
Empirical Software Engineering (2022) 27: 68

Incremental software product line verification - A
performance analysis with dead variable code

Christian Kröher1 & Moritz Flöter1 & Lea Gerling1 & Klaus Schmid1

Accepted: 28 November 2021
# The Author(s) 2022, corrected publication 2022

Abstract
Verification approaches for Software Product Lines (SPL) aim at detecting variability-
related defects and inconsistencies. In general, these analyses take a significant amount of
time to provide complete results for an entire, complex SPL. If the SPL evolves, these
results potentially become invalid, which requires a time-consuming re-verification of the
entire SPL for each increment. However, in previous work we showed that variability-
related changes occur rather infrequently and typically only affect small parts of a SPL. In
this paper, we utilize this observation and present an incremental dead variable code
analysis as an example for incremental SPL verification, which achieves significant
performance improvements. It explicitly considers changes and partially updates its
previous results by re-verifying changed artifacts only. We apply this approach to the
Linux kernel demonstrating that our fastest incremental strategy takes only 3.20 seconds
or less for most of the changes, while the non-incremental approach takes 1,020 seconds
in median. We also discuss the impact of different variants of our strategy on the overall
performance, providing insights into optimizations that are worthwhile.
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1 Introduction

Software Product Line (SPL) engineering is an industrial-ready technique to create, manage,
and maintain software families (Schmid and de Almeida 2013). Its core idea is to develop
software as a set of related products, which share a common infrastructure, but vary in their
individual capabilities. This variability enables the configuration and combination of generic
artifacts to create a wide range of specific product variants.

Prominent examples of generic SPL artifacts are preprocessor-based code artifacts (Hunsen
et al. 2016; Liebig et al. 2010) and conditional build artifacts (Nadi and Holt 2014; Adams
et al. 2007). In code artifacts, preprocessor statements, like #ifdef for the C language,
restrict the availability of certain code fragments for a final product. They define conditions
that must be satisfied in order to include the respective code fragment they restrict. In build
artifacts, similar conditions exist, which control the availability of entire files and directories.
The evaluation of code and build conditions during the build and preprocessing of a final
product depends on the selection of configuration options provided by a variability model
(Eichelberger et al. 2013; Eichelberger and Schmid 2013; Czarnecki et al. 2012). This model is
an abstract representation of all valid product configurations of a SPL. It contains configuration
options for variable product capabilities and restrictions among them to avoid inconsistent or
defective configurations. The code and build conditions reference these configuration options
to include or exclude the related product capabilities based on a given configuration of the
variability model.

A significant challenge in SPL engineering is the correct and consistent evolution of
variability information (Mukelabai et al. 2018; Hellebrand et al. 2014; Livengood 2011).
One of the reasons for this is the scattering of variability information across different artifacts
as outlined above. In large SPLs this includes thousands of files (Passos et al. 2016), which are
connected by a vast number of variability-related configuration options, conditions and
references (Dietrich et al. 2012; El-Sharkawy et al. 2017; Nadi and Holt 2014). This com-
plexity contains the risk of unintentionally introducing variability-related defects in or incon-
sistencies among those files as part of an evolutionary change.

There exists a plethora of SPL verification approaches to detect variability-related defects
and inconsistencies (Thüm et al. 2014; Chastek et al. 2001; Meinicke et al. 2014; Benavides
et al. 2010). The execution times of these approaches vary significantly with the goal of the
analysis, the number of relevant artifacts, the amount and complexity of their inherent
variability information, as well as the size of the SPL in general. For example, some analyses
provide their results within seconds (Mendonca et al. 2009), while others require multiple
minutes (Tartler et al. 2011), hours (Dietrich et al. 2012), or even days (Kästner et al. 2011).
Upon evolution of a SPL, these delays will occur for every update (even minor changes), if
verification is used to ensure correctness and consistency continuously.

In our previous work, we investigated the intensity of variability-related changes in SPL
evolution to identify the amount and frequency in which variability information changes over
time (Kröher et al. 2018c; Kröher and Schmid 2017b, a). The result of this analysis reveals that
changes to variability information occur infrequently and only affect small parts of the
considered types of artifacts. Hence, a re-verification of the entire SPL is often not necessary.
We therefore argue that the explicit consideration of changes by implementing a regression-
based analysis approach provides substantial benefits in terms of execution times. In this way,
we can bring more of the SPL verification approaches within the reach of practitioners to meet
industry demands (Mukelabai et al. 2018). While other approaches exist, which target a similar
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goal (Szabó et al. 2016; Hamza et al. 2018), they typically come with their dedicated internal
representation of artifacts to analyze or are limited to a subset of all types of artifacts containing
variability information. Approaches considering variability information in all relevant types of
artifacts typically have a different goal, like semantic reasoning on the type of changes applied
to those artifacts over a sequence of commits (Dintzner et al. 2018).

In this paper, we present an approach based on a regression concept over all relevant types
of artifacts and the results of analyzing its performance. The approach relies on our fine-
grained commit analysis (Kröher et al. 2018c) as well as the consideration of the relations
between input artifacts, extracted variability information, and the core algorithm of an analysis.
We explicitly omit introducing additional models for change impact analysis, but utilize
already available information only, like the changes documented by individual commits of a
repository. The core analysis algorithm remains unmodified.

We describe this approach along an example from the domain of family-based static
analyses (Thüm et al. 2014): the dead variable code analysis (Tartler et al. 2011; Nadi and
Holt 2012; Dietrich et al. 2012) for identifying dead variable code blocks. While dead variable
code is an important issue in its own right, it is a representative of a larger group of static
analyses, which rely on the syntactic structure alone and are compositional. This
compositionality allows detecting defects in some part of the implementation without consid-
ering the implementation at large. Hence, the analysis of an entire SPL is a composition of
individual analyses for each part of it. Other analyses in this group are feature effects (Nadi
et al. 2015) or configuration mismatches (El-Sharkawy et al. 2017). We selected the dead
variable code analysis as a candidate to research our expected improvements before transfer-
ring our regression-based approach to other analyses in this group.

In order to analyze potential strategies for our approach and to compare their performance,
we conceptually introduce different levels of change granularity and technically realize
adaptation options to switch among them. The result is a set of three incremental variants of
the dead variable code analysis, which consider changes on the level of files (called Artifact
Change Variant), file content (called Block Change Variant), and variability information as
part of file content changes (called Configuration Block Change Variant). Our analysis
compares these three incremental variants and the original non-incremental one with respect
to their performances by applying them to a subset of the Linux kernel evolution history
(Torvalds 2020). The results of this comparison will answer the following research questions:

RQ1 To what extent can we reduce the analysis time, if we explicitly consider changes?
RQ2 How does the granularity of change identification impact the analysis performance?
RQ3 What is the overhead of using change identification in incremental verification?

The approach and results in this paper represent an important step towards a solution of
industrial and practical needs in the context of SPL evolution (Mukelabai et al. 2018). In
particular, we aim at a better understanding of the potential benefits and limitations of
regression-based verification and the necessary granularity of change identification to achieve
optimal results for an analysis during SPL evolution. The basic conclusions from our perfor-
mance analysis with the dead variable code analysis can also be transferred to other compo-
sitional SPL analyses at a later point in time. Hence, we make the following contributions:

– We introduce incremental variants of the dead variable code analysis as a practical
example for incremental SPL verification.
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– We conduct a performance analysis comparing the incremental variants with the original,
non-incremental dead variable code analysis.

– We discuss the analysis results along our research questions to provide evidence for the
performance improvements.

In the next section, we provide the necessary background for the remainder of this paper. This
includes the motivation for using the Linux kernel as a running example and as a reference in
our performance analysis as well as an explanation of its variability realization. Further, we
introduce the original dead variable code analysis and delimit it from the classical notion of
dead code. We also outline our previous results from analyzing SPL evolution, which
represent the main motivation for this paper and lay the foundation for our approach to
incremental SPL verification in Section 3. Section 4 describes the technical realization of this
approach and the tools we use as part of it. In Section 5, we define the setup (hardware,
software, data set), the execution, and the measurements of the performance analysis. In
particular, we explain the selection of the specific subset of the Linux kernel history and the
validation of the correctness of the analysis results per variant. Section 6 presents the results of
the performance analysis, while Section 7 discusses these results in accordance with our
research questions. We discuss threats to validity in Section 8, related work in Section 9,
and provide our conclusions in the final section.

2 Background

In this paper, we compare the performance of the original, non-incremental dead variable code
analysis (Tartler et al. 2011; Nadi and Holt 2012; Dietrich et al. 2012) with our incremental
variants. We therefore use a subset of the Linux kernel commit history as it provides the
relevant types of artifacts with their individual, but interconnected variability information.
Hence, Section 2.1 motivates this usage in more detail and discusses these relevant artifacts as
well as the variability realization of the Linux kernel. Further, we refer to these descriptions in
the remainder of this paper to provide illustrative examples. For instance, we already use these
descriptions in Section 2.2 to introduce the original dead variable code analysis. As part of this
introduction, we also differentiate between classical dead code and dead variable code as
considered in SPL engineering. This introduction provides the necessary understanding for our
incremental analysis approach presented in Section 3. Finally, we motivate our incremental
approach by summarizing previous results and proposed optimizations from our SPL evolution
analysis in Section 2.3.

2.1 Linux Kernel

The Linux kernel is a prominent reference example for a large-scale, real-world Software
Product Line (SPL). This status yields from the extensive use of Linux by the SPL research
community: either to understand SPL development in practice (Adams et al. 2007; Hunsen
et al. 2016; Liebig et al. 2010; Passos et al. 2016) or to evaluate approaches supporting that
development (Dietrich et al. 2012; El-Sharkawy et al. 2017; Nadi and Holt 2014; Tartler et al.
2011). As our contribution is part of the latter category, we will also focus on Linux for
evaluation in this paper. Further, we will use excerpts from the Linux kernel implementation as
a running example to illustrate our approach. Hence, this section introduces the relevant
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artifacts and the variability realization of the Linux kernel. We limit this description to the
extent necessary to understand our approach and its scope. In particular, we consider those
types of artifacts relevant for the dead variable code analysis and for illustrating the difference
to classical dead code in the next section.

The Linux kernel employs Kbuild (Passos et al. 2016) to realize variability. Figure 1
illustrates this realization by a real-world example of the Linux kernel version 4.8-rc1. It
contains three code artifacts in the upper part, two build artifacts in the lower part, and a
variability model artifact in the middle. Further, arrows indicate relations between some of
these artifacts as established by the Kbuild variability mechanism. We start our descriptions by
considering artifacts with such relations first. The explanation of unrelated artifacts (copy.S
and init_64.c in Fig. 1) follows at the end of this section.

The upper part of Fig. 1 presents an example for each file type considered as code artifact in
this paper. In Linux, these code artifacts consist of *.c- and *.h-files containing C-code and
*.S-files containing assembler code. In all three file types, variability is mainly realized by
preprocessor statements (Hunsen et al. 2016). Lines 780, 782, and 784 in perf_event.h
contain such statements, which control the presence of the enclosed C-code-fragments (lines
781 and 783). The decision of which fragment will be part of the compiled kernel variant
depends on the evaluation of the #ifdef-statement and the referenced symbol
CONFIG_X86_32 in line 780. This symbol denotes a configuration option defined in the
variability model, which is indicated by the prefix CONFIG_. Hence, the presence of lines 781
or 783 depends on the selection or deselection of this option during the configuration process.

The Kconfig-file in Fig. 1 shows the definition of the CONFIG_X86_32 symbol using
the Kconfig language (Linux 2018). In the Linux kernel multiple Kconfig-files exist, that
together represent the variability model. In such a file, the keyword config in lines 9 and
1811 indicates the definition of a configuration option followed by its name: X86_32 and
KEXEC_FILE. These names do not include the prefix CONFIG_, which is only used to

Fig. 1 Variability realization in the Linux kernel
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indicate references to configuration options in other artifacts. Besides further variability
information, like the type of a configuration option (e.g., Boolean in lines 10 and 1812) or
dependencies between them (e.g., the depends on relation in line 11), Kconfig supports the
definition of help texts and descriptions (e.g., lines 1818ff). They guide the end-user during the
configuration process and explain the purpose and the impact of selecting a specific option.

The KEXEC_FILE option in our example is used to adapt the Linux kernel build process,
which is mostly implemented in Kbuild-files and Makefiles using GNU Make com-
mands (Linux 2019). In the Makefile the reference to the configuration option (again
indicated by the prefix CONFIG_) is part of a condition, which restricts the presence of the
enclosed command in line 195 (Nadi and Holt 2014). The Kbuild-file illustrates a different
way to adapt the build process: The KEXEC_FILE option is used to modify the name of the
variable obj-. The selection of this configuration option changes the name of the variable to
obj-y. Hence, all files in the directory purgatory are compiled and linked during the build
process, whereas the deselection excludes them.

Figure 1 includes two additional, but unrelated code artifacts (no incoming or outgoing
arrows). The preprocessor statements (lines 69 and 87) in copy.S control the presence of the
assembler code in lines 70 to 86. While the basic mechanism of controlling that presence in
copy.S is similar to the one in perf_event.h, it differs with respect to the required
information for decision-making. In copy.S, the decision of whether the assembler code is
present in a compiled kernel variant solely depends on local information. Developers inten-
tionally use this mechanism to exclude code fragments from compilation without removing
them entirely from the code base. The evaluation of the #if-statement does not require
additional information, like the selection or deselection of configuration options of the
variability model in perf_event.h. Finally, init_64.c shows a control structure (line
370) in C-code to execute a particular code statement (line 371) conditionally. In contrast to
the other code artifacts in Fig. 1, this form of control does not influence the presence of
statements in a compiled kernel variant. Line 371 in init_64.c will always be present in
this artifact. However, its actual execution depends on the evaluation of the control structure in
line 370.

2.2 Dead Variable Code Analysis

The classical definition of dead code describes the presence of statements in the source code
that are never executed under any circumstances (Aho et al. 2006). Hence, these code
statements are called dead, like line 371 in init_64.c in Fig. 1. The statement in line
371 will never be executed as the related condition in line 370 is never satisfiable (always
evaluates to false). The classical dead code analysis determines such unreachable code
statements by computing the minimum sufficient code information required to execute them
(Liu and Stoller 2003).

In the context of SPL engineering, however, dead code typically refers to code statements,
which are never present in any product of the SPL (Tartler et al. 2011; Nadi and Holt 2012;
Dietrich et al. 2012). Dead variable code and the related dead variable code analysis are
fundamentally different from the classical definitions. For example, the dead variable code
analysis will not identify the dead line 371 in init_64.c as it will be present in at least some
Linux kernel variants, even though it will never be executed in any variant. In contrast, it
detects dead variable code resulting from preprocessor statements, which define conditions
that are not satisfiable. The code blocks enclosed by such preprocessor statements will always
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be excluded during preprocessing and therefore are called dead. In this paper, we refer to this
notion of dead variable code and the corresponding dead variable code analysis as described in
the remainder of this section.

The dead variable code analysis was first introduced by Tartler et al. in (2011) and extended
by Nadi and Holt (2012) as well as Dietrich et al. (2012) later. We use the extended analysis,
which considers code, variability model, and build artifacts to determine whether a variable
code block is dead. Dead variable code blocks typically arise from inconsistencies between the
variability information in those types of artifacts. Hence, the process of the dead variable code
analysis consists of two fundamental steps. First, it extracts the variability information from
code, variability model, and build artifacts. Second, it combines the extracted variability
information for each variable code block and analyzes it. We outline these steps in more
detail below. However, for a comprehensive description, we refer to the original work on
extracting variability information from code and variability model artifacts (Tartler et al. 2011)
as well as from build artifacts (Nadi and Holt 2012; Dietrich et al. 2012) for dead variable code
analysis.

The extraction step of the dead variable code analysis aims at providing propositional
formulas as a common representation for analysis. The creation of these formulas and their
semantics differ with respect to the type of artifacts they are extracted from. For code artifacts
(*.c-, *.h-, and *.S-files in Fig. 1), the extraction considers each artifact independently to
identify contained preprocessor statements, which impose a condition on the presence of a
variable code block cb. For each variable code block, it extracts this presence condition for that
block pc(cb). If a (parent) block contains additional blocks, their presence condition is a
conjunction of their parent block’s condition and their own condition. This code extraction
results in three variable code blocks and their presence conditions when applied to the example
from the Linux kernel in Fig. 1:

– In perf_event.h, two blocks exist:

– The first block cb1 represents line 781, for which the presence condition pcðcb1Þ consists
of CONFIG_X86_32 defined by the #ifdef-statement in line 780

– The second block cb2 is the #else-part of that statement in line 783, for which the
negation !CONFIG_X86_32 defines the presence condition pcðcb2Þ

– The third block cb3 is located in copy.S (lines 70 to 86) guarded by the presence
condition pcðcb3Þ, which only contains 0 (false)

– For init_64.c, the code extraction does not provide any variable code block as there is
no preprocessor statement defining a presence condition

The extraction for variability model artifacts (Kconfig-file in Fig. 1) considers all these
artifacts to create a single propositional formula. This variability model formula VM represents
all valid product configurations derived from the defined configuration options, their relations,
and dependencies. As these definitions are scattered across various variability model artifacts,
the derivation of all valid product configuration requires a mutual consideration of all of them.
For the excerpt of the Kconfig-file in Fig. 1, the variability model formula VMwill include a
disjunction consisting of:
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– CONFIG KEXEC FILE (derived from the definition of the respective configuration
option in line 1811)

– CONFIG X86 32 ^ :CONFIG 64BIT (derived from the basic definition of the config-
uration option in line 9 and the assigned constraint in line 11, which requires 64BIT not
to be selected, if X86_32 is selected)

The extraction from build artifacts (Kbuild-file and Makefile in Fig. 1) starts at the root of
a SPL directory tree and recursively descends into the build artifacts of each subdirectory. On
the paths from the root to leaf directories, the extraction collects each code artifact by its path
relative to the root. Further, it assigns a condition to these code artifacts, which must be
satisfied to include the respective artifact during build. This condition is a propositional
formula defining the required combination of build prerequisites for a code artifact. The result
of this build model extraction is a set of build model formulas BM. For example, the build
statement in the KBuild-file in Fig. 1 results in a build model formula of
CONFIG_KEXEC_FILE for each code artifact in the directory purgatory and its
subdirectories. This configuration option must be selected to build the code files in these
directories for a Linux kernel variant (cf. Section 2.1).

The analysis step of the dead variable code analysis aims at identifying dead variable code
blocks. This step requires relating the extracted variability information from the different types
of artifacts for each variable code block identified during code extraction. In general, a variable
code block cb is dead, if the conjunction of its presence condition pc(cb), the build model
formula in BM, and the variability model formula VM is not satisfiable:

deadðcbÞ ¼ :satðpcðcbÞ ^ BM ^ VMÞ
In the Linux kernel example (cf. Fig. 1), we identified three variable code blocks during code
extraction as described above. Based on the illustrated excerpts only, the dead variable code
analysis checks for cb1 in perf_event.h the conjunction of pcðcb1Þ, BM, and VM with the
following values:

– pcðcb1Þ CONFIG_X86_32
– BM ¼ 1 (as there is no condition in the build artifacts restricting the presence of

perf_event.h)
– VM ¼ CONFIG_KEXEC_FILE _ CONFIG_X86_32 ^ :CONFIG_64BIT

The result of this check is true (satisfiable), which is negated to formulate that the variable
code block cb1 is not dead.

2.3 Variability Changes in SPL Evolution

The main motivation for our approach to incremental SPL verification presented in this paper
is based on the results of our SPL evolution analysis (Kröher et al. 2018c; Kröher and Schmid
2017a, b). In this analysis, we investigate the frequency with which developers generally
change a specific amount of variability information in code, build, and variability model
artifacts. Therefore, we introduced a fine-grained analysis approach, which detects line-based
changes in the commits of the Linux kernel repository (Torvalds 2020). The corresponding
Commit Analysis (ComAn) tool (ComAn Team 2018) realizes this approach. In particular, it
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provides a commit analysis process, which analyzes each file changed by a commit individ-
ually. The core steps of this process are:

– The general determination of file types using regular expressions to match the name of the
changed file against the file types described in Section 2.1. This step restricts the
subsequent analysis of file content changes to the prominent examples of generic SPL
artifacts as introduced in Section 1.

– The individual analysis of content changes to code, build, and variability model files
depending on the determined file type in the previous step. This step categorizes the
addition or removal of individual lines into variability information and artifact-specific
information changes.

In the Linux kernel example (cf. Section 2.1), these core steps of the analysis process classify
any change to lines 780, 782, or 784 in the code artifact perf_event.h as a change to
variability information. This is due to the #ifdef-statement in line 780, which marks the
beginning of the entire preprocessor block and references a configuration option of the
variability model. Changes to the enclosed return-statements (lines 781 and 783 in
perf_event.h) are classified as artifact-specific changes in code artifacts. Similar classi-
fications exist for build and variability model artifacts. For more information on the entire
classification scheme and the corresponding identification, we refer to our previous publication
(Kröher et al. 2018c).

The application of the ComAn tool to over 12 years of active Linux kernel development,
considering 662.110 commits from initial commit 1da177e4c3 (2005/04/16) to latest
commit d528ae0d3d (2017/03/16), reveals that variability information does not change
significantly relative to the total number of changes. The results show that only 11% of all
commits change variability information over all analyzed types of artifacts in general. Further,
if variability changes occur, they mostly apply to code artifacts, followed by variability model
artifacts and build artifacts. These changes typically affect 1-10 lines containing variability
information independent of the specific type of artifacts.

The observations of our SPL evolution analysis led us to an outline of exploitation
opportunities (Kröher et al. 2018c). A particular focus of these opportunities was on the group
of static analyses to which the dead variable code analysis defined in Section 2.2 belongs to.
For example, changes to general code statements do not influence the results of this analysis,
as it only checks the presence of variable code blocks, but neither their content nor any other
detailed code semantics. This avoids verification effort in about 78% of all commits in the
evolution analysis. For the remaining commits, changes only affect few lines, which reduces
the re-verification to exactly those affected artifacts. Further, some commits introduce changes
to a particular type of artifacts exclusively, which allows reusing the information of unchanged
artifacts for the re-verification of the changed ones.

In order to validate the potential of the opportunities outlined above, the next section
introduces our corresponding approach to incremental SPL verification. This approach builds
on the core steps of the analysis process described in this section to detect the changes and the
amount of affected artifacts that require re-verification. In particular, these steps introduce
different levels of change granularity to this approach. The first step regarding the determina-
tion of file types considers changes on the level of entire files only. The second step realizing
the analysis of content changes considers fine-grained changes to individual file lines. This
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differentiation lays the foundation for the resulting variants of the example of an incremental
dead variable code analysis.

3 Incremental Verification

In this section, we introduce our approach to incremental SPL verification along the
example of the dead variable code analysis. This analysis combines the presence condi-
tion of a variable code block with the build and variability model formula to determine
whether a variable code block is dead (cf. Section 2.2). It therefore extracts these
formulas from the respective types of artifacts. Hence, there exist relations between
artifacts and their extracted formulas as well as between those formulas and the actual
analysis. These relations are crucial to identify the impact of changes, such that we
determining them in Section 3.1. As a result, we derive three fundamental levels of
granularity at which we consider relevant changes. Section 3.2 builds on this result to
detail these levels of granularity. In particular, the inspection of the relevant changes
reveals the necessary re-verification effort and the expected analysis results for individ-
ual evolution scenarios at each level. Hence, we created one incremental variant of the
dead variable code analysis for each level of change granularity following these descrip-
tions. While we focus here on the dead variable code analysis, these sections describe the
fundamental steps of our approach for building incremental SPL verifications in general.

3.1 Determining Relevant Relations

Figure 2 illustrates the different relations between artifacts, formulas (data models), and the
actual analysis. The arrows from left to right indicate the two-step process of the dead variable
code analysis as described in Section 2.2. We briefly recap the essentials of these descriptions
along the arrows in Fig. 2 first. Based on this recap, we then discuss the resulting relations to
derive relevant changes at different levels of granularity, which affect the results of an analysis.
This lays the foundation for creating our incremental variants of the dead variable code
analysis in the next section.

The extraction step of the dead variable code analysis provides a set of individual variable
code blocks (cb1 to cbn), the variability model formula (VM), and the build model formula
(BM). It therefore processes each code artifact separately to identify the variable code blocks
along with their presence conditions (pcðcb1Þ , etc.) defined by their ambient preprocessor
statements. The variability model formula (VM) as well as the build model formula (BM)
originate from the joint extraction of variability information from all variability model artifacts
or build artifacts, respectively.

The analysis step uses these formulas as an input to its core algorithms, which analyzes
each variable code block cbx individually. It checks the satisfiability of the conjunction of a
block’s presence condition with the variability model and build model formula (deadðcb1Þ to
deadðcbnÞ for short in Fig. 2). If this conjunction is not satisfiable, the respective variable code
block is dead.

The relations (arrows) in Fig. 2 reveal that a variable code block and its presence
condition are only relevant for the analysis of this particular block. In contrast, the
variability model and build model formula influence the result of each analysis. In
theory, it would be conceivable to only use those parts of the variability model and
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build model formula that actually control the presence of the respective variable code
block under analysis. However, this is extremely difficult to do in a highly performant
way due to the tight interactions among the various model parts and the way they are
extracted (cf. Section 2.2).

The determination of relevant artifacts and their relations provides the scope of an analysis.
Hence, changes become relevant for an analysis, if they affect artifacts in that scope in general
and, in particular, those parts of their content that will be extracted. Based on the example of
the dead variable code analysis, we generalize three fundamental levels of granularity at which
we consider relevant changes:

1. The coarse-grained level of artifact changes, which are relevant, if the changed artifacts
are in the scope of the analysis. For the dead variable code analysis, these artifacts are all
code, variability model, and build artifacts.

2. The fine-grained level of content changes, which are relevant, if the changed content is in
the scope of the analysis. For the dead variable code analysis, this is any content necessary
to extract variable code blocks and their presence condition, the variability model or build
model formula.

3. The fine-grained level of changes to the content in the scope of the analysis, which has
additional characteristics, like holding specific relations to variability information. This
level refines the second one and, hence, narrows the basic scope of an analysis. For the
dead variable code analysis, we may only be interested in those variable code blocks,

Fig. 2 Relevant relations for the dead variable code analysis
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which have an explicit reference to a configuration option of the variability model in their
presence condition. In contrast to the second level, we would only re-consider blocks cb1
and cb2 of perf_event.h in Fig. 1 in this case, but not block cb3 in copy.S (cf.
Section 2.2).

We discuss these levels of granularity in detail in the following section using the example of
the dead variable code analysis.

3.2 Identifying Relevant Changes

Different levels of granularity exist on which we can identify changes and determine their
relevance for a specific analysis. In the previous section, we defined three fundamental levels
of granularity based on the example of the dead variable code analysis. This section provides a
detailed description for each of these levels. In particular, we take the perspective of the dead
variable code analysis to illustrate how these different levels influence the relevance of a
change and, hence, the necessary re-verification effort. We will structure our discussion along
the following dimensions:

– Granularity: The basic description of the level of granularity defining the available
details about a particular change

– Relevant changes: The general identification of changes triggering a re-analysis, if only
the details of the respective granularity are known; here, we use the example of the dead
variable code analysis and the changes illustrated in Fig. 3, which base on the example in
Section 2.1

– Extent of re-analysis and its results: The detailed discussion on the required re-analysis
effort for a particular change; based on the example of the dead variable code analysis and

Fig. 3 Example changes for explaining incremental dead variable code analysis
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the example changes in Fig. 3, we differentiate between full analysis (of the entire SPL),
partial analysis (of changed parts only), or even no analysis

The results of this section are our three incremental variants of the dead variable code analysis,
one for each level of change granularity.

3.2.1 Artifact Changes

This granularity represents the most coarse-grained level of change consideration in this paper.
The corresponding incremental variant of the dead variable code analysis is called artifact
change variant. It supports the granularity of change identification and performs incremental
verification as described in this section.

Granularity: Artifact changes summarize basic changes to artifacts in the scope of an
analysis. At this level of granularity, we do not consider any details about which infor-
mation in those artifacts changes exactly. We focus on the type of artifacts only, e.g., if the
extension or name of a changed file matches those that the extraction step of the analysis
requires as input. This excludes fine-grained analyses of the changes and, hence, supports
a fast determination of whether a change is relevant. However, the accuracy at this level of
granularity is low as the actually changed content may be irrelevant for an analysis. In this
case, the performed re-analysis will not provide any new results although its input artifacts
have changed.

Relevant changes: The dead variable code analysis extracts information from code,
variability model, and build artifacts (cf. Section 2.2). Hence, each change to at least
one of these artifacts is relevant. Figure 3 indicates changed artifacts by a leading “+”-
or “-”-sign for the addition of the respective line or its deletion, respectively. While the
illustrated details are not available at this level of granularity, the files in Fig. 3 will all
be classified as being changed. Each of these changes is therefore relevant for the
analysis.

Extent of re-analysis and its results: A change of either variability model or build
artifacts requires re-extracting the respective formulas completely. This is due to the
dependencies between individual variability model or build artifacts (cf. Section 2.2).
They potentially yield multiple changed clauses in the new variability model formula VM
or the new build model formula BM, respectively, even if only a local change in one
artifact occurs. This results in a full analysis of all variable code blocks due to the relations
of VM and BM to all analyses in Fig. 2. However, all unchanged variable code blocks
extracted during previous analyses can be reused. Further, we can also reuse VM, if only
build artifacts change, or BM, if only variability model artifacts change. The expected
result of that full analysis is the set of all dead variable code blocks in all code artifacts
available at the current revision of the SPL.

The sole change of a code artifact requires the extraction of all variable code blocks
from exactly that artifact and the re-analysis of those blocks only. For example, if only
the changes to perf_event.h exist as shown in Fig. 3, the analysis only has to
consider that file again. Hence, it re-analyzes the two variable code blocks reusing the
unchanged variability model and build model formulas. In general, such a partial
analysis provides the set of all dead variable code blocks in all changed code artifacts
only. All other blocks from unchanged code artifacts are not affected as indicated by the
relations in Fig. 2.

Page 13 of 41     68



Empirical Software Engineering (2022) 27: 68

A combined change may affect code artifacts and either the variability model or build
artifacts. This always results in a full analysis of all variable code blocks. However, reusing
variable code blocks of unchanged code artifacts as well as any unchanged formula VM or BM
is again possible.

In case of changes that do not affect any code, variability model, and build artifacts, no
analysis is performed.

3.2.2 Block Changes

This granularity considers fine-grained changes on the level of individual file lines. Hence, the
focus is on content changes instead of mere artifact changes as on the previous level. We call
the corresponding incremental variant of the dead variable code analysis block change
variant. It supports the granularity of change identification and performs incremental verifi-
cation as described in this section.

Granularity: Block changes summarize all changes that affect specific parts of the
content of artifacts in the scope of an analysis. In our particular example of the dead
variable code analysis, this is any content related to the presence of variable code blocks;
hence the name of this granularity. In general, at this level of granularity, we inspect each
changed artifact in the scope of the analysis in detail. We analyze each changed line for
containing information, which is subject to the extraction step of the analysis. This fine-
grained change analysis typically requires more time, but provides higher accuracy
regarding the relevance of changes than the previous level of granularity. For example,
a change to an artifact in the scope of the analysis does not trigger a re-analysis, if the
actually changed content in that artifact is irrelevant for the analysis. This omits the
redundant executions of the previous analysis variant.

Relevant changes: The dead variable code analysis extracts individual variable code
blocks, the variability model formula, and the build model formula from the respective types
of artifacts (cf. Section 2.2). Hence, each change is relevant, which manipulates the variability
information in those artifacts. In Fig. 3, only a subset of the illustrated changes matches this
criteria:

– In perf_event.h, only line 782 represents a relevant change as it contains a prepro-
cessor statement, which introduces a new variable code block. The change in line 783
only affects C-code, which is not in the scope of the dead variable code analysis. Hence, if
only line 783 in perf_event.h changes, we do not need to re-analysis the blocks in
that file. For the same reason, only the changed lines 69 and 87 in copy.S are relevant
and trigger a re-analyis. The remaining changes in that file only affect mere assembler
code (no re-analysis required).

– In the Kconfig-file, all changed lines are relevant except for lines 1818 and 1819. These
two lines only introduce a help text, which does not influence the configuration options or
their relations (cf. Section 2.1). All other lines define the configuration option
KEXEC_FILE, which, for example, controls the execution of line 195 in the Makefile.
A need for re-analysis therefore only exists, if these lines change. Changes to help texts as
in lines 1818 and 1819 will not trigger a re-analysis.

– In the Makefile, lines 194 and 196 represent relevant changes, which trigger a re-
analysis. This is due to the reference to a configuration option of the variability model
in line 194. As the statement in line 196 closes the statement in line 194, it also has a
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(indirect) relation to that reference. The change in line 195 does not affect any
variability information and, hence, is irrelevant (no re-analysis required).

Extent of re-analysis and its results: A sole change of the variability information in any
variability model or build artifact always requires the re-extraction of the respective formula
VM or BM. As VM and BM influence the result of each analysis in Fig. 2, all variable code
blocks have to be re-analyzed (full analysis), if such a change occurs. However, the unaffected
variable code blocks as well as the unaffected VM or BM (if only one of them is affected by a
change) can be reused. The expected result of that full analysis is the set of all dead variable
code blocks in all code artifacts available at the current revision of the SPL.

A sole change of the variability information in code artifacts only requires the local re-
extraction of variable code blocks cbx from those code artifacts. For example, if only line
782 in perf_event.h changes as shown in Fig. 3, the analysis only has to consider the
resulting new block from line 782 to line 784. It will not re-analyze the old block from line
780 to (now) line 782 as its presence condition does not change. However, the analysis
will update the end line of that block from the previous analysis results in accordance to
that change. In general, such a partial analysis only has to check the new or updated
presence conditions pcðcbxÞ for satisfiability, while reusing the unchanged formulas VM
and BM. Hence, it only provides the set of all dead variable code blocks in all code
artifacts, in which variability information has changed. Previous results for unchanged
code blocks remain unaffected.

A combination of the relevant changes described above always requires the re-analysis
of all code blocks (full analysis). This is due to the relations of VM and BM to all analyses
in Fig. 2. However, it is again possible to reuse unaffected elements, like unchanged cbx,
VM or BM.

This level of granularity extends the set of situations of the previous section, in which no
analysis needs to be performed. Even if changes to code, variability model, or build artifacts
occur, a re-analysis depends on their actually affected content. Hence, changes to irrelevant
parts of their content do not trigger any re-analysis. On the previous level of mere artifact
changes, such changes also trigger a re-analysis.

3.2.3 Configuration Block Changes

This granularity represents a refinement of the previous one. It also considers fine-grained
changes on the level of individual file lines, but adds another filtering step to determine their
relevance with respect to additional criteria. The corresponding incremental variant of the dead
variable code analysis is called configuration block change variant. It supports the granu-
larity of change identification and performs incremental verification as described in this
section.

Granularity: Configuration block changes represent a specific subset of block changes
(cf. Section 3.2.2). They change the relevant part of the content of artifacts in the scope of
an analysis (equal to block changes) and fulfill additional criteria. Regarding the example
of dead variable code analysis, this additional criterion is the explicit reference of blocks to
configuration options defined in the variability model. Therefore, this variant is called
configuration block change variant and the aforementioned blocks are called configuration
blocks.
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This reduction-by-design is beneficial, if only inconsistencies arising from these relations
are of interest (as we will explain in more detail below). In general, this requires the analysis of
each changed line not only to check whether a line is subject to the extraction step of the
analysis, but also whether it includes a specific type of information. This extension may
increase the time to determine whether a change is relevant. The accuracy regarding the
relevance of a change depends on the additional criteria to consider. In the example above, we
intentionally miss some dead variable code blocks, if we only focus on changes to configu-
ration blocks. However, with respect to the additional criteria, the accuracy increases as the
analysis will not consider any block, which does not satisfy the criteria.

Relevant changes: A particular goal of the dead variable code analysis is the detection of
dead variable code blocks, which arise from inconsistencies between the variability informa-
tion in code, variability model, and build artifacts (cf. Section 2.2). Hence, an additional
criterion to consider during change analysis is whether a change affects the relations among
variability information in these artifacts. A change therefore is relevant, if it manipulates the
variability information in code, variability model, or build artifacts (equal to block changes)
and that information either is referenced by other types of these artifacts or references the
variability information in one of these other types. In Section 2.1, we described that variability
information in variability model artifacts always defines configuration options, which are
referenced in code and build artifacts. Consequently, configuration block changes affect the
variability model formula VM and the build model formula BM as block changes do1. For code
artifacts, the additional criterion excludes some of the changes illustrated in Fig. 3 from being
relevant although affecting variability information. The changed lines 69 and 87 in copy.S
are not relevant as opposed to identifying block changes. The presence condition of that
variable code block does not include a reference to information defined in a different type of
artifact. Hence, this block is not considered a configuration block and the change will not
trigger a re-analysis on this level of granularity. The changes in perf_event.h are relevant
as the resulting new block references the configuration option CONFIG_X86_32 of the
variability model in its presence condition (re-analysis required).

Extent of re-analysis and its results: A sole change of the variability information in any
variability model or build artifact results in a full analysis of all configuration blocks. The
previous extraction results of unaffected configuration blocks can be reused. Variable code
blocks that are not configuration blocks are out of scope as defined above. Further, a reuse of
the previous extraction results of an unchanged VM or BM is possible. The expected result of
that full analysis is the set of all dead variable configuration blocks in all code artifacts
available at the current revision of the SPL.

A sole change of a configuration block requires the re-extraction of that block. In Fig. 3, the
changes in perf_event.h trigger the re-extraction and re-analysis of the added configura-
tion block. In contrast, the changes in copy.S will be ignored due to the absence of
configuration blocks. Hence, the resulting partial analysis only provides the set of all dead
variable configuration blocks in all code artifacts, in which configuration blocks are changed.
Previous results for unchanged configuration blocks remain unaffected.

A combination of the previous changes always requires a full analysis as described
above. This is due to the relations of VM and BM to all analyses in Fig. 2. However, the
same reuse potential as for block changes exists (cf. Section 3.2.2). If none of the changes

1 The additional criterion, we use as an example here, does not change the relevance of changes to the contents of
variability model and build artifacts with respect to the previous level of block changes.
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above occurs, no analysis needs to be performed. In particular, this comprises all changes,
which neither affect variability information in variability model and build artifacts nor
configuration blocks.

4 Realization

The technical realization of the concepts introduced in Section 3 relies on the existing SPL
analysis infrastructure KernelHaven (KernelHaven Team 2020; Kröher et al. 2018, 2018b)
implemented in Java. It explicitly separates the fundamental steps of extraction and analysis in
terms of individual plug-ins connected via internal data models of the infrastructure. In order to
realize our three incremental variants of the dead variable code analysis, we extend this
infrastructure by two additional steps:

– The preparation step before the extraction and
– The post-extraction step between the extraction and the actual analysis

The respective components enable the explicit consideration of changes and the reduction of
analysis effort during SPL evolution.

We structure this section along the resulting four steps of an incremental dead variable code
analysis as illustrated in Fig. 4 from left to right. For each step, we describe its purpose as well
as its input and output data. Further, we discuss the processes and the configurability (if
available) to realize the different variants of Section 3.2. The implementation as well as the
exact release of the realization described here are publicly available.2

4.1 Preparation

The preparation component updates the SPL artifacts and manipulates the extraction of data
models from them based on change information. This is the first step in our incremental
analysis process as shown in Fig. 4. It receives the necessary change information before the
actual application to SPL artifacts in terms of a Diff-file indicated by the delta in this figure.
This file contains an entire Git commit (Git 2020) describing line-based changes to individual
SPL files. The preparation component classifies these changes into relevant or irrelevant for
the dead variable code analysis. If a change is relevant, this component prepares the re-
extraction of the affected data models (second step in Fig. 4). For this classification and to
only trigger required re-extractions, the preparation can use two different filters depending on
the desired level of granularity of change identification (cf. Section 3.2):

– The artifact change filter detects artifact changes by scanning the input Diff-file for
changed files via their names and extensions. The preparation component collects all
changed code artifacts (*.c-, *.h-, and *.S-files) for individual re-extraction. Further, it
triggers the re-extraction of the variability model or build model formula, if it detects the
first changed variability model artifact (Kconfig-file) or build artifact (Makefile or
Kbuild-file), respectively. We use this filter for the realization of the artifact change

2 https://github.com/SSE-LinuxAnalysis/IncrementalAnalysesEvaluation/releases/tag/4.0
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variant described in Section 3.2.1. It enables detecting exactly those changed files as
required by that variant.

– The variability change filter enables the detection of block changes and configuration
block changes by applying the commit analysis process of our Commit Analysis Infra-
structure (ComAnI) (ComAnI Team 2019) to the input Diff-file. ComAnI represents an
extended and configurable version of the tool used for our SPL evolution analysis (cf.
Section 2.3). It provides the necessary level of details on which parts of the content of an
artifact in the scope of the dead variable code analysis changes exactly (Kröher et al.
2018c). Hence, it detects the set of code artifacts in a given Diff-file in which variability
information changes. These code artifacts are then subject to re-extraction in the next step.
Further, it indicates changes to variability information in variability model and build
artifacts via respective flags. If a flag is set, it triggers the re-extraction of the variability
model formula or the build model formula, respectively. We use this filter for the
realization of the block change variant (cf. Section 3.2.2) and the configuration block
change variant (cf. Section 3.2.3).

The application of ComAnI as part of the variability change filter only provides a basis for
detecting configuration block changes. The line-based analysis of the Diff-file identifies
changes to individual variable code blocks reliably, but does not consider their nesting. Nested

Fig. 4 Realization of the incremental variants of the dead variable code analysis
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variable code blocks may inherit references to configuration options of the variability model
from their parent blocks during extraction. Hence, we shift the identification to the analysis
after the extraction, which we describe in Section 4.4.

The preparation step ends after analyzing the given Diff-file regarding relevant changes by
applying them to the previous revision of the SPL.3 This application uses git-apply (Git
2021) (Git for short in Fig. 4), which reads the content of the Diff-file and applies it to the root
directory of the SPL. The git-apply command takes care of correctly applying the inherent
changes to the respective SPL artifacts. This step always performs the application of Diff-files
to keep the SPL artifacts up-to-date, independent of the results of its change analysis.

4.2 Extraction

The extraction step is responsible for providing the data models from SPL artifacts in the scope
of an analysis. This step requires individual components to process the different types of these
artifacts as their realization relies on different languages. In the specific context of this paper,
these components need to process code, variability model, and build artifacts, which are
present in the Linux kernel. We therefore reuse the following, existing extraction plug-ins
for the KernelHaven infrastructure:

– The KconfigReader extractor wraps the KconfigReader tool (Kästner 2016). It takes all
variability model artifacts (Kconfig-files in the Linux kernel) as input and produces the
variability model formula as described in Section 2.2. Based on the comparison of
different Kconfig-tools by El-Sharkawy et al. in (2015), KconfigReader is the most
reliable one regarding the correct and complete extraction of propositional formulas from
such files.

– The CodeBlockExtractor is a platform-independent re-implementation of the extraction
algorithm for code artifacts of the Undertaker tool (VAMOS/CADOS Team 2015).
Undertaker realizes the original dead variable code analysis (Tartler et al. 2011) and,
hence, provides exactly the code extraction capabilities required for our incremental
variants of that analysis4. The basic algorithm takes a single code artifact (*.c-, *.h-,
or *.S-file in the Linux kernel) as input, identifies the variable code blocks in that file,
and determines their individual presence conditions as described in Section 2.2. The
extractor calls this algorithm for each code artifact, if the input for the extractor is a
directory, which may contain multiple code artifacts. The result of the extractor is the set
of all variable code blocks with their presence condition for each code artifact. In order to
support their identification, each block is represented by the path of its parent code file
relative to the root directory of the SPL, the name of that file, a unique block number (cf.
Section 2.2), and its start and end line in that file.

– The KbuildMiner extractor wraps the KBuildMiner tool (Berger and Kästner 2016). It
takes all build artifacts (Kbuild-files and Makefiles in the Linux kernel) as input and
produces the build model formula as described in Section 2.2. While other tools for this

3 We use Git for compliance with the commits of the Linux kernel used in our performance analysis. However,
any other systemwith equal capabilities regarding the documentation and application of changes could be used as
well.
4 We do not reuse Undertaker directly for our realizations as it does not consider variability information from
build artifacts, the extraction from variability model artifacts is less accurate in comparison to KconfigReader (El-
Sharkawy et al. 2015), and it is not maintained since 2015.
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purpose exist, the parsing-based approach of KbuildMiner is (presumably) faster (Dietrich
et al. 2012).

The actual execution of the individual extraction components in an incremental variant
depends on the results of the preparation step. Further, the amount of code artifacts to re-
extract changed variable code blocks and their presence conditions relies on that previous step.
For example, a Diff-file may only contain the changes to perf_event.h as illustrated in
Fig. 3. In the artifact change variant (cf. Section 3.2.1), the preparation step uses the artifact
change filter to detect that a single code artifact (perf_event.h) has changed. It applies that
change to the SPL and provides the path and name of the changed code artifact to the
extraction step. That step only executes the code extraction from perf_event.h. All other
extraction components will not be executed. Hence, the extraction step only provides the
newly extracted variable code blocks from perf_event.h to the next step in this situation.
In a similar way, only the variability model or build extraction components will produce their
results, if the preparation step provides the respective flags indicating changes to these types of
artifacts. If these are the sole change in a given Diff-file, the code extraction component will
not be executed.

4.3 Post-Extraction

The post-extraction component acts as a mediator between the KernelHaven data models and
their processing by the actual analysis. In general, it receives the entire data models from the
previous extraction step. If one of the preparation filters presented in Section 4.1 is active, the
received models only contain the respective results of their partial re-extraction. The compo-
nent therefore provides a so-called hybrid cache (dedicated directory on the HDD). This
cache contains the data models extracted from the previous revision of the SPL artifacts and
their upcoming changes in terms of those data models resulting from re-extractions triggered
by the content of the input Diff-file. In order to ensure that the data models in the hybrid cache
always represent the recent state of the SPL artifacts, it updates its models as follows:

– If it receives a (new) build or variability model formula from the extraction step, it saves it,
which potentially replaces the entire previous version. These formulas are global infor-
mation of the entire SPL. Hence, the hybrid cache maintains each formula as a compre-
hensive instance, which it replaces and provides completely.

– If it receives variable code blocks of a code artifact and their presence conditions from the
extraction step, it saves these presence conditions for the respective blocks and artifacts.
Hence, the hybrid cache maintains each code block and its presence condition separately
based on the unique information per block provided by the extraction step (cf. Section
4.2). In case that a particular variable code block is already available in the hybrid cache, it
replaces this old information with the new one of the recent extraction. This does not
affect any other blocks or their presence conditions.

– If the preparation component detects the deletion of variable code blocks (no extraction
possible), it informs the post-extraction component directly (bypassing the extraction
step). The hybrid cache removes the corresponding blocks; again, this does not affect
any other blocks. The correct removal of deleted variable code blocks relies on matching
the block information provided by the preparation step (e.g., in which lines variability
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information is deleted) with the information provided by the extraction step for the
previous revision.

The actual execution and the amount of necessary model updates depend on the incremental
variant and the changes in aDiff-file. For example, any change to copy.S as illustrated in Fig. 3
will cause a hybrid cache update of the variable code block from line 69 to 87 in the artifact
change variant (cf. Section 3.2.1). In contrast, this update will not occur in the block change
variant (cf. Section 3.2.2), if only lines 70 to 86 change in copy.S (no variability information
changes). For the same variant, an update of the variability model or build model formula is only
necessary, if lines 1811 to 1817 in the Kconfig-file or line 194/6 in the Makefile change,
respectively. Changes to other lines in these files for that variant do not require an update.

4.4 Analysis

The analysis is the last step in Fig. 4, which receives the hybrid cache introduced in the
previous section. It uses the data models of this cache to execute its algorithms. This execution
depends on the variant of the dead variable code analysis and, hence, on the selected filter for
the preparation component (cf. Section 4.1). If no filter is active, the analysis considers all
variable code blocks available in the current state of the hybrid cache. This execution
corresponds to an original, non-incremental dead variable code analysis. An active preparation
filter reduces the analysis to changed elements only, while reusing unchanged elements as
defined in Section 3.2. Further, we introduce two additional analysis options, which enable to
ignore all variable code blocks with presence conditions that do not reference any configura-
tion option of the variability model. Details on these options can be found in the documen-
tation of the incremental analysis infrastructure (KernelHaven Team 2019a, b). This realizes
the additional filtering for configuration block changes (cf. Section 3.2), which the variabil-
ity change filter does not support (cf. Section 4.1).

The resulting configurability in terms of selected filters and analysis options technically
enables the original, non-incremental and our three incremental variants of the dead variable
code analysis. For executing the original, non-incremental analysis, we disable the preparation
and post-extraction step as well as the analysis options. This results in a full analysis of the
entire SPL independent of the changes of a Diff-file. All three incremental variants make use of
the hybrid cache in the post-extraction step. The artifact change variant of the dead variable
code analysis uses the artifact change filter during the preparation step, while the block change
and the configuration block change variant both use the variability change filter. The config-
uration block change variant is the only variant that additionally enables the analysis options.

The core analysis algorithm for detecting dead variable code blocks as described in Section
2.2 is not affected by the configurability. It always iterates the input code artifacts and
individually checks the satisfiability of the conjunction of the presence condition, the variabil-
ity model, and build model formula for each variable code block5. As this conjunction defines
a Boolean satisfaction (SAT) problem, the analysis algorithm employs the KernelHaven SAT
utilities for this purpose in our realization. They provide access to auxiliary methods, like the
conversion of propositional formulas to their conjunctive normal forms or the creation of
conjunctions of such formulas. Further, the SAT utilities use the actual SAT solver Sat4j (Sat4j
Team 2021), which has already been successfully applied to check large-scale SPL models

5 Only the input depends on the selected analysis variant, but not the core algorithm.
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(Mendonca et al. 2009). The analysis algorithm creates a new instance of the entire SAT
utilities (including the SAT solver) for the check of the first variable code block of a code
artifact. Hence, the instantiation of these utilities only occurs, if a code artifact contains at least
one variable code block. The new SAT utilities instance receives the presence condition of the
variable code block, the build model formula for the related code artifact, and the entire
variability model formula. The auxiliary methods convert and combine these individual
formulas to the final conjunction, which the SAT solver checks for satisfiability. For the
remaining code blocks of the same code file, the analysis algorithm reuses the SAT utilities
instance. In this way, the utilities also allow reusing the build model and variability model
formula for the checks of each variable code block of the same code artifact as only the block
presence condition changes. If the check of a particular block returns false (the conjunction
is not satisfiable), all information about that dead block will be cached first and printed to a
result file later after the termination of the analysis step in Fig. 4.

5 Performance Analysis

In the performance analysis, we executed our technical realization described in Section 4 in a
virtual machine. The exact image used for our analysis along with a description of our host
system is publicly available on GitHub2. This repository also contains our suite of
implementations and configurations as well as all (intermediate) results. These artifacts enable
the execution of the (non-)incremental dead variable code analysis and the reproduction of our
results out of the box. In this section, we first describe the hardware and software constituting
the particular setup used in this paper. We then discuss the data set (commits from the Linux
kernel) and explain the selection of this specific subset. Further, we describe the measure-
ments and the execution of the individual analysis variants. The validation of our results
follows at the end of this section.

The hardware of the host for our virtual machine consists of two Xeon E5-2650 v4 CPUs
with 2.20GHz and 12 cores each. We enabled hyperthreading, which results in 48 logical CPU
cores. Further, the host offers 384GB registered DDR4 ECC RAM (2400MHz) and a 1.8TB
SAS HDD with 128MB buffer. Based on these resources, we configured the virtual machine
with access to all 48 logical CPU cores, 128GB RAM, and 128GB mass volume storage.
While the performance analysis is also executable on consumer hardware, like an Intel J4105
CPU and 32 GB RAM, the more powerful configuration accelerates the execution over a large
number of commits. Moreover, compared to the continuous integration scenario, which is one
of the motivations for our work, this is not an unusual machine size.

The software is based on Ubuntu 16.04.3 as operating system for the virtual machine. For
executing our implementation, installations of OpenJDK 1.8.0_91, Git 2.21.0, and some
KernelHaven-specific libraries (KernelHaven Team 2020) are used. Further, we assign
10GB as initial heap memory size and 50GB as its maximum to the Java virtual machine.

The data set consists of 440 commits, from commit 0c744ea4f7 (2017/01/01) to
ea6200e841 (2017/03/08), of the main branch of the Linux kernel repository (Torvalds
2020). We saved these commits as individual files before the performance analysis and then
applied them successively in historical order as described as part of the execution below. The
majority of these commits represent large merges from different contributors to the main Linux
kernel development branch. Only some commits in our data set represent smaller commits,
which individual developers typically create in practice. We would have liked to use these
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smaller commits only as they are the smallest unit of precisely documented developer changes
publicly available. In that sense, we would have been able to reproduce individual evolution
steps successively and apply our approach in a continuous-integration-fashion to large-scale,
real-world SPL development. However, skipping the intermediate merges of the main branch
would have invalidated the correct evolution during reproduction. Further, the consideration of
a developer branch of a particular kernel module with more consecutive developer commits
would not represent the development of the entire SPL and, for this paper, of the entire Linux
kernel. Hence, the commits of the main branch bring us as close as possible to our target
evolution scenarios.

The selection of the specific commit sequence as our data set has several reasons. First, we
chose this sequence as it has significant length while being feasible with our resources in an
appropriate time frame (especially for the original, non-incremental variant). Second, as the
Linux kernel grows over time (Israeli and Feitelson 2010; Adams et al. 2007; Godfrey and Tu
2000), we aim at a rather recent sequence to consider the current complexity of a real-world
SPL. However, latest versions of the Linux kernel also introduce updates to the concepts of
Kbuild and, in particular, of the Kconfig language. These updates cause some of our tools for
extracting data models (cf. Section 4.2) to fail. For example, the integrated third-party tool
KconfigReader fails to extract the variability model formula for more recent versions of the
Linux kernel at least sometimes. Hence, we selected our commit sequence as a compromise
between up-to-date development and reliability of our technical realization. Finally, we wanted
to use a sequence, which is a representative of the longer history of the Linux kernel in terms
of the percentage of variability-related changes. We therefore applied our analysis of the
change frequency described in Section 2.3 to our data set. The comparison of relative
percentages of variability-related changes in that sequence with the results from the entire
Linux kernel history in Kröher et al. (2018c) confirms that this sequence is a reasonable
representative.

The measurements for the results in this paper collect several timings and the results of
each analysis. In order to measure the performance of the analysis variants, we use the time
command to gather the entire execution times per commit. Further, we extract the wall clock
time from timestamps at the beginning and the end of the individual analysis steps in the
implementation (cf. Section 4). These times enable us to present general and detailed perfor-
mance results in the next section. We also saved the identified dead variable code blocks for
each analysis variant per commit. They are input to our validation as described at the end of
this section.

In general, the execution applies the commits in our data set successively in historical order
to the latest version of the Linux kernel before the first commit in this sequence. After each of
these applications, it executes one particular variant of the dead variable code analysis once.
Hence, we perform this execution four times, once for each variant. A set of bash scripts
automates this commit application (if necessary) and the actual executions of the analysis
variants by starting KernelHaven with the respective configuration (cf. Section 4.4) for each
commit. For the original, non-incremental variant, a script applies the changes introduced by a
commit to the Linux kernel before the execution of that variant. The scripts for the incremental
variants provide the commit as an input Diff-file to KernelHaven, which applies the contained
changes as described in Section 4.1 before an analysis.

The aim of our validation is to ensure that the performance results of the individual
analysis variants do not stem from an unintended loss of accuracy regarding the identification
of dead variable code blocks. Our measurements therefore provided the sets of identified dead
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blocks as described above. The blocks identified by the original, non-incremental variant
served as a baseline, which provides all dead variable code blocks that the basic analysis can
identify in the entire Linux kernel after each evolution step (simulated by the application of
commits of our data set). For each incremental variant, we automatically compared its
identified dead variable code blocks for each commit with the corresponding results of the
baseline. This comparison did not reveal any false-positive or missing dead variable code
blocks, except for those blocks that are intended to be absent in the configuration block change
variant (cf. Section 3.2.3). Hence, we ensure the expected level of accuracy for each incre-
mental variant and no unintended influences on the performance results presented in the next
section.

6 Results

In this section, we present the results of our performance analysis that applied the four dead
variable code analysis variants to the 440 Linux kernel commits as described in Section 5.
However, these results exclude the execution time for the first commit in this sequence, as it
initializes the components enabling the incremental variants during the first analysis. This does
not represent a typical incremental verification scenario. Hence, Fig. 5 presents the perfor-
mance results of all variants for the remaining 439 commits and structures them into the
following categories:

– Execution Time per Commit in Seconds: The four plots in the upper part of the figure
combine a barcode plot with a violin plot for each analysis variant. One horizontal line
represents one data point, which illustrates the execution time in seconds of the respective
dead variable code analysis variant for one commit. The bold horizontal line is the median
execution time for this variant. The background area illustrates the probability density
function of the data using the Epanechnikov kernel (Epanechnikov 1969) and the
Silverman’s rule-of-thumb bandwidth estimator (Silverman 1986). The value in the upper
right corner of each plot is the standard deviation of the execution times for this variant,
with the relative deviation in parentheses. This category is specifically relevant to answer
the research questions RQ1 and RQ2.

– Number and Results of Analyzed Blocks: The three values below the legend of each violin
plot describe the average number of analyzed blocks, the standard deviation of the number
of analyzed blocks (with the relative value in parentheses), and the minimum and
maximum number of found dead variable code blocks for the respective variant. Note
that the configuration block change variant detects only the dead variable code blocks
with reference to a configuration option, therefore the terminology is slightly changed to
dead variable configuration blocks. This category is partly relevant to explain the differ-
ences in the execution times.

– Average Execution Time Distribution (in Seconds) per Variant: The stacked bar chart in
the left part of Fig. 5 shows the average execution time distribution in seconds for the
different analysis steps of our technical realization described in Section 4. The chart
contains also an additional category called Transition Time, that illustrates the time
difference between the whole execution time and the sum of the four steps, resulting
from the different measurement techniques explained in Section 5. This category is
specifically relevant to answer research question RQ3.
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– Number and Extent of Triggered Analyses per Variant per Commit: The stacked bar chart
in the right part of Fig. 5 illustrates how often the changes of a commit trigger a full,
partial, or even no analysis of the SPL for each analysis variant. This category is
specifically relevant to explain the differences in the execution times.

In the following sections, we describe the performance analysis results in detail for each
analysis variant. Section 6.1 presents the original, non-incremental variant of the dead
variable code analysis and Sections 6.2 to 6.4 proceed with the individual incremental
variants. For each of them, we first present their summarized results and compare them to
the variants in previous sections. Further, we use the results of the individual analysis variants
to explain the respective performances as well as additional findings.

6.1 Non-Incremental Dead Variable Code Analysis

The original, non-incremental variant of the dead variable code analysis always performs a full
analysis for each of the 439 commits, as shown by the uppermost bar in the right bar chart of
Fig. 5. For each commit, it analyzes about 99,953 code blocks within about 1,012 seconds on
average (ranging between 702 and 1,393 seconds). The median of this execution time has a
value of 1,020 seconds. The results of the dead variable code analysis show a minimum
number of 5,754 dead variable code blocks, up to a maximum of 5,793, which are about 17%
of all code blocks.

The respective ranges show a relatively low variation in the number of code blocks, but a
relatively high variation in the overall execution time with a standard deviation of about 0.14%
for the number of code blocks, but about 12.1% for the execution time. Hence, we calculated
the correlation between those variables and identified almost no relationship (correlation
coefficient of about 0.09). This rejects our general assumption that the execution times depend
on the number of code blocks to analyze in this variant.

In order to find a reason for this observation, we inspected the execution times of the
individual steps of the overall analysis process, which are presented by the uppermost bar in
the left bar chart of Fig. 5. The extraction of the necessary data models (formulas) only
consumes about 10% (99 seconds) of the overall execution time, while their actual analysis
requires about 90% (911 seconds) on average. Hence, we focused on the analysis step and
identified variations in the order of the elements of the extracted variability model formulas.
While the resulting formulas are logically equivalent, this variation also occurs, if the input to
the extraction step consists of the same, unchanged artifacts. We therefore tested the standard
deviation of the execution times by repeating the entire analysis process ten times with a
cached variability model formula for all repetitions and another ten times with re-extracted
formulas for each repetition. This test results in a more than three times lower relative standard
deviation, if we use the same formula (3.3%) compared to a re-extracted one (11%). Therefore,
we argue that the extraction of the variability model formula causes the variation in the
performance at least to some extent. As we rely on a third-party tool for this extraction (cf.
Section 4.2), a more elaborated explanation or even a correction of this behavior is not
possible.

A possible solution to mitigate the identified variation would be to realize a caching of the
variability model formula, which enables the reuse of an already extracted formula as long as
the artifacts input to the extraction step do not change. However, this would change the core
process of the original dead variable code analysis towards a variant similar to our incremental
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ones. Further, we use the same extraction capabilities for all dead variable code analysis
variants in this paper. Hence, the variation applies to all performances, in particular, during full
analysis, independent of the considered analysis variant. As a consequence, the execution time
for the same commit can vary noticeable. For example, all analysis variants perform a full
analysis for the changes introduced by commit 382 in our sequence. For this analysis, the non-
incremental variant requires 1,330 seconds, the artifact change variant 888 seconds, the block
change variant 1,158 seconds, and the configuration block change variant 1,254 seconds.

6.2 Artifact Change Variant

The incremental artifact change variant performs about 2.72 times faster than the non-
incremental variant. It requires about 372 seconds (ranging between 2.93 to 1,303 seconds
with a standard deviation of 135%) on average and has a median execution time of 10.5
seconds as shown by the second plot in the upper part of Fig. 5. The reason for this
improvement is the reduced number of analyzed code blocks. This variant only considers
about 34,864 code blocks on average with a standard deviation of 137%. This reduction is due
to the shift from always performing a full analysis to performing a partial analysis for the
majority of the commits (273 out of 439) and even no analysis for 13 commits (see second bar
in the right part of Fig. 5). The positive correlation coefficient of 0.88 between the execution
time and the number of analyzed code blocks supports this rationale. The results of this dead
variable code analysis are the same as the non-incremental variant, with a minimum number of
5,754 dead variable code blocks, up to a maximum of 5,793.

The extent of triggered analyses results in either very fast execution times, or about similar
execution times compared to the non-incremental variant, as the distribution of the data points
in the artifact change plot in Fig. 5 shows. For the 153 commits requiring a full analysis,
99,977 code blocks are analyzed in about 1,052 seconds on average, which is around 3,80%
slower than the non-incremental variant. While the additional execution of the preparation and
the post-extraction step only introduce an overhead between 0.01% and 0,03% to the general
performance, we assume that this increase in the execution time is at least partially due to the
identified variations in Section 6.1.

273 commits trigger a partial analysis that analyzes on average 32 code blocks in
approximately 8.90 seconds. For example, the analysis of commit 407 takes 1,393 seconds
for the non-incremental variant, but only 8.70 seconds for this analysis variant. The remaining
13 commits, which require no analysis, do neither change any build or variability model
artifacts nor any code artifacts and, hence, no code blocks. In order to detect this, the
infrastructure needs to load completely and execute the preparation step, which results in an
average of 3.66 seconds execution time for the no analysis part. For example, the analysis of
commit 438 took 1,249 seconds for the non-incremental variant, but only takes 2.99 seconds
for this analysis variant. In combination, the partial analysis and no analysis accelerate the
analysis for about 65% of the commits (273 + 13 out of 439) by a factor of 121 (average
execution time for partial and no analysis weighted by their respective number of commits,
divided by average execution time for full analysis of this variant).

6.3 Block Change Variant

The incremental block change variant performs on average about 1.23 times faster than the
previous one and about 3.34 times faster than the non-incremental one. It requires on average
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around 303 seconds (ranging between 2.91 to 1,445 seconds with a standard deviation of
158%) for analyzing an individual commit with a median value of only 3.20 seconds. The
distribution of the performance data is modeled in the second right plot in Fig. 5. The reason
for this improvement is again the reduced number of analyzed code blocks: This variant
reduces the average number of code blocks to consider to about 28,719 on average with a
standard deviation of 158%, which are approximately 17.63% fewer blocks than the artifact
change variant considers. This is caused by a significant shift to performing no analysis for a
commit (275 out of 439), as illustrated in the block change bar in the right bar chart in Fig. 5.
The positive correlation of 0.68 between the number of code blocks and the execution time
supports this explanation, although it is not as strong as the correlation of the previous variant.
The results of this dead variable code analysis are the same as the non-incremental variant,
with a minimum number of 5,754 dead variable code blocks, up to a maximum of 5,793.

Similar to the artifact change variant, the execution time per commit is either very low, or
comparable to the non-incremental variant. There are only 126 commits that require a full
analysis that takes on average 1,048 seconds to analyze about 99,982 blocks. Similar to the
artifact change variant, the execution time for these analyses is a bit slower (3.43%) mostly due
to the identified variations of the extraction step as explained in Section 6.1. The left bar chart
of Fig. 5 shows that the additional incremental steps of preparation and post-extraction add
just a minor overhead of about 0.19 and 0.12 seconds on average to the execution time of the
block change variant.

In contrast to the previous variant, the number of commits which require a partial analysis
decreases significantly to 38, as the different preparation filter of this variant’s configuration
triggers such analyses only, if changes affect individual code blocks instead of entire code
files. These partial analyses analyze around 84 code blocks in 6.23 seconds on average. For
example, commit 256 in our sequence triggers a full analysis of the non-incremental and the
artifact change variant, which requires 1,055 seconds and 1,122 seconds, respectively. For the
same commit, this analysis variant only requires 9.43 seconds due to performing a partial
analysis. The majority of the commits (275) trigger no analysis, as they do not change
information relevant for the analysis of any block. Hence, this variant only requires about
3.50 seconds on average to reject further analyses. The performance values for commit 407 in
our sequence illustrate the significance of this reduction. The non-incremental variant performs
a full analysis for this commit, which requires 1,393 seconds, while the artifact change variant
requires 8.70 seconds due to a partial analysis. This analysis only requires 3.10 seconds for
that commit as it performs no analysis. In combination, the partial analysis and no analysis
accelerate the analysis for about 71% of the commits (38 + 275 out of 439) by a factor of 273.

6.4 Configuration Block Change Variant

The incremental configuration block change variant takes on average around 1 second or
0.33% more time than the block change variant, but is still about 3.33 times faster than the
non-incremental one. The average execution time for each commit is approximately 304
seconds (ranging between 2.87 to 1,261 seconds with a standard deviation of 157%) and
takes a median of 3.62 seconds, as illustrated in the right plot in Fig. 5. Similar to the other two
incremental variants, the number of analyzed blocks is further reduced: The configuration
block change variant analyzes only about 6,073 code blocks on average, with a standard
deviation of 158%. This is achieved by a slightly reduced number of partial analyses (24), and
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an increased number of no analyses (289), as shown in the right bar chart for this variant in
Fig. 5.

Furthermore, this variant only considers configuration blocks instead of all blocks. There-
fore, the results of this dead variable code analysis are different from those of the other
variants, with a minimum number of 3,103 dead variable configuration blocks, up to a
maximum of 3,125. The correlation coefficient for the number of analyzed blocks and the
average execution time is strong positive with a value of 0.70, which is comparable to the
block change variant. However, these numbers do not explain why the configuration block
change variant is faster than the non-incremental and the artifact variant, but not faster than the
block change variant.

The average execution times of the individual steps in the left bar chart of Fig. 5 present a
first explanation for the missing impact of the more fine-grained filters on the general
performance: All steps perform almost equal to the block change variant. In particular, the
performance of the analysis step, which has a significantly reduced number of code blocks to
analyze due to the focus on configuration blocks instead of all blocks, shows almost no change
compared to the block change variant. We therefore inspected this step in detail with regard to
the extent of the triggered analysis. For no analysis, there was no significant discrepancy in the
actual versus the expected results: The analysis needs on average 3.55 seconds to reject a
further analysis of 289 commits, which is in line with the other incremental variants. For
example, the analysis of commit 407 takes 1,393 seconds for the non-incremental variant, 3.10
seconds for the block change analysis variant (triggered no analysis), and 3.01 seconds for this
variant (triggered no analysis). For the full and partial analysis, however, we detected two
main reasons for their unchanged performance.

First, the analysis step uses a new instance of the SAT utilities for each code file as
described in Section 4.4. While the individual satisfiability checks of the integrated SAT solver
are extremely fast, the initialization of the entire SAT utilities for the analysis of the first
variable code block of a code file requires most of the analysis time. Hence, the reduced
number of variable code blocks to analyze in this variant does not have a significant effect on
the analysis time due to spending most of it on the initialization of the required SAT utilities.
This explanation is supported by the performance data of the triggered 126 full analyses in this
variant: One full analysis requires on average about 1,051 seconds to analyze around 21,140
blocks, which is a similar amount of time in comparison to the other variants, but a major
reduction of the number of blocks.

Second, the detection of references to configuration options in a presence condition during
the analysis step adds an overhead to the analysis of the respective code block compared to
analyzing it directly. This overhead has its effect, in particular, on the partial analysis, where
the configuration block change variant is about 34% slower than the block change variant. It
takes an average execution time of 9.57 seconds, although the number of changed code files
does not change, resulting in the same time for the initialization of the SAT utilities. For
example, the analysis of commit 256 takes 1,055 seconds for the non-incremental variant, 9.43
seconds for the block change analysis variant (triggered a partial analysis), and 15.67 seconds
for this analysis variant (triggered a partial analysis). This is in contrast to the reduced number
of analyzed code blocks: The partial analysis has to consider only about 34 code blocks,
which is 40% of the code blocks the block change variant considers.

The two main reasons discussed above arise from our technical realization. While the
algorithms realizing the additional filtering, which causes the overhead, may offer some
optimization potential, it will not be possible to completely avoid the overhead as filtering is
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a core feature of this incremental variant. The creation of a new instance of the SAT utilities for
each code artifact reveals a bottleneck regarding the performance of this variant. We aim at an
improvement by realizing other strategies, like extending the reuse of an instance as long as
possible, or using a pool of constantly available instances (no re-instantiation during analysis)
in the future. Currently, the usage of the SAT utilities is the same for all variants of the dead
variable code analysis with the respective effect described above. An optimization of this
usage, which puts the focus on the actual code blocks to consider, will mostly affect our
incremental variants in a positive manner as indicated by the average number of code blocks.
However, even without these optimizations, this variant accelerates the analysis by a factor of
261 for about 71% of the commits (24 + 289 out of 439).

7 Discussion

The results of our performance analysis show a significant potential of the incremental
verification approach proposed in this paper. Table 1 summarizes the key results from Section
6. It presents the average and median execution times per analysis variant as well as the
percentage of detected newly introduced dead variable code blocks. Further, the table high-
lights the advantages and drawbacks of each variant.

All three incremental variants provide a significant speed-up of the average execution time,
which is up to 3.3 times faster for the block and configuration block change variant in
comparison to the the non-incremental variant of the dead variable code block analysis. This
speed-up is even more distinct when observing the median execution times. For most of the
commits, the execution time can be reduced to 10.5 seconds or less when using the artifact
change variant, up to 3.20 seconds or less when using the block change variant. This speed-up
answers research question RQ1 and results from the explicit consideration of the changes
introduced by commits, the identification of their impact based on the internal processes of the
dead variable code analysis, and the execution of only the necessary extent of the re-analysis.

A particular observation from our performance analysis is the impact of the granularity of
change identification. While the change identification on the level of artifacts and code blocks

Table 1 Key results of the performance analysis

Non- Incremental
Variant

Artifact Change
Variant

Block Change
Variant

Conf. Block
Change Variant

Average Execution
Time

1,012s (σ=122s) 372s (σ=503s) 303s (σ=478s) 304s (σ=477s)

Median Execution
Time

1,020s 10.5s 3.20s 3.62s

Found New Dead
Variable Code
Blocks

100% 100% 100% 100% of blocks
referencing conf.
option

Advantages constant execution
time, complete

fast, complete fastest, complete least number of full
analyses, focus on
actual bugs

Drawbacks slow requires full
analysis rather
often

requires detailed
change analysis

not faster than block
change variant,
not complete
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each provides a significant speed-up in comparison to the non-incremental variant and to each
other, this does not hold for the configuration block change variant. Table 1 shows that the
configuration block change variant actually takes more execution time on average and in
median compared to the block change variant, although it uses the most fine-grained change
identification. This is due to the additional analysis effort for identifying blocks that reference a
configuration option in combination with a low performance gain (cf. Section 6.4). Hence, the
answer to research question RQ2 is that the granularity of change identification significantly
impacts the performance of the analysis up to a certain point, where additional identification
efforts counterbalance potential speed-ups.

The overhead of performing our change identification in incremental verification is ex-
tremely small, which answers research questionRQ3. The preparation step responsible for this
identification in all incremental variants requires on average only between 0.03% and 0.07% of
the overall execution time. Hence, there is no notable negative performance impact, when
switching to an incremental verification approach.

From a practitioner’s point of view, our incremental variants are most of the time so fast,
that they could easily be integrated either within the development environment or as part of a
continuous integration cycle. Moreover, the artifact change and block change variants have no
drawbacks in relation to the accuracy of the results of the dead variable code block analysis, as
shown in Table 1. Both of them always detect whether a commit introduces new dead variable
code blocks. However, as the block change variant is the fastest of all three variants, it should
be the default choice. A more situation-specific option is the usage of the configuration block
change variant. It is comparably fast to the block change variant, but allows for a more specific
view on dead variable code blocks. Developers sometimes intentionally introduce dead
variable code blocks, for example by using an #if 0, as explained in Section 2.1. These
statements can be filtered out using the configuration block change variant, to focus on the
variable blocks that are dead due to actual bugs.

In summary, our approach to incremental SPL verification provides significant performance
improvements resulting from a rather simple change analysis. This simplicity originates from
the usage of unmodified change information from commits and a change identification
algorithm matching individual file lines against certain expressions. In particular, we do not
need any preprocessing of change information to create a specific model of these changes to
apply our approach to. However, this simplicity also introduces drawbacks in some situations
of our performance analysis. Changes to the variability model or the build model always
require a full re-analysis due to their cross-cutting nature. While a deeper analysis and
incremental treatment of the variability model might be possible, the overhead would certainly
be very significant and might counterbalance a lot of potential improvement. Hence, we did
not pursue this further for this paper, but keep it as a subject for future work.

8 Threats to Validity

The performance analysis in this paper considers a sequence of 440 commits of the Linux
kernel repository, which is a threat to internal validity. It only represents a subset of the
available Linux kernel commits (changes) developers typically apply in practice. In Section 5,
we discussed in detail why we selected exactly this sequence and explained our actions to
mitigate this threat. In particular we compared the results of our comprehensive Linux
evolution analysis presented in Kröher et al. (2018c) with the results of the same analysis
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for the commit sequence used in this paper (cf. Section 5). While the commits in this sequence
introduce 8% to 21%more changes to information relevant for the dead variable code analysis,
our incremental approach will perform even better on the large-scale of the commits as fewer
relevant changes reduce the analysis time of the incremental variants.

A threat to construct validity arises from our definition of relevant changes and their impact
on the analysis (cf. Section 3.2): We do not provide a (formal) proof that the effects of those
changes are correct or complete. However, the determination of the relevance of these changes
relies on our observation in previous work (Kröher et al. 2018c) as well as the general process
and the goal of the dead variable code analysis. On this basis, the defined changes and their
impact are reasonable and fit the purpose of this paper. A related threat to construct validity
concerns the correct identification of relevant changes, both, from a conceptual as well as a
technical point of view. As we reuse the concepts and implementations for this purpose, as
presented in Kröher et al. (2018c), we rely on a conceptually and technically mature foundation.

The definition of the general steps of an (incremental) analysis (cf. Section 4) also threatens
construct validity. They determine the measuring points for the duration of particular tasks of
the analysis. Hence, a different definition will change these detailed timings. Indeed, this does
not affect the overall results in terms of the general performance of the individual analysis
variants per commit. These results are independent from the steps as they span the entire
runtime from start to end. Further, we do not change the core analysis algorithm between
incremental and non-incremental variants (cf. Section 4.4), which would be another threat to
construct validity.

The commit sequence of the performance analysis is not only a threat to internal validity, but
also affects conclusion validity. In general, the more a commit changes relevant artifacts and
information, the slower our incremental analysis variants will be. However, this behavior is
natural for any analysis, which investigates changes, and no specific property of our approach.
Another threat to conclusion validity is the single execution of our performance analysis. The
reason for this lack is the time needed to execute the non-incremental dead variable code analysis,
which takes multiple days even on our server hardware impeding multiple repetitions in time.

The approach, results, and discussions presented in this paper are limited to the dead
variable code analysis, which is a threat to external validity. However, we already transferred
our approach to another analysis6 and are confident that also related analyses, like the feature-
effect (Nadi et al. 2015) or configuration mismatch analysis (El-Sharkawy et al. 2017), benefit
from it. In contrast, analyses relying on detailed code semantics, like type-checking (Kästner et
al. 2011), are out of scope.

Finally, the selection of the Linux kernel and its commits for our performance analysis
threatens external validity. We discussed above that the performance gain significantly
depends on the changes introduced by commits. Hence, a different SPL with a potentially
different philosophy of committing changes may reveal different results.

9 Related Work

In this paper, we present an approach and evaluate the performance of an incremental SPL
verification approach, which considers changes to code, build, and variability model artifacts
to reduce the analysis effort. Our approach is based on two key concepts: the ability to decide

6 https://github.com/KernelHaven/ProblemSolutionSpaceMapperAnalysis
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whether a change affects a part of the SPL relevant to an analysis and the ability to trigger only
as much of the re-verification process as necessary. The first key concept can be generalized as
change impact analysis (Bohner 1996). The second key concept belongs to the idea of
incremental or regression-based analysis, with the goal of saving analysis time (Thüm et al.
2019). We structure our discussion of related work along these two key concepts in the
remainder of this section. For this purpose, we create several topic clusters and introduce the
belonging related work in the respective first paragraph of each cluster. We then proceed to
discuss the similarities and differences of these works in the following paragraphs. We focus
on those approaches proposed in the SPL domain, as we are specifically interested in SPL
analyses. Furthermore, we do not discuss general incremental or regression-based approaches,
like regression testing, as these are out of scope for our approach (cf. Section 1).

Change impact analysis for SPLs via slicing: One well-established approach to compute
the possible impact of a change is program slicing (Weiser 1981). It reduces an artifact to a
relevant slice, typically based on data- and control-flow analysis. Recent approaches propose
variability-aware program slicing (Angerer et al. 2019; Gerling and Schmid 2019), slicing of
component-based SPLs (Yazdanshenas and Moonen 2012), as well as slicing of variability-
related models, like feature models (Schröter et al. 2016; Krieter et al. 2016; Acher et al.
2011a, b), delta models (Lity et al. 2015, 2016b), or product family models (Sabouri and
Khosravi 2014, 2011a, b).

These approaches are all limited to analyzing one specific type of artifacts, while our
approach does not share this limitation. Instead, our example of the dead variable code analysis
requires the combined consideration of code, build, and variability model artifacts. Further-
more, none of these approaches is designed for incremental analysis, resulting in the need for a
complete re-analysis of all artifacts after one artifact is actually changed. Finally, slicing could
only help to investigate the impact of a change, but the discussed approaches do not further
utilize their results. In contrast, we use our change impact analysis to derive the necessary re-
analysis effort for the dead variable code analysis. As slicing itself is rather costly, for example
the variability-aware code slicer by Gerling and Schmid (2019) takes hours to set up the data-
and control-flow analysis of the Linux kernel, we decided not to reuse an existing approach,
but instead use a much simpler and faster implementation for our change impact analysis.

Change impact analysis for SPLs via other artifact-specific analyses: In addition to
slicing, there are further approaches from the SPL domain to calculate the impact of a change
based on the analysis of one specific type of artifact, like the architecture (Díaz et al. 2011), the
variability model (Dintzner et al. 2015; Lity et al. 2016a; Paskevicius et al. 2012) or the code
(Ribeiro et al. 2014).

The approach by Díaz et al. (2011) proposes an SPL architecture meta-model that visualizes
an explicit mapping among features from a feature model, requirements, and design decisions.
For example, if a requirement changes, the meta-model allows to see which design decisions
and features are affected by that change.

Paskevicius et al. (2012) describe the idea of change impact analysis for features in a feature
model. If one feature is changed, for example, it is removed from themodel, their approach conducts
three different analyses: check whether the model is still valid, identify other features affected by the
change, and calculate some metrics of the model, like the number of contained features.

Dintzner et al. (2015) expand the idea of feature change impact analysis to multi-SPLs,
which are SPLs that consists of multiple SPLs and therefore have multiple variability models.
They use an enhanced feature model to allow a change impact analysis over those models. For
this purpose, they add configuration information to each feature model, so that whenever a
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feature changes, the impact of that change to other configurations is visible, allowing to
effectively reason about cross feature model relationships.

The approach by Lity et al. (2016a) proposes a similar approach to feature change impact
analysis, but for delta models, which are a specific type of variabilitymodel used formodeling delta-
oriented SPLs. In contrast to annotative SPLs, like the Linux kernel, delta-oriented SPLs explicitly
define and model the differences and commonalities between variants as deltas, which describe the
required change operations, like additions or removals, to derive a certain variant. Lity et al. enhance
the existing deltamodel with an additional level of delta information, called higher-order deltas, that
model changes like addition or removal of a delta through evolution over time. This allows to reason
about the impact of such a change to the delta model and related variants.

In contrast, Ribeiro et al. (2014) focus on change impact analysis of code changes. They
introduce emergent interfaces, that allow developers to see the impact of their changes to
affected features. Based on data-flow analysis, their tool shows hints regarding affected
features directly in the integrated development environment, to make developers aware of
the change impact on other features.

All of the approaches in this category discussed above are limited to one specific type of
artifact, similar to the approaches of the previous slicing category. They are therefore not
applicable to dead variable code analysis, which requires the analysis of the combination of
code, build, and variability model artifacts. Furthermore, these change impact analyses could
only help to investigate the impact of a change, but do not further utilize their results. In
contrast, we use our change impact analysis to derive the necessary re-analysis effort for the
dead variable code analysis. Additionally, all of these approaches come with an information
overhead, like mapping to requirements or delta information, needed for their specific goal, but
not required for our approach. Finally, they provide information only on the level of affected
features, but not for individual code blocks. As a consequence, we decided not to reuse an
existing approach of this category, but rely on our custom implementation that is tailored to a
block-based change impact analysis.

Change impact analysis for SPLs via analysis of multiple artifact types: Michalik and
Weyns (2011) propose a variability meta-model that is based on a feature model with
additional information like mapping to the implementation artifacts, derived products, and
environment properties. They address a specific use case where a change in an artifact needs to
be propagated to already deployed and running products which cannot be taken offline for
maintenance. Their model therefore needs to analyze the change impact on these products,
specifically, if the change is valid for a product in its current configuration. In contrast to the
approaches discussed in the previous paragraphs, this approach is the first that allows a change
impact analysis over several artifact types.

Their meta-model is partly overlapping with our approach, as we also need information
about the mapping from variability model to code artifacts. However, we additionally need
information about the build model, which does not exist in Michalik et al.’s approach.
Furthermore, their meta-model has several additional entities like environment properties or
mapping to products and their configuration, which is not of interest for a dead variable code
analysis. Finally, the proposed change impact analysis could only help to investigate the
impact of a change, but does not further utilize its results. In contrast, we use our change
impact analysis to derive the necessary re-analysis effort for the dead variable code analysis.
As there is no existing implementation for Michalik et al.’s approach and the meta-model is
not appropriate for our change impact analysis, we decided not to reuse their approach. For the
same reason, a comparison of their approach with our approach is not possible in practice.
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From a theoretical point of view, we must assume that their approach would not scale to large-
scale SPLs, like Linux. For example, if their approach would be applicable to Linux, building
the respective meta-model would become practicable infeasible due to the range of products
(Linux kernel variants), which is both unknown and extremely large.

Change impact analysis for SPLs via history analysis and heuristics: Another point of
view on change impact analysis in the SPL domain is the idea of deriving possible impacts based on
the evolution history of a SPL. These approaches can be categorized into two target applications:
either detect undocumented relations of artifacts or features (Hamza et al. 2018; Dintzner et al.
2018), or categorize changes into patterns according to their potential impact (Borba et al. 2012;
Neves et al. 2015, 2011; Sampaio et al. 2016; Gomes et al. 2019; Teixeira et al. 2020).

Hamza et al. (2018) propose a tool called CIAHelper for a combined analysis of code and
variability model artifacts as well as the version history of delta-oriented SPLs to identify all
products affected by a change request. CIAHelper constructs a dependency graph by first
parsing the code files to an abstract syntax tree, which is then annotated with additional
information from the delta-model, like delta information or mapping to products. Next, the
approach analyzes the whole commit history of the SPL to find connections among the
artifacts represented in the graph. The idea is that whenever artifacts are changed together in
the same commit, this indicates a possible connection. These possible connections are then
added as probabilities to the dependency graph.

The dependency model by Hamza et al. is partly overlapping with our approach as it also
contains information about the mapping from variability model to code artifacts. However,
necessary information about the build model is not included in their approach. Additionally,
their meta-model includes several additional entities, like delta information or mapping to
products, which is not of interest for a dead variable code analysis. Furthermore, a key part of
Hamza et al.’s approach is the idea of adding heuristics to approximate the possible impact of a
change. While this is an interesting approach, their evaluation shows that precision and recall
of their change impact analysis is improvable. This is in conflict with the goal of a correct and
precise analysis, which our approach is able to conduct.

On top of that, CIAHelper is built for delta-oriented SPLs and currently only works for
Java-5-based implementations. This is in contrast to our use case of annotative SPLs in general
and, in particular, the Linux kernel. Finally, the proposed change impact analysis could only
help to investigate the impact of a change, but does not further utilize its results. In contrast, we
use our change impact analysis to derive the necessary re-analysis effort for the dead variable
code analysis. As a consequence, an empirical comparison of CIAHelper and our approach, as
well as reusing CIAHelper, is not possible. If a variant of the approach would be constructed,
which would be applicable to Linux, it would still have the problem of not ensuring 100%
correctness as opposed to our approach.

Dintzner et al. (2018) present their FEVER tool, which analyzes the change impact on features
across code, build, and variability model artifacts by analyzing the commit history of the SPL. Their
main research interest is in the co-evolution of different artifacts, where connected artifacts, for
example, a variability model artifact defining a feature and a code artifact implementing that feature,
are evolved separately from each other. For this purpose, FEVER extracts artifact-specific change
information from all commits of the evolution history and stores it in a graph database. Based on
several heuristics, these changes are categorized andmapped to features, creating a featureTimeLine.
This allows to investigate the change history from a feature perspective, where all changes affecting
a particular feature are clustered together.
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Similar to our approach, FEVER analyzes changes to code, build, and variability model
artifacts and is also evaluated on the Linux kernel. However, FEVER uses heuristics to
categorize changes into 21 different types, like edits to code blocks or removals of mappings.
On the one hand, this allows for semantic reasoning about the changes. On the other hand, it is
not as precise and reliable as our approach. Their evaluation shows that only 87.2% out of 810
commits are categorized correctly. In contrast, our approach is able to detect 100% of the
relevant changes per analysis variant, while also distinguishing among different change
categories. However, we are not interested in the kind of changes, like additions or removals,
but whether a change affects an artifact or its content relevant for an analysis. This allows to
ignore irrelevant changes, like changed help texts in variability mode artifacts, while
guaranteeing correct results of the re-verification process.

Another main difference between FEVER and our approach is the scope of the history
analysis. While our approach is regression-based and targets the analysis of one commit at-a-
time, FEVER analyzes the whole history at once and is not built for incremental updates.
Additionally, FEVER’s analyses are also not designed to achieve high performance regarding
execution times. This is also reflected in its evaluation, which is focused on accuracy and
realism of the results, but does not mention any performance data. Lastly, the proposed feature-
oriented change impact analysis could only help to investigate the impact of a change, but does
not further utilize its results. In contrast, we use our change impact analysis to derive the
necessary re-analysis effort for the dead variable code analysis. As a consequence, an empirical
comparison of FEVER and our approach, as well as reusing FEVER, is not possible. If such a
comparable approach would be constructed based on their ideas, it would be insufficient to
guarantee correctness and completeness due to the heuristic nature of their approach. However,
this is what we consider fundamental to our approach.

Neves et al. (2011, 2015) provide a set of evolution templates that categorize changes to
code, build, and variability model artifacts into different patterns. Based on these patterns, they
decide whether a change to a SPL is considered safe or unsafe with respect to the product line
refinement theory defined by Borba et al. (2012). A safe change does not affect the existing
products, for example by adding a new optional feature. In contrast, an unsafe change affects
existing products, for example by removing a mandatory feature. Sampaio et al. (2016) extend
this set by partially safe templates that only affect a part of the existing products, for example
by removing a feature that is only present in some of the products and has no effects on other
features. Gomes et al. (2019) conducted an empirical study on the Soletta SPL to investigate
how often those safe or partially safe changes occur in practice. While earlier approaches of the
(partially) safe categorization relied on manual analysis, Gomes et al. used a combination of
FEVER (Dintzner et al. 2018) and manual analysis to identify the patterns. Teixeira et al.
(2020) proposed the most recent update to evolution templates: a set of algebraic laws that
could help to automate the analysis of the build model with regard to safe or unsafe changes.

Similar to our approach, the idea of evolution templates allows to analyze changes to code,
build, and variability model artifacts and is also applicable to the Linux kernel. However, the
categorization of changes with regard to their potential impact on existing products differs
from our goal of reducing the re-verification effort after a change. Furthermore, we are not
interested in the impact of a change to existing products, but whether a change affects an
artifact or its content relevant for an analysis. These diverging goals result in two completely
different approaches: While evolution templates are a formalized notion that still requires
manual analysis (Teixeira et al. 2020), our approach is focused on fast practical usage and
therefore fully automated. Finally, the proposed idea of evolution templates could only help to
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investigate whether a change affects existing products, but does not allow to further utilize its
results. In contrast, we use our change impact analysis to derive the necessary re-analysis effort
for the dead variable code analysis. As a consequence, using the idea of evolution templates for
our change impact analysis is not possible.

Incremental SPL analysis: The domain-specific language IncA by Szabó et al. (2016) is
the only approach that specifically targets the implementation of incremental analysis in
general. It enables their definition and execution within an integrated development environ-
ment that provides a change-tracking plug-in. Based on graph pattern matching and the
program’s abstract syntax tree, the approach re-analyzes the relevant parts of the program
after a change. To the best of our knowledge, this is the only other approach that explicitly
aims at a performance improvement of SPL analyses during evolution.

However, the applicability to SPLs in general is limited, as IncA depends on graph
representations of the artifacts being subject to the analysis. For example, IncA is only able
to work with software written in mbeddr C, which is a specific C dialect that has its own
variability implementation mechanism.7 An application to software not relying on this dialect,
like the Linux kernel, requires a fitting graph representation of the code, build and variability
model artifacts, as well as their relations among each other. This is not easily doable, because
representing and analyzing un-preprocessed C-code and a Kconfig-model are both challenging
endeavors, which are still not possible in a sound and complete way (Lüdemann and Koschke
2015; El-Sharkawy et al. 2015; Gerling and Schmid 2020). Furthermore, the scalability of
IncA for large SPLs is still in question, as it was previously only evaluated on smaller software
projects and more recent analyses revealed open scalability issues (Szabó et al. 2021). As a
consequence, we must regard this approach as being not suitable to the problem we address in
this study.

10 Conclusion

We presented an approach for the incremental verification of SPLs using the example of a
change-aware dead variable code analysis. The approach is the first one, which solely relies on
identifying changes in raw change information (unmodified commit data) to speed-up SPL
verifications. It determines a reduced set of elements that have to be re-analyzed by identifying
and classifying their changes, while reusing the information of unaffected elements. We
applied this approach in three different variants of the dead variable code analysis as well as
the original, non-incremental variant to a sample of the Linux kernel history to compare their
performances and to evaluate the benefits of our approach.

The results of our performance analysis show that our incremental approach significantly
accelerates a dead variable code analysis. Our fastest incremental variant takes only 3.20
seconds or less for most of the changes, while the non-incremental variant takes 1,020 seconds
in median. At the same time, the analysis results are 100% accurate and the introduced
overhead is neglectable. Furthermore, we identified an unexpected cap regarding the benefits
of the granularity of change identification: The more fine-grained configuration block change
variant is not able to perform faster than the more coarse-grained block change variant.
However, the configuration block change variant could be an interesting option for practi-
tioners to focus on unintentionally introduced dead variable code blocks. In general, we think

7 http://mbeddr.com/
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that our incremental approach could be profitably introduced in continuous integration
environments.

We plan to generalize our concepts for incremental SPL verification to develop a generic
approach as future work. Our goal is to provide similar benefits in terms of performance and
precision to a broader range of analyses, in particular, in the domain of family-based static
analysis (Thüm et al. 2014). Further, we identified additional optimization potential in our
current technical realization. The investigation and possible integration of other reduction
concepts is also a future goal.
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