Constraint must be contained in
the enclosing Unified System. Therefore, there can be no Constraints with
Feature Options belonging to other instances of a Unified System than the
Constraint.

In Listing 7, we introduce well-formedness rules that specify the static semantics of
the enables association between System Revision and Feature Option as well as
between System Revision and Constraint:

Rule 7 ensures that all Feature Options as well as Constraints enabled by a
System Revision must be contained in the enclosing Unified System. There-
fore, there can be no Feature Options and Constraints enabled by a System
Revision belonging to other instances of a Unified System than the System
Revision.

Rule 8 ensures that all Constraints enabled by a System Revision can only
refer to Feature Options enabled by the same System Revision. Conse-
quently, there can be no enabled Constraints that refer to Feature Options
enabled by other System Revisions than the Constraint. This rule, in partic-
ular, refers to tools dealing with variability in space and time with multiple System
Revisions.

101 Page 20 of 53 Empir Software Eng (2022) 27: 101

Listing 6 Well-formedness of containments in a Unified System

Rule 9 ensures that if a System Revision enables a Feature, then it must also
enable a Feature Revision of the same Feature (unless the Feature has no
Feature Revisions). Consequently, if a Feature is enabled, then at least one of
its Feature Revisions must also be enabled. This rule, in particular, refers to tools
dealing with variability in space and time using System Revisions and Feature
Revisions.

Finally, we specify the static semantics for the well-formedness of a Configuration
in Listing 8:

Rule 10 ensures that, if a Configuration refers to at least one System Revision,
then it may only refer to Feature Options that are enabled by at least one of these
System Revisions. Note, that if Configuration does not refer to any System
Revisions, then all Feature Options are enabled.

7 Validation

In this section, we describe our validation of the unified conceptual model. The validation
comprises a qualitative analysis based on a questionnaire, and a quantitative analysis based
on metrics. In addition, we performed a formal concept analysis (FCA) that provides a
comprehensive visualization of relations between the tools on the one hand and the concepts
and relations of the conceptual model on the other hand. Our analysis methods allow us to
answer research questions that we derived from the following research goals.

Page 21 of 53 101Empir Software Eng (2022) 27: 101

Listing 7 Well-formedness of the enables relations of System Revision

Goals The goal of the conceptual model is to cover and unify concepts and their relations
that cope with variability in space, time, and both, based on the selected tools. Therefore,
we consider the following two properties of the conceptual model:

Granularity: The granularity of the concepts in the conceptual model should be appropri-
ate, that is not unnecessarily fine-grained, but also not too coarse-grained.

Coverage: The conceptual model should cover all concepts needed to describe the
selected tools coping with variability in space, time, and both, yet no more than that.

Research Questions Based on the two properties, we defined two research questions:

1. Is the conceptual model of appropriate granularity? That is, are its concepts too fine-
grained or too coarse grained?

2. Is the conceptual model of appropriate coverage? That is, are there any unused or
missing concepts?

Answering these two research questions allows us to reason about the granularity and
coverage of the conceptual model.

Process In Fig. 5, we display our process for validating the unified conceptual model,
which was consecutive to the construction process we presented in Fig. 3. Step repre-
sents a qualitative analysis based on expert questionnaires, which we explain in Section 7.1.
Step involves a quantitative analysis based on metrics, as we describe in Section 7.2.

101 Page 22 of 53 Empir Software Eng (2022) 27: 101

Listing 8 Well-formedness of Configuration

7.1 Qualitative Analysis

We performed a qualitative analysis based on questionnaires completed by tool experts (cf.
Step in Fig. 5) to map constructs, relations, and well-formedness rules of their tools to
the concepts, relations, and well-formedness rules of the unified conceptual model.

Expert Questionnaire Since all tool experts were familiar with the mapping procedure
after our interviews (cf. Section 5.2), we refrained from employing explicit interviews again.
Instead, we provided questionnaires for mapping tools to the conceptual model. Each ques-
tionnaire comprised three parts and was structured similarly to the interview guide. The first
part introduced the unified conceptual model and definitions of the involved concepts and
relations. The second part asked whether each concept and relation of the conceptual model
maps to constructs and relations of the respective tool, also taking into account unmapped
constructs and the name of each tool construct. The third part listed and explained the well-
formedness rules and asked for each rule whether it is satisfied by construction, enforced,
evaluated, not covered, or not applicable.

ValidationMapping As one aspect, our validation mappings covered the terminology used
in the tools and the unified conceptual model. To obtain the mappings, we first had to
identify relevant constructs in each tool and obtain an understanding of their semantics.
We created each mapping based on the semantic equivalence of model concepts and tool
constructs, not trivially based on name equivalence. This was necessary, since some tools

Validation
Expert

Questionnaires

Unified
Conceptual

Model

Validation
Mapping

Metric Results

+
5 6

Fig. 5 Validation process of the unified conceptual model

Page 23 of 53 101Empir Software Eng (2022) 27: 101

use the same term for constructs that represent different concepts in the model. Note that we
performed the mappings on the conceptual level of the tools (considering their semantics
and expressiveness), and not on the implementation level. Moreover, we did not consider
the abstract concepts (Option and Revision), since they cannot be instantiated.

Results In Table 1, we show the mapping of concepts of the conceptual model to respective
tool constructs. All tools incorporate constructs for five concepts: Fragment, Product,
Unified System, Mapping, and Configuration. However, these constructs differ
considerably between the tools. For example, a Fragment in Git is a Blob (file con-
tent) or a Tree Object (directory). In SVN, these constructs are called File Node
and Directory Node, respectively. FeatureIDE and pure::variants manage Fragments
as so-called Assets that are processed by an external composer. ECCO and Super-
Mod use the similarly generic terms Artifact and Product Element, respectively.
All delta-oriented tools use the same types of Fragments: Core Model and Delta
Module.

For some model concepts, the terms used for the respective tool constructs are almost
uniform. Particularly for the concepts Product and Configuration, six and seven out
of the ten tools use the same term. Still, three different terms are used for Product and
five for Configuration across all tools. This shows that, even for the concepts with the
highest consensus regarding terminology, there is still some variance.

In some cases, tools use the same term for constructs that represent different model
concepts. For example, the construct Variant in VaVe maps to the concept Feature, the
construct Variant in ECCO maps to the concept Product, and the concept Variant
in FeatureIDE maps to the concept Configuration. This also shows that, even within
the SPLE area, the same terms are used to represent different concepts.

Moreover, the mapping shows that the concepts we introduced particularly for variability
in space or time align with the corresponding tools: Git and SVN manage only variabil-
ity in time using System Revisions. Similarly, FeatureIDE, pure::variants, and SiPL
manage only variability in space using the concepts of Features and Constraints.
The remaining tools involve the concepts Features and Constraints in addition
to System Revision or Feature Revision to incorporate variability in time.
Interestingly, none of the tools covering both variability dimensions considers System
Revision and Feature Revision at the same time.

In every tool, a Mapping connects Fragments and Options (i.e., Features,
Feature Revisions, and System Revisions). In tools that cover only variabil-
ity in time (i.e., Git and SVN), the mapping is rather trivial since it maps only a System
Revision to a number of Fragments in a tree structure. Tools that (additionally) con-
sider variability in space require more complex Mappings, since they need to deal with
Features.

In Table 2, we show the mapping of relations of the conceptual model to respective
relations in the tools. While all tool constructs map to a concept in the conceptual model,
there are relations in some tools that are not represented by the conceptual model. More
specifically, Git and ECCO include a relation called Remote, allowing a repository (i.e.,
Unified System) to refer to other repositories. This relation exists due to the distributed
nature of these tools. It is not connected to the dimensions of space and time, which is why
we did not incorporate it in the conceptual model for now.

In Table 3, we show the mapping of the well-formedness rules of the conceptual model
to each tool. We indicate whether a rule is satisfied by construction (), enforced (), eval-
uated but not enforced (), not evaluated (), or does not apply (–). A rule is satisfied by

101 Page 24 of 53 Empir Software Eng (2022) 27: 101

Ta
bl
e
1

Va
li
da
ti
on

M
ap
pi
ng
:
R
es
ul
ts
of

m
ap
pi
ng

th
e
co
ns
tr
uc
ts
of

ea
ch

to
ol

to
th
e
co
nc
ep
ts
in

th
e
co
nc
ep
tu
al
m
od
el

F
ea

tu
re

ID
E

pu
re

::v
ar

ia
nt

s
S

iP
L

S
V

N
G

it
E

C
C

O
S

up
er

M
od

D
el

ta
E

co
re

D
ar

w
in

S
P

L
V

aV
e

Fr
ag
m
en
t(

F
T
)

A
ss
et

A
ss
et

C
or
e
M
od

el
,

D
el
ta

M
od

ul
e

Fi
le

N
od
e,

D
ir
ec
to
ry

N
od
e

B
lo
b,

T
re
e

O
bj
ec
t

A
rt
if
ac
t

Pr
od
uc
t

E
le
m
en
t

C
or
e
M
od

el
,

D
el
ta
M
od
ul
e

C
or
e
M
od

el
,

D
el
ta
M
od
ul
e

C
or
e
M
od

el
,

D
el
ta
M
od
ul
e

Pr
od
uc
t(

P
)

Pr
od
uc
t

V
ar
ia
nt

Pr
od
uc
t

W
or
ki
ng

C
op
y

W
or
ki
ng

C
op
y

V
ar
ia
nt

Pr
od
uc
t

Pr
od
uc
t

Pr
od
uc
t

Pr
od
uc
t

U
ni
fi
ed

Sy
st
em

(U
S
)

Pr
od
uc
t

L
in
e

Pr
od
uc
t

L
in
e

Pr
od
uc
t

L
in
e

R
ep
os
ito

ry
R
ep
os
ito

ry
R
ep
os
ito

ry
R
ep
os
ito

ry
Pr
od

uc
t

L
in
e

Pr
od
uc
t

L
in
e

Sy
st
em

M
ap
pi
ng

(M
)

M
ap
pi
ng

1
R
es
tr
ic
tio

n
A
pp

lic
at
io
n

C
on

di
tio

n
T
re
e
O
bj
ec
t

T
re
e
N
od
e

A
ss
oc
ia
tio

n
M
ap
pi
ng

1
M
ap
pi
ng

M
od
el

M
ap
pi
ng

M
od
el

M
ap
pi
ng

1

Fe
at
ur
e
(F

)
Fe
at
ur
e

Fe
at
ur
e

Fe
at
ur
e

–
–

Fe
at
ur
e

Fe
at
ur
e

Fe
at
ur
e

Fe
at
ur
e

V
ar
ia
nt

Sy
st
em

R
ev
is
io
n
(S

R
)

–
–

–
R
ev
is
io
n

C
om

m
it

–
R
ev
is
io
n

–
Te
m
po

ra
l

V
al
id
ity

–

Fe
at
ur
e
R
ev
is
io
n
(F

R
)

–
–

–
–

–
R
ev
is
io
n

–
V
er
si
on

–
V
er
si
on

C
on

fi
gu

ra
tio

n
(C

)
V
ar
ia
nt
,

C
on

fi
gu

ra
tio

n
C
on
fi
gu
ra
tio

n
C
on
fi
gu
ra
tio

n
R
ev
is
io
n

C
om

m
it

C
on
fi
gu
ra
tio

n
C
ho
ic
e

C
on
fi
gu
ra
tio

n
C
on
fi
gu
ra
tio

n
C
on
fi
gu
ra
tio

n1

C
on

st
ra
in
t(

C
T
)

C
on

st
ra
in
t

C
on

st
ra
in
t,

R
el
at
io
n

C
on
st
ra
in
t

–
–

–
D
ep
en
de
nc
y

C
on
st
ra
in
t

C
on
st
ra
in
t

C
on
st
ra
in
t

1
T
he

co
nc
ep
ti
s
pa
rt
of

th
e
co
nc
ep
tu
al
le
ve
lw

ith
ou
ta
n
ex
pl
ic
it
co
ns
tr
uc
to

n
im

pl
em

en
ta
tio

n
le
ve
l

Page 25 of 53 101Empir Software Eng (2022) 27: 101

Ta
bl
e
2

Va
li
da
ti
on

M
ap
pi
ng
:
R
es
ul
ts
of

m
ap
pi
ng

th
e
re
la
tio

ns
in

ea
ch

to
ol

to
th
e
re
la
tio

ns
in

th
e
co
nc
ep
tu
al
m
od
el

R
el
at
io
n

To
ol

F
ea

tu
re

ID
E

pu
re

::v
ar

ia
nt

s
S

iP
L

S
V

N
G

it
E

C
C

O
S

up
er

M
od

D
el

ta
E

co
re

D
ar

w
in

S
P

L
V

aV
e

Fr
ag
m
en
th

as
*
Fr
ag
m
en
t

M
ap
pi
ng

ha
s
*
Fr
ag
m
en
t

C
on
fi
gu
ra
ti
on

ha
s
*
O
pt
io
n

U
ni
fi
ed

Sy
st
em

ha
s
*
Fr
ag
m
en
t

U
ni
fi
ed

Sy
st
em

ha
s
*
M
ap
pi
ng

U
ni
fi
ed

Sy
st
em

ha
s
*
C
on
st
ra
in
t

–
–

–

U
ni
fi
ed

Sy
st
em

ha
s
*
Fe

at
ur
e

–
–

U
ni
fi
ed

Sy
st
em

ha
s
*
Sy

st
em

R
ev
is
io
n

–
–

–
–

–
–

U
ni
fi
ed

Sy
st
em

ha
s
*
C
on
fi
gu
ra
ti
on

–
–

–
–

M
ap
pi
ng

ha
s
*
O
pt
io
n

Fe
at
ur
e
ha
s
*
Fe

at
ur
e
R
ev
is
io
n

–
–

–
–

–
–

–

C
on
st
ra
in
th

as
*
Fe

at
ur
e
O
pt
io
n

–
–

–

S
ys
te
m

R
ev
is
io
n
en
ab
le
s
*
Fe

at
ur
e
O
pt
io
n

–
–

–
–

–
–

–
–

Sy
st
em

R
ev
is
io
n
en
ab
le
s
*
C
on
st
ra
in
t

–
–

–
–

–
–

–
–

R
ev
is
io
n
ha
s
*
Su

cc
es
so
r
an
d
*
Pr
ed
ec
es
so
r

–
–

–
–

yrotisope
R

–
–

–
–

deppa
mn

U
re
fe
rs

to
*

R
ep
os
it
or
y

R
ep
os
it
or
y

re
fe
rs

to
*

R
ep
os
it
or
y

–
–

–
–

T
he

re
la
tio

ns
ar
e
id
en
tic
al
.

T
he

ca
rd
in
al
ity

of
th
e
re
la
tio

n
in

th
e
co
nc
ep
tu
al
m
od
el
is
le
ss

re
st
ri
ct
iv
e
th
an

th
e
ca
rd
in
al
ity

of
th
e
re
la
tio

n
in

th
e
to
ol

101 Page 26 of 53 Empir Software Eng (2022) 27: 101

Table 3 Validation Mapping: Results of mapping the well-formedness rules of the conceptual model to each
tool

The rule is satisfied by construction. The rule is enforced at all times. The rule is evaluated, but not
enforced. The rule is neither evaluated nor enforced. – The rule does not apply

construction, if a tool guarantees the respective well-formedness rule at any time and no
check is necessary. For instance, the tools SVN and Git satisfy Rule 3 (all Revisions
of a revision graph must be of the same type and have the same container) by construc-
tion, since they have only one type of revision (i.e., System Revision) and only one
type of container (i.e., Unified System alias Repository). A rule is enforced at
all times, if a tool guarantees the fulfillment of the respective well-formedness rule by
means of checks. If a check detects a violation of the rule, the system either prohibits the
change upfront or repairs its state. For instance, DeltaEcore satisfies Rule 4 (all Options
in a Configuration must be contained in the Unified System) by evaluating and
enforcing the well-formedness of a configuration upon saving it. Another example is ECCO,
which adds any not yet existing Feature Option of the Configuration to the repos-
itory instead of prohibiting it. A rule is evaluated but not enforced, if a tool checks whether
the rule is satisfied, but does not take or require any immediate action in case it is not. For
instance, pure::variants evaluates Rule 5 (all Fragments and Options in a Mapping
must be contained in the Unified System), but allows to import external Fragments.
Furthermore, a rule can be neither evaluated nor enforced. For instance, the tool FeatureIDE
neither checks nor enforces Rule 5. In the case of an annotation-based composer, there can
be feature annotations in the source code that do not appear in the feature model. Finally, a
rule does not apply, if concepts or relations it refers to do not exist in a tool. For instance,
for FeatureIDE, pure::variants, and SiPL, Rules 1–3 and 7–10 do not apply, since these tools
deal with variability in space only.

We can see in Table 3 that tools differ substantially with regard to the well-formedness
rules. In particular, SuperMod satisfies most of the rules by construction, due to its meta-
model and the product-wise editing process: First, SuperMod maintains a sequence of
revisions and not a revision graph, allowing only up to one predecessor or successor per
revision. A new revision receives a unique revision number and is added to its direct
predecessor, which ensures Rule 1 and Rule 2. Second, SuperMod consists of System
Revisions only, because explicit Feature Revisions are not modeled, which par-
tially ensures Rule 3. Third, a repository does not allow mixing its contained constructs

Page 27 of 53 101Empir Software Eng (2022) 27: 101

with another repository, since the local workspace can be populated with one product of one
repository only, which ensures Rules 3–7. Lastly, the development process ensures that a
System Revision is selected first, followed by selecting Features that are visible in
this revision. In addition, Mappings for each Fragment in the repository are computed
and updated upon each commit to the local workspace, consequently satisfying Rule 8 and
Rule 10. DarwinSPL, which also uses System Revisions, achieves similar mapping
results. Still, in contrast to SuperMod, it does enforce most rules. Furthermore, we observe
for all tools that either all or none of the three rules regarding the well-formedness of the
revision graph are satisfied (i.e., Rules 1–3). This could be due to the fact that internal oper-
ations satisfy these rules by construction and are immutable for users. Finally, Rule 9 is not
satisfied by any of the selected tools. This is because no tool implements both Feature
Revisions and System Revisions.

7.2 Quantitative Analysis

We performed a quantitative analysis using metrics (cf. Step 6 in Fig. 5) to quantify how
well the conceptual model fits the selected tools based on the validation mapping.

Metrics We adapted the framework for language evaluation proposed by Guizzardi et al.
(2005) that introduces the properties laconic, lucid, complete, and sound. For our valida-
tion, we extended these properties to metrics ranging from 0 to 1 to measure the degree to
which these properties hold for a given model and tool. The metrics laconicity and lucid-
ity assess the granularity of concepts of the conceptual model (RQ1), whereas completeness
and soundness assess its coverage of concepts (RQ2). In Fig. 6, we provide a graphical
overview of the four metrics. We define each metric for a conceptual model M and a tool T
contained in the set of selected tools T . The model M is a set of model concepts m ∈ M .
For our conceptual model with the concepts Fragment (FT), Product (P), Unified
System (US), Mapping (M), Feature (F), System Revision (SR), Feature
Revision (FR), Configuration (C), and Constraint (CT), we have

M = {FT, P,US, M,F, SR, FR, C,CT }

Fig. 6 Overview of the metrics we adapted from Guizzardi et al. (2005). Model refers to the conceptual
model and tool refers to a tool’s model

101 Page 28 of 53 Empir Software Eng (2022) 27: 101

A tool T ∈ T is a set of tool constructs t ∈ T . For simplicity, we consider relations as
concepts and constructs, too. RM

T ⊆ M × T denotes the set of mappings of concepts in M

to constructs in T , which we show in Tables 1 and 2.
A tool’s construct t is laconic, iff it implements at most one concept m of the conceptual

modelM . Laconicity ∈ [0..1] (higher is better) is then the fraction of laconic tool constructs.
Low laconicity indicates that concepts of the conceptual model may be too fine-grained,
i.e., there are redundant concepts in the model that should be merged. In Fig. 6a, all four
tool constructs are laconic, leading to a laconicity of 1. In Fig. 6e, only two out of three tool
constructs are laconic, leading to a laconicity of 0.67.

laconic(M, T , t) =
{
1 if |{m | (m, t) ∈ R

M
T }| ≤ 1

0 otherwise

laconicity(M, T) =
∑

t∈T laconic(M, T , t)

|T |

As an example, consider the tool Git, which implements six constructs, yielding the
set TGit = {Blob,Tree Object,Working Copy,Repository,Tree Node,Commit}. Accord-
ing to the concept mapping in Table 1, two model concepts (System Revision and
Configuration) are implemented by the same construct in Git (Commit). The model
concepts that do not map to any construct in Git (i.e., Feature, Feature Revision,
and Constraint) do not affect the metric. The laconicity for Git (only considering
concepts and not relations) is thus fairly high, albeit not perfect:

laconicityGit(M, TGit) = 1 + 1 + 1 + 1 + 1 + 0

6
= 5

6
= 0.833

A model’s concept m is lucid, iff it is implemented by at most one construct t of a tool T .
Lucidity ∈ [0..1] (higher is better) is then the fraction of lucid model concepts. Low lucidity
indicates that concepts of the conceptual model may be too coarse-grained, meaning that
there are unspecific concepts in the model that should be split up. In Fig. 6b, all four model
concepts are lucid, leading to a lucidity of 1. In Fig. 6f, only two out of three model concepts
are lucid, leading to a lucidity of 0.67.

lucid(M, T ,m) =
{
1 if |{t | (m, t) ∈ R

M
T }| ≤ 1

0 otherwise

lucidity(M, T)∗ =
∑

m∈M lucid(M, T , m)

|M|

As an example, consider again Git. The model concept Fragment is implemented by two
constructs in Git (Blob and Tree Object). All other model concepts are either imple-
mented by exactly one tool construct or by no tool construct. The lucidity of the model with
respect to Git (considering only concepts, not relations) is also fairly high, but not perfect:

lucidityGit(M, TGit) = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

9
= 8

9
= 0.889

Page 29 of 53 101Empir Software Eng (2022) 27: 101

A tool’s construct t is complete, iff it is represented by at least one concept m in the con-
ceptual model M . Completeness ∈ [0..1] (higher is better) is then the fraction of complete
tool constructs. Low completeness indicates that the conceptual model may be missing con-
cepts that should be added. In Fig. 6c, all three tool constructs are complete, leading to a
completeness of 1. In Fig. 6g, only two out of three tool constructs are complete, leading to
a completeness of 0.67.

complete(M, T , t) =
{
1 if |{m | (m, t) ∈ R

M
T }| ≥ 1

0 otherwise

completeness(M, T) =
∑

t∈T complete(M, T , t)

|T |

In the example of Git, according to the concept mapping in Table 1, there are no con-
structs in Git that do not map to any model concept. All six of its constructs can be mapped
to at least one model concept, namely to the concepts Fragment, Product, Unified
System, Mapping, System Revision, and Configuration. The completeness
for Git (considering only concepts) is therefore ideal:

completenessGit(M, TGit) = 1 + 1 + 1 + 1 + 1 + 1

6
= 6

6
= 1.0

A model’s concept m is sound, iff it is implemented by at least one construct t in the
tool T . Soundness ∈ [0..1] (higher is better) is then the fraction of sound model con-
cepts. Low soundness indicates that the conceptual model may include unused concepts that
should be removed. In Fig. 6d, all three model concepts are sound, leading to a soundness
of 1. In Fig. 6h, only two out of three model concepts are sound, leading to a soundness
of 0.67.

sound(M, T ,m) =
{
1 if |{t | (m, t) ∈ R

M
T }| ≥ 1

0 otherwise

soundness(M, T) =
∑

m∈M sound(M, T , m)

|M|

Regarding Git, out of the nine model concepts, only six (i.e., Fragment, Product,
Unified System, Mapping, System Revision, Configuration) are imple-
mented by at least one construct in Git according to the concept mapping in Table 1.
Thus, the soundness of the model with respect to Git (considering only concepts) is
fairly low:

soundnessGit(M, TGit) = 1 + 1 + 1 + 1 + 0 + 1 + 0 + 1 + 0

9
= 6

9
= 0.667

Finally, we generalize each metric from a single tool T to a finite set of tools T to get
a holistic measure over all tools, reflecting the goal of our unification. For laconicity and
completeness, this generalization is straightforward, since these metrics are based on the
assessment of the properties laconic and complete with respect to the conceptual model. For
lucidity and soundness, we define how to assess the properties lucid and sound with respect

101 Page 30 of 53 Empir Software Eng (2022) 27: 101

to a set of tools as follows.3 A model concept m is lucid, if it is lucid in all tools T ∈ T . A
model concept m is sound, if it is sound in at least one tool T ∈ T .

laconicity(M,T) = laconicity
(
M,

⋃
T ∈T

T
)

lucidity(M,T) =
∑

m∈M

(
minT ∈T lucid(M, T , m)

)
|M|

completeness(M,T) = completeness
(
M,

⋃
T ∈T

T
)

soundness(M,T) =
∑

m∈M

(
maxT ∈T sound(M, T , m)

)
|M|

Results In Table 4, we display the values for the four metrics (columns) per tool (rows),
separated by concepts and relations that belong to space, time, both, and the unified dimen-
sion. Each row contains the percentage as well as the absolute number of conceptual model
concepts and relations (in case of lucidity and soundness) or tool constructs and relations
(in case of laconicity and completeness) that satisfy the condition for each metric. For all
investigated tools, most metric results for laconicity, lucidity, and completeness are close to
100%. For instance, the conceptual model is 96% lucid with respect to Git, because the con-
cept Fragment does not satisfy the condition for lucidity, which is represented by the two
constructs Blob and Tree Object. The soundness values are generally lower, because
no tool implements all concepts and relations.

In Table 5, we aggregate the results for all tools. We show the four metrics (columns) for
concepts/constructs and relations as well as the different dimensions (rows). The concep-
tual model is not laconic, due to two constructs: Commit in Git and Revision in SVN
each represent both, the System Revision and the Configuration. While the map-
ping of System Revision to Commit/Revision is straightforward, the mapping to
Configuration is debatable, since a configuration in Git and SVN does not explicitly
exist (as these tools have no constructs for variability in space) and would trivially only con-
sist of a single Commit/Revision. Considering completeness, the two aforementioned
relations (self-relating repositories in Git and ECCO) are not mapped. In contrast to the
soundness values of individual tools, the conceptual model is entirely sound in the aggrega-
tion, because every concept of the model is implemented by at least one construct in at least
one tool.

7.3 Formal Concept Analysis

We performed a FCA (Ganter and Wille 1999; Ganter et al. 2005) to further explore and
broaden our understanding of commonalities and differences between tools that deal with
variability in space, time, and both. FCA is an algebraic theory for data analysis that
defines a hierarchical relationship in the form of a concept lattice based on objects and
their attributes specified in an input matrix. To perform the FCA, we used the same data
as for computing the metrics, specifically the mappings between model concepts and tool
constructs, and model relations and tool relations we described in Section 7.1. While the
metrics are a quantitative representation of how each tool relates to the conceptual model,

3We do not treat constructs that map to the same concept as equivalent (i.e., constructs mapping to the same
concept do not form an equivalence class). Tool constructs are therefore unique (i.e., for all S, T ∈ T with
S 	= T it holds that S ∩ T = ∅).

Page 31 of 53 101Empir Software Eng (2022) 27: 101

Table 4 Metric Results for each tool individually

for laconicity lucidity completeness soundness

FeatureIDE Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time - (0/0) 100% (3/3) - (0/0) 0% (0/3)

Both - (0/0) 100% (4/4) - (0/0) 0% (0/4)

Unified 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)

Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)

pure:: variants Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time - (0/0) 100% (3/3) - (0/0) 0% (0/3)

Both - (0/0) 100% (4/4) - (0/0) 0% (0/4)

Unified 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)

Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)

SiPL Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time - (0/0) 100% (3/3) - (0/0) 0% (0/3)

Both - (0/0) 100% (4/4) - (0/0) 0% (0/4)

Unified 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)

Total 100% (16/16) 96% (23/24) 100% (16/16) 71% (17/24)

SVN Space - (0/0) 100% (5/5) - (0/0) 0% (0/5)

Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

Both - (0/0) 100% (4/4) - (0/0) 0% (0/4)

Unified 92% (11/12) 92% (11/12) 100% (12/12) 100% (12/12)

Total 93% (14/15) 96% (23/24) 100% (15/15) 63% (15/24)

Git Space - (0/0) 100% (5/5) - (0/0) 0% (0/5)

Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

Both - (0/0) 100% (4/4) - (0/0) 0% (0/4)

Unified 92% (12/13) 92% (11/12) 92% (12/13) 100% (12/12)

Total 94% (15/16) 96% (23/24) 94% (15/16) 63% (15/24)

ECCO Space 100% (2/2) 100% (5/5) 100% (2/2) 40% (2/5)

Time - (0/0) 100% (3/3) - (0/0) 0% (0/3)

Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unified 100% (12/12) 100% (12/12) 92% (11/12) 100% (12/12)

Total 100% (16/16) 100% (24/24) 94% (15/16) 67% (16/24)

SuperMod Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unified 100% (11/11) 100% (12/12) 100% (11/11) 100% (12/12)

Total 100% (21/21) 100% (24/24) 100% (21/21) 92% (22/24)

DeltaEcore Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)

Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unified 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)

Total 100% (20/20) 96% (23/24) 100% (20/20) 79% (19/24)

101 Page 32 of 53 Empir Software Eng (2022) 27: 101

Table 4 (continued)

for laconicity lucidity completeness soundness

DarwinSPL Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unified 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)

Total 100% (22/22) 96% (23/24) 100% (22/22) 92% (22/24)

VaVe Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)

Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unified 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)

Total 100% (19/19) 96% (23/24) 100% (19/19) 79% (19/24)

the FCA provides a graphical representation of how the tools relate to each other in addition
to how each tool relates to the conceptual model. Consequently, the visualization of the FCA
provides a comprehensible overview of commonalities and differences between the tools.

In Fig. 7, we show the concept lattice between the objects (i.e., tools) and attributes (i.e.,
concepts of the conceptual model). Each node represents a pair of a set of tools and a set
of concepts. If the upper semicircle of a node is filled blue, there is at least one concept
attached to this node. If the lower semicircle of a node is filled black, there is at least one
tool attached to this node. We highlight all edges based on the coloring of concepts in the
conceptual model, namely concepts for variability in space (green), concepts for variability
in time (orange), concepts for variability in both dimensions (purple), and unified concepts
(black instead of white). Reading the concept lattice from top to bottom, edges that lead to
nodes that have a colored concept attached have the same color. Edges that leave a node that
has both green and orange edges as input are colored in purple (i.e., orange and green merge

Table 5 Metric Results over all tools

Kind for laconicity lucidity completeness soundness

Concepts/Constructs Space 100% (15/15) 100% (2/2) 100% (15/15) 100% (2/2)

Time 100% (4/4) 100% (1/1) 100% (4/4) 100% (1/1)

Both 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Unified 96% (48/50) 80% (4/5) 100% (50/50) 100% (5/5)

Total 97% (70/72) 89% (8/9) 100% (72/72) 100% (9/9)

Relations Space 100% (22/22) 100% (3/3) 100% (22/22) 100% (3/3)

Time 100% (10/10) 100% (2/2) 100% (10/10) 100% (2/2)

Both 100% (7/7) 100% (3/3) 100% (7/7) 100% (3/3)

Unified 100% (68/68) 100% (7/7) 97% (66/68) 100% (7/7)

Total 100% (107/107) 100% (15/15) 98% (105/107) 100% (15/15)

All Space 100% (37/37) 100% (5/5) 100% (37/37) 100% (5/5)

Time 100% (14/14) 100% (3/3) 100% (14/14) 100% (3/3)

Both 100% (10/10) 100% (4/4) 100% (10/10) 100% (4/4)

Unified 98% (116/118) 92% (11/12) 98% (116/118) 100% (12/12)

Total 99% (177/179) 96% (23/24) 99% (177/179) 100% (24/24)

Page 33 of 53 101Empir Software Eng (2022) 27: 101

Unified System
Configuration
Fragment
Mapping
Product

SVN
Git

System Revision

SiPL
p::v
FeatureIDE

Conceptual Model

ECCO

DarwinSPL
SuperMod

VaVe
DeltaEcore

Constraint

Feature Revision

Feature

Concept Node

Tool Node

Fig. 7 FCA of tools based on conceptual model concepts

to purple). Likewise, edges that have at least one purple edge as input are colored in purple
(i.e., purple always remains purple). We can see that nodes and edges on the left represent
variability in time, those in the middle represent variability in space, and those at the bottom
and on the right represent variability in space and time. Initially, nodes for space and time
remain separate until they eventually merge when they get closer to the conceptual model.

The top node of the lattice represents the concepts that are common to all tools (i.e.,
Unified System, Configuration, Fragment, Mapping, and Product). The
bottom node of the lattice represents the conceptual model. From the concept lattice, we
can learn two things: First, how closely tools are related to the conceptual model and which
concepts differ. Second, we can see how closely tools are related to each other. We can see
that there is no tool involving all concepts of the conceptual model. The four closest tools to
the conceptual model are DarwinSPL, SuperMod, VaVe, and DeltaEcore. Additionally, the
tools are grouped according to the variability dimensions they deal with, namely variability
in time (i.e., SVN, Git), variability in space (i.e., SiPL, pure::variants, FeatureIDE), and both.
In the last case, tools are grouped based on whether they use System Revisions (i.e.,
DarwinSPL, SuperMod) or Feature Revisions (i.e., VaVe, DeltaEcore). ECCO is an
exception, because it is the only tool that deals with variability in space and time, but has
no Constraints. While we could derive these observations from the mapping in Table 1
and metric results in Table 4, the concept lattice provides a comprehensive overview of the
commonalities and differences between tools and the conceptual model.

In Fig. 8, we display the concept lattice between the tools and the concepts and rela-
tions of the conceptual model (as opposed to Fig. 7, where we considered only concepts as
attributes). To reduce the visual overhead, we omit the concept labels. This representation
allows to further distinguish tools that do not differ regarding the concepts used, but that
differ with respect to the relations they employ. In summary, there are six relations that are
common to all tools. Nodes and edges on the top left represent unified concepts and rela-
tions, while nodes and edges on the bottom right combine variability in space and time.

101 Page 34 of 53 Empir Software Eng (2022) 27: 101

Unified System has * Fragment
Unified System has * Mapping
Mapping has * Fragment
Mapping has * Option
Configuration has * Option
Fragment has * Fragment

Revision has * Succ. and * Pred.

Unified System has * Configuration

p::v
FeatureIDE

Unified System has * System Revision

SVN
Git

DarwinSPL

Conceptual Model

DeltaEcore

SuperMod

VaVe

 System Revision enables * Feature Option
 System Revision enables * Constraint

ECCO

 Feature has * Feature Revision

SiPL

Constraint has * Feature Option
Unified System has * Constraint

Concept Node

Tool Node

Unified System has * Feature

Fig. 8 FCA of tools based on conceptual model concepts and relations

In between, nodes and edges for variability in space and time remain separate until they
eventually merge as they get closer to the conceptual model.

We can see that DarwinSPL and DeltaEcore are actually closest to the conceptual
model. Furthermore, all tools that involve Features, Constraints, and System
Revisions also have relations where System Revisions enable Constraints
and Feature Options. Consequently, tools that deal only with variability in time, such
as SVN and GIT, involve System Revisions, but no Features or Constraints—
which is why enable-relations do not exist in these tools.

7.4 Discussion

In the following, we discuss the validation results based on our research questions.

RQ1: Is the conceptual model of appropriate granularity? We answer this question
based on laconicity and lucidity. The laconicity values indicate that the concepts System
Revision and Configuration are unnecessarily fine-grained with respect to the tools
Git and SVN (both deal only with variability in time), because a System Revision
is synonymous to a Configuration. Still, merging both concepts is not desirable for
any tool that deals with variability in space, since a Configuration is no longer a sin-
gle System Revision, but a set of Features. The lucidity values indicate that the
concept Fragment is too coarse-grained with respect to six tools and could be split up.
Taking a closer look, the low value results from different levels of abstraction used in
the tools. For example, ECCO and SuperMod align well with their abstract representation
of Fragments. In contrast, other tools interpret Fragments more specifically, such as
delta-oriented tools (e.g., DeltaEcore, SiPL), where the tool experts consider a Fragment
to be represented by a Core Model and Delta Modules. These cases result in lower
lucidity. However, the reduction in lucidity is desired, since we intended to avoid that the

Page 35 of 53 101Empir Software Eng (2022) 27: 101

conceptual model becomes too tool-specific, and thus limited to specific techniques, which
would cause lower laconicity.

In summary, the results show that the conceptual model is of appropriate granularity. No
concepts should be merged (i.e., generalized). Also, no concepts can be split up (i.e., made
more specific) without becoming too tool-specific (e.g., splitting Fragment into Blob
and Tree Object), and thus leading to worse values for other metrics.

RQ2: Is the conceptual model of appropriate coverage? We answer this question based
on completeness and soundness. The completeness values indicate that the Remote relation
of two of the tools is missing in the model and may be added (i.e., Repository refers
to * Repository). The soundness values per tool are rather low. This is due to the fact
that the conceptual model aims to cover concepts and relations of all tools coping with vari-
ability in space, time, and both. Consequently, the conceptual model shows lower soundness
with respect to tools implementing only one of these dimensions. This fact is highlighted
by the aggregated values in Table 5, confirming that every concept in the conceptual model
is needed in at least one tool, and thus there are actually no unused concepts/relations in the
conceptual model.

Altogether, the results show that the conceptual model achieves high coverage. There is
no unused concept or relation. Moreover, no concepts are missing. Only relations related
to distributed development are not (yet) represented in the conceptual model. In fact, the
addition of a Unified System refers to * Unified System relation is the
only remaining change to the model that would yield an overall improvement in metric
values.

7.5 Threats to Validity

One threat to the construct validity is the level of abstraction at which we mapped tool con-
structs to model concepts. We performed this mapping on the conceptual level, not on the
implementation level. However, it is not always obvious which tool constructs constitute
the conceptual level. For example, FeatureIDE implements the concept Constraint with
multiple constructs that are quite specific to feature models, such as mandatory child or alter-
native group. In such cases, we chose the overarching parent constructs (in this example, the
Constraint) as a representative and did not consider the more specific constructs. Inter-
estingly, this was also the level of abstraction on which the tool experts tended to answer the
questionnaires. Generally, we took the answers in the questionnaires as literally as possible
with a minimum amount of interpretation and adjustment of the level of abstraction.

A threat to the construct and external validity is whether the selected tools are represen-
tative for both, SPLE and SCM. We argue that our tool selection covers a representative
body of existing tools from both areas. Furthermore, the tools are diverse: Every variabil-
ity dimension (and combinations) is represented by at least two tools (i.e., tools only for
variability in space, variability in time, both with System Revisions, and both with
Feature Revisions). This way, we mitigated bias and local optimizations towards
particular tools.

A potential threat to the internal validity is that some tool experts are authors of this
article, which could introduce bias towards their tools. However, involving experts is a rec-
ommendation for building conceptual models (Ahlemann and Riempp 2008). We aimed
to mitigate this threat by involving further external researchers into the discussions on the
model construction.

101 Page 36 of 53 Empir Software Eng (2022) 27: 101

Finally, the answers of tool experts in the questionnaire were occasionally vague, incom-
plete, or posing questions. This threatens the conclusion validity. We carefully analyzed the
answers and conferred with tool experts to improve the conclusion validity. To enable other
researchers to check our results and derive their own conclusions, we publish our data in an
open-access repository.1

8 Applying the Unified Conceptual Model in Practice

In this section, we demonstrate how to apply the conceptual model in practice, for exam-
ple, to develop a new tool. For this purpose, we introduce illustrative applications of the
conceptual model. Initially, we explain how we envision the conceptual model to be used
when designing and implementing a conforming tool. Then, we exemplify two tool imple-
mentations based on the conceptual model and explain their construction process. The first
example illustrates an application of the conceptual model using Feature Revisions
and a feature model. In contrast, the second example illustrates a design choice that can-
not be found in any of our studied tools, which is the combination of the concepts System
Revision and Feature Revision. Finally, we demonstrate a validation of the two
exemplary tools by applying the same metrics we used to validate the unified model to
assess their conformance to that model.

We show the two stages of applying the conceptual model in practice in Fig. 9. The first
stage is the refinement of the model into a conforming tool using concrete constructs based
on the (abstract) model concepts. This task is performed by tool developers. The second
stage is the instantiation of the tool for a specific variable system. This task is performed by
users of the developed tool and happens implicitly by applying the tool during the develop-
ment of a system out in the field. We illustrate the first step using UML class diagrams and
the second step via UML object diagrams for each of the two exemplary tools.

8.1 Refinement Process of the Conceptual Model

When applying the conceptual model in practice to develop a conforming tool, its non-
abstract concepts need to be extended by creating concrete subclasses. For example, for
tools that use feature models to model constraints, the Constraint concept may be
refined by creating multiple concrete subclasses to represent mandatory or optional chil-
dren. Another example is Fragment, which could be refined into two concrete subclasses,
Core Model and Delta Module, for tools that use deltas. Abstract concepts in the
model are not intended to be subclassed in tools. We define the following degrees of freedom
(design choices) that developers have to decide on when refining the model:

Revision. Developers may use Feature Revisions, System Revisions, or
both in combination. The concept Revision must be refined accordingly.

Conceptual Model Tool System
refinement instantiation

Fig. 9 Application stages of the conceptual model

Page 37 of 53 101Empir Software Eng (2022) 27: 101

Constraint. This concept can be refined either by adding attributes or by extending it
in subclasses to express more sophisticated constraints between Features, such as
mandatory, optional, or cross-tree constraints in a feature model.

Fragment. Identically, Fragments can be refined either by adding attributes or by
extending them in subclasses to express more specific types. As we described in
Section 2.2, the derivation process of a Product is based on a specific variability mech-
anism. This also defines the type of Fragments that can be used, for instance, Core
Model and Delta Modules are needed for current delta-oriented (transformational)
variability mechanisms.

Mapping. Developers can refine this concept to express differently complex relations
between Options and Fragments, for example, using a simple list or Boolean
expressions.

Configuration. Refining this concept is optional. It can be refined similar to Mapping,
but it can also be used directly as it is in the conceptual model.

In the following, we demonstrate two exemplary tool refinements. For each, we describe
the decisions for the degrees of freedom, compute the validation metrics, and show an
instantiation for the PPU example.

8.2 Feature-Revision / Transformational Tool TT

We created a tool TT , which incorporates feature revisions for a transformational variabil-
ity mechanism, based on the conceptual model by extending and refining its concepts as
described above. In Fig. 10, we display the tool’s conceptual model.

Construction Process We depict concepts and relations that are identical to the con-
ceptual model as they are within that model. In contrast, we highlight added con-
cepts (i.e., subclasses of concepts in the conceptual model) with a hatched area (i.e.,
Change, DeltaModule, Expression, Cross-tree Constraint, and Tree
Constraint). Moreover, we display unused concepts of the conceptual model in red (i.e.,
System Revision). To derive the tool’s model, we incorporated the following design
decisions:

Revision: Feature Revisions. For this example, we use Feature Revisions as the
only type of revision. We chose not to use System Revisions, because this can
be achieved by combining the tool with any tool that supports System Revisions,
such as Git or SVN. Also, we chose not to combine both types of revisions to reduce
complexity.

Constraint: Feature Model. We use feature modeling to express Constraints, as
represented by the new tool constructs Tree Constraint and Cross-tree
Constraint; both subclasses of the model concept Constraint. Tree
Constraints in the feature model can only refer to Features and not to
Feature Revisions, while Cross-tree Constraints can refer to both,
Features and Feature Revisions. To manage the Boolean expressions of
Cross-tree Constraints, we introduce a new construct Expression. Specif-
ically, the Expression would be represented as a tree in which inner nodes align to
operators and leafs to Feature Options. For space reasons, we omit these details in
the tool’s model.

101 Page 38 of 53 Empir Software Eng (2022) 27: 101

Feature Option

Revision

 *

Constraint

Cross-tree
Constraint

Tree Constraint

 type: CONSTR_TYPE

<<enumeration>>
CONSTR_TYPE

 MANDATORY
 OPTIONAL
 OR
ALTERNATIVE

Mapping

Delta Module

Fragment

root

*

1

*

*

*

Concepts for Variability in Space

Concepts for Variability in Time

Unified Concepts

Concepts for Variability in Space & Time

Feature

 name: String

Feature Revision

 id: String

Unified System

 name: String

Change

 type: CHANGE_TYPE
 value: String
 path: Path

<<enumeration>>
CHANGE_TYPE

ADDITIVE
 SUBTRACTIVE

* *

Configuration

Expression System Revision

*

*

*

1..*

1

succspreds

{ordered}

us

us us us

*

*

Fig. 10 Feature-revision / transformational tool model TT

Fragment: Delta Module, Change. We use deltas to implement Fragments and com-
pose Products. This choice is represented by the new constructs Delta Module and
Change. A delta module comprises changes, which can be either additive or subtrac-
tive, respectively adding or deleting a Fragment (given as value) at a certain position
(given as a path). In this example, we use a String value for textual Fragments, such as
the source code in our PPU example. Still, the value could also represent any non-textual
Fragment.

Mapping: Boolean Expression. For this example, we represent the relation between a
Mapping and Options as a Boolean expression.

Configuration: No Containment in Unified System. We made the deliberate choice to
have the Configuration not contained in the Unified System. This corresponds
to non-persistent Configurations.

Validation For the validation of TT , we apply the same metrics we used in Section 7.2.
Note that we do not treat enumeration types as concepts, and thus ignore them when com-
puting the metrics. Overall, the tool TT implements ten non-abstract constructs, yielding
the set TT = { Unified System, Feature, Tree Constraint, Cross-tree
Constraint, Feature Revision, Configuration, Mapping, Expression,
Delta Module, Change }. No construct in TT implements more than one concept of the
conceptual model. The constructs that do not implement any model concept do not affect
laconicity. The laconicity for TT (only considering concepts and not relations) thus is:

laconicityTT
(M, TTT

) = 10

10
= 1.0

The model concept Constraint is implemented by two constructs in TT (i.e., Tree
Constraint and Cross-tree Constraint). All other model concepts are either
implemented by exactly one tool construct or by no tool construct. Thus, the lucidity for TT

(only considering concepts and not relations) is:

lucidityTT
(M, TTT

) = 8

9
= 0.889

Page 39 of 53 101Empir Software Eng (2022) 27: 101

The two constructs Expression and Change in TT do not implement any model concept.
In contrast, the remaining eight constructs map to at least one model concept. Note that the
construct Delta Module is a specialization of the concept Fragment, which itself has
become abstract. Consequently, Delta Module can be considered to map to Fragment.
The completeness for the tool TT (considering only concepts) is:

completenessTT
(M, TTT

) = 8

10
= 0.8

Out of the nine model concepts, only seven map to at least one construct in TT (i.e., System
Revision and Product are not implemented by TT). The soundness of the model with
respect to the tool TT (considering only concepts) thus is:

soundnessTT
(M, TTT

) = 7

9
= 0.778

In summary, the tool TT refines and splits some model concepts to make themmore concrete
(lower lucidity), adds some additional constructs (lower completeness), and does not make
use of all model concepts (lower soundness).

Instantiation We show an instance of the tool TT for a small part of the PPU exam-
ple in the form of an object diagram in Fig. 11. It consists of one instance of the
Unified System with the name PPU. The root feature of the feature model (named
PPU) is the only feature directly contained in the Unified System. Additional fea-
ture instances with the names Crane and Stack are children of the PPU root feature based
on two Tree Constraint instances of type mandatory. Feature instances with the
names MicroSwitch and InductiveSensor represent children of the Crane feature through a
Tree Constraint instance of type alternative. Finally, the feature instanceOpticalSen-
sor represents an optional child (via a Tree Constraint instance of type optional) of
feature Stack. While the features PPU, Crane, Stack, MicroSwitch, and InductiveSensor
each are available in one Feature Revision, the feature OpticalSensor is available
in two Feature Revisions. The revision with the identifier 1 is the first revision
and is succeeded in the revision graph by the revision with the identifier 2. Further-
more, the Unified System contains one Cross-tree Constraint comprising the
expression ¬OpticalSensor ∨ ¬InductiveSensor .

The Mapping with the identifier 1 contains the Expression instance
MicroSwitch.1 ∧ ¬InductiveSensor , which refers to revision 1 of feature MicroSwitch
and to any revision of feature InductiveSensor. A respective Delta Module
instance comprises two Change instances of type additive. Change c1 adds the line
MicroSwitch ms; to Line 3 of the file Crane.java. Change c2 adds the line
Crane(MicroSwitch ms) to Line 4 of the file Crane.java. Finally, there is one
Configuration instance referring to revision 1 of feature PPU, revision 1 of feature
Crane, and revision 1 of feature Stack.

8.3 Both-Revisions / Compositional Tool TC

In contrast to TT , we now discuss another tool TC based on quite different design decisions.
Specifically, this tool employs both System Revisions and Feature Revisions
in combination. It follows a compositional variability mechanism to derive Products
from Fragments, and uses Boolean expressions for mapping Fragments to Options
as well as for formulating Constraints. We aimed to keep TC as minimalistic and as
close to the conceptual model as possible. Therefore, we employ as many concepts directly

101 Page 40 of 53 Empir Software Eng (2022) 27: 101

system: Unified System

 name="PPU"

feat2: Feature

 name="Crane"

feat3: Feature

 name="Stack"

feat1: Feature

 name="PPU"

fr2: Feature Revision

 id="1"

fr3: Feature Revision

 id="1"

ctc1: Cross-tree Constraint

 id="1"

e1: Expressionm1: Mapping

 id="1"

e2: Expression

MicroSwitch.1 ⋀ ¬InductiveSensor

¬OpticalSensor ¬InductiveSensor

d1: Delta Module

c1: Change

 type=ADDITIVE
 value="MicroSwitch ms;"
 path=Crane.java:3

c2: Change

 type=ADDITIVE
 value="Crane(MicroSwitch ms)"
 path=Crane.java:4

root

con1: Configurationcons1: Tree Constraint

 type=MANDATORY

fr1: Feature Revision

 id="1"

cons2: Tree Constraint

 type=MANDATORY

feat4: Feature

 name="MicroSwitch"

fr4: Feature Revision

 id="1"

feat5: Feature

 name="InductiveSensor"

fr6: Feature Revision

 id="1"

cons3: Tree Constraint

 type=ALTERNATIVE

cons3: Tree Constraint

 type=OPTIONAL

feat6: Feature

 name="OpticalSensor"

fr5: Feature Revision

 id="1"

fr7: Feature Revision

 id="2"

succs*
*preds

Fig. 11 Object diagram of tool TT applied to the PPU example

from the model as possible, without modifying, adding, or deleting concepts and relations.
In Fig. 12, we display the tool’s model.

Construction Process We added the constructs Mapping Expression and
Constraint Expression to represent the relations between Mapping and
Options as well as between Constraint and Feature Options, respec-
tively. Additionally, we distinguish between selected and deselected Options in
Configurations. Furthermore, we added attributes, such as value, name, or id to some
concepts. Finally, Fragments are contained directly in Products (instead of the indirect
derivation of the Product from Fragments). The Boolean expressions would actually
be expression trees with inner nodes representing Boolean operations (e.g., and, or, nega-
tion) and leafs representing literals (Options for Mappings and Feature Options
for Constraints). However, we depict this as a single concept (i.e., Expression) for
the sake of simplicity. TC is based on the following design decisions:

Revision: Feature Revisions and System Revisions. For this example, we aimed to use
System Revisions and Feature Revisions in combination. None of the tools
we analyzed has attempted this. Arguably, combining both types of revisions is not as
simple as using either concept independently, and would bring only little benefit while
complicating workflows for users. To tackle this problem, we aimed to use System
Revisions so that they support the user in managing Feature Revisions. When
using only Feature Revisions, there is no automated mechanism for tracking
which revisions of which Features can be combined, for example, is revision 3 of fea-
ture Crane compatible with revision 3 or revision 4 of feature Stack? Instead, the user
would have to manually track such dependencies, for example, by manually specifying
respective Constraints. Considering CVS and SVN, this resembles a similar prob-
lem CVS encountered: Revisions are tracked per file, making it difficult to track which
revisions of which files can be combined to form a valid configuration. While file revi-
sions are not the same as Feature Revisions (i.e., files are part of the solution
space, whereas Features are part of the problem space), the underlying problem is the
same. CVS exemplifies that disconnected (file) revisions are problematic, because they

Page 41 of 53 101Empir Software Eng (2022) 27: 101

configs*

Mapping

us us

us us

Product

<<derive>>

System Revision
us

Option

*opts

<<derive>>

*succs

Constraint

preds*

*constrs

Feature Option

Feature Revision
feat

revs*
*feats

*fragments

*

*

**revs
*constrs

enables

enables

Concepts for Variability in Space Concepts for Variability in Time Unified ConceptsConcepts for Variability in Space & Time

Fragment

 value: String

Unified System

 name: String

Configuration

 name: String

Mapping Expression

Feature

 name: String

Constraint ExpressionConstraint Expression

Revision

 id: String

deselected

selected

* *

*

*

Fig. 12 Both-Revisions / Compositional tool model TC

are not connected via a (global) System Revision. SVN avoids this problem by not
using (file) revisions at all. Instead, it uses only System Revisions, also on files.
Consequently, this leads to files having gaps in their sequence of revision numbers (e.g.,
1, 2, 5, 7), since they are mapped to System Revisions. By combining System
Revisions and Feature Revisions in this tool instance of the conceptual model,
we aim to combine the advantages of both concepts.

Constraint: Boolean Expression. For the construct Constraint, we use simple
Boolean expressions with Feature Options (i.e., Features and Feature
Revisions) as literals. Consequently, we represent the relation between
Constraint and Feature Option with the new construct Constraint
Expression.

Fragment: Implementation Artifacts. We chose Fragments to directly represent
implementation artifacts (such as lines of source code). Such Fragments are either
present or missing from a Product. The order in which they are added to a Product
does not affect the resulting Product. This is in contrast to a delta-oriented mechanism
(as implemented by TT), where Fragments (i.e., deltas) themselves are not a direct part
of a Product. Instead, deltas represent operations that need to be executed in a partic-
ular order to incrementally construct a Product. In that case, Fragments are a set of
(ordered) instructions for building a Product rather than implementation artifacts that
are part of a Product.

Mapping: Boolean Expression. We represent the relation between Mapping and
Options with a Boolean expression in the form of the new construct Mapping
Expression.

Configuration: Selected and Deselected Options. For the relation of
Configuration and Options, we distinguish explicitly selected and deselected
Options, and Options for which no choice has been made, yet. This allows to
express partial Configurations.

Validation We again use the metrics from Section 7.2 to validate TC . Overall, TC

implements eleven non-abstract constructs, yielding the set of constructs TC = {
Unified System, Feature, Feature Revision, System Revision,
Constraint, Constraint Expression, Configuration, Mapping,
Mapping Expression, Fragment, Product }. No construct in TC implements

101 Page 42 of 53 Empir Software Eng (2022) 27: 101

more than one concept of the conceptual model. The laconicity for TC (considering only
concepts) thus is:

laconicityTC
(M, TTC

) = 11

11
= 1.0

No model concept is implemented by more than one construct in TC . Consequently, the
lucidity for TC (considering only concepts) is:

lucidityTC
(M, TTC

) = 9

9
= 1.0

The two constructs Constraint Expression and Mapping Expression in TC

do not implement any model concept. All remaining nine constructs map to at least one
model concept. Therefore, the completeness for the tool TC (considering only concepts) is:

completenessTC
(M, TTC

) = 9

11
= 0.818

All nine model concepts are implemented by at least one construct in TC . As a result, the
soundness of the model with respect to the tool TC (considering only concepts) is:

soundnessTT
(M, TTT

) = 9

9
= 1.0

In summary, TC aligns very well to the conceptual model. Solely the addition of the con-
struct Expression for formulating mappings and constraints causes lower completeness.

Instantiation We display the instantiation of the tool TC for a small part of the PPU
as an object diagram in Fig. 13. In the center, an instance of the Unified System
with the name PPU is located. Beneath, TC contains the features PPU, Crane, Stack,
MicroSwitch, OpticalSensor, and InductiveSensor that, in turn, contain instances of
their Feature Revisions. Additionally, the Unified System itself contains two
System Revisions. System Revision 1 enables Feature Revisions 1 of
features PPU, Crane, Stack, MicroSwitch, OpticalSensor, and InductiveSensor, expressing
that these six revisions together form a valid state of the PPU. Combinations of other fea-
tures or revisions may result in an inconsistent state of the PPU. System Revision
2 enables Feature Revisions 1 of features PPU, Crane, Stack, MicroSwitch, Induc-
tiveSensor, and Feature Revision 2 of feature OpticalSensor. On its right, the
Unified System contains two instances of Constraint. The first Constraint c1
refers to the feature PPU via its contained Constraint Expression PPU and indi-
cates that PPU is the root feature. The second Constraint c2 refers to features PPU
and Crane via the Constraint Expression PPU ⇔ Crane and expresses that
both features PPU and Crane are always present simultaneously in a Product. Since the
PPU is always present (according to c1), Crane is a mandatory feature. The Constraint
Expressions are depicted in a simplified manner as formulas instead of expression trees.

The Unified System contains two Fragment instances, each representing a line
of code given by their respective value attribute. Mapping connects the Feature
Revision MicroSwitch.1 and the feature InductiveSensor through its Expression
MicroSwitch.1 ∧ ¬InductiveSensor with both Fragments. The two Fragments are
contained in any Product with a Configuration that satisfies the Mapping expres-
sion. In fact, the Configuration instance with the name Customer1 explicitly selects
Feature Revisions PPU.1, Crane.1, Stack.1, MicroSwitch.1, OpticalSensor.2 (indi-
cated by the “+” symbol), and explicitly deselects the feature InductiveSensor (indicated by
the “-” symbol)—yielding a Product that contains both Fragments.

Page 43 of 53 101Empir Software Eng (2022) 27: 101

feat3: Feature

 name="Stack"

c2: Constraint

 id="1"

ce2: Constraint Expression

m1: Mapping

 id="1"

me1: Mapping Expression

MicroSwitch.1 ⋀ ¬ InductiveSensor

PPU ⇔ Crane

fr3: Feature Revision

 id="1"

feat2: Feature

 name="Crane"

fr1: Feature Revision

 id="1"

sr1: System Revision

 id="1"

con1: Configuration

 name="Customer1"
+PPU.1, +Crane.1, +Stack.1,

+MicroSwitch.1, -InductiveSensor,
+OpticalSensor.2

p1: Product

* enables compatible feature revisions

sr2: System Revision

 id="2"

* enables compatible feature revisions

<<derive>>
f1: Fragment

 value="MicroSwitch ms;

f2: Fragment

 value="Crane(MicroSwitch ms)"

feat4: Feature

 name="MicroSwitch"

fr4: Feature Revision

 id="1"

fr2: Feature Revision

 id="1"

feat1: Feature

 name="PPU"

succ *

* pred

feat5: Feature

 name="OpticalSensor"

fr5: Feature Revision

 id="1"

ce1: Constraint Expression

PPU

...

system: Unified System

 name="PPU"

c1: Constraint

 id="1"

fr7: Feature Revision

 id=2

* preds

succs *

feat6: Feature

 name="InductiveSensor"

fr6: Feature Revision

 id="1"

Fig. 13 Object diagram of tool TC applied to the PPU example

8.4 Summary

We demonstrated how the conceptual model can be applied in practice by refining it into two
exemplary tools. Based on the particular type of tool, for instance, whether a tool supports
variability in space or time, the conceptual model is open for modifications via refinements
in two ways. First, by using only the concepts of the respective variability dimension that
shall be managed by a tool. Second, existing concepts can be specialized (e.g., Fragments
are specialized by Delta Modules in the first exemplary tool). We also demonstrated
how the metrics we introduced in Section 7.2 can be used to validate and compare novel
tools against the unified conceptual model, which indicates the conformance of a tool to the
conceptual model. Furthermore, the metrics can also be used to compare two tools with each
other in the same way, thereby providing a means to compare tools based on the conceptual
model.

9 Conclusion

Most of today’s systems are highly configurable and evolve rapidly, challenging a uni-
form management of variability in space and time. In this article, we extended our previous
conference paper (Ananieva et al. 2020) in which we proposed a conceptual model for unfiy-
ing variability in space and time. Besides additional details on the construction process,
design decisions, and validation, we also contributed static semantics, illustrative applica-
tions, analyses, and showed how to apply the model when developing conforming tools.
The conceptual model achieves high coverage and appropriate granularity regarding estab-
lished concepts of SPLE and SCM. We showed that the model can provide guidance for
researchers and developers intending to work on the combination of these research areas,
for instance, for assessing the conformance of a new tool to the respective dimensions of
variability. As a consequence, the conceptual model fills a gap that is increasingly subject
to new research and tools, providing a means to compare works, identify gaps, and support
communication.

In future work, we intend to work on formalizing the operations of the conceptual model,
helping tool developers understand, implement, and validate those. Moreover, it would be

101 Page 44 of 53 Empir Software Eng (2022) 27: 101

interesting to investigate to what extent combinations of existing tools conform to the con-
ceptual model and apply the conceptual model and/or potential conforming tools to a set of
real-world case studies. Finally, we showed that most tools have an individual combination
of concepts and relations, which asks for more research considering which combinations
are used for what purpose, and which of the not implemented combinations could provide
benefits beyond the current state-of-the-art in both research areas.

Acknowledgements We thank all participants of Dagstuhl-Seminar 19191 (Software Evolution in Time and
Space: Unifying Version and Variability Management) for their initial discussion on this work as well as
Bernhard Westfechtel, Christoph Seidl, Ina Schaefer, Michael Nieke, Heiko Klare, Sebastian Krieter, and
Uwe Ryssel for supporting the construction of the conceptual model. This work has been partially supported
by the German Research Foundation within the projects VariantSync (KE 2267/1-1) and EXPLANT (SA
465/49-3) as well as by the Federal Ministry of Economic Affairs and Energy (BMWi), following a decision
of the German Bundestag in the context of the SofDCar project (grant agreement 19S21002I and 19S21002K)
as well as by a fellowship within the IFI programme of the German Academic Exchange Service (DAAD).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahlemann F, Riempp G (2008) RefmodPM : A conceptual reference model for project management
information systems. Wirtschaftsinformatik 50(2):88–97. https://doi.org/10.1365/s11576-008-0028-y

Ananieva S, Klare H, Burger E, Reussner R (2018) Variants and versions management for models with
integrated consistency preservation, ACM, VaMoS. https://doi.org/10.1145/3168365.3168377

Ananieva S, Berger T, Burger A, Kehrer T, Klare H, Koziolek A, Lönn H, Ramesh S, Taentzer G, Westfechtel
B (2019a) Conceptual Modeling Group. In: Berger T, Chechik M, Kehrer T, Wimmer M (eds) Software
Evolution in Time and Space: Unifying Version and Variability Management (Dagstuhl Seminar 19191),
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/DagRep.9.5.1

Ananieva S, Kehrer T, Klare H, Koziolek A, Lȯnn H, Ramesh S, Burger A, Taentzer G, Westfech-
tel B (2019b) Towards a conceptual model for unifying variability in space and time, ACM, SPLC.
https://doi.org/10.1145/3307630.3342412

Ananieva S, Greiner S, Kühn T, Krüger J, Linsbauer L, Grüner S, Kehrer T, Klare H, Koziolek A, Lönn
H, Krieter S, Seidl C, Ramesh S, Reussner R, Westfechtel B (2020) A conceptual model for unifying
variability in space and time. In: International systems and software product line conference. ACM,
pp 1–12. https://doi.org/10.1145/3382025.3414955

Apel S, Kästner C (2009) An overview of feature-oriented software development. Journal of Object
Technology 8(5):49–48. https://doi.org/10.5381/jot.2009.8.5.c5

Apel S, Janda F, Trujillo S, Kästner C (2009a) Model superimposition in software product lines. In:
International conference on theory and practice of model transformations. Springer, ICMT, pp 4–19.
https://doi.org/10.1007/978-3-642-02408-5 2

Apel S, Kästner C, Lengauer C (2009b) FeatureHouse: language-independent, automated software com-
position. In: 31St international conference on software engineering, ICSE. IEEE, pp 221–231.
https://doi.org/10.1109/ICSE.2009.5070523

Apel S, Batory D, Kästner C, Saake G (2013) Feature-oriented software product lines. Springer, Berlin.
https://doi.org/10.1007/978-3-642-37521-7

Page 45 of 53 101Empir Software Eng (2022) 27: 101

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1365/s11576-008-0028-y
https://doi.org/10.1145/3168365.3168377
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.1145/3307630.3342412
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.5381/jot.2009.8.5.c5
https://doi.org/10.1007/978-3-642-02408-5_2
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1007/978-3-642-37521-7

Asikainen T, Männistö T, Soininen T (2006) A unified conceptual foundation for feature
modelling. In: International software product line conference. IEEE, SPLC, pp 31-40.
https://doi.org/10.1109/SPLINE.2006.1691575

Bashroush R, Garba M, Rabiser R, Groher I, Botterweck G (2017) Case tool support for variability
management in software product lines. ACM Comput Surv 50(1):1–45. https://doi.org/10.1145/3034827

Batory D (2005) Feature models, grammars, and propositional formulas. In: International conference on
software product lines, Springer, SPLC, pp 7–20. https://doi.org/10.1007/11554844 3

Beek MHT, Schmid K, Eichelberger H (2019) Textual variability modeling languages: An overview and
considerations. In: International systems and software product line conference. ACM, SPLC, pp 151–
157. https://doi.org/10.1145/3307630.3342398

Berger T, Chechik M, Kehrer T, Wimmer M (2019) Software evolution in time and space: Unifying version
and variability management (dagstuhl seminar 19191). Dagstuhl Reports, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. https://doi.org/10.4230/DagRep.9.5.1

Beuche D (2013) pure::variants. In: Capilla R, Bosch J, Kang KC (eds) Systems and Soft-
ware Variability Management - Concepts, Tools and Experiences. Springer, Berlin.
https://doi.org/10.1007/978-3-642-36583-6 12

Bosch J (2010) Toward compositional software product lines. IEEE Softw 27(3):29–34.
https://doi.org/10.1109/MS.2010.32

Clements P, Northrop L (2001) Software product lines: Practices and patterns. Addison-Wesley, Boston
Conradi R, Westfechtel B (1998) Version models for software configuration management. ACM Comput

Surv 30(2):232–282. https://doi.org/10.1145/280277.280280
Czarnecki K, Hwan C, Kim P, Kalleberg K (2006) Feature models are views on ontolo-

gies. In: International software product line conference. IEEE, SPLC, pp 41–51.
https://doi.org/10.1109/SPLINE.2006.1691576

Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Waşowski A (2012) Cool features and tough decisions:
A comparison of variability modeling approaches. In: International workshop on variability modelling
of software-intensive systems. ACM, VaMoS, pp 173–182. https://doi.org/10.1145/2110147.2110167

Dintzner N, van Deursen A, Pinzger M (2016) Fever: Extracting Feature-oriented changes from commits. In:
13Th international conference on mining software repositories. Association for Computing Machinery,
MSR, pp 85–96. https://doi.org/10.1145/2901739.2901755

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory study of
cloning in industrial software product lines. In: European conference on software maintenance and
reengineering. IEEE, CSMR, pp 25–34. https://doi.org/10.1109/CSMR.2013.13

Estublier J (2000) Software Configuration management: A roadmap. In: Conference on the future of software
engineering. ACM, FOSE, pp 279–289. https://doi.org/10.1145/336512.336576

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Enhancing clone-and-own with system-
atic reuse for developing software variants. In: International conference on software maintenance and
evolution. IEEE, ICSME, pp 391–400. https://doi.org/10.1109/icsme.2014.61

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2015) The ecco tool: Extraction and composition
for clone-and-own. In: International conference on software engineering. IEEE, ICSE, pp 665–668.
https://doi.org/10.1109/ICSE.2015.218

Gacek C, Anastasopoules M (2001) Implementing product line variabilities. In: Symposium on software
reusability. ACM, SSR, pp 109–117. https://doi.org/10.1145/375212.375269

Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2014) Variability in software systems—a systematic
literature review. IEEE Trans Softw Eng, 40(3). https://doi.org/10.1109/TSE.2013.56

Gamez N, Fuentes L (2011) Software product line evolution with cardinality-based feature mod-
els. In: Schmid K (ed) Top Productivity through Software Reuse. Springer, Berlin, pp 102–118.
https://doi.org/10.1007/978-3-642-21347-2 9

Ganter B, Wille R (1999) Formal Concept Anlaysis – Mathematical Foundations. Springer, Berlin.
https://doi.org/10.1007/978-3-642-59830-2

Ganter B, Stumme G, Wille R (eds) (2005) Formal Concept Analysis, Foundations and Applications, Lecture
Notes in Computer Science, vol 3626. Springer, Berlin. https://doi.org/10.1007/978-3-540-31881-1

Gheyi R, Massoni T, Borba P (2008) Algebraic laws for feature models. Journal of Universal Computer
Science 14(21):3573–3591

Guizzardi G, Pires LF, van SinderenM (2005) An ontology-based approach for evaluating the domain
appropriateness and comprehensibility appropriateness of modeling languages. In: International Con-
ference on Model Driven Engineering Languages and Systems. Springer, MODELS, pp 691–705.
https://doi.org/10.1007/11557432 51

Horcas JM, Pinto M, Fuentes L (2019) Software Product line engineering: A practical experi-
ence. In: International systems and software product line conference. ACM, SPLC, pp 164–176.
https://doi.org/10.1145/3336294.3336304

101 Page 46 of 53 Empir Software Eng (2022) 27: 101

https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1145/3034827
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.1007/978-3-642-36583-6_12
https://doi.org/10.1109/MS.2010.32
https://doi.org/10.1145/280277.280280
https://doi.org/10.1109/SPLINE.2006.1691576
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/2901739.2901755
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1145/336512.336576
https://doi.org/10.1109/icsme.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1145/375212.375269
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1007/978-3-642-21347-2_9
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-540-31881-1
https://doi.org/10.1007/11557432_51
https://doi.org/10.1145/3336294.3336304

Johansen MF, Fleurey F, Acher M, Collet P, Lahire P (2010) Exploring the synergies between feature models
and ontologies. In: International conference on software product lines, SPLC, pp 163–170

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis (foda)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Carnegie-Mellon University

Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Software Engineering 5:143–168.
https://doi.org/10.1023/A:1018980625587

Kehrer T, Kelter U, Taentzer G (2013) Consistency-preserving edit scripts in model versioning, IEEE, ASE.
https://doi.org/10.1109/ASE.2013.6693079

Kehrer T, Kelter U, Taentzer G (2014) Propagation of software model changes in the context of industrial
plant automation. at-Automatisierungstechnik 62(11):803–814. https://doi.org/10.1515/auto-2014-1102

Kehrer T, Thüm T, Schultheiß A, Bittner P (2021) Bridging the gap between clone-and-own and software
product lines. In: 43Rd international conference on software engineering. New Ideas and Emerging
Results, ICSE-NIER, pp 21–25. https://doi.org/10.1109/ICSE-NIER52604.2021.00013

Klare H, Kramer ME, Langhammer M, Werle D, Burger E, Reussner R (2021) Enabling consis-
tency in view-based system development – The Vitruvius approach. J Syst Softw 171:1–35.
https://doi.org/10.1016/j.jss.2020.110815

Kramer ME, Burger E, Langhammer M (2013) View-centric engineering with synchronized heterogeneous
models. In: International workshop on view-based, aspect-oriented and orthographic software modelling.
ACM, VAO, pp 1–6. https://doi.org/10.1145/2489861.2489864

Kröher C, Gerling L, Schmid K (2018) Identifying the intensity of variability changes in software product
line evolution. In: 22Nd international systems and software product line conference, vol 1. Association
for Computing Machinery, SPLC, pp 54–64. https://doi.org/10.1145/3233027.3233032

Krueger C, Clements P (2012) Systems and software product line engineering with biglever software
gears. In: 16th International Software Product Line Conference - Volume 2, Association for Computing
Machinery, pp 256–259. https://doi.org/10.1145/2364412.2364458

Krüger J (2019) Are you talking about software product lines? an analysis of developer communities. In:
International workshop on variability modelling of software-intensive systems. ACM, VaMoS, pp 1–9.
https://doi.org/10.1145/3302333.3302348

Krüger J, Berger T (2020) An empirical analysis of the costs of clone- and platform-oriented software
reuse. In: 28Th ACM joint meeting on european software engineering conference and symposium on the
foundations of software engineering. Association for Computing Machinery, ESEC/FSE, pp 432–444.
https://doi.org/10.1145/3368089.3409684

Krüger J, Ananieva S, Gerling L, Walkingshaw E (2020) Third international workshop on variability and evo-
lution of software-intensive systems (varivolution 2020). In: International systems and software product
line conference. ACM, SPLC, p 1. https://doi.org/10.1145/3382025.3414944

Kästner C, Thüm T, Saake G, Feigenspan J, Leich T, Wielgorz F, Apel S (2009) Featureide: A Tool frame-
work for feature-oriented software development. In: International conference on software engineering.
IEEE, ICSE, pp 611–614. https://doi.org/10.1109/ICSE.2009.5070568

Linsbauer L, Egyed A, Lopez-herrejon RE (2016) A variability aware configuration management and revi-
sion control platform. In: International conference on software engineering. ACM, ICSE, pp 803–806.
https://doi.org/10.1145/2889160.2889262

Linsbauer L, Berger T, Grünbacher P (2017a) A classification of variation control systems. In: Inter-
national conference on generative programming: Concepts & experience. ACM, GPCE, pp 49–62.
https://doi.org/10.1145/3136040.3136054

Linsbauer L, Lopez-Herrejon RE, Egyed A (2017b) Variability extraction and modeling for product variants.
Softw Syst Model 16(4):1179–1199. https://doi.org/10.1007/s10270-015-0512-y

Linsbauer L, Malakuti S, Sadovykh A, Schwägerl F (2018) 1st intl. workshop on variability and evolu-
tion of software-intensive systems (varivolution). In: International systems and software product line
conference. ACM, SPLC, p 294. https://doi.org/10.1145/3233027.3241372

Linsbauer L, Schwägerl F, Berger T, Grünbacher P (2021) Concepts of variation control systems. J Syst
Softw 171:110796. https://doi.org/10.1016/j.jss.2020.110796

Loeliger J, McCullough M (2012) Version Control with Git. O’Reilly
MacKay SA (1995) The state of the art in concurrent, distributed configuration management. In:

International workshop on software configuration management. Springer, SCM, pp 180–193.
https://doi.org/10.1007/3-540-60578-9 17

Meinicke J, Thüm T, Schröter R, Benduhn F, Leich T, Saake G (2017) Mastering software variability with
featureide. Springer, Berlin. https://doi.org/10.1007/978-3-319-61443-4

Nešić D, Krüger J, Stănciulescu C, Berger T (2019) Principles of feature modeling. In: Joint meeting on
european software engineering conference and symposium on the foundations of software engineering.
ACM, ESEC/FSE, pp 62–73. https://doi.org/10.1145/3338906.3338974

Page 47 of 53 101Empir Software Eng (2022) 27: 101

https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1515/auto-2014-1102
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1145/3233027.3233032
https://doi.org/10.1145/2364412.2364458
https://doi.org/10.1145/3302333.3302348
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3382025.3414944
https://doi.org/10.1109/ICSE.2009.5070568
https://doi.org/10.1145/2889160.2889262
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1145/3233027.3241372
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1007/3-540-60578-9_17
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1145/3338906.3338974

Nieke M, Engel G, Seidl C (2017) Darwinspl: An Integrated tool suite for modeling evolving context-
aware software product lines. In: International workshop on variability modelling of software-intensive
systems. ACM, VaMoS, pp 92–99. https://doi.org/10.1145/3023956.3023962

Nieke M, Linsbauer L, Krüger J, Leich T (2019) Second international workshop on variability and evolu-
tion of software-intensive systems (varivolution). In: International systems and software product line
conference. ACM, SPLC, p 320. https://doi.org/10.1145/3336294.3342367

Northrop LM (2002) Sei’s software product line tenets. IEEE Softw, 19(4).
https://doi.org/10.1109/ms.2002.1020285

Nunes C, Garcia A, Lucena C, Lee J (2012) History-sensitive heuristics for recovery of features in code of
evolving program families. In: 16Th international software product line conference, vol 1. Association
for Computing Machinery, SPLC, pp 136–145. https://doi.org/10.1145/2362536.2362556

Object Management Group (2014) Object Constraint Language
Parnas DL (1976) On the design and development of program families. IEEE Transactions on Software

Engineering SE-2(1):1–9. https://doi.org/10.1109/TSE.1976.233797
Passos L, Czarnecki K, Apel S, Waşowski A, Kästner C, Guo J (2013) Feature-oriented software evolution.

In: Seventh international workshop on variability modelling of software-intensive systems. Association
for Computing Machinery, VaMoS, pp 1–8. https://doi.org/10.1145/2430502.2430526

Pereira JA, Constantino K, Figueiredo E (2015) A systematic literature review of software product
line management tools. In: International Conference on Software Reuse. Springer, ICSR, pp 73–89.
https://doi.org/10.1007/978-3-319-14130-5 6

Pietsch C, Kehrer T, Kelter U, Reuling D, Ohrndorf M (2015) Sipl – a delta-based modeling framework
for software product line engineering. In: International conference on automated software engineering.
IEEE, ASE, pp 852–857. https://doi.org/10.1109/ASE.2015.106

Pietsch C, Reuling D, Kelter U, Kehrer T (2017) A tool environment for quality assurance of delta-oriented
model-based spls. In: 11th International workshop on variability modelling of software-intensive
systems. ACM, pp 84–91. https://doi.org/10.1145/3023956.3023960

Pietsch C, Kelter U, Kehrer T, Seidl C (2019) Formal foundations for analyzing and refactoring delta-oriented
model-based software product lines. In: International systems and software product line conference.
ACM, SPLC, pp 207–217. https://doi.org/10.1145/3336294.3336299

Pietsch C, Seidl C, Nieke M, Kehrer T (2020) Delta-oriented development of model-based software product
lines with deltaecore and sipl: A comparison. In: Model Management and Analytics for Large Scale
Systems. Elsevier, pp 167–201. https://doi.org/10.1016/B978-0-12-816649-9.00017-X

Pilato CM, Collins-Sussman B, Fitzpatrick BW (2008) Version Control with Subversion: Next Generation
Open Source Version Control. O’Reilly

Pohl K, Böckle G, Linden FJCD (2005) Software product line engineering. Springer, Berlin.
https://doi.org/10.1007/3-540-28901-1

Rubin J, Chechik M (2013) A framework for managing cloned product variants. In: International conference
on software engineering. IEEE, ICSE, pp 1233–1236. https://doi.org/10.1109/ICSE.2013.6606686

Ruparelia NB (2010) The history of version control. ACM SIGSOFT Software Engineering Notes 35(1):5–9.
https://doi.org/10.1145/1668862.1668876

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of soft-
ware product lines. In: International conference on software product lines. Springer, SPLC, pp 77–91.
https://doi.org/10.1007/978-3-642-15579-6 6

Schaefer I, Rabiser R, Clarke D, Bettini L, Benavides D, Botterweck G, Pathak A, Trujillo S, Villela K (2012)
Software diversity: State of the art and perspectives. Int J Softw Tools Technol Transfer 14(5):477–495.
https://doi.org/10.1007/s10009-012-0253-y

Schobbens PY, Heymans P, Trigaux JC, Bontemps Y (2007) Generic semantics of feature diagrams. Comput
Netw 51(2):456–479. https://doi.org/10.1016/j.comnet.2006.08.008

Schulze S, Schulze M, Ryssel U, Seidl C (2016) Aligning coevolving artifacts between soft-
ware product lines and products. Association for Computing Machinery, VaMoS, 9–16.
https://doi.org/10.1145/2866614.2866616

Schwägerl F (2018) Version control and product lines in model-driven software engineering. PhD thesis,
University of Bayreuth

Schwägerl F, Westfechtel B (2016) Supermod: Tool support for collaborative filtered model-driven software
product line engineering. In: International conference on automated software engineering. ACM, ASE,
pp 822–827. https://doi.org/10.1145/2970276.2970288

Schwägerl F, Westfechtel B (2019) Integrated revision and variation control for evolving model-driven soft-
ware product lines. Softw Syst Model 18(6):3373–3420. https://doi.org/10.1007/s10270-019-00722-3

Seidl C, Schaefer I, Aßmann U (2014a) Capturing variability in space and time with hyper feature models. In:
International workshop on variability modelling of software-intensive systems. ACM, VaMoS, pp 1–8.
https://doi.org/10.1145/2556624.2556625

101 Page 48 of 53 Empir Software Eng (2022) 27: 101

https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/3336294.3342367
https://doi.org/10.1109/ms.2002.1020285
https://doi.org/10.1145/2362536.2362556
https://doi.org/10.1109/TSE.1976.233797
https://doi.org/10.1145/2430502.2430526
https://doi.org/10.1007/978-3-319-14130-5_6
https://doi.org/10.1109/ASE.2015.106
https://doi.org/10.1145/3023956.3023960
https://doi.org/10.1145/3336294.3336299
https://doi.org/10.1016/B978-0-12-816649-9.00017-X
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/ICSE.2013.6606686
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2970276.2970288
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1145/2556624.2556625

Seidl C, Schaefer I, Aßmann U (2014b) Deltaecore - A model-based delta language generation framework.
In: Modellierung, GI, pp 81–96

Seidl C, Schaefer I, Aßmann U (2014c) Integrated management of variability in space and time
in software families. In: International software product line conference. ACM, SPLC, pp 22–31.
https://doi.org/10.1145/2648511.2648514

Stănciulescu S, Schulze S, Waşowski A (2015) Forked and integrated variants in an open-source firmware
project. In: International conference on software maintenance and evolution. IEEE, ICSME, pp 151–160.
https://doi.org/10.1109/icsm.2015.7332461

Strüber D, Mukelabai M, Krüger J, Fischer S, Linsbauer L, Martinez J, Berger T (2019) Facing The truth:
Benchmarking the techniques for the evolution of variant-rich systems. In: International systems and
software product line conference. ACM, SPLC, pp 177–188. https://doi.org/10.1145/3336294.3336302

Svahnberg M, van Gurp J, Bosch J (2005) A taxonomy of variability realization techniques. Software:
Practice and Experience 35(8):705–754. https://doi.org/10.1002/spe.652

Thüm T, Teixeira L, Schmid K, Walkingshaw E, Mukelabai M, Varshosaz M, Botterweck G, Schaefer I,
Kehrer T (2019) Towards efficient analysis of variation in time and space. In: International software
product line conference. ACM, SPLC, pp 57-64. https://doi.org/10.1145/3307630.3342414

Vogel-Heuser B, Legat C, Folmer J, Feldmann S (2014) Researching evolution in industrial plant automation:
Scenarios and documentation of the pick and place unit. Tech. Rep. TUM-AIS-TR-01-14-02, Technical
University of Munich

Westfechtel B, Munch BP, Conradi R (2001) A layered architecture for uniform version management. IEEE
Trans Softw Eng 27(12):1111–1133. https://doi.org/10.1109/32.988710

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

SofiaAnanieva is a doctoral researcher at the chair for Dependability
of Software-intensive Systems at Karlsruhe Institute of Technology
(KIT) since 2016. She is employed by the FZI Research Center for
Information Technology. Her research addresses uniform manage-
ment of variability in space and time for highly configurable systems
composed of heterogeneous artifacts with emphasis on variability-
aware consistency preservation in model-driven and view-based
engineering.

SandraGreiner received her M.Sc. degree in Computer Science from
the University of Bayreuth in 2015 and commenced her PhD. stud-
ies at the Chair of Software Engineering, University of Bayreuth. In
2021, she visited the Software Quality and Research Group at IT Uni-
versity of Copenhagen, Denmark. Her research interests are dedicated
to the maintenance of evolving software systems, particularly those
developed in a model-driven way. One main focus lies on employ-
ing automated techniques in model-driven software product lines to
guarantee a consistent evolution of their artifacts.

Page 49 of 53 101Empir Software Eng (2022) 27: 101

https://doi.org/10.1145/2648511.2648514
https://doi.org/10.1109/icsm.2015.7332461
https://doi.org/10.1145/3336294.3336302
https://doi.org/10.1002/spe.652
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1109/32.988710

TimoKehrer is a professor at the Institute of Computer Science of the
University of Bern (Switzerland), chairing the Software Engineering
Research and Teaching Group. Before that, Kehrer was an assistant
professor at the Humboldt-University of Berlin (Germany), heading
the Model-Driven Software Engineering Group from 2017 to 2021.
Kehrer worked as a postdoctoral research fellow in the Dependable
Evolvable Pervasive Software Engineering Group at Politecnico di
Milano (Italy) from 2015 to 2016, and as a research assistant in the
Software Engineering and Database Systems Group of the University
of Siegen (Germany) from 2011 to 2015. He has active research inter-
ests in various fields of model-driven and model-based software and
systems engineering, with a particular focus on software and model
evolution.

Jacob Krüger is associated researcher at the Software Engineering
group of the Ruhr-University Bochum, and obtained his PhD degree
in 2021 at the Otto-von-Guericke University Magdeburg, Germany.
He worked as research associate at the Otto-von-Guericke Univer-
sity Magdeburg as well as the Harz University of Applied Sciences
Wernigerode, and visited Chalmers — University of Gothenburg
in Sweden as well as the University of Toronto in Canada. His
research addresses feature-oriented software development, with par-
ticular focus on software evolution, program comprehension, and
human factors.

Thomas Kühn is a post-doc at the Dependability of Software-
intensive Systems Group at Karlsruhe Institute of Technology. His
research focuses one new ways to model and program future soft-
ware systems challenged by increased complexity, heterogeneity, rate
of change and longevity. As a result, he developed a family of
role-based modelling and a family of role-oriented programming lan-
guages supported by a feature-aware modelling editor and a basic
IDE, respectively. Currently, he improves tool support for view-
based, model-driven software development building on the Vitruvius
approach. Contact him at thomas.kuehn@kit.edu.

101 Page 50 of 53 Empir Software Eng (2022) 27: 101

Lukas Linsbauer is currently a postdoctoral researcher at the Institute
of Software Engineering and Automotive Informatics at the Technis-
che Universität Braunschweig in Germany. He received his Doctorate
in 2016 from the Institute for Software Systems Engineering at the
Johannes Kepler University Linz in Austria under the supervision
of Prof. Alexander Egyed and Dr. Roberto Erick Lopez-Herrejon.
His research interests include highly variable and configurable sys-
tems, software product lines, feature-oriented software and systems
development, traceability, and version control systems.

Sten Grüner is a senior scientist in the software architecture research
group at ABB Corporate Research Center Germany. His research
interests include application on Software Product Line Engineering
methods on existing industrial embedded systems as well as informa-
tion modeling for highly available industrial applications. He holds a
Ph.D. from RWTH Aachen University in Germany.

Anne Koziolek is a full professor of software engineering at Karl-
sruhe Institute of Technology (KIT), Germany. She received her PhD
degree from KIT in 2011 and was a Postdoc at University of Zurich
until 2013. Her current research interest is how to reconcile agile,
code-centric software development with model-based software engi-
neering, especially regarding models for quality prediction as well as
design models, including those with information on variability.

Page 51 of 53 101Empir Software Eng (2022) 27: 101

Henrik Lönn has a PhD in Computer Engineering from Chalmers
University of Technology, Sweden, with a research focus on safety-
critical real-time systems. At Volvo, he has worked on various
aspects on vehicle electronic systems including architecture mod-
elling,system integration and V&V. He is also participating in
national and international research collaborations on embedded sys-
tems development. Previous project involvement includes X-by-Wire,
FIT, EAST-EEA, ATESST, TIMMO and MAENAD as well as
Swedish projects like Synligare, HeavyRoad and EMISYS.

S. Ramesh is a Senior Technical Fellow at General Motors Global
R&D, in Warren, MI, US, where he provides technical leadership
in R&D. His areas of interests include rigorous modeling, verifica-
tion and validation of software and systems for automotive embedded
control. Before moving to USA, he managed a research group that
looked into rigorous verification and validation of automotive control
software at the GM India Science Labs in Bangalore. Earlier, he was
on the faculty of the Department of Computer Science at the Indian
Institute of Technology Bombay India as a Professor, for more than
fifteen years. At IIT Bombay, he played a major role in setting up a
National Centre for Formal Design and Verification of Software. He
has published more than 125 research papers and has more than 10
patents in the area of software engineering and verification.

Ralf Reussner is full professor for software engineering at Karl-
sruhe Institute of Technology (KIT) since 2006. He holds the chair
for Dependability of Software-intensive Systems and heads the
KASTEL-Institute for Information Security and Dependability. His
research group works in the interplay of software architecture and
predictable software quality as well as on view-based design methods
for software-intensive technical systems.

101 Page 52 of 53 Empir Software Eng (2022) 27: 101

Affiliations

Sofia Ananieva1 · Sandra Greiner2 · Timo Kehrer3,4 · Jacob Krüger5,6 ·
Thomas Kühn7 · Lukas Linsbauer8 · Sten Grüner9 ·Anne Koziolek7 ·
Henrik Lönn10 · S. Ramesh11 ·Ralf Reussner7

Sandra Greiner
Sandra1.Greiner@uni-bayreuth.de

Timo Kehrer
timo.kehrer@informatik.hu-berlin.de

Jacob Krüger
jacob.krueger@rub.de

Thomas Kühn
thomas.kuehn@kit.edu

Lukas Linsbauer
l.linsbauer@tu-braunschweig.de

Sten Grüner
sten.gruener@de.abb.com

Anne Koziolek
koziolek@kit.edu

Henrik Lönn
Henrik.Lonn@volvo.com

S. Ramesh
ramesh.s@gm.com

Ralf Reussner
reussner@kit.edu

1 FZI Research Center for Information Technology Berlin, Berlin, Germany
2 University of Bayreuth, Bayreuth, Germany
3 Humboldt University of Berlin, Berlin, Germany
4 University of Bern, Bern, Switzerland
5 Otto-von-Guericke University Magdeburg, Magdeburg, Germany
6 Ruhr-University Bochum, Bochum, Germany
7 Karlsruhe Institute of Technology, Karlsruhe, Germany
8 Technical University of Braunschweig, Braunschweig, Germany
9 ABB Corporate Research Center, Ladenburg, Germany
10 Volvo Group Trucks Technology, Gothenburg, Sweden
11 General Motors Global R&D Bangalore, Bangalore, India

Page 53 of 53 101Empir Software Eng (2022) 27: 101

http://orcid.org/0000-0001-8481-8288
http://orcid.org/0000-0001-7312-2891
mailto: Sandra1.Greiner@uni-bayreuth.de
mailto: timo.kehrer@informatik.hu-berlin.de
mailto: jacob.krueger@rub.de
mailto: thomas.kuehn@kit.edu
mailto: l.linsbauer@tu-braunschweig.de
mailto: sten.gruener@de.abb.com
mailto: koziolek@kit.edu
mailto: Henrik.Lonn@volvo.com
mailto: ramesh.s@gm.com
mailto: reussner@kit.edu

	A conceptual model for unifying variability in space and time: Rationale, validation, and illustrative applications
	Abstract
	Introduction
	Background
	Running Example: Pick and Place Unit
	Variability in Space
	Variability in Time
	Variability in Space and Time
	Initial Conceptual Model

	State of the Art
	Conceptual Models for Variability in Space
	Conceptual Models for Variability in Time
	Related Surveys of Variability in Space and Time

	Contemporary Variability Tools
	Tool Selection
	Tools for Variability in Space
	FeatureIDE
	pure::variants
	SiPL

	Tools for Variability in Time
	Subversion
	Git

	Tools for Variability in Space and Time
	ECCO
	SuperMod
	DeltaEcore
	DarwinSPL
	VaVe

	Construction Process
	Dagstuhl Seminar (19191)
	Expert Interviews
	Construction Mapping
	Workshops

	The Conceptual Model
	Design Decisions
	Terminology
	Modeling Pragmatics

	Concepts and Relations
	Concepts and Relations for Variability in Space
	Concepts and Relations for Variability in Time
	Concepts and Relations for Variability in Space and Time
	Unified Concepts and Relations

	Static Semantics
	Auxiliary Definitions
	Well-Formedness

	Validation
	Goals
	Research Questions
	Process

	Qualitative Analysis
	Expert Questionnaire
	Validation Mapping
	Results

	Quantitative Analysis
	Metrics
	Results

	Formal Concept Analysis
	Discussion
	RQ1: Is the conceptual model of appropriate granularity?
	RQ2: Is the conceptual model of appropriate coverage?

	Threats to Validity

	Applying the Unified Conceptual Model in Practice
	Refinement Process of the Conceptual Model
	Feature-Revision/Transformational Tool TT
	Construction Process
	Validation
	Instantiation

	Both-Revisions/Compositional Tool TC
	Construction Process
	Validation
	Instantiation

	Summary

	Conclusion
	References
	Affiliations

