
https://doi.org/10.1007/s10664-021-10048-8

Learning how to search: generating effective test cases
through adaptive fitness function selection

Hussein Almulla1 ·Gregory Gay2

Abstract
Search-based test generation is guided by feedback from one or more fitness functions—
scoring functions that judge solution optimality. Choosing informative fitness functions is
crucial to meeting the goals of a tester. Unfortunately, many goals—such as forcing the
class-under-test to throw exceptions, increasing test suite diversity, and attaining Strong
Mutation Coverage—do not have effective fitness function formulations. We propose that
meeting such goals requires treating fitness function identification as a secondary optimiza-
tion step. An adaptive algorithm that can vary the selection of fitness functions could adjust
its selection throughout the generation process to maximize goal attainment, based on the
current population of test suites. To test this hypothesis, we have implemented two rein-
forcement learning algorithms in the EvoSuite unit test generation framework, and used
these algorithms to dynamically set the fitness functions used during generation for the three
goals identified above. We have evaluated our framework, EvoSuiteFIT, on a set of Java
case examples. EvoSuiteFIT techniques attain significant improvements for two of the three
goals, and show limited improvements on the third when the number of generations of evo-
lution is fixed. Additionally, for two of the three goals, EvoSuiteFIT detects faults missed by
the other techniques. The ability to adjust fitness functions allows strategic choices that effi-
ciently produce more effective test suites, and examining these choices offers insight into
how to attain our testing goals. We find that adaptive fitness function selection is a powerful
technique to apply when an effective fitness function does not already exist for achieving a
testing goal.

Keywords Automated test generation · Search-based test generation · Reinforcement
learning · Hyperheuristic search

Communicated by: Aldeida Aleti, Annibale Panichella, and Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Gregory Gay
ggay@chalmers.se

Hussein Almulla
halmulla@email.sc.edu

1 University of South Carolina, Columbia, SC, USA
2 Chalmers and the University of Gothenburg, Gothenburg, Sweden

Empirical Software Engineering (2022) 27: 38

Accepted: 1 September 2021 /
© The Author(s) 2022

Published online: 11 January 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10048-8&domain=pdf
http://orcid.org/0000-0001-6794-9585
mailto: ggay@chalmers.se
mailto: halmulla@email.sc.edu

1 Introduction

The testing of software is crucial, as testing is our primary means of ensuring that complex
software is robust and operates correctly (Pezze and Young 2006). However, testing is an
expensive task that can consume much of the development budget (Pezze and Young 2006).
Test creation is an effort-intensive task that requires the selection of sequences of program
input and the creation of oracles that judge the correctness of the resulting execution (Barr
et al. 2015). If test creation could be even partially automated, the effort and cost of testing
could be significantly reduced.

One promising method of automating test creation is search-based test generation (Anand
et al. 2013; McMinn 2004). Test input selection can naturally be seen as a search
problem (Harman and Jones 2001). Testers approach input selection with a goal in mind—
perhaps they would like to cause the program to crash, maximize code coverage, detect a
set of known faults, or any number of other potential goals. Of the near-infinite number
of possible inputs that could be provided to a program, the tester seeks those that meets
their chosen goal. This search can then be automated. Given a measurable goal, a meta-
heuristic optimization algorithm can systematically sample the space of possible test input
and manipulate those samples, guided by feedback from one or more fitness functions—
scoring functions that judge the optimality of the chosen input (Salahirad et al. 2019). In
other words: algorithm + fitness functions =⇒ goal.

Effective search-based generation relies on the selection of the correct sam-
pling mechanism—the algorithm—and, perhaps more importantly, the proper feedback
mechanisms—the fitness functions. Fitness functions shape the test suites generated by the
search process to have properties promoted by those functions. The fitness functions chosen,
in normal use, are expected to embody the overall goals of the tester. By offering feed-
back on the quality of the generated solutions, they ensure that test suites converge on these
goals. The best fitness functions rapidly increase attainment of the goal by both differenti-
ating good solutions from bad solutions and by offering the feedback needed to locate even
better solutions.

Consider, for example, Branch Coverage—a measurement of how many parts of the
code have been executed. For each program statement that can cause the execution path
to diverge—such as if and case statements—test input should ensure that all potential
outcomes are executed (Pezze and Young 2006). If our goal is to achieve 100% Branch
Coverage, there are multiple fitness functions that could be used to guide the algorithm
towards meeting that goal. A simple fitness function could measure the attained coverage.
A test suite that attains 75% Branch Coverage is inherently better than one that attains 50%
Branch Coverage. This tells the algorithm which test suites to favor, leading to higher and
higher attainment of Branch Coverage.

However, there is a more informative fitness function that leads to faster attainment.
Instead, we could take each branch outcome we wish to cover and judge how close the cho-
sen test input was to achieving that outcome. If we execute an expression “if (x == 5)”
with the value of x set to 3, and we seek a true outcome, then x needs to be incremented
by 2. This suggests the magnitude of change needed to reach the desired outcome (McMinn
2004). Fitness functions based on this concept, the branch distance (Arcuri 2013), offer
additional feedback by offering both a measurement of how much of the goal has been met
as well as clues on how to attain further coverage. If our goal is Branch Coverage, we have
known and effective fitness functions that enable attainment of that goal. Unfortunately,
many goals do not have a known or effective fitness function. In fact, many goals do not
inherently lend themselves to such a formulation.

Empir Software Eng (2022) 27: 38 Page 2 of 6238

To illustrate, consider the following three goals:

– Exception Discovery: “Causing the program to crash” is a common goal in testing.
The number of crashes discovered is often measured by counting the number of excep-
tions—program-interrupting error messages—thrown during test execution (Robillard
and Murphy 2000). Exceptions indicate fault and abnormal operating conditions in
programs. Thus, tests that trigger exceptions are valuable.

– Test Suite Diversity: When testing, it is generally impossible to try every input. It
follows, then, that diverse test input is more effective than similar input (De Oliveira
Neto et al. 2018; Shahbazi 2015). This intuition has led to effective automated test
generation, prioritization, and reduction (De Oliveira Neto et al. 2018).

– Strong Mutation Coverage: Mutation testing is a practice where synthetic faults
(mutants) are injected into the code. If test suites detect these faults, they are thought to
be more robust to real faults. In Weak Mutation Coverage, a mutant is detected if execu-
tion reaches the infected expression and the outcome of that expression differs from the
original program—i.e., the state is infected. Strong Mutation Coverage requires that the
infected state propagates to the program output, offering clear evidence that the fault
was detected (Lindstrom and Mrki 2016).

All three are valid, measurable, goals for test suite generation. In principle, all three
should be reasonable targets for search-based test generation. However, all three have
properties that make them difficult to optimize directly:

– As we cannot know how many or what exceptions are possible to throw, “throw more
exceptions” is not a goal that translates into an informative fitness representation. Prior
work has proposed counting thrown exceptions as a fitness function (Rojas et al. 2015).
Unfortunately, this count yields poor results, as it offers the algorithm no guidance for
improving its guesses (Salahirad et al. 2019; Gay 2017a; 2017b).

– While numerous diversity metrics exist—for example, the Levenshtein distance (Shah-
bazi 2015) measures the number of operations needed to convert one string to
another—these metrics tend to serve as poor fitness functions, as little feedback is
offered to suggest how to gain more diversity.

– Weak Mutation Coverage can be optimized using a variant of the branch distance, which
measures how close execution came to reaching the mutated line and corrupting the
program state (Fraser and Arcuri 2014). It is more difficult to offer feedback on how to
propagate corruption to the output. Current fitness functions offer probabilistic estima-
tions of propagation (Fraser and Arcuri 2014; Papadakis and Malevris 2013). However,
such estimations are generally too coarse-grained to accurately guide the search.

This does not mean there is no way to effectively achieve such goals. Rather, we simply
do not yet know what fitness functions will be effective. There are many fitness functions
available for use in search-based test generation. If we do not know of an effective fitness
function that we can optimize to directly achieve a goal, it may be possible to identify fitness
functions that indirectly achieve our goal. Careful selection of one or more of those functions
could yield high goal attainment. For example, if optimizing the exception count fails to
produce test suites that trigger exceptions, optimizing different functions (e.g., targeting
both branch distance and exception count) might achieve that goal.

We simply need to identify that selection There are many combinations of fitness func-
tions that could be selected, and the “correct” choices may be specific to the goal and
system/class-under-test (SUT/CUT). In fact, the “correct” choices may even vary during

Empir Software Eng (2022) 27: 38 Page 3 of 62 38

test case generation, as search-based processes evolve test suites over time in a stateful pro-
cess. Therefore, we seek a systematic method of automatically identifying and adapting the
selection of fitness functions that is appropriate for a variety of high-level testing goals.

A class of search-based test generation approaches are known as hyperheuristic, or self-
adaptive, approaches (Jia et al. 2015; Guizzo et al. 2015). These approaches incorporate a
learning phase in order to automatically tune the search strategy. Hyperheuristic search has
been used, for example, to change parameters of the search algorithm during evolution to
improve solution quality (Jia et al. 2015). We propose a hyperheuristic search that strate-
gically adjusts the chosen fitness functions throughout the generation process to maximize
attainment of a desired goal.

Through the use of reinforcement learning (Sutton and Barto 2018), this approach is
able to select the most appropriate fitness functions for a CUT and testing goal, and adjust
that set as needed during generation. In this process, a measurement—representing the real
goal of the search—is targeted as a high-level reward function. A reinforcement learning
agent selects fitness functions, and after evolving test suites using these functions for a
set number of generations, the change in the reward score will be evaluated and the agent
decides whether to continue using the set of functions known to best improve the reward
(exploitation) or to try different functions in order to refine expectations on the change in
reward (exploration). We refer to this hyperheuristic as adaptive fitness function selection
(AFFS).

We have implemented two reinforcement learning algorithms—Upper Confidence
Bound (UCB) and Differential Semi-Gradient Sarsa (DSG-Sarsa) (Sutton and Barto
2018)—in the EvoSuite unit test generation framework for Java (Rojas et al. 2017). We refer
to the modified framework as EvoSuiteFIT. We have evaluated EvoSuiteFIT for each of the
three goals listed above on a set of Java case examples in terms of (a) the ability to produce
test suites that achieve the targeted goal and (b) the ability of the generated suites to detect
real faults. In each case, we compare the two reinforcement learning approaches to three
baselines: (a) current practice—a fitness function based on the goal that may not offer suf-
ficient feedback, (b) a set of multiple fitness functions—the full set of functions that AFFS
can choose among for that goal—that serves as a “best guess” a human might make at a
combination of fitness functions that would produce effective test suites, and (c), a set of
fitness functions randomly selected from the choices available to AFFS. We have found:

– Both EvoSuiteFIT techniques outperform all baselines with at least medium effect size
for the goals of exception discovery and suite diversity—attaining improvements of up
to 107.14% in goal attainment. For the goal of Strong Mutation Coverage, no technique
demonstrates significant improvements. When the search budget is a fixed number
of generations rather than time, both EvoSuiteFIT techniques slightly outperform the
baselines (up to 8.33% improvement). However, the effect size is still negligible.

– Both EvoSuiteFIT techniques detect faults missed by the other techniques for the
exception discovery goal (up to 259.90% improvement). UCB is able to detect more
faults for the Strong Mutation goal (12.50% improvement), and when the number of
generations is fixed, both EvoSuiteFIT approaches outperform the baselines (up to
50.00% improvement). Both techniques are outperformed by the random baseline for
the diversity goal (34.74% difference), but outperform the other baselines.

– We find that AFFS is an appropriate technique to apply when an effective fitness func-
tion does not already exist for the targeted goal. However, AFFS requires a reward
function that is fast to calculate, or requires additional time for test generation. Further,
the effect of AFFS is limited by the span of fitness functions available to choose from.

Empir Software Eng (2022) 27: 38 Page 4 of 6238

If none of the chosen functions correlate to the goal of interest, then improvements in
goal attainment will be limited.

– Improvements in fault detection may arise because of higher attainment of goals
thought to have a positive relationship with fault detection likelihood, optimizing multi-
ple fitness functions—but avoiding needlessly complex and conflicting functions—and
changing fitness functions as the suite evolves rather than applying all functions at once.
However, higher goal attainment does not ensure fault detection.

– While reinforcement learning adds overhead to test generation, EvoSuiteFIT is often
faster than the default static configuration because the ability to avoid calculation of
unhelpful fitness functions mitigates this overhead (up to 94.27% faster than baselines).
Further, feedback from effective fitness functions can help control computational costs.

– The ability to adjust the fitness functions at regular intervals allows EvoSuiteFIT to
make strategic choices that refine the test suite and allows us to attain a deeper under-
standing of the properties that link to goal attainment and how fitness functions can
work together to imbue those properties. Fitness function combinations that are ineffec-
tive in a static context may be effective when used by AFFS to diversify a pre-evolved
population of suites.

We have previously proposed adaptive fitness function selection, and demonstrated its
potential for increasing the number of discovered exceptions (Almulla and Gay 2020a).
We also have published a small pilot study for the Gson case examples and the diversity
goal (Almulla and Gay 2020b). This publication extends both studies in significant ways:

– We perform more extensive experiments and analyses for the exception discovery goal,
and perform the first full experiments for the diversity goal.

– We add a third testing goal—Strong Mutation Coverage.
– We have added a third baseline—random selection of fitness functions.
– We perform cross-goal analyses to better understand the capabilities of AFFS, leading

to a richer discussion than in the previous studies.

Under the correct conditions, the use of AFFS allows EvoSuiteFIT to identify combina-
tions of fitness functions effective at achieving our testing goals, and strategically vary that
set of functions throughout the ongoing generation process. We hypothesize that other goals
without known effective fitness function representations could also be maximized in a sim-
ilar manner. We make EvoSuiteFIT1 and our empirical data2 available to others for use in
research or practice.

2 Background

2.1 Unit Testing

Testing can be performed at various levels of granularity. In this research, we are focused on
unit testing (Pezze and Young 2006). Unit testing is where the smallest segment of code that
can be tested in isolation from the rest of the system—often a class (Shamshiri et al. 2015)—
is tested. Unit tests are written as executable code. We refer to a purposefully grouped set of
test cases as a test suite. When code changes, developers can re-execute the test suite to make

1EvoSuiteFIT is available from https://github.com/hukh/evosuite/tree/evosuitefit.
2We make our research data available at https://doi.org/10.5281/zenodo.4524786.

Empir Software Eng (2022) 27: 38 Page 5 of 62 38

https://github.com/hukh/evosuite/tree/evosuitefit
https://doi.org/10.5281/zenodo.4524786

Fig. 1 Example of a unit test case written using the JUnit notation for Java

sure the code works as expected after changing. Unit testing frameworks exist for many
programming languages, such as JUnit for Java, and are integrated into most development
environments.

An example of a unit test, written in JUnit, is shown in Fig. 1. A unit test consists of a
test sequence (or procedure)–a series of method calls to the CUT–with test input provided to
each method. Then, the test case will validate the output of the called methods and the class
variables against a set of encoded expectations—the test oracle—to determine whether the
test passes or fails. In a unit test, the oracle is typically formulated as a series of assertions on
the values of method output and class attributes (Barr et al. 2015). In the example in Fig. 1,
the test input consists of passing a string to the constructor of the TransformCase class,
then calling its getText() method. This method should transform the string to upper-
case. To ensure this is the case, we use an assertion to check whether the output of the call
is equal to an upper-case version of the provided string.

2.2 Search-Based Test Generation

Automation has a critical role in controlling the cost of testing (Orso and Rothermel 2014;
Almasi et al. 2017). One particular task that has seen great attention is the selection of test
input. Exhaustively applying all possible inputs is infeasible due to enormous number of
possibilities. Therefore, which input are tried becomes important. A promising method is
search-based test input generation.

Test input selection can naturally be seen as a search problem (Harman and Jones
2001). Out of all of the test cases that could be generated for a class, we want to select—
systematically and at a reasonable cost—those that meet our goals (McMinn 2004; Ali et al.
2010). Given a testing goal and a scoring function denoting closeness to the attainment of
that goal—called a fitness function—optimization algorithms can sample from a large and
complex set of options as guided by a chosen strategy (the metaheuristic) (Bianchi et al.
2009).

Metaheuristics are often inspired by natural phenomena, such as swarm behavior (Dorigo
and Gambardella 1997) or evolution (Holland 1992). While the particular details vary
between algorithms, the general process employed by a metaheuristic is as follows: (1)
One or more solutions are generated, (2), The solutions are scored according to the fit-
ness function, and (3), this score is used to reformulate the solutions for the next round of
evolution. This process continues over multiple generations, ultimately returning the best-
seen solutions. The metaheuristic (genetic algorithm, simulated annealing, etc.) overcomes
the shortcomings of a purely random selection when selecting test input by using a delib-
erate strategy to traverse the input space, gravitating towards “good” input and discarding
“bad” input—as determined by the fitness function—through the incorporation of fitness
feedback and mechanisms for manipulating a population of solutions. By determining how

Empir Software Eng (2022) 27: 38 Page 6 of 6238

solutions are evolved and selected over time, the choice of metaheuristic impacts the quality
and efficiency of the search process (Feldt and Poulding 2015).

In search-based test generation, the fitness functions capture testing objectives and guides
the search. Through this guidance, the fitness function has a major impact on the quality of
the solutions generated. Functions must be efficient to execute, as they will be calculated
thousands of times over a search. Yet, they also must provide enough detail to differentiate
candidate solutions and guide the selection of optimal candidates. Structural coverage of the
source code is a common optimization target, as coverage criteria can be straightforwardly
transformed into efficient, informative fitness functions (Arcuri 2013). Search-based gen-
eration often can achieve higher coverage than developer-created tests (Fraser et al. 2013).
Due to the non-linear nature of software, resulting from branching control structures, a
real-world program’s search space is large and complex (Ali et al. 2010). Metaheuristic
search—by strategically sampling from that space—can scale to larger problems than many
other generation algorithms (Malburg and Fraser 2011). Such approaches have been applied
to a wide variety of testing goals and scenarios (Ali et al. 2010).

A special class of search-based approaches are known as hyperheuristic, or self-adaptive,
approaches (Jia et al. 2015; Almulla and Gay 2020a; 2020b). These approaches incorporate
a learning phase in order to automatically tune the search strategy towards particular prob-
lem instances (Balera and de Santiago Júnior 2019). Hyperheuristic search has been used,
for example, to change parameters of the metaheuristic during evolution (Jia et al. 2015).

Hyperheuristic search can, essentially, be thought of as “using a heuristic to choose a
heuristic.” A hyperheuristic approach introduces an automated high-level search that can
explore the lower-level space of options available to tune the metaheuristic algorithm, look-
ing for the best options to solve the targeted problem. These options may include aspects
of the metaheuristic such as population tuning mechanics (e.g., the crossover and mutation
rates of a genetic algorithm) or, in this study, the choice of fitness functions. The metaheuris-
tic operates directly on the problem space, attempting to optimize its own effectiveness
using the options selected by the high-level hyperheuristic layer (Drake et al. 2020; Kumari
and Srinivas 2016).

Hyperhueristic approaches can be divided into two types—selection and generation.
Selection-based approaches select low-level heuristics from a preexisting set. Generation-
based approaches create new heuristics using the components of existing heuristics as
building blocks (Burke et al. 2019). Selection-based hyperheurstics are more common, espe-
cially in software testing research, as they are often easier to implement and are suited to a
wider range of problems (Balera and de Santiago Júnior 2019). However, generation-based
approaches may yield better solutions when applied successfully. In this research, we use
a selection-based hyperheuristic approach, but may explore generation-based approaches in
future work.

2.3 Reinforcement Learning

Reinforcement learning focuses on identifying an action that maximizes return, measured
using a problem-specific numerical reward score. This return is gained after an agent inter-
acts with the specified environment to reach the desired goal. To understand reinforcement
learning, consider the n-armed bandit problem (Katehakis and Veinott 1987). This problem
describes a situation where you are repeatedly faced with a choice of n different options.
After each selection, you receive a reward chosen from a probability distribution dependent
on the action selected. Reinforcement learning algorithms are designed to learn the optimal
choice of action to maximize the reward earned (Sutton and Barto 2018).

Empir Software Eng (2022) 27: 38 Page 7 of 62 38

Each action has an expected reward when it is selected. Over time, the reinforcement
learning agent will try different actions and refine its estimations of their value. During
each round, the agent will choose an action based on the expected reward of applying it in
the current problem state. After applying the action, the agent will receive a reward value.
The agent will update the expected reward for the chosen set using the new information—
updating the policy it uses to choose the next action.

Reinforcement learning manages the trade-off between two concepts—exploration
and exploitation—to maximize the reward. An agent must explore—choosing different
actions—until it reaches the point where it can exploit that knowledge—favoring the actions
known to provide a higher reward. At any time, there will be a portfolio with the greatest
estimated value. If the algorithm selects that portfolio, it exploits its current knowledge to
gain immediate reward. If instead, it chooses a portfolio with an unknown or potentially
lower reward, it is exploring the option space to improve its estimate of a portfolio’s value.
Reinforcement learning is designed to effectively balance exploration and exploitation (Jia
et al. 2015; Sutton and Barto 2018; Jia 2015).

In this work, we consider two different types of reinforcement learning—tabular solution
methods and approximation solution methods (Sutton and Barto 2018). Tabular methods are
generally used in cases where states and action apace are small enough so they can be repre-
sented in table or array. For that, a method can find the exact solution for the given problem.
However, finding an exact solution is not feasible when the state space is large or continu-
ous. In this case, approximation methods attempt to find an approximate solution rather than
a specific one by generalizing from previously encountered states (Sutton and Barto 2018).

3 Technical Approach and Implementation

In theory, fitness functions should be selected to maximize attainment of the tester’s overall
goals. However, this is not always straightforward. In practice, many goals do not translate
cleanly to effective fitness function representations—ones that offer detailed feedback to
the search process to enable rapid optimization.

Consider the three goals that we are focused on in this research: exception discovery,
test suite diversity, and Strong Mutation Coverage. All three have existing fitness func-
tion representations—a simple count of exceptions thrown, the Levenshtein distance, and a
probabilistic estimation of state propagation to output. All three of these fitness representa-
tions have weaknesses. Consider the fitness function for exception discovery. Counting the
thrown exceptions meets the technical requirement of a fitness function, in that it can dis-
tinguish a test suite that throws exceptions from one that does not. However, it offers no
actionable feedback to the search. Finding new exceptions requires blind guessing.

The other two goals are also difficult to optimize. The Levenshtein distance can effec-
tively minimize the distance between two strings, as the actions a test generation takes have
a direct and learn-able impact on this score. It is less helpful when one wants to maximize
the distance—to make the test suites more diverse—and when it is not clear how to cause
the most effective change in this score by manipulating method calls to the class-under-test.
Similarly, Strong Mutation Coverage requires that a triggered fault propagate to an observ-
able failure in the output. Offering feedback on the likelihood of propagation is a complex
problem, and current approaches only provide course-grained estimations that insufficiently
guide the search (Fraser and Arcuri 2014; Papadakis and Malevris 2013).

All three of these goals contain elements that are either unknowable upfront, or are
difficult to estimate. Optimization of these functions does not map to the actions available to

Empir Software Eng (2022) 27: 38 Page 8 of 6238

the test case generator in a way that can be easily predicted, often requiring specific actions
not suggested by fitness function feedback. Such properties are common when examining the
goals a tester might have when creating test suites. In this research, our aim is not to find a bet-
ter way to meet these three specific goals. Rather, our aim to develop a systematic approach
capable of better meeting any goal that does not already have an effective fitness function.

Even if existing fitness functions are insufficient, such goals can still be met. The existing
fitness functions simply do not provide sufficient feedback. The problem to be solved is how
to provide that feedback. Search-based generation can simultaneously target multiple fitness
functions (Gay et al. 2014). Each fitness function further shapes the test suite, imbuing it
with additional properties. This offers an opportunity to provide that missing feedback. We
can augment—or even replace—the existing fitness representations with fitness functions
that better direct the search towards optimization of our core, high-level goal.

We propose that careful selection—at different points in the generation process—of the
set of fitness functions could result in test suites that better meet our goals than existing base-
lines. If this is true, identifying these fitness functions becomes a secondary search problem,
tackled as an additional hyperheuristic optimization within the normal test generation pro-
cess (Jia 2015). We propose the use of reinforcement learning techniques to adapt the set
of fitness functions over the generation process at regular intervals in service of matching
the chosen CUT and a measurable testing goal. Given a measurable goal, each action—
each choice of one or more fitness functions—has an expected reward when it is selected.
If we use this function combination, we will increase attainment of our goal. Because test
generation is a stateful process—the population of test suites at round N depends on the
population from round N − 1—reinforcement learning affords not just an opportunity to
identify effective fitness functions, but to strategically adjust the functions based on the
changing population of test suites. We refer to this process as adaptive fitness function
selection (AFFS).

In this work, we have implemented AFFS by extending the EvoSuite test generation
framework (Rojas et al. 2017) with two online reinforcement learning algorithms—Upper
Confidence Bound (UCB) and Differential Semi-Gradient Sarsa (DSG-Sarsa) (Sutton and
Barto 2018). EvoSuite is a search-based unit test generation framework for Java that uses
a genetic algorithm to evolve test suites over a series of generations, forming new pop-
ulations each generation by retaining, mutating, and combining the fittest solutions. It is
actively maintained and has been successfully applied to a variety of projects (Shamshiri
et al. 2015). In this study, we implemented AFFS in EvoSuite version 1.0.7. We call our
approach EvoSuiteFIT.

In Sections 3.1 and 3.2, we will explain the UCB and DSG-Sarsa algorithms. In
Section 3.3, we give an overview of the EvoSuite test generation framework. Finally, in
Section 3.4, we explain how AFFS is implemented into EvoSuite and present an overview
of new fitness and reward functions implemented as part of our approach.

3.1 Upper Confidence Bound (UCB) Algorithm

In the n-armed bandit problem (Sutton and Barto 2018), an agent is presented with a
machine with n arms. Each time the agent chooses an arm, they will get a reward. Naturally,
this agent will seek to identify the arms that give them the most reward. Even if the reward
earned is non-deterministic, it is likely that certain arms will give more reward “on average”.
The problem, then, is to identify the arm that will give the greatest improvement in reward
when chosen and to keep choosing that one until time runs out or the maximum reward is
attained. This is challenging, of course, because one must decide to whether to exploit their

Empir Software Eng (2022) 27: 38 Page 9 of 62 38

current knowledge—choose the arm that you currently think is the best—or to explore—to
refine your expected reward by trying a new or previously suboptimal option. Exploitation
will lead to short-term improvement, but risks missing out on potentially greater gains in the
long-term. However, too much exploration also risks resulting in a low reward by repeatedly
trying poor options in the hope they improve. Approaches to the n-armed bandit problem
seek to balance exploration and exploitation in an effective manner.

The Upper Confidence Bound (UCB) algorithm is well-suited to addressing n-armed
bandit problems (Sutton and Barto 1998). Each time a choice is made, UCB selects an action
with a higher expected reward than the other possible actions. Each action returns a numer-
ical value that is considered as the reward of taking that action. This means that a testing
goal that is to be optimized using this approach requires the definition of a reward func-
tion representing the improvement attained in that goal by taking an action. In Section 3.4,
we discuss the specific reward functions used for each of our three goals. In contrast to fit-
ness functions, these can be relatively simple functions. One could even use existing fitness
functions and measure reward as the change in that score from the previous generation.

Algorithm 1 outlines the UCB algorithm. For a selected action A at time step t (repre-
sented as At), the reward Rt represents the corresponding reward of taking action At . In
test generation, the time step is the current number of generations that have elapsed. Using
this notation, the expected reward of action a is q∗

.= E[Rt |At = a]. We apply the Upper
Confidence Bound to select the action (Sutton and Barto 1998):

At
.= max[Qt(a) + c

√
ln(t)

Nt (a)
] (1)

Empir Software Eng (2022) 27: 38 Page 10 of 6238

where At represents the index of the combination that gives the highest expected reward.
The c term represents the confidence level, determining the balance between exploration
and exploitation in the algorithm. The value of c needs to be larger than 0. Otherwise, the
algorithm will behave in a purely greedy manner. The confidence level is multiplied by the
square root of the natural log of the time step divided by the number of times the action
has been selected. Qt(a) denotes the estimated value of choosing a combination of fitness
functions (a), which can be calculated as:

Qt(a) = 1

Nt

t−1∑
i=1

Ri(a) (2)

This equation represents the total reward of a combination a divided by the number of
times that combination had been selected until the time t . In this project, t denotes the
number of generations of evolution that have occurred. In this algorithm, we first ensure
that all actions are tried once in a random order (lines 8-10 in Algorithm 1). This allows us
to seed expected rewards of applying actions before using the standard selection procedure.
We when proceed to apply the set of equations defined above to update our estimation of
gain in reward and select the action with the highest estimation.

Reinforcement learning approaches generally attempt to associate the reward of taking
an action with a particular state. To control the size of the state space, we represent the state
as a feature vector containing the current set of fitness functions, the current fitness value
for that set of functions, the test suite size, and the coverage of the subgoals associated with
the fitness functions.3

UCB is an example of a tabular solution method, where it attempts to associate rewards
with specific states. It logs those reward expectations in a table or list structure, and attempts
to identify the exact reward that would be gained in that state. However, finding an exact
solution is not feasible when the states space is large or continuous. This is a potential
limitation of this approach during test generation, as the state space of even our limited
representation is large, and our feature vector representation could potentially be met by a
large number of actual test suites as is a summarization of facets of the suite. To address
this potential limitation, we also implemented a second algorithm, DSG-Sarsa, which
generalizes expectations from previously-encountered states (Sutton and Barto 2018).

3.2 Differential Semi-Gradient Sarsa (DSG-Sarsa)

Approximate solution methods generalize from previously encountered states (Sutton and
Barto 2018). Therefore, approximate methods are appropriate for problems with a large
or unconstrained state-space where finding exact solutions is not feasible with limited
time (Buşoniu et al. 2011). As test case generation has a potentially vast state space—even
using a feature vector to summarize that state—we have explored using an approximate
solution method, Differential Semi-Gradient Sarsa (DSG-Sarsa) (Sutton and Barto 2018).

DSG-Sarsa is semi-gradient, enabling continual and online learning. Relevant to our
application domain, the algorithm is well-suited to problems in which there is no termina-
tion state. This is an “on-policy” method, which means that it tries to improve the policy
that the agent has in place to make decisions. The agent leverages from past experiences

3For example, in Strong Mutation Coverage, this would be the percent of mutants detected through an
observed difference in output.

Empir Software Eng (2022) 27: 38 Page 11 of 62 38

to decide when to vary between exploitation and exploration (Sutton and Barto 2018). On-
policy methods may be better suited to our application domain than off-policy methods.
On-policy adjustment will allow more exploration than exploitation when necessary—this
may be beneficial, given a large number of potential combinations of fitness functions that
could be chosen. An overview of DSG-Sarsa is presented in Algorithm 2. Each generation,
an action—a choice of fitness functions—is applied, and the test suite evolves to a new state
S‘, with observed reward R. Again, we start by trying each action once in a random order
to seed estimates (lines 2-4). Then, we choose a new action A‘, using the formula:

q̂(S, A,W)
.= W� · X(S,A) =

∑
wixi(S,A) (3)

This action-value function is calculated by the inner product of weights and feature vec-
tors. X(S,A) is the feature vector: X(s, A) = (x1(S,A), x2(S,A), . . . xd(S,A)). As noted
previously, the feature vector describes the current state of a test suite as the current set of
fitness functions, the current fitness value for that set of functions, the test suite size, and
the coverage of function goals.

W represents a weight vector, used to bias action selection (Sutton and Barto 2018). A
weight is provided for each feature, and illustrates the importance of each feature in respect
to its contribution to the action value. The weight for an action is updated each round using
the semi-gradient with delta, controlled by the learning rate:

Wt+1
.= Wt + αδ∇q̂(St , At ,Wt) (4)

To evaluate the chosen action, the algorithm calculates the error function (δ), which repre-
sents the difference between the immediate reward R and the average reward R̄t and the
difference between the value of a target q̂(St+1, At+1, Wt) and the value of the old estimate
q̂(St , At ,Wt) (Sutton and Barto 2018). In each iteration, the current action—selection of
fitness function—is used to generate a new state and reward. We use an action-value func-
tion to generate the action A’. In our case, we use ε − greedy (Sutton and Barto 2018).
The reward return is calculated in terms of the difference between the current and the aver-
age reward. The corresponding value function that is used for this type of return is called a
differential value function (Sutton and Barto 2018):

δt = Rt+1 − R̄t + q̂(St+1, At+1,Wt) − q̂(St , At ,Wt) (5)

R̄t is the estimated average reward at time t , calculated as:

R̄t+1 = Rt + βδ (6)

Empir Software Eng (2022) 27: 38 Page 12 of 6238

Tester

CUT

Fitness
Functions

Search
Budget

EvoSuite

Generate
Population
Randomly

Genetic Algorithm

Minimize
Best Test

Suite
Test
Suite

Score
Population

Select
Best Test

Suites

Crossover
and

Mutation

Fig. 2 A simplified overview of EvoSuite’s test generation process

β is an algorithm parameter that represents the step size of updating the average reward.
The notation t represent the the time step (the number of generations).

By using the average reward, we consider the immediate reward as important as a
delayed one. This means that we treat all fitness function combinations impartially without
bias toward combinations that were selected first. Thus, there is no priority for the chosen
combinations other than effectiveness.

3.3 EvoSuite Overview

We have implemented both reinforcement learning algorithms in the EvoSuite unit test gen-
eration framework (Fraser and Arcuri 2017; Fraser 2018). EvoSuite targets classes written
in the Java language, and produces complete JUnit test cases that initialize the class-under-
test, calls its methods with generated input, and applies generated assertions to check the
results.4

The general test generation process in EvoSuite is depicted in Fig. 2. EvoSuite takes,
among other configuration options, a CUT, a set of chosen fitness functions, and a search
budget—the time allocated to the test generation process. An initial population of test suites
is generated randomly, then a metaheuristic algorithm evolves that population until the
search budget is exhausted. In this research, we have integrated AFFS into the standard
Genetic Algorithm (GA).

Each generation, the GA evaluates the current population (a collection of test suites)
using the chosen fitness functions. The score is calculated for each fitness function, the
scores are normalized to a 0-1 scale, then the scores are summed into a single score. Lower
scores are preferred. The standard GA in EvoSuite is not a true multi-objective approach,
i.e., it does not try to balance each fitness function. Sufficient improvements to one of the
chosen functions will result in a suite being favored, even if it attains worse scores in other
functions than other test suites.

Then, a new population is formed by retaining high-scoring solutions, mutating solu-
tions, forming new solutions by combining elements of parent solutions (crossover), and
generating a small number of new random solutions to maintain diversity. After the search

4Assertions are generated using the class-under-test, which means that generated assertions
are not useful for fault detection in the tested code. Instead, assertions are used for regression
testing scenarios or to check for differences between two versions of a class.

Empir Software Eng (2022) 27: 38 Page 13 of 62 38

budget has been exhausted, the best solution will go through a minimization process in
which test cases that cover redundant goals are removed (using the goals set by the current
fitness functions). For example, if one of the fitness functions represents the Branch Cov-
erage, a test that does not cover additional goals not covered by already-selected tests will
be removed. At the end, a small-but-effective test suite will be returned. EvoSuite supports
a large number of fitness functions for test generation (Rojas et al. 2015). We make use of
nine of these functions in our work:

– Exception Count: A count of the unique exceptions thrown by a test suite. Exceptions
are tracked using the name of the Exception class and the method where the exception
was thrown. In addition, exceptions are separated into those that are declared (in method
signature), explicit (developer used a throw expression), and implicit (unplanned
exceptions).

– Branch Coverage: A test suite satisfies Branch Coverage if all control-flow branches
are taken during test execution. For each program statement that can cause the execution
path to diverge—such as if and case statements—test input should ensure that at
all potential outcomes are covered at least once (Pezze and Young 2006). To guide
the search, the fitness function calculates the branch distance from the point where the
execution path diverged from the targeted branch. If an undesired branch is taken, the
function describes how “close” the targeted predicate is to be true, using a cost function
based on the predicate formula (Arcuri 2013).

– Direct Branch Coverage: Branch Coverage may be attained by calling a method
directly or indirectly—i.e., a method call within a method that was directly called.
Direct Branch Coverage requires each branch to be covered through a direct method
call, while standard Branch Coverage allows indirect coverage. Each can detect faults
missed by the other (Gay 2018a).

– Line Coverage: A test suite satisfies Line Coverage if it executes each non-comment
source code line at least once. To cover each line, EvoSuite tries to ensure that each
basic code block is reached. For each conditional statement that is a control depen-
dency of some other line in the code, the branch leading to the dependent code must be
executed.

– Method Coverage (MC): Method Coverage requires that all the CUT’s methods are
executed at least once, through direct or indirect calls.

– Method Coverage (Top-Level, No Exception) (MNEC): Generated test suites some-
times achieve high levels of Method Coverage by calling methods in an invalid state
or with invalid parameters. MNEC requires that all methods be called directly and
terminate without throwing an exception.

– Output Coverage (OC): Output Coverage rewards diversity in the method output by
mapping return types to a list of abstract values (Alshahwan and Harman 2014). A test
suite satisfies Output Coverage if, for each public method in the CUT, at least one test
yields a concrete return value characterized by each abstract value. For numeric data
types, distance functions offer feedback using the difference between the chosen value
and target abstract values.

– Weak Mutation Coverage (WMC): A test suite satisfies weak mutation coverage if,
for each mutated statement, at least one test detects the mutation. The infection distance
guides the search, a variant of branch distance tuned towards reaching and discovering
mutated statements (Fraser and Arcuri 2014).

– Strong Mutation Coverage (SMC): Weak Mutation Coverage ensures that the
mutated line of code is reached. However, it makes no guarantees that the infected

Empir Software Eng (2022) 27: 38 Page 14 of 6238

program state is noticed by the tester. Strong Mutation Coverage adds an estimation
of the likelihood of propagation, the propagation distance, by estimating the impact of
corrupted state (Fraser and Arcuri 2014).

Rojas et al. provide more details on each of these fitness functions (Rojas et al. 2015). We
additionally implemented a Test Suite Diversity fitness function based on the Levensthein
distance, which we will discuss in Section 3.4.2

3.4 Implementation of AFFS within EvoSuite

We have implemented both reinforcement learning algorithms in EvoSuiteFIT, and inte-
grate their use into the standard GA. At a user-defined interval, the RL algorithm will
choose a new set of one to four fitness functions. The specific sets of fitness functions are
goal-dependent, and will be explained in the following subsections. The modified process
is illustrated in Fig. 3. Algorithm 3 provides an overview of the reinforcement learning
implementation in EvoSuiteFIT.

CUT

Search
Budget

Generate
Random

Population
EvoSuite

Initialization
while

budget
remains

Select Fitness
Functions
using RL

Fitness
Functions

Generate
Population

Yes

Get Best Test
Suite

Calculate
Reward Score

Update
Archive

Minimize Best
Test Suite

Test
Suite

No

Fig. 3 The modified test generation process. Steps in orange are introduced or modified by AFFS

Empir Software Eng (2022) 27: 38 Page 15 of 62 38

AFFS is an online learning approach. The RL algorithm learns its policy during the test
generation process, adapting to the CUT and the evolving state of the test suite. This stands
in contrast to an offline process, which would attempt to apply a policy learned in an earlier
process. We do not attempt to transfer learned policies to new classes in this work (Iqbal
et al. 2019). The differences between classes may result in poor transfer success. However,
this is a topic we will consider in future work.

In the beginning, EvoSuiteFIT will make sure that all the actions have been tried
once before it starts using the standard UCB or DSG-Sarsa selection mechanisms. This
allows seeding of reward estimations. Before the initial selection occurs, the list of actions
is randomized to avoid an ordering bias. This is important, as the population of test
suites is shaped by the action used each generation. After this stage, every time the RL
algorithm makes a selection, the set of chosen fitness functions will change unless the
currently-selected combination is exploited.

After changing the fitness functions, EvoSuiteFIT will proceed through the normal pop-
ulation evolution mechanisms, judging solutions using the new set of fitness functions (lines
2-3 in Algorithm 3). We use the reformulated population to calculate the reward—the gain in
goal attainment from choosing an action (line 6 in Algorithm 3). Reward functions, too, are
goal-specific and will be explained in the following subsections. Then, we use this reward
to update the expectations of the RL algorithm. For UCB, we store the accumulated reward
of each combination alongside the number of times each is selected Nt , so we can calculate
the average reward (line 10). Over time, the combination that gains the highest reward will
be more likely to be selected again until reaching convergence. For DSG-Sarsa, after getting
the reward, the new combination is selected using the learned policy. Based on the new and
current combination, the new and current state, and the reward, the average reward and the
weight of the state is updated (line 8). Then the current fitness function combination will
change to the new one (lines 12-13).

After experimentation, we found that changing the fitness functions every three to five
generations allows enough time to adequately adjust reward expectations. Fewer generations
do not allow sufficient time for the chosen fitness function combination to reshape the test
suite. This means that the GA will have a short time to reshape the population before reward
is evaluated (line 4 in Algorithm 3).

In EvoSuiteFIT, test cases that cover a set of chosen goals can be retained in a test archive
during the search and optimization process to prevent loss in coverage as the test suites are
reshaped. Normally, this archive is based on the goals of the static set of fitness functions
chosen when test generation starts. However, as we use RL to change the fitness functions,
we have altered how the test archive is used. Instead, we use a set of goals associated with
high-level testing goal. In the following subsections, we will discuss the goals used. After
the search process completes, the archive is used to help produce the final test suite. This
prevents the loss of test cases that may contribute to effectiveness due to changes in fitness
functions. After generation concludes, the best solution is minimized with respect to this
set of goals. The archive then is used to supplement this suite with coverage of any missing
goals.

In the following subsections, we will discuss specific adaptations made for the three high-
level testing goals: exception discovery, test suite diversity, and Strong Mutation Coverage.

3.4.1 Adaptations for Goal: Exception Discovery

Fitness Function Combinations EvoSuiteFIT chooses a combination of one to four of the
following fitness functions: Exception Count, Branch Coverage, Direct Branch Coverage,

Empir Software Eng (2022) 27: 38 Page 16 of 6238

Line Coverage, Method Coverage, MNEC, Output Coverage, and Weak Mutation Coverage.
Initial experimentation revealed that effective combinations include the exception count,
even though the count is rarely effective on its own. Therefore, we filtered the initial set
of combinations down to all combinations of one to four fitness functions that include the
exception count as one of the choices. EvoSuiteFIT can choose from 64 different sets of
fitness functions.

Reward Function We measure reward as the sum of exceptions discovered during the entire
generation process and the exceptions thrown by the current best test suite, encouraging
discovery and retention of exceptions.

Goals Used for Minimization and Archiving We use the set of discovered unique excep-
tions as goals for minimization and archiving tests. A test that forces the CUT to throw a
particular exception covers the “goal” for that exception. When the test suite is minimized,
it is minimized to ensure that all discovered unique exceptions are covered. Tests detecting
any exceptions no longer covered by that suite will be added from the archive, preventing
loss of coverage.

3.4.2 Adaptations for Goal: Test Suite Diversity

New Fitness Function EvoSuite does not already contain a fitness function intended to
promote test suite diversity. Therefore, we have implemented a fitness function to measure
test suite diversity based on the Levenshtein distance (Shahbazi 2015). The Levenshtein
distance is the minimal cost of the sum of individual operations—insertions, deletions, and
substitutions—needed to convert one string to another (i.e., one test to another). We compare
the text of test cases within a test suite.

The distance between two tests (ta and tb) can be calculated as follows (Shahbazi 2015):

levta,tb(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max(i, j) if min(i, j) == 0

min

⎧⎪⎨
⎪⎩

levta,tb(i − 1, j) + 1

levta,tb(i, j − 1) + 1

levta,tb(i − 1, j − 1) + 1(tai �=tbj)

otherwise
(7)

where i and j are the letters of the strings representing ta and tb. To calculate the diversity
of a test suite (T S), we calculate the sum of the Levenshtein distance between each pair of
test cases:

div(T S) =
T S∑

ta,tb

levta,tb (8)

To attain a normalized value between 0-1 for use in a multi-fitness function environment,
we then calculate and attempt to minimize the final fitness as:

1

1 + div(T S)
(9)

The fitness function calculation iterates through the test cases in a given test suite. Before
calculating the distance, the variables and their values are extracted from the test cases. This
includes extracting numeric primitive variables, null variables, strings, arrays, instance and
class fields, methods, and constructor statements. Our analysis also includes partial assess-
ment of aliasing. Consider the following fragment: String x = "var"; String y
= x; String z = y;. Variables x, y, and z are different, but are initialized with the

Empir Software Eng (2022) 27: 38 Page 17 of 62 38

same value. These should not be considered diverse, so we statically trace the reference to
the original value when possible to attain a more accurate estimation of diversity. The list
of filtered statements is then used to calculate fitness.

To calculate diversity, each pair of test cases is compared. From each pair of tests, each
pair of statements is compared. The Levenshtein distance is calculated between each of
these pairs and added to the diversity score, then it is returned to the core process. The Lev-
enshtein distance calculation uses a classic matrix-based approach (Navarro 2001) where
the characters in the two strings are compared, and the final value stored in the matrix is
returned.

Fitness Function Combinations EvoSuiteFIT chooses a combination of one to four of the
following fitness functions: Diversity, Exception Count, Branch Coverage, Direct Branch
Coverage, Method Coverage, MNEC, Output Coverage, and Weak Mutation Coverage.
To constrain the number of combinations, we use only the combinations that include the
diversity score and remove a small number of semi-overlapping combinations (i.e., Branch
and Direct Branch). Ultimately, EvoSuiteFIT can choose from 44 combinations of fitness
functions.

Reward Function The change in the diversity fitness score is used as the reward function
to identify the actions that best increase diversity.

Goals Used forMinimization and Archiving Unlike exception discovery and Strong Muta-
tion Coverage, test suite diversity lacks a natural set of discrete goals. Test suites can be
diverse in many different ways, and coverage lacks a direct analogue. To support the archiv-
ing and minimization process, we adapt the set of goals from Method Coverage. This means
that suites are minimized using their coverage of the source code. This is a low-cost cal-
culation that does not have a noticeable effect on overhead, while retaining diversity in the
final suite.

3.4.3 Adaptations for Goal: Strong Mutation Coverage

Fitness Function Combinations EvoSuiteFIT chooses a combination of one to three of the
following fitness functions: Strong Mutation, Exception Count, Branch Coverage, MNEC,
Output Coverage, and Weak Mutation Coverage. This provides EvoSuiteFIT with 31 com-
binations of fitness functions to choose from. This is a smaller pool of actions than was
used for the other two goals. This is because the calculation of Strong Mutation Coverage
requires more time than calculating other fitness functions. Attaining a clear estimation of
the expected reward of choosing an action requires that each action be tried multiple times.
If it is expensive to calculate fitness, however, the total number of generations that can be
completed within a time period may be restricted. This reduces the time that can be spent
exploring different actions. To compensate for this cost, we have reduced the number of
possible actions by (1) limiting combinations to three fitness functions, and (2), removing
potentially redundant fitness functions (Line Coverage, Direct Branch Coverage, Method
Coverage). Unlike the other two goals, not all combinations include Strong Mutation Cov-
erage. Instead, we conducted a small experiment and utilized the best combinations found
in that experiment.

Reward Function We use the mutation score as the reward function. This is the percentage
of mutants detected: DetectedMutants

T otalNumberof Mutants
∗100. The mutation score can be calculated using

Empir Software Eng (2022) 27: 38 Page 18 of 6238

either Strong or Weak Mutation Coverage. The difference is that, in Strong Mutation Cov-
erage, we require a noticeable difference in class output between the original and mutated
version. In Weak Mutation Coverage, the mutated statement simply must be reached and
the internal state of the execution must be corrupted at that point.

Strong Mutation Coverage is much more expensive to calculate than Weak Mutation
Coverage. To reduce the overhead that would occur when calculating Strong Mutation Cov-
erage during reward estimation refinement, we iterate between Weak Mutation and Strong
Mutation. The reward from choosing an action is the improvement in the mutation score.

Goals Used for Minimization and Archiving We use the set of goals calculated in order to
attain the final Strong Mutation Coverage score. That is, each mutant that can be detected is
a discrete goal. Suites are minimized in terms of coverage of these mutants and tests from
the archive are added to the final suite to detect any mutants missed by the unaugmented
suite.

4 RelatedWork

This section will provide an overview of related work on hyperheuristic search-based soft-
ware testing approaches, as well as test generation research related to exception discovery,
test suite diversity, and strong mutation coverage to give insight into past research in topics
related to this study.

4.1 Hyperheuristics in Search-Based Software Testing

Hyperheuristic search has been employed in addressing multiple several search-based soft-
ware engineering problems. Fitness function selection has been performed by hyperheuristic
search in other domains, such as production scheduling (Crawford et al. 2013; Ochoa et al.
2009). However, our approach is the first automated technique for optimizing the set of fit-
ness functions used during test generation. Related work, largely, uses the hyperheuristic to
tune crossover and mutation operators used by an evolutionary algorithm. We briefly give
an overview of this work below to illustrate how hyperheuristics have been used to improve
other aspects of the search algorithm.

Jia et al. (2015) and Jia (2015) used reinforcement learning to tune the metaheuristic for
Combinatorial Interaction Testing, using the Simulated Annealing algorithm in the outer
layer and using an n-Armed Bandit approach for learning and choosing the best operator(s)
(out of six) to tune the performance of the algorithm. Zamli et al. also used a hyper-heuristic
approach for CIT (Zamli et al. 2016), using Tabu search as a high-level hyperheuristic to
select a low-level heuristic from four algorithms. Later, Zamli et al. used hyperheuristic
search to learn optimal selection and acceptance mechanisms used by the metaheuristic in
CIT (Zamli et al. 2017). Din et al. also applied hyperheuristic search to CIT (Din et al.
2017), using parameter-free choice functions to rank low-level heuristics for selection. Din
and Zamli use Exponential Monte Carlo with Counter (EMCO) as a hyperheuristic to select
a low-level heuristic in CIT (Din and Zamli 2018). Ahmed et al. (2020) compare EMCO
against an improved version using Q-learning, called Q-EMCO, to select the best operator
based on historical information.

Guizzo et al. used a reinforcement learning-based hyper-heuristic search to tune the
metaheuristic algorithm for optimizing the integration and test order problem (Guizzo et al.
2015; Guizzo et al. 2015). In later work, Guizzo et al. used hyperheuristic search to select

Empir Software Eng (2022) 27: 38 Page 19 of 62 38

an operator that can be executed by Multi-Objective Evolutionary Algorithms (MOEAs) to
provide a solution for the ITO problem (Guizzo et al. 2017). Guizzo et al. also applied a
hyperheuristic to the NSGA-II MOEA to address ITO in Google Guava (Guizzo et al. 2017).
Mariani et al. introduced an approach that depends on an offline hyperheuristic named
GEMOITO to generate MOEAs to solve the ITO problem (Mariani et al. 2016). Guizzo
et al. later used design patterns to improve the design of MOEA to reduce coupling and
increase reusability of components (Guizzo and Vergilio 2018). They implemented the pat-
terns into GEMOITO. They found that they were able to reuse MOEA components without
decreasing the quality the algorithm results.

Ferreira et al. proposed the use of hyperheuristic search in software product line (SPL)
testing (Ferreira et al. 2017). Software Product Lines are sets of systems that share a com-
mon set of features that are customized for particular market segments or customers. In
practice, all products cannot be tested. Therefore, search-based approaches can be used to
select “interesting” ones to focus on. Building on earlier work (do Nascimento Ferreira
et al. 2016; Strickler et al. 2016), the authors proposed using a hyperheuristic MOEA to
find a select product variants for testing. Their approach considers four objectives: the num-
ber of products, pairwise coverage, mutation score, and dissimilarity of products. Filho et
al. also proposed a hyperheuristic that uses grammatical evolution to generate MOEAs for
SPL testing (Filho et al. 2017). Their approach considers three factors—pairwise coverage,
mutation score, and cost—and generates a MOEA using crossover and mutation operators
tuned to the feature model being considered. Filho et al. extended this work (Filho et al.
2018; Luiz Jakubovski Filho et al. 2018) to Preference-Based Evolutionary Multi-objective
Algorithms, which consider user preferences during the search.

Kumari and Srinivas (2016) used hyperheuristic search to tune software design—learning
how to cluster classes for maximum cohesion and minimum coupling. This work applies
reinforcement learning to select a low-level heuristic that will be used with an evolutionary
algorithm to cluster software modules for further analysis.

Helali Moghadam et al. (2019) have proposed a framework that uses adaptive learning to
generate test cases for stress testing. Bauersfeld and Vos (2012a) introduced an automated
testing approach for robustness testing of GUIs based on reinforcement learning. Building
on their previous work (Bauersfeld and Vos 2012b), they introduce an approach to select
input events for GUIs intended to improve coverage of deeply nested actions. They use Q-
Learning to discover states and actions and learn the value function to maximize coverage
of GUI actions. Grechanik proposed an adaptive, feedback-driven approach to generating
input designed to highlight performance issues (Grechanik et al. 2012). Their technique,
FOREPOST, initially generates test cases randomly, and the results are evaluated. Then, the
results are feed to a machine learning classification algorithm, which will output a set of
rules. These rules will be used in the next cycle as guidance to select input tests and generate
test cases. This approach is not based on metaheuristic search, but still uses feedback to
improve test case generation.

4.2 Crash and Exception Discovery

Joffe and Clark (2019) use the results from an artificial neural network (ANN) classifier
to construct a fitness function targeting crashes, which can be used in search-based test
generation. They trained their ANN classifier on C programs to predict the likelihood of
crashing, given a particular input. They modified American Fuzzy Lop—a search-based test
generation tool—to consider the crash likelihood from the classifier. Romano et al. (2011)
focused on targeting null pointer exceptions, providing an approach that can identify code

Empir Software Eng (2022) 27: 38 Page 20 of 6238

that can cause this exception by looking at execution paths. The approach generates a control
flow graph, which is used to identify paths that could throw exceptions. Coverage of these
paths is then targeted using search-based test generation. Although this approach is more
likely to detect null pointer exceptions than a general test generation approach, coverage of
these paths does not guarantee that a null pointer exception is triggered.

Due to inadequate detection of exceptions in automated test case generation, Goffi et al.
(2016) and Blasi et al. (2018) proposed the use of natural language processing to gener-
ate test oracles—assertions designed to assess the behavior of the system. Their approach
extracts comments that are related to exceptional behaviors that can be thrown by a method
or class. Then, these comments are translated into assertions, which are used in test cases
to improve detection of faults. Extended work widens the range of behaviors that can be
assessed by these oracles (Blasi et al. 2018). Their work, in contrast to ours, does not influ-
ence the selection of test inputs. Rather, it improves the likelihood of fault detection by
existing inputs. Therefore, it could be combined with our approach, potentially improving
fault detection further.

4.3 Test Suite Diversity

Albunian investigated the impact of diversity on search-based test generation (Albunian
2017), proposing a phonetypic and genotypic representation to measure diversity. They
studied the influence of five selection mechanisms and five fitness functions. Feldt et al.
(2016) proposed a new diversity fitness function based on normalized compression distance.
Ma et al. (2018) proposed an adaptive approach that generated concurrent test cases target-
ing diversity metrics. They introduce two diversity metrics, static, which concerns diversity
in structure, and dynamic, which is concerned with exposing untested thread schedules.
Vogel et al. (2019) investigated using diversity metrics in search-based generation of test
cases for Android mobile applications. They proposed an approach that diversifies the pop-
ulation at the initialization and selection steps, then preserves and improvse diversity during
the search. All of these approaches are complementary to our proposed approach, and could
potentially be used in combination with our approach to yield improved suite diversity.

4.4 StrongMutation Coverage

Many approaches to test generation for mutation coverage aim at satisfying weak muta-
tion coverage, where the impact of a fault does not need to propagate to the output. Strong
mutation coverage, which requires that the program output differs from the unmutated (cor-
rect) program, is harder to satisfy. Fraser and Arcuri (2014) proposed a fitness function
representation for strong mutation that is implemented in EvoSuite. This function esti-
mates propagation of change using an impact measurement, which measures the difference
between control flow and data that results from running the tests on an original program
and mutants. We use this fitness function in our work, and attempt to use hyperheuristic
search to further improve optimization of this function. Souza et al. (2016) proposed an
automated test generation approach for strong mutation using Hill Climbing, a simple local
search algorithm. The proposed fitness function uses three metrics, called the Reach Dis-
tance, Mutation Distance, and the Impact Distance. These metrics are used to guide the
search toward satisfying three goals; reaching the mutant, changing the program state, and
propagating the state change to the program output. Papadakis and Malevris (2013) pro-
posed using alternating variable method—a search algorithm—to generate tests to optimize
a fitness function based on strong mutation. The proposed fitness function is composed of

Empir Software Eng (2022) 27: 38 Page 21 of 62 38

four parts. The first are the approach level and the branch distance, used in branch coverage
to measure distance of the execution path from a targeted statement. They measure distance
from covering the mutated line of code. The third is the mutation distance, which assesses
how close program state is to being corrupted. Finally, the impact distance approximates
the likelihood of the mutant impacting the output by quantifying how much of an effect the
mutation had on the program state when exposed.

Like with suite diversity, all of these fitness function representations are compatible
with our approach, and could potentially be used within reward functions targeted by the
hyperheuristic search. We used the strong mutation function proposed by Fraser and Arcuri
(2014), as it was already implemented in EvoSuite. However, any of the other functions
could have been implemented instead, and could be considered in future work.

In the domain of policy testing, Xu et al. (2020) proposed using strong mutation to
generate XACML policy tests automatically. Their approach is based on three constraints:
reachability, necessity, and propagation. These constraints are used to capture the differ-
ences between mutants and original policies in terms of the responses to access requests.
Harman et al. proposed an approach that aims to achieve strong coverage of first and higher-
order mutants (Harman et al. 2011). Mutants that alter one line are “first-order” mutants,
while higher-order mutants change multiple lines. Most mutation approaches are based on
first-order mutants. Their approach, called SHOM, is a hybrid of dynamic symbolic exe-
cution (DSE) and search-based test generation aimed at overcoming limtiations of earlier
work with regard to higher-order mutants. The approach includes applying three transfor-
mations to the program that reduce constraint and path analysis effort without impacting the
semantics of programs under test.

5 Methodology

To better understand the effectiveness and applicability of adaptive fitness function selec-
tion, we have assessed EvoSuiteFIT using case examples from the Defects4J fault bench-
mark (Just et al. 2014) for each of our goals—exception discovery, test suite diversity, and
Strong Mutation Coverage. We will address the following research questions:

1. For each goal, is either EvoSuiteFIT approach more effective than test generation using
static fitness function choices at attaining that goal?

2. For each goal, is either EvoSuiteFIT approach more effective than test generation using
static fitness function choices in terms of attained fault detection?

3. What impact does the computational overhead from reinforcement learning have on the
test generation process?

4. Are there observations that can be discerned in the combinations of fitness func-
tions chosen by either EvoSuiteFIT approach that help explain the success (or lack of
success) of an approach for a goal?

The first two questions provide us with an understanding of the effectiveness of
EvoSuiteFIT compared to baseline approaches representing current practice. We hypoth-
esize that adaptive fitness function selection is capable of increasing our attainment of
difficult-to-optimize goals. We must evaluate whether that is true.

Increased goal attainment does not necessarily suggest higher likelihood of fault detec-
tion. However, each of the three goals we are maximizing are thought to be indicators of
fault detection. That is, if the number of exceptions, suite diversity, or Strong Mutation

Empir Software Eng (2022) 27: 38 Page 22 of 6238

coverage are increased, it is theorized that the likelihood of fault detection will rise as well. If
EvoSuiteFIT is able to improve goal attainment, the number of faults detected may increase
as well. Note, however, that we are asking a broader question than whether increased
goal attainment leads to increased likelihood of fault detection. We are asking if any ele-
ment of the AFFS process increases that likelihood. AFFS is a complex process, and other
factors—like varying the fitness functions over time—could also impact fault detection.

The third question will address the consequences of using reinforcement learning dur-
ing the test generation process. This question will focus on the computational overhead of
reinforcement learning. Test generation uses a time budget. Additional overhead from rein-
forcement learning may impact the number of generations of evolution the population of test
suites goes through during that time—potentially negating the benefits of using reinforce-
ment learning in the first place. At the same time, it is also expensive to calculate certain
fitness functions or large sets of functions, and reinforcement learning may be able to avoid
such functions. Therefore, we must examine the relationship between reinforcement learn-
ing and the cost of computing each generation of evolution. Finally, to better understand
AFFS, we will also examine trends in the fitness functions choices. We will also identify
and discuss limitations of the current implementation.

In order to investigate these questions, we have performed the following experiment for
each of the three goals:

1. Collected Case Examples: We have used a collection of case examples, from the
Defects4J fault benchmark, as test generation targets (Section 5.1).

2. Generated Test Suites: We target the classes affected by each fault for test genera-
tion. For each class, we generate 10 suites per approach. Approaches include the two
reinforcement learning algorithms—UCB and DSG-Sarsa—and three baselines—an
existing fitness function for that goal (current practice), a combination of all fitness
functions that AFFS can chose from (a “best guess”), and random selection from the
choices available to AFFS. A search budget of 10 minutes is used per suite (Section 5.2).

3. Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or that
return inconsistent results, are removed (Section 5.2).

4. Assessed Effectiveness: We measure goal attainment for each test suite, the number
of faults detected by each approach, the likelihood of fault detection for each fault
and approach, the number of generations of evolution that occur during the generation
process, and other data that can be used to analyze the behavior of both AFFS and
traditional test generation (Section 5.3).

We use the gathered data to analyze the performance of AFFS for each individual goal, as
well as to analyze the general behavior of AFFS across all goals.

5.1 Case Examples

Defects4J is a benchmark of real faults extracted from Java projects (Just et al. 2014).5 For
each fault, Defects4J provides access to the faulty and fixed versions of the code, developer-
written test cases that expose the fault, and a list of classes and lines of code modified by
the patch that fixes the fault. Defects4J provides test execution, generation, code coverage,
and mutation analysis capabilities.

5Available from http://defects4j.org

Empir Software Eng (2022) 27: 38 Page 23 of 62 38

http://defects4j.org

Each fault is required to meet three properties. First, a pair of code versions must exist
that differ only by the minimum changes required to address the fault. The “fixed” version
must be explicitly labeled as a fix to an issue, and changes imposed by the fix must be to
source code, not to other project artifacts such as the build system. Second, the fault must be
reproducible—at least one test must pass on the fixed version and fail on the faulty version.
Third, the fix must be isolated from unrelated code changes such as refactoring.

Our first goal, exception discovery, was assessed using Defects4J 1.4, which consists of
395 faults from six projects: Chart (26 faults), Closure (133 faults), Lang (65 faults), Math
(106 faults), Mockito (38 faults), and Time (27 faults). Nine of the faults were excluded
from our analysis—Closure faults 38, 44, 47, and 51, Math faults 13, 31, and 59, Mockito
fault 6, and Time fault 21—as no technique caused exceptions to be thrown.

The other goals, suite diversity and Strong Mutation Coverage, were assessed later using
Defects4J 2.0. The experiments for exception discovery were not repeated due to experiment
cost. However, as we already accounted for differences between Java 7 and 8—the primary
semantic difference between Defects4J 1.4 and 2.0—results would not differ between ver-
sions of the benchmark. To compare results between the three high-level goals, we focus
on the same projects. In both the diversity and Strong Mutation Experiments, we use the
following 434 faults: Chart (26 faults), Closure (174 faults), Lang (64 faults), Math (106
faults), Mockito (38 faults), and Time (26 faults). In addition, for the diversity goal, we also
use the Gson project (18 faults)—which was initially assessed in a pilot study (Almulla and
Gay 2020b)—bringing the total case examples for the diversity experiment to 452.

5.2 Test Suite Generation

For all three goals, and for each bug-affected class from each case example used from
Defects4J, we have generated test suites using UCB and DSG-Sarsa. In addition, we
generate tests for 2-3 baseline approaches representing current practice:

• Current Practice: We use the existing fitness function representation of that goal.6

This would be the likely starting point for a tester interested in these goals, and thus,
represent current practice. These are, as follows:

– Exception Count: A count of the number of unique exceptions thrown by a
test suite.

– Strong Mutation Coverage: The existing fitness function in EvoSuite for
measuring Strong Mutation Coverage, based on an estimated propagation of
corrupted state (Fraser and Arcuri 2014).

– Diversity Score (Levenshtein Distance): A new fitness function based on the
textual changes required to transform one test case into another.

• Combination of all Functions (“Default Approach”): A combination of all of the
individual fitness functions used in each experiment is used as a baseline as this com-
bination attains reasonable fulfillment of each individual function, and in theory, will
produce multifaceted test suites effective at fault-finding (Rojas et al. 2015). This con-
figuration represents a “best guess” at what would produce effective test suites, and
would be considered a reasonable approach in the absence of a known, informative
fitness function or “best” combination.

6All three functions are explained in more detail in Section 3.

Empir Software Eng (2022) 27: 38 Page 24 of 6238

• Random Selection of Functions: The final baseline is a random selection of fitness
functions, chosen from the combinations available to AFFS. For each fault, we make
a random selection and use that selection for all trials for that fault. We employ this
baseline for the exception and diversity goals, but omit it for the Strong Mutation goal
in order to control experiment costs, and due to limited value from adding this baseline
for that goal (as we will discuss further in Section 6.3).

Test suites are generated that target the classes reported as relevant to the fault by
Defects4J. Tests are generated using the fixed version of the CUT and applied to the faulty
version in order to eliminate the oracle problem. In practice, this translates to a regression
testing scenario, where tests are generated using a version of the system understood to be
“correct” in order to guard against future issues (Shamshiri et al. 2015). Tests that fail on
the faulty version, then, detect behavioral differences between the two versions.7

To perform a fair comparison between approaches, each is allocated a ten minute search
budget for test generation. In past work, 10 minutes was used as the maximum genera-
tion time and represented a point of “diminishing returns” for detection of the faults in
Defects4J (Gay 2018b).

To control experiment cost, we deactivated assertion filtering—all possible regression
assertions are included. All other settings were kept at their default values. As results may
vary, we performed 10 trials for each fault and search budget. For the Exception experi-
ment, this resulted in the generation of 19,750 test suites (ten trials, five approaches, 395
faults), representing over 3,291 hours of computation time. For the Diversity experiment,
this resulted in the generation of 22,600 test suites (ten trials, five approaches, 452 faults),
representing over 3,766 hours of computation time. Finally, in the Strong Mutation exper-
iment, this resulted in the generation of 17,360 test suites (ten trials, four approaches, 434
faults), representing over 2,893 hours of computation time. We performed experiments on
Amazon EC2 infrastructure, where all VMs shared an identical hardware and software con-
figuration (t2.large instances, with two CPU threads and 8GB of RAM, running Amazon
Linux).

Generation tools may generate flaky (unstable) tests (Shamshiri et al. 2015). For exam-
ple, a test case that makes assertions about the system time will only pass during generation.
We automatically remove flaky tests. First, all non-compiling test suites are removed. Then,
each remaining test suite is executed on the fixed version five times. If the test results are
inconsistent, the test case is removed. This process is repeated until all tests pass five times
in a row. On average, less than one percent of tests tends to be removed from each suite.

5.3 Data Collection

In order to address our research questions, we collect the following data for each test suite,
based on the goal of the experiment:

• Exception Experiment:

– Number of Unique Exceptions Discovered During Generation
– Number of Unique Exceptions Thrown by the Final Test Suite: Tests that

trigger an exception can be lost during the generation process. We calculate
this number by monitoring test suite execution.

7This is identical practice to other studies using EvoSuite and Defects4J, e.g. Shamshiri et al. (2015) and Gay
(2018b).

Empir Software Eng (2022) 27: 38 Page 25 of 62 38

• Strong Mutation Experiment:

– Number of Mutants: The number of mutants inserted into the CUT.
– Strong Mutation Coverage: Percentage of mutants detected, meeting the

conditions of Strong Mutation.

• Diversity Experiment:

– Diversity Score: The diversity score (based on the Levenshtein Distance) for
the final test suite.

• All Experiments:

– Number of Faults Detected
– Number of Generations of Evolution: The amount of time that it takes to

complete one generation of evolution is not static, and each approach may
complete a different number of generations during the test generation pro-
cess based on the time needed to calculate each employed fitness function.
Reinforcement learning will add additional overhead to this process, further
decreasing the number of completed generations. We collect the number of
generations to assess the impact of fitness function choice and RL overhead.

– Decisions Made by EvoSuiteFIT: The reinforcement learning algorithms
reformulate the fitness function combination in use at regular intervals. Each
time a combination is selected, we log the decision made. This can assist in
understanding how the reinforcement learning algorithms function, and how
they make decisions in service of goal attainment.

6 Results and Discussion

We are interested in understanding the effectiveness of EvoSuiteFIT in terms of attain-
ment of our high-level goals—exception discovery, test suite diversity, and Strong Mutation
Coverage—and in terms of detection of faults. We are also interested in the impact of the
overhead of reinforcement learning on the generation process, how the approaches makes
their fitness function selections, and the limitations of adaptive fitness function selection.
The following subsections outline and discuss our observations.

6.1 Goal: Exception Discovery

6.1.1 Ability to Discover Exceptions

Our first question asks whether AFFS can be used to more effectively meet our goal of
generating tests that trigger more unique exceptions than baseline static fitness function
configurations. We do not know a priori which exceptions can be thrown by a CUT. How-
ever, we know that the number of possible exceptions varies from class to class. Therefore,
it is not fair to compare raw counts of exceptions between each case example. If we dis-
cover thirty exceptions when testing one class, and five when testing another, we should
not compare five to thirty. Instead, we normalize exception counts between 0-1 for each
class-under-test, using the formula:

(
Number of Exceptions Observed In This Trial For CUT

Maximum Number of Observed Exceptions In Any Trial For CUT
) (10)

Empir Software Eng (2022) 27: 38 Page 26 of 6238

Table 1 Median count of exceptions discovered for each technique

System DSG-Sarsa UCB Exception Count Default Random

Chart 0.83 0.82 0.33 0.63 0.83

Closure 0.83 0.82 0.30 0.55 0.59

Lang 0.92 0.91 0.61 0.83 0.92

Math 0.89 0.89 0.54 0.67 0.67

Mockito 0.83 0.86 0.50 0.50 0.50

Time 0.87 0.83 0.39 0.63 0.71

Overall 0.87 0.86 0.42 0.63 0.68

Counts are normalized between 0-1 for each fault to allow comparison across case examples. Higher scores
are better. The highest median is bolded

This normalization allows fair comparison between case examples.
The median count of unique exceptions discovered for each technique is listed in Table 1

for each project and overall. Boxplots of the exceptions discovered are shown in Fig. 4.
Higher scores are better. Overall, both AFFS techniques have a higher median per-
formance in both measurements than all three baselines. In particular, both approaches
outperform current practices—attaining up to a 176.67% improvement in median excep-
tions discovered over the basic exception count and up to a 72.00% improvement over
the eight-function default configuration. Overall, DSG-Sarsa attains a 107.14% improve-
ment in median exception discovery over the simple exception count and 38.10% over the
default combination. EvoSuiteFIT also tends to retain all discovered exceptions, while the
default configuration may discard a small number of exception-triggering tests if offered
improvements in the other fitness functions.

On a per-system basis, the third baseline—a random selection—ties in median perfor-
mance with DSG-Sarsa for Chart and Lang. However, it is outperformed by both AFFS
approaches for the other systems. Overall, DSG-Sarsa outperforms the random baseline by
27.94% in median performance, and UCB outperforms it by 26.47%. Notably, the random

DSG-Sarsa UCB Exception Count Default Random

Exception

Fig. 4 Unique exceptions discovered by each technique. Counts are normalized between 0-1 for each fault
to allow comparison across case examples

Empir Software Eng (2022) 27: 38 Page 27 of 62 38

Table 2 Results of Vargha-Delaney A Measure for exceptions discovered

DSG-Sarsa UCB Exception Default Random

DSG-Sarsa – 0.52 0.86 0.74 0.69

UCB 0.48 – 0.85 0.73 0.67

Exception 0.14 0.15 – 0.33 0.30

Default 0.26 0.27 0.67 – 0.45

Random 0.32 0.33 0.70 0.55 –

Large positive effect sizes are bolded. Medium positive effect sizes are italicized

baseline outperforms both of the other baselines—using the existing fitness function and
combining several fitness functions. Testers would be better served by choosing a small ran-
dom set of fitness functions than by blindly combining all options available. We will discuss
the primary reasons for this shortly.

Figure 4 also shows that both techniques not only offer a higher median than the
baselines, but also have a narrower interquartile spread, showing relatively consistent per-
formance. UCB yields more consistent performance, as shown by the decreased variance.
However, DSG-Sarsa has a slightly higher median performance and third quartile.

We perform statistical analysis to assess our observations. First, we are interested in
establishing whether there are differences in performance between the different AFFS tech-
niques and the baselines. If so, we are then interested in examining the magnitude of the
differences. For each pair of techniques and baselines, we formulate hypothesis and null
hypotheses:

– H : Generated test suites have different distributions of exception discovery results
depending on the technique used to generate the suite.

– H0: Observations of exception discovery for all techniques are drawn from the same
distribution.

Our observations are drawn from an unknown distribution. To evaluate the null hypoth-
esis without any assumptions on distribution, we use the Friedman test, a non-parametric
test for determining whether there are any statistically significant differences between the
distributions of three or more paired groups. For each fault, we have a set of paired obser-
vations based on the exception discovery performance of the suites generated for that fault
by each technique. We apply the test with α = 0.05. This test yielded a p-value < 0.001,
indicating differences in performance between the techniques.

Therefore, we then used the Vargha-Delaney A measure to assess effect size (Vargha and
Delaney 2000). The results for exception discovery are listed in Table 2, with large effect
sizes in bold (E ≥ 0.80) and medium effect sizes in italics (0.80 > E ≥ 0.70). DSG-
Sarsa outperforms the default and exception count baselines with large effect size, and the
random baseline with medium effect size. UCB outperforms the exception count baseline
with a large effect size, and outperforms the default and random baselines with a medium
effect size. DSG-Sarsa also outperforms UCB, but with a negligible effect size.

Both EvoSuiteFIT techniques discover more exceptions than the baseline tech-
niques with significance. DSG-Sarsa outperforms the exception count and default
baselines with large effect size (107.14%, 38.10% improvement in median) and the
random baseline with medium effect (27.94%).

Empir Software Eng (2022) 27: 38 Page 28 of 6238

6.1.2 Fault Detection Effectiveness

In theory, forcing the class-under-test to throw exceptions will help developers discover
faults in the system. Therefore, our second research question revolves around the ability of
the generated test suites to trigger and detect failures. Table 3 lists the percentage of faults
detected by each technique. We can see that both EvoSuiteFIT techniques generate suites
that are able to detect faults that are missed by suites generated using the baselines. UCB, in
particular, detects the most faults—4.32% more than DSG-Sarsa, 11.90% more than default,
24.25% more than the random baseline, and 259.50% more than the exception count.

The default and random baselines outperform EvoSuiteFIT for one project—Closure. It
is likely that triggering these faults requires incorrect output, rather than an exception. The
baselines are outperformed on all other systems.

DSG-Sarsa yielded slightly better performance at goal attainment. However, UCB
detected more faults. The difference between the two may come down to how fitness func-
tions are chosen. The reinforcement learning strategy, by impacting how and which fitness
functions are selected, will impact how input is selected. Differences in how UCB and
DSG-Sarsa make selections will influence the resulting likelihood of fault detection.

As an initial assessment of the connection between goal attainment and fault detec-
tion, we calculated the point-biserial correlation coefficient between the normalized goal
attainment and whether the fault was detected (the dichotomous variable). This calculation
yielded a coefficient of only 0.22, indicating only a weak correlation between fault detec-
tion and goal attainment. This suggests that, while improving the ability of the suite to
throw exceptions has a positive relationship with detection of the specific faults used in this
study, the relationship is far from the only factor influencing fault detection. Rather, factors
such as the fitness functions applied in service of improving the goal may also increase the
likelihood of selecting input that triggers a particular fault. Further analysis is required to
understand the full impact that reinforcement learning strategy can have on fault detection
capability. Still, the broad hypothesis that triggering exceptions can aid fault discovery may
have merit.

For the exception discovery goal, both EvoSuiteFIT techniques detect faults missed
by the other techniques. UCB detects up to 259.90% more faults than the baselines.

Table 3 Percentage of faults detected by each approach for the exception goal

System DSG-Sarsa UCB Exception Count Default Random

Chart 80.77% 84.62% 38.46% 65.39% 69.23%

Closure 6.77% 6.02% 3.76% 15.04% 15.79%

Lang 58.46% 64.62% 16.92% 52.31% 53.85%

Math 68.87% 68.87% 12.26% 57.55% 41.51%

Mockito 13.16% 15.79% 7.89% 13.14% 7.89%

Time 59.25% 66.67% 18.52% 51.85% 55.56%

Overall 41.01% 42.78% 11.90% 38.23% 34.43%

The best approach is bolded

Empir Software Eng (2022) 27: 38 Page 29 of 62 38

6.1.3 Impact of Reinforcement Learning Overhead

Search-based test generation approaches are generally benchmarked using a fixed time bud-
get (Shamshiri et al. 2015). During this period, the amount of work completed by each
algorithm may not be equal. The number of generations of evolution will largely depend
on total cost to calculate fitness. The addition of reinforcement learning will further impact
this cost due to reward score calculation and action selection mechanisms. We are interested
in understanding whether the cost of reinforcement learning has more of an effect than the
cost of fitness calculation, and the further impact of being able to change the set of fitness
functions on this cost.

Table 4 lists the median time per generation for DSG-Sarsa, UCB, and the default and
random baselines. An issue in the version of EvoSuite deployed prevented us from col-
lecting accurate generation times for the exception count alone, but—as it is an extremely
simple count that does not require sophisticated instrumentation—it can be assumed that its
computation is far less expensive than any other option.

From Table 4, we can see that the median time per generation tends to increase as
additional fitness functions are added to the calculation, with the time for the default
combination often being many times higher than either EvoSuiteFIT approach. While rein-
forcement learning may add to the cost of generation, its overhead is less than that required
to compute a large number of fitness functions.

Most of the potential users of a test generation framework would, rightfully, not be inter-
ested in tinkering with fitness functions until they stumbled on the right approach. In the
absence of perfect knowledge, using the “default”—all eight fitness functions—is a rea-
sonable idea. It is also an expensive option. Reinforcement learning can reduce the time
required to generate effective test cases.

Both AFFS approaches are similar in speed to the random selection, if not faster. Figure 5
helps explain why. In Fig. 5, we show the ten actions chosen most often by DSG-Sarsa for
each system. While DSG-Sarsa can choose combinations of up to four fitness functions, it
rarely does so in practice. Often, either the simple exception count is used, or the combi-
nation of the exception count and method (no exception) coverage. The latter is a count of
methods called without throwing an exception, which can be calculated efficiently. Because
EvoSuiteFIT can strategically change its fitness function selection, overhead added by rein-
forcement learning is mitigated by the gain in speed from the ability to avoid calculating
unhelpful fitness functions.

Table 4 Median time per generation (in seconds) for exception discovery goal

DSG-Sarsa UCB Random Default

Chart 0.24 0.26 1.38 3.29

Closure 0.32 0.49 0.45 5.71

Lang 0.30 0.44 2.02 4.38

Math 0.14 0.22 2.64 3.03

Mockito 0.03 0.03 0.05 0.08

Time 0.33 0.43 2.67 3.72

Overall 0.22 0.31 0.91 3.84

The lowest median is bolded

Empir Software Eng (2022) 27: 38 Page 30 of 6238

0.00%

5.00%

10.00%

15.00%

E-M
NE

E-B
-W

-M E
E-W

M

E-C
B-M

E-B
-L E-M E-B E-O E-L

0.00%

5.00%

10.00%

15.00%

E-M
NE

E-M
NE

E-W
M

E-B
-W

M E-O E-M E-B
E-B

-L
E-C

B E-L

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

E-M
NE E

E-W
M

E-B
-W

M

E-B
-W

M E-O E-L E-M
E-B

-L
E-C

B
0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

E-B
-W

M
E-M

NE E
E-M

E-W
M

E-C
B

E-O
E-B

-L E-B E-L

0.00%

5.00%

10.00%

15.00%

20.00%

E-M
NE

E-W
M E

E-O

E-B
-W

M E-M
E-C

B

E-W
M-M

NE-
E-B

-L E-B 0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

E

E-M
NE

E-W
M

E-B
-W

M E-B E-O E-M
E-B

-L

E-W
M-C

B-O
E-C

B

Fig. 5 Top ten function combinations chosen by DSG-Sarsa for each system for the exception discovery
goal. E = Exception Count, B = Branch Coverage, CB = Direct Branch Coverage, L = Line Coverage, O =
Output Coverage, M = Method Coverage, MNE = Method (No Exception), WM = Weak Mutation Coverage

The need to calculate these fitness scores helps explain the difference in performance.
The default baseline requires more time per generation than AFFS techniques. In turn, this
means that AFFS techniques are able to refine test suites further during the time allocated
to the search than the default baseline, or even the random baseline. Reinforcement learning
adds overhead to the generation process, but the ability to vary the generation strategy can
mitigate the impact of that overhead.

Empir Software Eng (2022) 27: 38 Page 31 of 62 38

The ability to avoid unhelpful fitness functions mitigates reinforcement learning
overhead. Both AFFS approaches are able to complete more generations of evolu-
tion during than the default and random baselines, with DSG-Sarsa being 94.27% and
75.82% faster on average.

6.1.4 Actions Selected by AFFS

For the exception discovery goal, EvoSuiteFIT is able to freely alternate between 64 combi-
nations of fitness functions. To help understand why reinforcement learning is effective, we
should examine the actions chosen by AFFS techniques. In Fig. 5, we display the ten actions
chosen most often by DSG-Sarsa for each system, and in Fig. 6, we do the same for UCB.

From Fig. 5 and 6, we can see differences between projects in terms of which choices are
made and how often choices are made. For example, DSG-Sarsa frequently used a combi-
nation of exception count, Direct Branch Coverage, Weak Mutation Coverage, and Output
Coverage for the Time system, but not for others. Although the ordering differs, however,
there are also a lot of commonalities in the choices.

For the most part, the combinations favored by DSG-Sarsa are simple—pairing exception
count with one additional fitness function. It is reasonable that simple combinations would
be used frequently. Larger combinations introduce a risk of conflicting goals, and are harder
to maximize. Simple combinations offer enough feedback to increase the exception count,
without adding noise to the search.

UCB chooses complex sets of actions, combinations of 3-4 fitness functions, somewhat
more often than DSG-Sarsa. However, it does not necessarily do so significantly more often
than it chooses simple combinations. The most noticeable factor about UCB, as seen in
Fig. 6, is that it heavily favors the simple exception count—applying it far more often than
it does any other action.

Many of the fitness function combinations chosen heavily by DSG-Sarsa or UCB would
yield poor results when used on their own, as static fitness functions for suite generation.
Both often use the pure exception count, when this yields poor results when used as the sole
fitness function. Similarly, we know from past unpublished experiments that the EX-MNE
combination produces poor results when used as a static choice, yet DSG-Sarsa applies it
heavily.

The EX-MNE combination appears to be contradictory at first. MNE rewards calling
each method of the CUT and it executing without throwing an exception. However, it is
possible to attain high fitness in both functions at the same time, as each test case can call
multiple methods (and there are multiple test cases in a suite). A test case might call method
X() twice. If it executed once without an exception and threw an exception in the second
call, it would increase fitness for both functions.

It is important to remember that test generation is a stateful process. Each round of
the generation process builds on the results of previous rounds. There are times where
the choices that DSG-Sarsa makes are relevant given the state of generation, even if those
choices yield poor results when used in a static context. For example, if a suite already has
achieved a high level of code coverage, it would make sense to switch to pure use of the
exception count to further tune the population of test suites. Similarly, the exception and
MNE combination makes sense as a strategic choice because it adds a light feedback mech-
anism to the exception count. When the combination is employed, new exceptions may be
discovered, but the simple count of methods called might prevent loss of code coverage

Empir Software Eng (2022) 27: 38 Page 32 of 6238

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

E

E-B
-M

NE-C
B

E-O

E-M
-W

M-M
NE

E-B
-M

-C
B

E-M
-W

M E-M

E-W
M-O

E-M
-O

E-M
-M

NE-O
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

E

E-M
NE

E-W
M

E-B
-W

M E-O

E-W
M-C

B-O
E-C

B
E-B E-L E-M

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

E

E-W
M-M

NE-

E-W
M-C

B-O
E-B

-O

E-M
-W

M
E-C

B

E-C
B-M

NE
E-M E-B E-O

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

E

E-W
M-M

NE-

E-W
M-C

B-O
E-B

-O

E-M
-W

M
E-C

B

E-C
B-M

NE

E-M
-W

M E-B E-O

0.00%

5.00%

10.00%

15.00%

E

E-B
-W

M-O
E-L-M

E-L-M
NE-C

B

E-B
-L-O

E-B
-O

E-M
NE-O

E-B
-M

E-M
-O

E-L-W
M-O

0.00%

5.00%

10.00%

15.00%

20.00%

E
E-W

M

E-M
-W

M-O E-L E-O

E-B
-M

NE

E-W
M-O

E-B
-C

B-O

E-M
-W

M-M
NE E-B

Fig. 6 Top ten function combinations chosen by UCB for the exception discovery goal. E = Exception Count,
B = Branch Coverage, CB = Direct Branch Coverage, L = Line Coverage, O = Output Coverage, M = Method
Coverage, MNE = Method (No Exception), WM = Weak Mutation Coverage Coverage

as other fitness functions are explored. The EX-MNE combination may be ineffective in a
static context, as it does not offer enough feedback to fully explore the code structure. How-
ever, it can be very effective if chosen at the right stage of the generation process, as part of
an adaptive process.

AFFS may use combinations early on that—for example—rapidly advance coverage of
the source code. Combinations involving Branch Coverage could be used for early gain, then
a lightweight combination of exception count and MNE could further sculpt the test suite in
a way that allows discovery of additional exceptions. Combinations like the exception count

Empir Software Eng (2022) 27: 38 Page 33 of 62 38

and Output Coverage would potentially be very useful in this same situation to diversify
input selections after the suite has already evolved to achieve high code coverage.

The ability to adjust the fitness functions at regular intervals allows EvoSuiteFIT
to make strategic choices that refine the test suite. Fitness function combinations that
are ineffective in a static context may be effective when used by AFFS to diversify a
pre-evolved population of suites.

6.2 Goal: Test Suite Diversity

6.2.1 Ability to Improve Suite Diversity

Again, our first question concerns the ability of AFFS to meet our goal of diverse test suites.
We assess this by examining the diversity fitness score. In this case, scores range between
0-1, and lower scores indicate higher levels of diversity. In Table 5, we indicate the median
diversity score for each technique for each project and overall. In Fig. 7, we show boxplots
for each technique.

From Table 5 and Fig. 7, we see that both AFFS techniques outperform all three base-
lines. Diversity-alone serves as a poor fitness target, confirming our initial concerns. This
fitness function—while representing a valid high-level goal—offers insufficient feedback
to achieve that goal. This can be seen in the worse median score and the wide variance in
Fig. 7.

The default baseline attains better results than diversity-alone or the random baseline.
However, both AFFS techniques outperform it. Overall, the best technique, UCB, attains
76.27% better median performance than diversity alone, 45.45% better than the random
baseline, 41.04% better than the default combination, and 22.72% better than DSG-Sarsa.
From Fig. 7, we also see that DSG-Sarsa also shows less variance in its results than UCB.
UCB attains better results, but DSG-Sarsa is more consistent. The state approximation
performed by DSG-Sarsa may result in less variance in performance.

We again perform statistical analysis to assess our observations. We formulate hypothesis
and null hypothesis:

– H : Generated test suites have different distributions of diversity score results depending
on the technique used to generate the suite.

Table 5 Median diversity fitness score of the produced test suite

DSG-Sarsa UCB Default Diversity Score Random

Chart 7.45E-07 4.20E-07 1.11E-06 4.40E-06 1.12E-06

Closure 1.49E-06 1.59E-06 1.82E-06 5.64E-06 2.40E-06

Gson 1.43E-06 9.51E-07 1.86E-06 3.46E-06 2.28E-06

Lang 5.21E-07 3.05E-07 1.11E-06 3.85E-06 1.32E-06

Math 1.32E-06 1.06E-06 1.54E-06 4.02E-06 1.88E-06

Mockito 2.32E-06 2.35E-06 3.69E-06 5.20E-06 4.30E-06

Time 6.58E-07 4.39E-07 9.74E-07 3.51E-06 9.00E-07

Overall 1.32E-06 1.02E-06 1.73E-06 4.30E-06 1.87E-06

Score is between 0-1, with lower scores being better. The lowest median is bolded

Empir Software Eng (2022) 27: 38 Page 34 of 6238

 0

-6

-5

-5

-5

-5

-5

DSG-Sarsa UCB Default Diversity Random

Diversity Score

Fig. 7 Diversity fitness scores of the produced test suites. Score is between 0-1, with lower scores being
better

– H0: Observations of diversity score for all techniques are drawn from the same
distribution.

The Friedman test confirms, with p-value < 0.001, that there are significant differ-
ences between the distributions of the AFFS approaches and baselines. The results for the
Vargha-Delaney A measure are listed in Table 6, with large effect sizes in bold and medium
effect sizes in italics. The results of this test further confirm our observations. Both tech-
niques outperform the diversity score baseline with large effect size and the other baselines
with medium effect size. The default combination outperforms diversity-only with medium
effective size, and the random baseline outperforms the diversity-only baseline with medium
effect size.

Both EvoSuiteFIT techniques produce more diverse test suites than static baselines
with significance. UCB outperforms the diversity score with large effect size (76.27%
improvement in median) and the default and random baselines with medium effect
(41.04%, 45.45%).

Table 6 Results of Vargha-Delaney A Measure for diversity score

DSG-Sarsa UCB Default Diversity Score Random

DSG-Sarsa – 0.47 0.63 0.87 0.68

UCB 0.53 – 0.66 0.86 0.71

Default 0.36 0.34 – 0.78 0.56

Diversity Score 0.13 0.13 0.23 – 0.28

Random 0.32 0.29 0.44 0.72 –

Large positive effect sizes are bolded. Medium effect sizes are italicized

Empir Software Eng (2022) 27: 38 Page 35 of 62 38

6.2.2 Fault Detection Effectiveness

Proponents of test suite diversity have noted a positive relationship between diversity and the
likelihood of fault detection. Logically, test suites that apply a larger variety of stimuli to the
CUT should be more likely to detect faults just by virtue of not performing the same actions
over and over again. AFFS does increase suite diversity. Therefore, we also are curious
about whether it increases the potential for fault detection. Table 7 lists the percentage of
faults detected by each approach.

Overall, the AFFS approaches detect more faults than the diversity score and default
baselines. DSG-Sarsa detects 8.26% more faults than UCB, 10.88% more than the default
combination, and 48.38% more more than optimizing for diversity alone. However, the
random baseline detects significantly more faults than either the other baselines or the AFFS
techniques. The random baseline detects 34.74% more faults than DSG-Sarsa and 45.87%
more than UCB.

We again calculated the point-biserial correlation coefficient between diversity and fault
detection. The calculated coefficient was 0.01—indicating a practically non-existent rela-
tionship between goal attainment and fault detection in this experiment. This should not be
interpreted as a conclusion that improved diversity will not improve the likelihood of fault
detection in general. However, in this specific experiment, the diversity of a test suite was
not a significant factor in whether faults were detected. Highly-specific input is needed to
trigger many of the faults in Defects4J, and improving suite diversity does little to locate
those faults.

This can also be seen by comparing the percentage of faults detected between this exper-
iment and the exception discovery experiment. Many more faults were detected in that
experiment, suggesting that other fitness functions may offer better guidance for locating the
specific input that is needed to trigger those faults. Again, we stress that this does not mean
that test suite diversity is in unimportant goal, or that it is not helpful in general. However,
it may be less helpful for the specific examples in Defects4J than other fitness functions.

The fitness function combinations that could be selected for the random baseline are the
same that AFFS techniques can choose from when attempting to improve diversity. The
AFFS techniques attain higher diversity, but the functions that best improve diversity may
differ from those that are most likely to result in detection of these specific faults. In Fig. 9,
we show the ten fitness function combinations chosen most often by DSG-Sarsa for each
system, and in Fig. 10, we do the same for UCB. To contrast, we show the ten most-selected
fitness function combinations for the random baseline when a fault was detected in Fig. 8.

Table 7 Percentage of faults detected by each approach for the diversity goal

DSG-Sarsa UCB Default Diversity Score Random

Chart 34.61% 42.31% 34.61% 26.92% 53.85%

Closure 10.80% 8.52% 7.34% 5.68% 12.50%

Gson 22.00% 16.67% 16.67% 11.11% 16.67%

Lang 26.15% 21.54% 24.61% 18.46% 32.31%

Math 31.13% 30.19% 30.19% 21.69% 46.22%

Mockito 5.26% 5.26% 5.26% 5.26% 10.53%

Time 29.63% 29.63% 29.63% 22.22% 40.74%

Overall 20.18% 18.64% 18.20% 13.60% 27.19%

Empir Software Eng (2022) 27: 38 Page 36 of 6238

0.00%

2.00%

4.00%

6.00%

8.00%

D-B
-E-O D-B

D-W
M-E-O

D-W
M-E-C

B

D-B
-E-C

B
D-W

M

D-B
-M

NE-O

D-E-C
B-O

D-W
M-M

NE-

D-W
M-C

B-O

Fig. 8 The ten fitness function combinations chosen most often when generating tests for the random baseline
when a fault was detected

We see little overlap between these figures, further indicating that there is little connection
between improved diversity and the likelihood of fault detection for these case examples.

DSG-Sarsa detects more faults than UCB, even though UCB attains higher diversity.
Given the observations above, the difference is likely to be due to a combination of the
stochastic nature of search-based generation and differences in the decision making pro-
cesses for the two algorithms. DSG-Sarsa is more likely to choose fitness functions that are
better for detecting the studied faults than UCB.

The random baseline detects 34.74% more faults than DSG-Sarsa and 45.87% more
than UCB. Improved diversity does not lead to improved likelihood of fault detection
for these case examples.

6.2.3 Impact of Reinforcement Learning Overhead

In Table 8, we display the median time per generation for each approach. This, again, allows
us to compare the overhead introduced by reinforcement learning to the cost of calculating
fitness. Immediately, we see that AFFS is faster than the default and random baselines.

Table 8 Median time per generation (in seconds) for the goal of test suite diversity

DSG-Sarsa UCB Default Diversity Score Random

Chart 5.26 3.39 8.38 6.93 7.73

Closure 8.63 6.44 12.58 12.37 11.84

Gson 4.09 2.95 4.70 4.64 4.33

Lang 3.65 2.63 7.09 4.60 6.27

Math 4.09 3.05 5.68 4.15 4.64

Mockito 5.98 4.16 6.22 5.96 5.90

Time 3.63 2.77 6.32 5.29 5.28

Overall 4.09 3.05 8.39 6.81 7.56

Empir Software Eng (2022) 27: 38 Page 37 of 62 38

While reinforcement learning introduces overhead—including the calculation of diversity
as part of the reward score—this cost is less than naively calculating unnecessary fitness
functions.

A surprising result, however, was that AFFS is faster than targeting diversity alone. Intu-
itively, calculating multiple fitness functions should be more computationally expensive
than calculating one fitness function. However, the cost of computing the Levenshtein dis-
tance is based on the quantity of text being compared. If a test suite is larger—containing
a greater number of tests, longer tests with more interactions with the CUT, or both—then
fitness computation will be more expensive. In inspecting changes in the size of test suites
throughout the generation process, we found that the test suites evolved targeting diversity
alone were significantly larger than those being evolved by DSG-Sarsa, with the latter being
41% smaller on average in the studied examples.

In the absence of feedback from additional fitness functions, optimizing the diversity
fitness function alone led to unconstrained growth in test suites. Creating longer tests is
one potential path to improving diversity, but not a guaranteed one—it could still result
in similar test cases. Ultimately, the diversity fitness function was not only limited in its
ability to suggest means of improving fitness, but actually detrimental to goal attainment by
limiting the number of generations that could be completed during the search budget. AFFS
was able to both improve diversity and control the growth of test suites, in turn controlling
the cost of fitness calculation as well.

Both AFFS approaches complete more generations of evolution during the search
than the baselines, with UCB being 63.65% faster than the default baseline, 59.66%
faster than random, and 55.22% faster than diversity alone. By incorporating addi-
tional feedback, AFFS controls the cost of the diversity calculation by preventing
unconstrained test suite growth.

6.2.4 Actions Selected by AFFS

In Fig. 9, we display the ten fitness function combinations chosen most often by DSG-Sarsa
for the diversity goal, and in Fig. 10, we do the same for UCB. Examining these choices
may offer insight into the results attained by AFFS.

The first observation we make is that the combination of diversity score, exception count,
and Branch Coverage is chosen the most often. It is the top choice made by DSG-Sarsa for
four of the seven systems, and the top choice for UCB for all projects. This combination
provides several key ingredients for attaining diversity. Branch Coverage encourages explo-
ration of the structure of the CUT, building strong test suites that the other functions can
tune. The exception count imbues the suite with a wider range of input choices. Finally, the
diversity score encourages further input exploration.

Each function is insufficient on its own. The diversity score needs external feedback to
drive diversity. Branch Coverage and the exception count both offer this. Branch Coverage
alone will only result in as much diversity as is required to cover more of the code. The
other functions force diversification of the input choices. The exception count could be a
great driver of diversity, but needs Branch Coverage to aid code exploration. Together, these
three functions offer each other feedback, resulting in more diversity than could be attained
individually.

Unlike the exception discovery goal, both UCB and DSG-Sarsa favor complex combi-
nations of three-four fitness functions. For the goal of diversity, this makes some sense. We

Empir Software Eng (2022) 27: 38 Page 38 of 6238

0.00%

1.00%

2.00%

3.00%

D-M
NE-C

B-

D-W
M-E-C

B D-E

D-M
NE-O

D-B
-M

NE-C
B

D-B
-W

M-C
B

D-W
M-E-O

D-C
B

D-B
-C

B-O

D-B
-W

M-O

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

D

D-W
M-C

B-O

D-W
M-E-M

NE

D-B
-M

NE-O

D-M
NE-W

M

D-W
M-M

NE-

D-B
-E-O

D-M
NE

D-B
D-C

B

0.00%

1.00%

2.00%

3.00%

4.00%

D-B
-E

D-E-W
M

D-W
M-C

B-O

D-C
B-W

M D-E
D-E-O

D-M
NE-O

D-W
M-E-M

NE

D-C
B-M

D-B
-W

M-E
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

D-W
M-E-O

D-B
-C

B-O

D-B
-E-O

D-B
-W

M-O
D-B

-E

D-W
M-M

NE-O D-B

D-M
NE-W

M D-O

D-C
B-E

0.00%

2.00%

4.00%

6.00%

D-B
-E

D-M
NE-W

M

D-B
-E-M

NE

D-B
-W

M-C
B

D-W
M-M

NE-

D-W
M-E-M

NE

D-E-W
M

D-W
M-M

NE-O

D-B
-C

B-O
D-C

B
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

D-B
-E

D-C
B-O

D-W
M-O

D-E-W
M

D-E-O D-E

D-B
-M

NE

D-B
-C

B-O

D-C
B-M

D-W
M-E-M

NE

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

D-B
-E

D-C
B-E

D-B
-W

M-O

D-W
M-E-O

D-C
B-W

M

D-C
B-O

D-W
M-O

D-B
-C

B-O

D-W
M-E-M

NE D

Fig. 9 Top ten function combinations chosen by DSG-Sarsa for diversity. D = Diversity Score, B = Branch,
CB = Direct Branch, O = Output, M = Method, MNE = Method (No Exception), WM = Weak Mutation

Empir Software Eng (2022) 27: 38 Page 39 of 62 38

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

D-B
-E

D-B
-O

D-C
B

D-M
NE-C

B-O
D-B

-M

D-C
B-E

D-W
M-E-M

NE

D-M
NE-W

M D-O

D-M
NE

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

D-B
-E

D-C
B-W

M

D-B
-W

M

D-B
-M

NE-O

D-B
-W

M-M
NE

D-W
M-E-C

B

D-B
-W

M-E

D-C
B-E

D-B
-M

NE-O

D-B
-C

B

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

D-B
-E

D-M
NE-C

B-O

D-B
-W

M-O

D-E-M
NE

D-B
-W

M-C
B

D-E-W
M

D-B
-O

D-M
NE

D-W
M-M

NE-O

D-B
-W

M-E
0.00%

5.00%

10.00%

15.00%

20.00%

D-B
-E

D-B
-C

B-O

D-E-C
B-O

D-B
-W

M

D-W
M-M

NE-

D-B
-M

NE-SB
D-B

-M

D-M
NE-W

M

D-B
-W

M-C
B

D-B
-O

0.00%

10.00%

20.00%

30.00%

D-B
-E

D-B
-W

M-M
NE

D-M
NE-W

M

D-B
-W

M-E

D-W
M-O

D-W
M-E-O

D-W
M-C

B-O

D-B
-M

NE

D-B
-M

NE-C
B

D-B
-W

M
0.00%

5.00%

10.00%

15.00%

20.00%

D-B
-E

D-E-M
NE-C

B D-E

D-B
-M

NE-C
B

D-B
-E-O

D-W
M-O

D-E-C
B-O

D-W
M-C

B-O

D-B
-W

M-M
NE

D-B
-C

B-O

0.00%

5.00%

10.00%

15.00%

D-B
-E

D-B
-W

M

D-W
M-E-M

NE

D-E-M
NE-C

B

D-M
NE-O

D-B
-M

NE-C
B

D-O

D-C
B-O

D-C
B

D-M
NE-C

B-O

Fig. 10 Top ten fitness function combinations chosen by UCB for the diversity goal. D = Diversity Score,
B = Branch, CB = Direct Branch, O = Output, M = Method, MNE = Method (No Exception), WM = Weak
Mutation

Empir Software Eng (2022) 27: 38 Page 40 of 6238

Table 9 Percentage of Strong Mutation Coverage attained when all approaches execute for 10 minutes

DSG-Sarsa UCB Default Strong Mutation

Chart 47.00 47.00 52.00 54.00

Closure 16.00 16.00 18.00 19.00

Lang 61.00 60.00 62.00 63.00

Math 73.00 74.00 73.00 73.00

Mockito 12.00 8.50 11.00 10.00

Time 67.00 66.00 67.00 68.00

Overall 38.00 39.00 40.00 40.00

seek test suites that try a lot of different things. Even if poor coverage is attained of some
of the fitness functions in a combination, and even if conflicts exist, more functions could
drive the generation process towards attempting to satisfy a huge variety of goals.

The combination of Branch Coverage, exception count, and diversity score seems
effective at improving test suite diversity. These functions (and other combinations) act
in concert, providing feedback to the other functions.

We again see that UCB tends to exploit one combination above all others, while DSG-
Sarsa will spend more time exploring different options. As UCB attains better results, it
may be that heavier exploitation is a good idea for this goal. A greater tendency towards
exploitation may enable better goal attainment, as less time is spent trying potentially weak
function combinations.

Like we saw with the exception discovery goal, certain selections that would not work
well in a static context may be useful to refine pre-evolved suites. We see this with DSG-
Sarsa and the diversity score. Optimizing the diversity score in a static context yields poor
results, but is used quite often by DSG-Sarsa to refine test suites that have been shaped by
other function combinations. This allows diversification of test suites that have already been
built up to do things like explore the code base.

6.3 Goal: StrongMutation Coverage

6.3.1 Ability to Improve Coverage and Impact of Overhead

We assess attainment of our third goal using the attained percentage of Strong Mutation
Coverage. In Table 9, we note the median Strong Mutation Coverage for each AFFS tech-
nique and baseline configuration8 for each system and overall, bolding the approach with
the highest median result. In the top diagram in Fig. 11, we show a boxplot of the Strong
Mutation results for all approaches.

From Table 9, we see that, for four of the six projects, both AFFS approaches and the
default configuration attain worse median results than simply optimizing Strong Mutation
Coverage directly. From Fig. 11, we can see that all four approaches yield very similar box-
plots, with Strong Mutation having a slightly higher third-quartile than the other approaches.

8We omit the random baseline for this experiment to (a) control the cost of running experiments, and (b),
because of the similarity of results for the AFFS approaches and the other two baselines. It is likely that the
random baseline would attain similar results as well.

Empir Software Eng (2022) 27: 38 Page 41 of 62 38

DSG-Sarsa UCB Default Strong Mutation

Strong Mutation

DSG-Sarsa UCB Default-Limited SM-Limited

Strong Mutation (Generations Limited)

Fig. 11 Strong Mutation Coverage attained by final test suites when (top) all approaches run for 10 minutes,
and (bottom), when all approaches are fixed to the number of generations of evolution completed by DSG-
Sarsa in 10 minutes

Overall, optimizing Strong Mutation alone or targeting the default configuration yields a
median improvement of 2.56% over UCB and 5.26% over DSG-Sarsa.

We again perform statistical analysis to assess our observations, using the Friedman test
and Vargha Delaney A measure. We formulate hypothesis and null hypothesis:

– H : Generated test suites have different distributions of Strong Mutation Coverage
results depending on the technique used to generate the suite.

– H0: Observations of Strong Mutation Coverage for all techniques are drawn from the
same distribution.

The Friedman test, at p-value < 0.001, suggests differences in the distributions of results
for the techniques. In Table 10, we display effect sizes. The default and Strong Mutation
baselines slightly outperform UCB and DSG-Sarsa, but with a negligible effect size. While

Empir Software Eng (2022) 27: 38 Page 42 of 6238

Table 10 Results of Vargha-Delaney A Measure for Strong Mutation (all approaches run for 10 minutes)

DSG-Sarsa UCB Default Strong Mutation

DSG-Sarsa – 0.50 0.49 0.49

UCB 0.50 – 0.49 0.49

Default 0.51 0.51 – 0.50

Strong Mutation 0.51 0.51 0.50 –

No large effect sizes were observed

both baselines yield a slightly higher median performance, we cannot say that any technique
outperforms AFFS with significance.

Optimizing Strong Mutation alone or the default baseline yields median improve-
ment of 2.56%/5.26% over UCB/DSG-Sarsa. However, no technique demonstrates
significant performance differences (negligible effect sizes).

To explain the lack of success of AFFS for this goal, we examine two factors: (1) the
reward function used by reinforcement learning and its impact on overhead, and (2), the
fitness functions that can be combined by AFFS for this goal.

First, we examine the impact of the overhead of reinforcement learning, particularly
calculation of the reward function. In this experiment, a search budget of ten minutes is
allocated to generate test suites. The amount of time that a single generation takes is not
fixed, but depends on fitness calculation. If multiple fitness functions, or expensive fitness
functions are used, then fewer generations of evolution will take place over that time period.

Reinforcement learning adds additional overhead on top of this calculation. An expen-
sive reward function will further reduce the number of generations of evolution that can
be completed. With exception discovery, the reward function and many of common fitness
function combinations were inexpensive, resulting in AFFS techniques being faster than the
default configuration. In the case of diversity, the diversity score that was used as both a
fitness function and to calculate reward could have been expensive—if the test suite was
large—but remained inexpensive due to feedback from other fitness functions.

Strong Mutation Coverage is an expensive function to calculate. It requires the execution
of the test suites against each mutant. The total cost of calculation depends on the number

Table 11 Median time per generation (in seconds) for the Strong Mutation Coverage goal

DSG-Sarsa UCB Default Strong Mutation

Chart 6.57 7.90 7.11 5.86

Closure 2.44 2.92 4.63 3.98

Lang 24.69 17.88 12.65 12.36

Math 11.89 6.05 10.69 9.06

Mockito 0.21 0.13 0.21 0.23

Time 14.49 19.45 9.86 8.87

Overall 4.98 3.85 5.91 5.20

The fastest technique is bolded

Empir Software Eng (2022) 27: 38 Page 43 of 62 38

of mutants, but generally requires multiple test executions, rather than one, to calculate. We
use this function not only as the reward function, but as part of many of the fitness function
combinations. Although we alternate between Weak and Strong Mutation during reward
calculation to control this cost, AFFS has a heavy reward calculation cost that the other
approaches lack. This could have an impact on the resulting goal attainment.

In Table 11, we display the median time per generation for each approach. AFFS is again
slightly faster than the baselines on average. However, the results vary by project. For three
projects, the Strong Mutation baseline is significantly faster than AFFS. As seen in Table 9,
the Strong Mutation baseline also yields the highest goal attainment for those projects. The
number of generations of evolution plays a role in the resulting goal attainment. For those
projects, the slower performance of AFFS may have reduced effectiveness.

For three of the six projects, AFFS techniques are up to 49.94% slower per gen-
eration than optimizing Strong Mutation alone. For these projects, optimizing Strong
Mutation alone also results in improved goal attainment.

To investigate this possibility, we repeated our experiment, using a fixed number of gen-
erations as the search budget instead of a fixed period of time. We used the median number
of generations completed by DSG-Sarsa (generally the slower reinforcement learning tech-
nique) in ten minutes as the search budget rather than a fixed period of time. In Table 12,
we indicate the median goal attainment for each technique when the number of generations
of evolution is fixed. In the bottom diagram in Fig. 11, we show box plots of results for all
techniques.

For all systems, AFFS now attains equal or higher median goal attainment than the Strong
Mutation baseline and, for four of the six systems, outperforms the default baseline. Overall,
AFFS outperforms both baselines in median performance when the number of generations
is fixed. The best technique, UCB, outperforms the default baseline in median performance
by 8.33% and the Strong Mutation baseline by 5.41%. The box plots are still similar, but
show a slight shift, with DSG-Sarsa and UCB now yielding higher third-quartile and median
values than the two baselines.

We repeat our statistical tests as well. The effect sizes are shown in Table 13. While the
effect sizes now show slight improvements from AFFS over the default and Strong Mutation
baselines, the effect sizes are still negligible. There is some indication that, if more time
can be allocated to the generation process, AFFS can slightly increase attainment of Strong
Mutation Coverage. However, the results for all techniques are still similar.

Table 12 Percentage of strong mutation coverage attained by test suites when the number of generations of
evolution is fixed to that completed by DSG-Sarsa in 10 minutes

DSG-Sarsa UCB Default Strong Mutation

Chart 47.00 47.00 49.50 44.50

Closure 16.00 16.00 17.00 16.00

Lang 61.00 60.00 57.00 58.00

Math 73.00 74.00 70.00 71.00

Mockito 12.00 8.50 9.00 8.00

Time 67.00 66.00 64.00 64.00

Overall 38.00 39.00 36.00 37.00

Higher values are better. The highest median is bolded

Empir Software Eng (2022) 27: 38 Page 44 of 6238

Table 13 Results of Vargha-Delaney A Measure for Strong Mutation (number of generations fixed)

DSG-Sarsa UCB Default Strong Mutation

DSG-Sarsa – 0.50 0.52 0.52

UCB 0.50 – 0.52 0.52

Default 0.48 0.48 – 0.50

Strong Mutation 0.48 0.48 0.50 –

When the budget is fixed by number of generations rather than time, AFFS tech-
niques outperform the baselines in median performance. UCB outperforms the default
by 8.33% and Strong Mutation alone by 5.41%. However, effect sizes still remain
negligible.

The central hypothesis of AFFS is that certain combinations of fitness functions will
provide the feedback that the existing fitness function fails to offer to the search. However,
none of the functions used in our experiment offer feedback beyond that already offered
by the Strong Mutation fitness function. There may be other functions that could offer this
feedback, but we do not know what these are or whether they exist.

If the number of generations are fixed, AFFS may be able to offer mild improvements
over the default combination or targeting Strong Mutation on its own, but these improve-
ments are very limited. The similarity of the boxplots in Fig. 11 further demonstrates the
limited feedback offered by other fitness functions, as we do not see significant reduc-
tions in variance like we did with the other two goals. Improvement in attainment of Strong
Mutation coverage requires further experimentation and discovery of new fitness functions.

The similar performance of all techniques may indicate that the fitness functions
considered by AFFS have limited impact on attainment of Strong Mutation Coverage.
Other unknown functions may be more effective.

6.3.2 Fault Detection Effectiveness

We examine fault detection for our two AFFS approaches and for the two benchmarks in
Table 14, where we list the number of faults detected per project. In the last section, we
saw that the attained Strong Mutation Coverage was similar for all approaches. Here, we
see fairly similar fault detection rates for the four approaches as well. The top approach was
UCB, with 36% of the faults. It outperforms both baseline by 12.50%, and DSG-Sarsa by
16.12%.

We again calculated the point-biserial correlation coefficient between Strong Mutation
Coverage and fault detection, resulting in a coefficient of 0.31. This was the strongest corre-
lation of our three goals to fault detection, but is still only a weak correlation. Higher Strong
Mutation Coverage has a positive impact on the likelihood of fault detection, but is not—in
itself—enough to ensure success.

DSG-Sarsa was outperformed by both baselines, and was also the technique with the
lowest median Strong Mutation coverage. However, (a) as no significant differences were

Empir Software Eng (2022) 27: 38 Page 45 of 62 38

Table 14 Percentage of faults detected by each approach for the Strong Mutation goal

DSG-Sarsa UCB Default SM Default (F#G) SM (F#Gen)

Chart 54% 69% 69% 54% 65% 50%

Closure 13% 25% 15% 20% 11% 10%

Lang 44% 45% 45% 44% 34% 30%

Math 53% 46% 49% 48% 41% 41%

Mockito 3% 3% 3% 3% 3% 3%

Time 50% 54% 50% 42% 46% 38%

Overall 31% 36% 32% 32% 26% 24%

F#G = fixed number of generations

observed between result distributions for the approaches, and (b), the weak correlation
result, lower Strong Mutation Coverage does not explain its slightly weaker performance.
We cannot state that AFFS will always result in improved fault detection over static fitness
function choices for this goal.

When we fix the search budget in terms of the number of generations of evolution rather
than the period of time, we do see that both AFFS techniques significantly outperform the
two baselines. In this situation, UCB outperforms the default configuration by 38.46% and
Strong Mutation by 50.00%. Some of the fault detection performance of the two baselines
can be attributed to additional generations of evolution completed during the 10 minute
search budget. When given additional time to develop suites, AFFS may yield a higher
likelihood of fault detection as well.

UCB detects 12.50% more faults than both baselines and 16.12% more than DSG-
Sarsa for the Strong Mutation goal. When the number of generations is fixed, both
AFFS approaches outperform the baselines by up to 50.00%.

6.3.3 Actions Selected by AFFS

In Fig. 12, we show the top fitness function combinations chosen by DSG-Sarsa for the
Strong Mutation Coverage goal. In Fig. 13, we do the same for UCB. For the first two
goals, we saw that UCB more heavily favored exploitation of a particular action than DSG-
Sarsa, which tended towards more exploration. Here, we see the reverse. DSG-Sarsa tends
to choose the Strong Mutation fitness function far more often than any other option. UCB
chooses Strong Mutation alone as the most common option for three of the six projects, but
it spends more time exploring alternative options than DSG-Sarsa. In this case, UCB still
attains slightly better median goal attainment, so DSG-Sarsa does not gain an advantage
from heavier exploitation over exploration.

We see further evidence for the idea that none of the chosen fitness functions for this goal
provide feedback that is sufficient to attain significant gains in Strong Mutation Coverage.
The fitness function already designed for this goal, despite attaining relatively low levels of
coverage, is still one of the most common optimization targets chosen by AFFS.

Weak Mutation Coverage appears often as well in the most common options, and may
help improve coverage of the stronger variant. Output Coverage and the exception count

Empir Software Eng (2022) 27: 38 Page 46 of 6238

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

SM
E-M

NE

B-E-W
M

B-E-M
NE

O-E

B-M
NE-SM

B-SM O-E
B-W

M

B-O
-M

NE
0.00%

5.00%

10.00%

15.00%

SM

B-E-M
NE

B-E-M
NE

E-W
M

MNE
B-E

B-M
NE

O-M
NE

B-O
-M

NE
O-E

0.00%

5.00%

10.00%

15.00%

20.00%

SM

B-M
NE-SM

B-E-M
NE

O-M
NE

B-W
M-SM O-E

O-W
M

O-SM

B-O
-M

NE

B-M
NE-W

M 0.00%

5.00%

10.00%

15.00%

SM
E-W

M
E-M

NE
B-O

B-O
-E

B-W
M WM

B-M
NE

E-SM

B-E-SM

0.00%

10.00%

20.00%

30.00%

SM

WM-SM
B-M

NE

E-M
NE

B-O
-E

MNE

B-W
M-SM B E

O-SM
0.00%

5.00%

10.00%

15.00%

20.00%

SM
B-M

NE O
B-O

-E

B-O
-M

NE
E-W

M B

O-M
NE

MNE-SM O-E

Fig. 12 Top ten fitness function combinations chosen by DSG-Sarsa approach for the Strong Mutation
goal. SM = Strong Mutation Coverage, B = Branch Coverage, O = Output Coverage, MNE = Method (No
Exception), WM = Weak Mutation Coverage, E = Exception Count

also appear frequently. Both offer potential means to improve Strong Mutation Coverage,
as both have a direct center around manipulation of output. Output Coverage increases the
diversity of output response types, which may increase the likelihood of noticing a fault in
that output. Similarly, encouraging triggering of exceptions may also increase the likelihood
of a visible failure.

Choices made by AFFS approaches suggest that no fitness functions significantly
improved Strong Mutation Coverage. However, Output Coverage and the exception
count both manipulate program output, and may lead to small improvements in Strong
Mutation Coverage.

Empir Software Eng (2022) 27: 38 Page 47 of 62 38

0.00%

5.00%

10.00%

15.00%

20.00%

SM O-E

E-M
NE

MNE

O-M
NE

O-W
M E

B-E-M
NE

B-M
NE O

0.00%

5.00%

10.00%

15.00%

SM E
MNE

E-M
NE

O-E O-E

O-M
NE

MNE-W
M B

B-O
-M

NE

0.00%

5.00%

10.00%

15.00%

20.00%

O-E E SM
MNE

O-M
NE

E-M
NE

O-W
M

B-M
NE

B-E-M
NE

B-O
0.00%

5.00%

10.00%

15.00%

SM O-E E
MNE O

E-M
NE

O-M
NE

B-M
NE B

B-E-W
M

0.00%

20.00%

40.00%

60.00%

80.00%

SM
MNE

O-M
NE

E-M
NE O B-E

O-W
M E

O-E WM

0.00%

10.00%

20.00%

30.00%

40.00%

SM
O-M

NE

E-M
NE

MNE
B-O

-E

B-O
-M

NE

B-E-M
NE

E-W
M

B-O
-W

M
B-M

NE

Fig. 13 Top ten fitness function combinations chosen by UCB approach for the Strong Mutation goal. SM
= Strong Mutation Coverage, B = Branch Coverage, O = Output Coverage, MNE = Method No Exception,
WM = Weak Mutation Coverage, E = Exception Count

7 Discussion

In this section, we will summarize results across all three goals and discuss the impact of
AFFS on multiple aspects of the test generation process.

7.1 Impact of AFFS on Goal Attainment

Given a high-level testing goal with no known effective fitness function or a function that is
difficult to optimize, our core hypothesis was that adaptive fitness function selection would
result in greater attainment of that goal than optimizing the existing fitness function. We
further hypothesized that the use of AFFS may result in even greater goal attainment than
the optimization of a static set of fitness functions.

Empir Software Eng (2022) 27: 38 Page 48 of 6238

For two of the three studied testing goals, both hypotheses were confirmed, with at
least medium effect size. Both EvoSuiteFIT techniques discover and retain more exception-
triggering input than the baseline techniques, with DSG-Sarsa yielding better results.
Additionally, both EvoSuiteFIT techniques produce more diverse test suites than static
fitness function choices, with UCB outperforming DSG-Sarsa.

For the goal of Strong Mutation Coverage, no technique demonstrates statistically sig-
nificant improvements. When the search budget is a fixed number of generations rather than
time, both AFFS techniques slightly outperformed the baselines in medium performance,
but effect sizes remain negligible. Given some additional time for test generation, we see
some potential for improvement from using AFFS over static approaches. However, these
improvements were limited.

For the first two goals in particular, these results indicate the potential of AFFS for per-
forming test generation for difficult-to-optimize goals. In the future, we plan to explore the
utility of AFFS for other goals and other types of testing. Reflecting on the experimental
results, we can make the following observations:

AFFS is an appropriate technique to apply when an effective fitness function does not
already exist for the targeted goal In Section 1, we gave the example of Branch Coverage
as a goal with an effective fitness function, the branch distance. The branch distance offers
clear guidance to the generation process and the means to attain high coverage over many
classes.9 It is unlikely that AFFS would offer improved goal attainment, as other fitness
functions are unlikely to offer additional feedback sufficient to overcome the introduced
overhead of reinforcement learning. Rather, AFFS can help improve goal attainment in
situations where the existing fitness function offers no or little feedback to improve fitness,
like the exception count. AFFS enables the discovery of more exceptions by guiding test
generation towards, for example, exploration of CUT structure.

AFFS can also help in situations where a fitness function offers misleading feedback.
Consider the Levenshtein distance used in promoting suite diversity. This fitness function
rewards test suites that differ from each other, but does not assist in suggesting how to
instill this difference. We observed that targeting this function alone resulted in uncontrolled
test suite growth, without a correspondingly large gain in diversity. As this fitness function
grows more expensive to calculate as suites get larger, the feedback from this function actu-
ally harmed the search process—limiting the number of generations of evolution possible
during the ten-minute search budget. Rather than offering helpful feedback, the function
actually led the algorithm astray. AFFS was able to produce more diverse test suites and—by
keeping the test suite smaller—was substantially faster.

AFFS requires a reward function that is fast to calculate, or requires additional time for
test generation Reinforcement learning is an additional step in the generation algorithm.
No matter how efficient it is, it will add some overhead to the process absent in the normal
course of test generation. This overhead can be overcome by strategic selection of fitness
functions. AFFS can be faster than the “default” multi-function combinations simply by

9As an aside, it is possible that AFFS could improve Branch Coverage in situations where the branch distance
is not informative enough to guide the search, and some learned combination of fitness functions would
help. We conducted a small pilot study to examine this question. In a small number of situations, AFFS did
attain higher coverage than targeting Branch Coverage directly. However, in the majority of cases, targeting
Branch Coverage directly yielded better results due to the overhead of reinforcement learning. Hence, our
recommendation is to apply AFFS when an informative fitness function does not already exist, or if that
function is known not to work well for a particular problem instance.

Empir Software Eng (2022) 27: 38 Page 49 of 62 38

virtue of calculating fewer fitness functions. However, the reward function must still be fast
to calculate to gain the full benefits of using the approach. For three of the six projects
studied in the Strong Mutation experiment, both AFFS techniques are significantly slower
than optimizing Strong Mutation alone due to the overhead of calculating Strong Mutation
Coverage as part of both fitness and reward. In cases where selecting a faster reward function
is not possible, more time should be given to the test generation process.

The effect of AFFS is limited by the span of fitness functions available to choose from
AFFS can only offer feedback to the search if some combination of the functions it can
choose from actually offers the missing feedback. This was the case for two of our three
goals. For Strong Mutation Coverage, limited improvement in median performance and
variance indicate that the considered fitness functions had limited impact on goal attain-
ment. Other functions—still unknown—may improve attainment of that goal, but there is
no guarantee that such functions exist.

One may take from this the lesson that they should add as many options as possible
for reinforcement learning to choose from. This is not the case. Reinforcement learning
must try and retry options, continually refining its estimations of which will best improve
goal attainment. Reinforcement learning will see faster convergence and better results with
fewer options to choose from to start. With too many options, AFFS will spend most of
the search trying potentially suboptimal options without ever discovering the best ones. For
all the goals, we actively removed some combinations that we knew or suspected would be
suboptimal before even starting the experiments. We would recommend a similar process
for additional testing goals—start by pruning functions and combinations that you suspect
will produce weak results.

7.2 Impact of AFFS on Fault Detection

Fault detection is not a simple matter of maximizing some function, but of selecting the
exact input that will trigger an observable failure (Gay et al. 2015). The likelihood of fault
detection is influenced by a number of factors (Gay 2018b). The exact relationship of those
factors is not well understood, and detecting a fault is often more of a matter of blind luck
than deliberate manipulation of test suites. Still, a major goal of test generation—and a
major reason that we target many of these fitness functions—is to increase the likelihood
that we detect faults with the generated test suites. Maximizing Branch Coverage is not the
actual end goal of a tester. Rather, it is a measurable factor that may increase our likelihood
of detecting a fault. Thus, it is important to examine the impact that AFFS has on fault
detection.

For the exception discovery goal, both EvoSuiteFIT techniques detect faults missed
by the other techniques. UCB is able to detect more faults than all other approaches for
the Strong Mutation goal, while DSG-Sarsa is outperformed by the baselines. However,
when the number of generations is fixed, both AFFS approaches outperform the baselines.
For the diversity goal, the random baseline outperformed all other approaches. The AFFS
approaches, however, outperformed both of the other baselines.

AFFS approaches can detect more faults than optimizing static baselines. However, this
is not guaranteed. Higher goal attainment does not lead always lead to improved fault detec-
tion, and can actually mean the opposite if goal attainment does not actually have a positive
correlation with the likelihood of fault detection. We do not fully understand the impact of
AFFS on fault detection yet, and will examine it more closely in future work. However, we
have observed several factors that may lead to a higher likelihood of fault detection.

Empir Software Eng (2022) 27: 38 Page 50 of 6238

AFFS results in higher attainment of goals thought to have a positive relationship with
fault detection AFFS clearly results in improved attainment of exception discovery and
test suite diversity. If hypotheses about these goals are correct, we would expect an increase
in the likelihood of fault detection as well. We do see this in the exception experiment,
but not in the diversity experiment. The calculated correlation coefficients for all three
goals do not indicate strong connections between goal attainment and fault detection in this
experiment. Still, it is a factor that may contribute to improvements in fault detection.

Optimizing multiple fitness functions results in multifaceted test suites Each fitness
function optimized will have an impact on the resulting test suite, shaping the test cases
towards possessing the properties embodied by that fitness function. Naturally, then, opti-
mizing multiple fitness functions can result in test suites that are multifaceted and better
able to detect faults (Rojas et al. 2015; Gay 2018b). This is not universally the case, and
requires careful selection of fitness functions (Gay 2017b). However, this is indicated by
the significant improvement in fault detection between single-function and multi-function
approaches in our experiments.

Optimizing too many fitness functions at once can introduce conflicts between func-
tions and reduce attainment of individual functions Optimizing a naively-chosen com-
bination of fitness functions can have a detrimental impact on the resulting test suite. The
goals of some fitness functions will conflict with the goals of others. Optimizing one fit-
ness function may come at a significant cost in attainment of another. EvoSuite combines
the scores of fitness functions into a single score, and will favor a test suite that highly max-
imizes one function over a test suite that carefully balances two functions at low levels of
attainment. The default combination represents a naive combination of several functions,
and there may be conflicts between some of those functions. By intelligently selecting
smaller combinations of functions, AFFS may better avoid such conflicts.

Changing fitness functions as the suite evolves may result in better test suites AFFS is
able to respond to the evolving state of the population of test suites, choosing fitness func-
tions that are best able to improve goal attainment given the current state. This means that
certain fitness functions may be applied at certain stages of test generation, but not others.
This may be a better method of producing multifaceted test suites than statically applying
the same fitness functions the entire time. Rather, we may see a staggered approach, where
certain properties are evolved into the test suite at different stages of evolution. This may be
more effective than trying to imbue many properties at once.

7.3 Impact of Reinforcement Learning Overhead

Reinforcement learning introduces overhead into the test generation process. As test gen-
eration is generally conducted using a fixed period of time, this overhead could result in a
reduction of the number of generations of evolution that can be conducted during this period
of time. If this reduction is significant, goal attainment could be reduced as well.

The ability to avoid calculation of unhelpful fitness functions mitigates reinforcement
learning overhead For both exception discovery and diversity, both AFFS approaches are
able to complete more generations of evolution during the search budget than the default
combination. An important factor in the number of generations that can be completed is
the cost of computing fitness. The more fitness functions to be calculated, the longer each
generation takes. The default combination naively combines several fitness functions, some

Empir Software Eng (2022) 27: 38 Page 51 of 62 38

of which are likely unhelpful. The AFFS approaches learn to avoid calculating unhelpful
functions, achieving speed gains that overcome the introduced overhead.

Feedback from effective fitness functions can help control computational costs The
diversity fitness function grows more expensive to calculate as test case length and suite size
grows. By incorporating feedback from additional fitness functions, AFFS is able to pre-
vent uncontrolled test suite growth. As a result, it is actually faster than optimizing diversity
alone, as test suites grow rapidly when diversity is the sole fitness function.

Expensive reward functions negatively impact AFFS For three of the six projects exam-
ined in the Strong Mutation experiment, both AFFS techniques are significantly slower than
optimizing Strong Mutation alone due to the overhead of calculating Strong Mutation Cov-
erage as part of both fitness and reward. When we hold the number of generations at a fixed
value instead of time, AFFS is more effective. In this situation, the overhead reduces the
potential positive impact of AFFS. In such cases, either a less expensive reward function
should be used or more time should be allocated to AFFS.

7.4 Actions Selected by AFFS

The ability to adjust the fitness functions at regular intervals allows EvoSuiteFIT to make
strategic choices that refine the test suite. We can see this from examining the actions chosen
by UCB and DSG-Sarsa as they attempt to maximize goal attainment. We can make two
key observations in this area.

AFFS enables deeper understanding of the properties that improve goal attainment
and how fitness functions can imbue those properties The combination of Branch Cov-
erage, exception count, and diversity score seems particularly effective at improving test
suite diversity. Ahead of time, we did not know that these three specific functions would
enable diversity when used together. Individually, none of these are as effective as they are
in combination. These three functions each offer feedback to each other, enabling greater
diversity when used in combination. Other function combinations similarly act in concert to
improve suite diversity. AFFS enabled the discovery of these serendipitous combinations.

Similarly, the choices made by AFFS suggest that no fitness function combination
provided feedback needed to significantly improve Strong Mutation Coverage. However,
Output Coverage and the exception count both encourage deviations in program output, and
may lead to small improvements in Strong Mutation Coverage. Ahead of time, we did not
understand their potential impact on attainment of Strong Mutation coverage, but inspect-
ing the choices made by AFFS gave us insight into factors that could promote additional
attainment of our goal.

Fitness function combinations that are ineffective in a static context may be effective
when used by AFFS to diversify a pre-evolved population of suites Many of the most
common choices made by AFFS—particularly for the exception discovery and diversity
goals—would result in poor test suites when used as the only fitness functions for the entire
generation process. For example, the combination of exception count and Method Coverage
(Top-Level, No Exception) was chosen very often for the exception discovery goal. Used
in a static context, the produced suites are quite weak at both goal attainment (discovering
exceptions) and fault detection. However, this combination is applied strategically by AFFS
to suites evolved already using other functions, such as Branch Coverage. The suites are

Empir Software Eng (2022) 27: 38 Page 52 of 6238

already robust at, for example, covering the code structure. Then, these combinations can be
applied to reshape the suites into ones that discover new exceptions. A similar observation
can be made in the other experiments. The diversity score is used quite a lot to shape existing
suites, when it is a poor target in a static context. In the Strong Mutation experiment, Output
Coverage and exception count offer some gain in coverage, but would yield weak coverage
if used as the sole targets of generation.

Observation of the choices made by AFFS makes it clear how the stateful evolution of
test suites can be harnessed to improve goal attainment. Fitness functions shape the test
suites that emerge from search-based test generation. They imbue the suites with certain
emphasized properties. These properties do not need to be imbued at the same time. Rather,
fitness functions can be used to reshape a suite over time, and different functions may be
best applied in different sequences or at different stages of this evolution. A future direction
for this research will be to further understand this process, and how it can best be controlled
to produce effective test suites. Little research in search-based test generation has looked
at the controlled staggering of fitness functions, but our observations indicate the potential
importance it has.

7.5 Choice of Reinforcement Learning Approach

We implemented two reinforcement learning approaches, UCB and DSG-Sarsa. These
approaches use different mechanisms for choosing actions and associating actions with
particular states. It is natural, then, to compare the two in terms of their performance. In
this regard, we can make the following observation: Overall, UCB attains a slight advan-
tage over DSG-Sarsa. However, there are significant exceptions that rule out universal
recommendation of UCB.

In terms of goal attainment, UCB attains higher median performance for the diversity
and Strong Mutation goals than DSG-Sarsa, while the reverse is true for the diversity goal.
In terms of fault detection, UCB outperforms DSG-Sarsa for both the exception discov-
ery and Strong Mutation Coverage goals. DSG-Sarsa attains better fault detection for the
diversity goal, even though UCB attains better coverage. Finally, in terms of speed, UCB
is faster for the diversity and Strong Mutation goals, but slower than DSG-Sarsa for the
exception goal.

We lack enough evidence to recommend one approach over the other. UCB attains a
slight lead in multiple categories, but is outperformed by DSG-Sarsa in enough cases to
rule out an unqualified recommendation. Overall, both approaches appear useful, and more
observations will be needed to make any sort of conclusive judgement. Given the success of
the two approaches, it may even make sense to execute both and pool their test cases.

7.6 When AFFS Harms Goal Attainment

While we observed that AFFS generally enables greater attainment of testing goals, there
are times where it not only fails to improve attainment—it actively attains worse results than
all of the baselines. To gain a greater perspective on the limitations of AFFS, we manually
examined situations where either DSG-Sarsa or UCB attained worse results in all, or almost
all, trials than the single fitness function baseline.

We focus on the diversity goal in this analysis, as it offers the clearest performance
differentials between AFFS and the single-function baseline. We identified the ten faults
where AFFS techniques attained the worst results relative to the diversity score alone. We

Empir Software Eng (2022) 27: 38 Page 53 of 62 38

examined the classes-under-test and the generated suites, and attempted to identify factors
that explain the worse performance of AFFS.

For the diversity goal, the faults where AFFS attained the worst performance relative to
the diversity score baseline were, in order, Gson-12, Chart-24, Lang-25, Math-35, Lang-55,
Math-34, Closure 39, Math 56, Math 89, and Mockito-12. Examining the classes and tests
generated for this fault, we observed two primary factors limiting performance of AFFS—
the first being a factor that can affect any goal, and the second being specific to the diversity
goal.

Fitness functions are merged into a single score In EvoSuite’s genetic algorithm, all
selected fitness functions are merged into a single score. This means that large improve-
ments to a single function will be accepted, even if they come with a small drop in another
fitness function. This creates potential conflicts between fitness functions, and allows par-
ticular functions to be dominated if they are difficult to optimize in comparison to other
functions, or if they do not rise in conjunction with another function.

In some cases, diversity and functions like code coverage may rise in conjunction with
each other. For example, increasing diversity may also increase the attained code coverage.
In such cases, using code coverage as one of the fitness functions may offer feedback that
is not offered by optimizing diversity alone.

In other cases, input diversity may have little impact on the code coverage. For example,
only a small set of values may cause control-flow to take different paths, or only a small
number of methods might accept a large selection of input values. In these cases, the “best”
test suites may be those that cover a large span of the code, even if they lack diversity.
The reward function used by AFFS will still encourage some diversity, but its impact may
be lessened because the fitness functions employed prioritize large gains in coverage over
diversity, and those fitness functions are the ones that ultimately evolve the test suites.

Chart-24 offers an example of this, where the test suites generated by AFFS call a wider
variety of methods than those generated targeting diversity alone. However, the latter apply
a wider range of input to a smaller set of methods. The suites generated by AFFS may be
“better”. They cover more of the code, and could detect faults missed by the other suites. At
the same time, they are “worse” with regard to the goal of diversity.

This factor can impact the results of AFFS for not just diversity, but for other testing goals
as well. The success of AFFS relies on the existence of fitness functions that can improve
attainment of our goal of interest. In cases where we can identify those functions, AFFS
works well. However, if we cannot identify fitness functions that improve goal attainment,
the end result may be worse than just trying to optimize the existing weak fitness function
for that goal. In many cases, AFFS was able to identify such functions. However, for some
classes, there may be no effective fitness functions for increasing diversity.

Methods with limited or no input In multiple cases, the CUT had a large number of
methods where there were no, or limited, means of interacting through input parameters.
Consider, for example:

– Gson-12: The CUT parses elements from a Json structure. The only “input” provided
is to the constructor. EvoSuite cannot generate arbitrary Json input, so it provides an
empty file to the constructor. The other methods of the class interact with this structure,
and many have no input parameters.

– Lang-55: The CUT is a stopwatch. The constructor initializes the object, and it can be
interacted with through methods that stop, pause, and reset the stopwatch. There are no
input parameters.

Empir Software Eng (2022) 27: 38 Page 54 of 6238

– Math-34: The CUT represents the population of a genetic algorithm in list form. The
constructor initializes the population, and the methods can be used to analyze or interact
with that population. Many methods have no input (e.g., getting the fittest chromosome
or getting a list of chromosomes), and their result depends on the contents of the popu-
lation. The primary means of introducing diversity through input are when controlling
the size of the population, i.e., a method with numeric input.

One of the primary means of improving diversity is to provide a wider range of input
to method parameters. When methods lack parameters, gaining diversity becomes more
difficult. Instead, other means of gaining diversity must be employed, including increasing
the diversity of output—the generated assertion statements include the output of calling
methods that offer concrete output, generating tests that call highly different sequences of
input, and triggering exceptions—as the try/catch block included in the test case will
give the test a very different body than many other tests. However, it can be difficult to
“discover” test cases that exploit these routes to diversity.

In these cases, other fitness functions—i.e., code coverage—will dominate the diversity
fitness function. As a result, for these classes, AFFS tends to generate a large number of
highly-similar test cases, while targeting diversity-alone yields a small number of test cases
that are very different from each other. Consider, for example, the first two test cases in
Fig. 14. These two tests were among those generated by DSG-Sarsa for the CUT. The test
suite contains many of this form, where the first and third lines (set-up, and assertion on the
output) are identical. The only difference is the second line, where different methods are
called. These two test cases cover different parts of the code, but are not very different in

Fig. 14 Two similar test cases generated by DSG-Sarsa for Math-34, followed by one generated when
targeting only diversity

Empir Software Eng (2022) 27: 38 Page 55 of 62 38

terms of the resulting diversity score. Test like these are added to the suite because they have
a small positive impact on diversity, but—more importantly—because they have a large
impact on other fitness functions like the code coverage. This impact comes more easily
than improvements in diversity, and has a greater impact on the resulting test suite.

In contrast, targeting diversity alone prioritizes test cases like the third one in Fig. 14—
longer test cases where exceptions are thrown and diversity is introduced through the
available method calls with input parameters. As a result, the suites generated by AFFS are
less diverse than those generated targeting diversity-only. Again, the suites generated by
AFFS may be better for fault detection, but they are technically worse for the stated “goal”
of the tester.

8 Threats to Validity

External Validity Our study has focused on six systems (seven for the diversity goal)—
a relatively small number. Nevertheless, we believe that such systems are representative
of, at minimum, other small to medium-sized Java systems. We believe that Defects4J
offers enough fault examples that our results are generalizable to other, sufficiently similar,
projects. As Defects4J is used across multiple research fields, the use of this dataset also
allows comparisons of our approach with other research, and allows others to replicate our
experiments.

We have implemented our reinforcement learning techniques in a single test generation
framework. There are many search-based methods of generating tests and these methods
may yield different results. Unfortunately, no other generation framework offers the same
number and variety of fitness functions. Therefore, a more thorough comparison of tool
performance cannot be made at this time. By using the same framework to generate all test
suites, we can compare our approach to the baselines on an equivalent basis.

Similarly, we have chosen two reinforcement learning algorithms to implement, out of
the many that have been proposed. We chose these two specifically because (a) they are
well-understood and widely-used, and (b) they represent different approaches to handling
state (tabular versus approximate). Because these approaches have substantial differences
in how they work, we believe we present a reasonable portrait of how AFFS would work.
Still, different reinforcement learning techniques may lead to different outcomes.

To control experiment cost, we only generated ten test suites for each combination of
fault, budget, and configuration. It is possible that larger sample sizes may yield different
results. However, given the consistency of our results, we believe that this is a sufficient
number of repetitions to draw stable conclusions.

Conclusion Validity When using statistical analyses, we have attempted to ensure the base
assumptions behind these analyses are met. We have favored non-parametric methods,
as distribution characteristics are not generally known a priori, and normality cannot be
assumed.

9 Conclusions

Search-based test generation is guided by feedback from one or more fitness func-
tions. Choosing informative fitness functions is crucial to meeting the goals of a tester.
Unfortunately, many goals—such as forcing the class-under-test to throw exceptions,

Empir Software Eng (2022) 27: 38 Page 56 of 6238

increasing test suite diversity, and attaining Strong Mutation Coverage—do not have effec-
tive fitness function formulations. We propose that meeting such goals requires treating
fitness function identification as a secondary optimization step. An adaptive algorithm that
can vary the selection of fitness functions could adjust its selection throughout the gener-
ation process to maximize goal attainment, based on the current population of test suites.
To test this hypothesis, we have implemented two reinforcement learning algorithms in the
EvoSuite framework, and used these algorithms to dynamically set the fitness functions
used during generation for the three goals identified above.

We have evaluated EvoSuiteFIT for each of our three goals on a set of Java case examples
in terms of the ability of generated test suites to achieve the targeted goal and in terms
of the ability of the generated suites to detect faults. In each case, we compare the two
reinforcement learning approaches to a set of baselines.

We have found that both EvoSuiteFIT techniques outperform all baselines with at least
medium effect size for the goals of exception discovery and suite diversity—attaining
improvements of up to 107.14% in goal attainment. For the goal of Strong Mutation Cover-
age, no technique demonstrates significant improvements. When the search budget is a fixed
number of generations rather than time, both EvoSuiteFIT techniques slightly outperform
the baselines (up to 8.33% improvement). However, the effect size is still negligible.

Additionally, both EvoSuiteFIT techniques detect faults missed by the other techniques
for the exception discovery goal (up to 259.90% improvement). UCB is able to detect more
faults for the Strong Mutation goal (12.50% improvement), and when the number of gen-
erations is fixed, both EvoSuiteFIT approaches outperform the baselines (up to 50.00%
improvement). Both techniques are outperformed by the random baseline for the diver-
sity goal (34.74% difference), but outperform the other baselines. Improvements in fault
detection may arise because of higher attainment of these goals, optimizing multiple fitness
functions—but avoiding needlessly complex and conflicting functions—and changing fit-
ness functions as the suite evolves. However, higher goal attainment does not ensure fault
detection.

We find that AFFS is an appropriate technique to apply when an effective fitness function
does not already exist for the targeted goal. However, AFFS requires a reward function that
is fast to calculate, or requires additional time for test generation. Further, the effect of
AFFS is limited by the span of fitness functions available to choose from. If none of the
chosen functions correlate to the goal of interest, then improvements in goal attainment will
be limited.

While reinforcement learning adds overhead to test generation, EvoSuiteFIT is often
faster than the default static configuration because the ability to avoid calculation of
unhelpful fitness functions mitigates this overhead. Further, feedback from effective fitness
functions can help control computational costs. Additionally, the ability to adjust the fitness
functions at regular intervals allows EvoSuiteFIT to make strategic choices that refine the
test suite and allows us to attain a deeper understanding of the properties that link to goal
attainment and how fitness functions can work together to imbue those properties. Fitness
function combinations that are ineffective in a static context may be effective when used by
AFFS to diversify a pre-evolved population of suites.

The use of AFFS allows EvoSuiteFIT to identify combinations of fitness functions effec-
tive at achieving our testing goals, and strategically vary that set of functions throughout
the ongoing generation process. We hypothesize that other goals without known effective
fitness function representations could also be maximized in a similar manner. We make
EvoSuiteFIT available to others for use in test generation research or practice.

Empir Software Eng (2022) 27: 38 Page 57 of 62 38

In future work, we plan apply AFFS to new goals and testing scenarios (e.g., system
testing) and integrate it into metaheuristic algorithms beyond standard Genetic Algorithms.
We also will perform expanded empirical studies to better understand the relationship
between AFFS and fault detection and how the staggered application of fitness functions
can improve goal attainment and suite effectiveness. We will also explore the generation
of new fitness functions—i.e., a generative hyperheuristic rather than a selective one—and
how learned policies can be transferred to new classes and systems. Finally, we will examine
the application of AFFS to multiple high-level goals simultaneously.

Funding Open access funding provided by Chalmers University of Technology. This research was supported
by Vetenskapsrådet grant 2019-05275.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed BS, Enoiu E, Afzal W, Zamli KZ (2020) An evaluation of monte carlo-based hyper-heuristic for
interaction testing of industrial embedded software applications. Soft Comput. https://doi.org/10.1007/
s00500-020-04769-z

Albunian NMMenzies T, Petke J (eds) (2017) Diversity in search-based unit test suite generation. Springer
International Publishing, Cham

Ali S, Briand LC, Hemmati H, Panesar-Walawege RK (2010) A systematic review of the application and
empirical investigation of search-based test case generation. IEEE Trans Softw Eng 36(6):742–762

Almasi MM, Hemmati H, Fraser G, Arcuri A, Benefelds J (2017) An industrial evaluation of unit test gener-
ation: Finding real faults in a financial application. In: Proceedings of the 39th IEEE/ACM international
conference on software engineering (ICSE)—software engineering in practice track (SEIP), ICSE 2017.
ACM, New York

Almulla H, Gay G (2020) Learning how to search: Generating exception-triggering tests through adaptive
fitness function selection. In: 13th IEEE international conference on software testing, validation and
verification

Almulla H, Gay G (2020) Generating diverse test suites for Gson through adaptive fitness function selection.
In: Proceedings of the symposium on search-based software engineering, SSBSE 2020. Springer

Alshahwan N, Harman M (2014) Coverage and fault detection of the output-uniqueness test selection criteria.
In: Proceedings of the 2014 international symposium on software testing and analysis, ISSTA 2014.
ACM, New York, pp 181–192. https://doi.org/10.1145/2610384.2610413

Anand S, Burke E, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, McMinn P (2013)
An orchestrated survey of methodologies for automated software test case generation. J Syst Softw
86(8):1978–2001

Arcuri A (2013) It really does matter how you normalize the branch distance in search-based software testing.
Softw Test Verification Reliab 23(2):119–147

Balera JM, de Santiago Júnior VA (2019) A systematic mapping addressing hyper-heuristics within search-
based software testing. Inf Softw Technol 114:176–189

Barr E, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: A survey.
IEEE Trans Softw Eng 41(5):507–525. https://doi.org/10.1109/TSE.2014.2372785

Bauersfeld S, Vos T (2012) A reinforcement learning approach to automated gui robustness testing. In: Fast
abstracts of the 4th symposium on search-based software engineering (SSBSE 2012). pp 7–12

Bauersfeld S, Vos TEJ (2012) Guitest: a java library for fully automated gui robustness testing. In: 2012
Proceedings of the 27th IEEE/ACM international conference on automated software engineering. pp
330–333. https://doi.org/10.1145/2351676.2351739

Empir Software Eng (2022) 27: 38 Page 58 of 6238

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-020-04769-z
https://doi.org/10.1007/s00500-020-04769-z
https://doi.org/10.1145/2610384.2610413
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/2351676.2351739

Bianchi L, Dorigo M, Gambardella L, Gutjahr W (2009) A survey on metaheuristics for stochastic
combinatorial optimization. Nat Comput 8(2):239–287. https://doi.org/10.1007/s11047-008-9098-4

Blasi A, Goffi A, Kuznetsov K, Gorla A, Ernst MD, Pezzè M, Castellanos SD (2018) Translating code
comments to procedure specifications. In: Proceedings of the 27th ACM SIGSOFT international sympo-
sium on software testing and analysis, ISSTA 2018. Association for Computing Machinery, New York,
pp 242–253. https://doi.org/10.1145/3213846.3213872

Burke E, Hyde MR, Kendall G, Ochoa G, Özcan E., Woodward JR (2019) A classification of hyper-heuristic
approaches: revisited. Springer International Publishing, Cham, pp 453–477. https://doi.org/10.1007/
978-3-319-91086-4 14

Buşoniu L., Ernst D, De Schutter B, Babuška R. (2011) Approximate reinforcement learning: An overview.
In: 2011 IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL). pp
1–8. https://doi.org/10.1109/ADPRL.2011.5967353

Crawford B, Soto R, Monfroy E, Palma W, Castro C, Paredes F (2013) Parameter tuning of a choice-
function based hyperheuristic using particle swarm optimization. Expert Syst Appl 40(5):1690–1695.
https://doi.org/10.1016/j.eswa.2012.09.013. http://www.sciencedirect.com/science/article/pii/S0957417
412010676

De Oliveira Neto FG, Feldt R, Erlenhov L, Nunes JBDS (2018) Visualizing test diversity to support test
optimisation. In: 2018 25th Asia-pacific software engineering conference (APSEC), pp. 149–158

Din F, Alsewari ARA, Zamli KZ (2017) A parameter free choice function based hyper-heuristic strategy
for pairwise test generation. In: 2017 IEEE international conference on software quality, reliability and
security companion (QRS-C). pp 85–91

Din F, Zamli KZ (2018) Hyper-heuristic based strategy for pairwise test case generation. Adv Sci Lett
24(10):7333–7338. https://doi.org/10.1166/asl.2018.12938, https://www.ingentaconnect.com/content/
asp/asl/2018/00000024/00000010/art00068

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling
salesman problem. IEEE Trans Evol Comput 1(1):53–66

Drake JH, Kheiri A, Özcan E, Burke E (2020) Recent advances in selection hyper-heuristics. Eur J Oper Res
285(2):405–428

Feldt R, Poulding S (2015) Broadening the search in search-based software testing: It need not be evolution-
ary. In: 2015 IEEE/ACM 8th international workshop on Search-based software testing (SBST). pp 1–7.
https://doi.org/10.1109/SBST.2015.8

Feldt R, Poulding S, Clark D, Yoo S (2016) Test set diameter: Quantifying the diversity of sets of test
cases. In: 2016 IEEE international conference on software testing, verification and validation (ICST). pp
223–233

Ferreira TN, Lima JAP, Strickler A, Kuk JN, Vergilio SR, Pozo A (2017) Hyper-heuristic based product
selection for software product line testing. IEEE Comput Intell Mag 12(2):34–45

Filho HLJ, Ferreira TN, Vergilio SR (2018) Multiple objective test set selection for software product
line testing: Evaluating different preference-based algorithms. In: Proceedings of the XXXII brazil-
ian symposium on software engineering, SBES ’18. Association for Computing Machinery, New York,
pp 162-171. https://doi.org/10.1145/3266237.3266275

Filho HLJ, Lima JAP, Vergilio SR (2017) Automatic generation of search-based algorithms applied
to the feature testing of software product lines. In: Proceedings of the 31st Brazilian symposium
on software engineering, SBES’17. Association for Computing Machinery, New York, pp 114-123.
https://doi.org/10.1145/3131151.3131152

Fraser G (2018) A tutorial on using and extending the evosuite search-based test generator. In: Search-based
software engineering, Springer, pp 106–130

Fraser G, Arcuri A (2014) Achieving scalable mutation-based generation of whole test suites. Empir Softw
Eng 20(3):783–812

Fraser G, Arcuri A (2017) Evosuite at the sbst 2017 tool competition. In: 10th international workshop on
search-based software testing (SBST’17) at ICSE’17. pp 39–42

Fraser G, Staats M, McMinn P, Arcuri A, Padberg F (2013) Does automated white-box test generation really
help software testers? In: Proceedings of the 2013 international symposium on software testing and
analysis, ISSTA. ACM, New York, pp 291–301. https://doi.org/10.1145/2483760.2483774

Gay G, Whalen MW, Heimdahl MP, Staats M (2014) The risks of coverage directed test case generation.
Currently under submission, draft available from http://greggay.com/pdf/14risks.pdf

Gay G (2017) The fitness function for the job: Search-based generation of test suites that detect real faults.
In: Proceedings of the international conference on software testing, ICST 2017. IEEE

Gay G (2017) Generating effective test suites by combining coverage criteria. In: Proceedings of the
symposium on search-based software engineering, SSBSE 2017. Springer

Empir Software Eng (2022) 27: 38 Page 59 of 62 38

https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1109/ADPRL.2011.5967353
https://doi.org/10.1016/j.eswa.2012.09.013
http://www.sciencedirect.com/science/article/pii/S0957417412010676
http://www.sciencedirect.com/science/article/pii/S0957417412010676
https://doi.org/10.1166/asl.2018.12938
https://www.ingentaconnect.com/content/asp/asl/2018/00000024/00000010/art00068
https://www.ingentaconnect.com/content/asp/asl/2018/00000024/00000010/art00068
https://doi.org/10.1109/SBST.2015.8
https://doi.org/10.1145/3266237.3266275
https://doi.org/10.1145/3131151.3131152
https://doi.org/10.1145/2483760.2483774
http://greggay.com/pdf/14risks.pdf

Gay G (2018) To call, or not to call: Contrasting direct and indirect branch coverage in test generation. In:
Proceedings of the 11th international workshop on search-based software testing, SBST 2018. ACM,
New York

Gay G (2018) Choosing the fitness function for the job: Automated generation of test suites that detect real
faults. Under revision. J Softw Test Verif Reliab X(Y):1–20. Draft available from http://greggay.com/
pdf/18fitness.pdf

Gay G, Staats M, Whalen M, Heimdahl M (2015) The risks of coverage-directed test case generation. IEEE
Trans Softw Eng PP(99). https://doi.org/10.1109/TSE.2015.2421011

Goffi A, Gorla A, Ernst MD, Pezzè M (2016) Automatic generation of oracles for exceptional behaviors. In:
Proceedings of the 25th international symposium on software testing and analysis, ISSTA 2016. Associ-
ation for Computing Machinery, New York, pp 213-224. https://doi.org/10.1145/2931037.2931061

Grechanik M, Fu C, Xie Q (2012) Automatically finding performance problems with feedback-directed
learning software testing. In: 2012 34th international conference on software engineering (ICSE). pp
156–166

Guizzo G, Bazargani M, Paixão M, Drake JH (2017) A hyper-heuristic for multi-objective integration and
test ordering in google guava. In: SSBSE

Guizzo G, Fritsche GM, Vergilio SR, Pozo ATR (2015) A hyper-heuristic for the multi-objective integration
and test order problem. In: Proceedings of the 2015 annual conference on genetic and evolutionary
computation, GECCO ’15. ACM, New York, pp 1343–1350. https://doi.org/10.1145/2739480.2754725

Guizzo G, Vergilio SR (2018) A pattern-driven solution for designing multi-objective evolutionary algo-
rithms. Nat Comput 1–14

Guizzo G, Vergilio SR, Pozo ATR (2015) Evaluating a multi-objective hyper-heuristic for the integra-
tion and test order problem. In: 2015 Brazilian conference on intelligent Systems (BRACIS), pp 1–6.
https://doi.org/10.1109/BRACIS.2015.11

Guizzo G, Vergilio SR, Pozo A, Fritsche GM (2017) A multi-objective and evolutionary hyper-
heuristic applied to the integration and test order problem. Appl Soft Comput 56(C):331–344.
https://doi.org/10.1016/j.asoc.2017.03.012

Harman M, Jia Y, Langdon WB (2011) Strong higher order mutation-based test data generation. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering, ESEC/FSE ’11. Association for Computing Machinery, New York, pp 212-222.
https://doi.org/10.1145/2025113.2025144

Harman M, Jones B (2001) Search-based software engineering. J Inf Softw Technol 43:833–839
Helali Moghadam M, Saadatmand M, Borg M, Bohlin M, Lisper B (2019) Machine learning to guide per-

formance testing: An autonomous test framework. In: 2019 IEEE international conference on software
testing, verification and validation workshops (ICSTW), pp 164–167

Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to
biology, control, and artificial intelligence. MIT press, Cambridge

Iqbal MS, Kotthoff L, Jamshidi P (2019) Transfer learning for performance modeling of deep neural network
systems. In: 2019 {USENIX} conference on operational machine learning (OpML 19). pp 43–46

Jia Y (2015) Hyperheuristic search for sbst. In: Proceedings of the Eighth international workshop on search-
based software testing, SBST ’15. IEEE Press, Piscataway, pp 15–16. http://dl.acm.org/citation.cfm?
id=2821339.2821343

Jia Y, Cohen MB, Harman M, Petke J (2015) Learning combinatorial interaction test generation strategies
using hyperheuristic search. In: Proceedings of the 37th international conference on software engineering
- volume 1, ICSE ’15. IEEE Press, Piscataway, pp. 540–550. http://dl.acm.org/citation.cfm?id=2818754.
2818821

Joffe L, Clark D (2019) Directing a search towards execution properties with a learned fitness function. IEEE,
Washington

Just R, Jalali D, Ernst MD (2014) Defects4J: A database of existing faults to enable controlled testing studies
for Java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
ISSTA 2014. ACM, New York, pp 437–440. https://doi.org/10.1145/2610384.2628055

Katehakis MN, Veinott AF Jr (1987) The multi-armed bandit problem: decomposition and computation.
Math Oper Res 12(2):262–268

Kumari AC, Srinivas K (2016) Hyper-heuristic approach for multi-objective software module cluster-
ing. J Syst Softw 117:384–401. https://doi.org/10.1016/j.jss.2016.04.007. http://www.sciencedirect.com/
science/article/pii/S0164121216300231

Lindstrom B, Mrki A (2016) On strong mutation and subsuming mutants. In: 2016 IEEE Ninth international
conference on software testing, verification and validation workshops (ICSTW). pp 112–121

Luiz Jakubovski Filho H, Nascimento Ferreira T, Regina Vergilio S (2018) Incorporating user preferences
in a software product line testing hyper-heuristic approach. In: 2018 IEEE congress on evolutionary
computation (CEC), pp. 1–8

Empir Software Eng (2022) 27: 38 Page 60 of 6238

http://greggay.com/pdf/18fitness.pdf
http://greggay.com/pdf/18fitness.pdf
https://doi.org/10.1109/TSE.2015.2421011
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/2739480.2754725
https://doi.org/10.1109/BRACIS.2015.11
https://doi.org/10.1016/j.asoc.2017.03.012
https://doi.org/10.1145/2025113.2025144
http://dl.acm.org/citation.cfm?id=2821339.2821343
http://dl.acm.org/citation.cfm?id=2821339.2821343
http://dl.acm.org/citation.cfm?id=2818754.2818821
http://dl.acm.org/citation.cfm?id=2818754.2818821
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1016/j.jss.2016.04.007
http://www.sciencedirect.com/science/article/pii/S0164121216300231
http://www.sciencedirect.com/science/article/pii/S0164121216300231

Ma L, Wu P, Chen TY (2018) Diversity driven adaptive test generation for concurrent data structures. Inf
Softw Technol 103:162–173. http://www.sciencedirect.com/science/article/pii/S0950584918301356

Malburg J, Fraser G (2011) Combining search-based and constraint-based testing. In: Proceedings of the 2011
26th IEEE/ACM international conference on automated software engineering, ASE ’11. IEEE Computer
Society, Washington, pp 436–439. https://doi.org/10.1109/ASE.2011.6100092

Mariani T, Guizzo G, Vergilio SR, Pozo A (2016) Grammatical evolution for the multi-objective
integration and test order problem. In: Proceedings of the genetic and evolutionary computation
conference 2016, GECCO ’16. Association for Computing Machinery, New York, pp 1069-1076.
https://doi.org/10.1145/2908812.2908816

McMinn P (2004) Search-based software test data generation: A survey. Softw Test Verification Reliab
14:105–156

do Nascimento Ferreira T, Kuk JN, Pozo A, Vergilio SR (2016) Product selection based on upper confi-
dence bound moea/d-dra for testing software product lines. In: 2016 IEEE congress on evolutionary
computation (CEC). pp 4135–4142

Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88.
https://doi.org/10.1145/375360.375365

Ochoa G, Vazquez-Rodriguez JA, Petrovic S, Burke E (2009) Dispatching rules for production scheduling: A
hyper-heuristic landscape analysis. In: 2009 IEEE congress on evolutionary computation. pp 1873–1880.
https://doi.org/10.1109/CEC.2009.4983169

Orso A, Rothermel G (2014) Software testing: A research travelogue (2000–2014). In: Proceed-
ings of the on future of software engineering, FOSE 2014. ACM, New York, pp 117–132.
https://doi.org/10.1145/2593882.2593885

Papadakis M, Malevris N (2013) Searching and generating test inputs for mutation testing. SpringerPlus
2(1):121. https://doi.org/10.1186/2193-1801-2-121

Pezze M, Young M (2006) Software Test and Analysis, Process, Principles, and Techniques. Wiley, Hoboken
Robillard MP, Murphy GC (2000) Designing robust java programs with exceptions. In: Proceedings of the 8th

ACM SIGSOFT international symposium on foundations of software engineering: twenty-first century
applications, SIGSOFT ’00/FSE-8. ACM, New York, pp 2–10. https://doi.org/10.1145/355045.355046

Rojas JM, Campos J, Vivanti M, Fraser G, Arcuri A (2015) Combining multiple coverage criteria in
search-based unit test generation. In: Barros M, Labiche Y (eds) Search-based software engineer-
ing, lecture notes in computer science, vol. 9275. Springer International Publishing, pp 93–108.
https://doi.org/10.1007/978-3-319-22183-0 7

Rojas JM, Vivanti M, Arcuri A, Fraser G (2017) A detailed investigation of the effectiveness of whole test
suite generation. Empir Softw Eng 22(2):852–893. https://doi.org/10.1007/s10664-015-9424-2

Romano D, Penta MD, Antoniol G (2011) An approach for search based testing of null pointer exceptions. In:
2011 Fourth IEEE international conference on software testing, verification and validation, pp 160–169

Salahirad A, Almulla H, Gay G (2019) Choosing the fitness function for the job: Automated
generation of test suites that detect real faults. Softw Test Verification Reliab 29(4-5):e1701.
https://doi.org/10.1002/stvr.1701

Shahbazi A (2015) Diversity-based automated test case generation. Ph.D. thesis, University of Alberta
Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A (2015) Do automatically generated unit

tests find real faults? an empirical study of effectiveness and challenges. In: Proceedings of the 30th
IEEE/ACM international conference on automated software engineering (ASE), ASE 2015. ACM, New
York

Souza FCM, Papadakis M, Le Traon Y, Delamaro ME (2016) Strong mutation-based test data generation
using hill climbing. In: Proceedings of the 9th international workshop on search-based software testing.
ACM, pp 45–54

Strickler A, Prado Lima JA, Vergilio SR, Pozo A (2016) Deriving products for variability test of feature mod-
els with a hyper-heuristic approach. Appl Soft Comput 49:1232–1242. https://doi.org/10.1016/j.asoc.
2016.07.059. http://www.sciencedirect.com/science/article/pii/S1568494616303994

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, vol 1. MIT press, Cambridge
Sutton RS, Barto AG (2018) Reinforcement learning: An introduction, MIT press, Cambridge
Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics

of mcgraw and wong. J Educ Behav Stat 25(2):101–132. https://doi.org/10.3102/10769986025002101
Vogel T, Tran C, Grunske L (2019) Does diversity improve the test suite generation for mobile applications?

In: International symposium on search based software engineering. Springer, pp 58–74
Xu D, Shrestha R, Shen N (2020) Automated strong mutation testing of xacml policies. In: Proceedings of

the 25th ACM symposium on access control models and technologies, SACMAT ’20. Association for
Computing Machinery, New York, pp 105-116. https://doi.org/10.1145/3381991.3395599

Empir Software Eng (2022) 27: 38 Page 61 of 62 38

http://www.sciencedirect.com/science/article/pii/S09505849183 01356
https://doi.org/10.1109/ASE.2011.6100092
https://doi.org/10.1145/2908812.2908816
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/CEC.2009.4983169
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1186/2193-1801-2-121
https://doi.org/10.1145/355045.355046
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1002/stvr.1701
https://doi.org/10.1016/j.asoc.2016.07.059
https://doi.org/10.1016/j.asoc.2016.07.059
http://www.sciencedirect.com/science/article/pii/S1568494616303994
https://doi.org/10.3102/10769986025002101
https://doi.org/10.1145/3381991.3395599

Zamli KZ, Alkazemi BY, Kendall G (2016) A tabu search hyper-heuristic strategy for t-way test suite
generation. Appl Soft Comput 44(C):57–74. https://doi.org/10.1016/j.asoc.2016.03.021

Zamli KZ, Din F, Kendall G, Ahmed BS (2017) An experimental study of hyper-heuristic
selection and acceptance mechanism for combinatorial t-way test suite generation. Inf Sci
399:121–153. https://doi.org/10.1016/j.ins.2017.03.007. http://www.sciencedirect.com/science/article/
pii/S0020025517305820

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empir Software Eng (2022) 27: 38 Page 62 of 6238

https://doi.org/10.1016/j.asoc.2016.03.021
https://doi.org/10.1016/j.ins.2017.03.007
http://www.sciencedirect.com/science/article/pii/S0020025517305820
http://www.sciencedirect.com/science/article/pii/S0020025517305820

	Adaptive fitness function selection...
	Abstract
	Introduction
	We simply need to identify that selection

	Background
	Unit Testing
	Search-Based Test Generation
	Reinforcement Learning

	Technical Approach and Implementation
	Upper Confidence Bound (UCB) Algorithm
	Differential Semi-Gradient Sarsa (DSG-Sarsa)
	EvoSuite Overview
	Implementation of AFFS within EvoSuite
	Adaptations for Goal: Exception Discovery
	Fitness Function Combinations
	Reward Function
	Goals Used for Minimization and Archiving

	Adaptations for Goal: Test Suite Diversity
	New Fitness Function
	Fitness Function Combinations
	Reward Function
	Goals Used for Minimization and Archiving

	Adaptations for Goal: Strong Mutation Coverage
	Fitness Function Combinations
	Reward Function
	Goals Used for Minimization and Archiving

	Related Work
	Hyperheuristics in Search-Based Software Testing
	Crash and Exception Discovery
	Test Suite Diversity
	Strong Mutation Coverage

	Methodology
	Case Examples
	Test Suite Generation
	Data Collection

	Results and Discussion
	Goal: Exception Discovery
	Ability to Discover Exceptions
	Fault Detection Effectiveness
	Impact of Reinforcement Learning Overhead
	Actions Selected by AFFS

	Goal: Test Suite Diversity
	Ability to Improve Suite Diversity
	Fault Detection Effectiveness
	Impact of Reinforcement Learning Overhead
	Actions Selected by AFFS

	Goal: Strong Mutation Coverage
	Ability to Improve Coverage and Impact of Overhead
	Fault Detection Effectiveness
	Actions Selected by AFFS

	Discussion
	Impact of AFFS on Goal Attainment
	AFFS is an appropriate technique to apply when an effective fitness function does not already exist for the targeted goal
	AFFS requires a reward function that is fast to calculate, or requires additional time for test generation
	The effect of AFFS is limited by the span of fitness functions available to choose from

	Impact of AFFS on Fault Detection
	AFFS results in higher attainment of goals thought to have a positive relationship with fault detection
	Optimizing multiple fitness functions results in multifaceted test suites
	Optimizing too many fitness functions at once can introduce conflicts between functions and reduce attainment of individual functions
	Changing fitness functions as the suite evolves may result in better test suites

	Impact of Reinforcement Learning Overhead
	The ability to avoid calculation of unhelpful fitness functions mitigates reinforcement learning overhead
	Feedback from effective fitness functions can help control computational costs
	Expensive reward functions negatively impact AFFS

	Actions Selected by AFFS
	AFFS enables deeper understanding of the properties that improve goal attainment and how fitness functions can imbue those properties
	Fitness function combinations that are ineffective in a static context may be effective when used by AFFS to diversify a pre-evolved population of suites

	Choice of Reinforcement Learning Approach
	When AFFS Harms Goal Attainment
	Fitness functions are merged into a single score
	Methods with limited or no input

	Threats to Validity
	External Validity
	Conclusion Validity

	Conclusions
	References

