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Abstract
A Featured Transition System (FTS) models the behaviour of all products of a Software
Product Line (SPL) in a single compact structure, by associating action-labelled transitions
with features that condition their presence in product behaviour. It may however be the
case that the resulting featured transitions of an FTS cannot be executed in any product
(so called dead transitions) or, on the contrary, can be executed in all products (so called
false optional transitions). Moreover, an FTS may contain states from which a transition
can be executed only in some products (so called hidden deadlock states). It is useful to
detect such ambiguities and signal them to the modeller, because dead transitions indicate an
anomaly in the FTS that must be corrected, false optional transitions indicate a redundancy
that may be removed, and hidden deadlocks should be made explicit in the FTS to improve
the understanding of the model and to enable efficient verification—if the deadlocks in the
products should not be remedied in the first place. We provide an algorithm to analyse an
FTS for ambiguities and a means to transform an ambiguous FTS into an unambiguous
one. The scope is twofold: an ambiguous model is typically undesired as it gives an unclear
idea of the SPL and, moreover, an unambiguous FTS can efficiently be model checked. We
empirically show the suitability of the algorithm by applying it to a number of benchmark
SPL examples from the literature, and we show how this facilitates a kind of family-based
model checking of a wide range of properties on FTSs.

Keywords Software product lines · Formal specification · Behavioural model ·
Featured transition systems · Static analysis · Formal verification

1 Introduction

Software Product Line Engineering (SPLE) advocates the reuse of components (systems as
well as software) throughout all phases of product development. Following this paradigm,
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businesses today no longer develop single products, but families or product lines of closely-
related, customisable products. Upon identifying the relevant features of the product
domain, to exploit their commonality and variability, a feature diagram or feature model
defines those combinations of features that constitute valid product configurations (Apel
et al. 2013). The automated analysis of such variability models has a 30-year history (Bena-
vides et al. 2010; Thüm et al. 2014). Think, e.g., of the detection of anomalies like so called
dead or false optional features. Behavioural models with variability, on the other hand, have
a shorter history (Fischbein et al. 2006; Fantechi and Gnesi 2007, 2008; Larsen et al. 2007;
Gruler et al. 2008; Asirelli et al. 2009; Lauenroth et al. 2009) and they have received con-
siderable attention only during the last decade, following the seminal paper by Classen et al.
(2010). SPLs often concern massively (re)used critical software (e.g., in smartphones and
the automotive industry), thus it is important to demonstrate their correct behaviour next to
their correct configuration.

A Featured Transition System (FTS) is a formal model with variability for capturing
the behaviour of all products of an SPL in one compact model (Classen et al. 2013; Cordy
et al. 2019); its action-labelled transitions are associated with features that condition their
presence in product behaviour. Proving correctness of such models through model checking
or testing is challenging. Ideally, the compact structure of the FTS is exploited to reason on
the whole SPL at once. Such an all-in-one technique, according to which the behaviour of all
products is examined only once simultaneously, is called family-based analysis in contrast to
a brute force enumerative product-based analysis, according to which the behaviour of every
product is examined individually, one-by-one (Thüm et al. 2014). Over the past decade,
FTSs have shown to be amenable to family-based testing and model-checking (Kim et al.
2011; Classen et al. 2012, 2013, 2014; Cordy et al. 2013a; Devroey et al. 2014b, 2016b;
ter Beek et al. 2015b, 2017, 2020b; Dimovski et al. 2017; Dimovski and Waşowski 2017;
Dimovski 2020).

In ter Beek et al. (2019a), we tackled the automated static analysis of FTSs. We defined
the following three ambiguities for an FTS: a dead transition (i.e., a featured transition that
is unreachable, and thus cannot be executed, in any product); a false optional transition
(i.e., a featured transition that can be executed in all products in which its source state is
reachable); and a hidden deadlock state (i.e., a state from which a transition can be executed
only in some products). We developed an algorithm to detect ambiguities in FTSs (and
a means to resolve them), mimicking the well-established anomaly detection for feature
models, with a proof of its correctness. The motivations we presented in ter Beek et al.
(2019a) were twofold: an ambiguous FTS is often undesired, since it gives an unclear idea
of the SPL behaviour, and an unambiguous FTS paves the way for an efficient kind of
family-based model checking. We illustrated the latter on a few examples from the literature.

This paper extends ter Beek et al. (2019a) in the following ways.

1. We introduce an engineering methodology aimed towards providing feedback to SPL
modellers to possibly improve their FTS models and, subsequently, a strategy which
offers a number of verification options (cf. Fig. 4). A dead transition in an FTS indicates
a modelling error that must be corrected. A false optional transition indicates a redun-
dancy that may be intentional, but resolving it allows for more efficient verification
options. A hidden deadlock should be made explicit in the model to improve under-
standing and to enable an efficient kind of family-based verification—if the deadlocks
in the products that are the cause should not be remedied in the first place.

2. Driven by the need to improve the practical applicability of our automated static anal-
ysis for behavioural ambiguity detection in FTSs, we present a new algorithm (more
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efficient than that presented in ter Beek et al. (2019a)) for detecting ambiguities in FTSs
by reducing the analysis to SAT solving. In addition, we prove its correctness.

3. To demonstrate the improved practical applicability, we apply our algorithm to a larger
set of benchmark SPL examples than in ter Beek et al. (2019a), including the FTS
of the complete mine pump model of Classen (2010, 2011) and that of the Claroline
SPL of Devroey et al. (2014a) with over 10,000 transitions, both of which are not
tractable with the algorithm presented in ter Beek et al. (2019a). We empirically show
the suitability of the new algorithm by means of a clear runtime speedup.

4. We capitalise on the promise of an efficient kind of family-based model checking by
demonstrating how properties specified in either the well-known Linear-time Temporal
Logic (LTL) or in v-ACTLive�, a rich action-based and variability-aware fragment of
the well-known branching-time Computation Tree Logic (CTL), can be verified (with
a linear complexity) directly on an unambiguous FTS (ignoring its feature expres-
sions) such that validity is preserved in all LTSs modelling product behaviour. The
preservation of valid v-ACTLive� properties was anticipated in ter Beek et al. (2019a),
while the preservation of valid LTL properties was not observed before. These results
imply the addition of two efficient verification options to the above mentioned strategy
provided to SPL modellers (cf. Fig. 4).

Outline After mentioning some related work in Section 2 and providing some background
in Section 3, we provide our engineering methodology in Section 4 by defining ambigui-
ties in FTSs and providing a means to resolve them. In Section 5, we present the new static
analysis algorithm to detect ambiguities in FTSs, based on SAT solving, and prove its cor-
rectness. In Section 6, we empirically show the suitability of the new algorithm by applying
it to a number of exemplary FTSs from the literature. In Section 7, we show the feasibility
of an efficient kind of family-based model checking of FTSs made possible by the static
analysis algorithm. Finally, we conclude the paper in Section 8.

2 Related work

Static analysis of FTSs mimics the automated analysis of feature models by defining
behavioural counterparts of dead and false optional features (Benavides et al. 2010; Thüm
et al. 2014). It is related to static (program) analysis (Nielson et al. 2005; Chess and West
2007), which includes the detection of bugs in the code (like using a variable before its
initialisation) but also the identification of code that is redundant or unreachable.

In Kim et al. (2011), conventional static analysis techniques are applied to SPLs that are
represented in the form of object-oriented programs with feature modules. The aim is to
find irrelevant features for a specific test in order to use this information to reduce the effort
in testing an SPL by limiting the number of SPL programs to examine to those with relevant
features. In Bodden et al. (2013), several well-known static analysis techniques are lifted
to Java-based SPLs without the exponential blowup caused by generating and analysing
all products individually. This is achieved by converting such analyses to feature-sensitive
analyses that operate on the entire SPL code in one single pass. Basically, if the original
analysis reports that a data-flow property holds at a given program statement, then the lifted
analysis reports a feature constraint (a logical expression over the set of features) under
which that property holds at the given statement.

In Kästner and Apel (2008), static type checking is extended from single programs to an
entire SPL (program family) by extending the type system of a subset of Java with feature
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annotations. This guarantees that whenever the SPL is well-typed, then all possible program
variants are well-typed as well, without the need to generate and compile them first.

In Delaware et al. (2009), type-checking for product lines is mechanised and sound-
ness of a constraint-based type system for Lightweight Feature Java (LFJ), an extension of
Lightweight Java with support for features, is proved using a full formalisation of LFJ in
the Coq proof assistant (Bertot and Castéran 2004).

An encompassing overview of analysis strategies for SPLs, including type checking,
static analysis, model checking, and theorem proving, can be found in Thüm et al. (2014)
and a recent empirical study on applying variability-aware static analysis techniques to real-
world configurable systems is presented in von Rhein et al. (2018).

Family-based model checking of behavioural SPL models provides a means to simultane-
ously verify multiple behavioural product models in a single run. Properties can be verified
with dedicated SPL model-checking tools such as SNIP (Classen et al. 2012, 2013, ProVe-
Lines (Cordy et al. 2013a), VMC (ter Beek et al. 2012, 2016a; ter Beek and Mazzanti 2014),
fNuSMV (Classen et al. 2014; Dimovski et al. 2019), ProFeat (Chrszon et al. 2018) (for
probabilistic model checking), or QFLan (ter Beek et al. 2020a; Vandin et al. 2018) (for sta-
tistical model checking), or—through suitable abstractions or encodings—with well-known
classical model checkers like SPIN (Dimovski et al. 2015, 2017; Dimovski and Waşowski
2017), PRISM (Dubslaff et al. 2015) (for probabilistic model checking), Maude (Lochau
et al. 2016), mCRL2 (ter Beek et al. 2017, 2020b), or NuSMV (Dimovski 2020).

In this paper, we introduce an engineering methodology that enables a kind of family-
based model checking for FTSs, according to a strategy that is sketched in Fig. 4 (the part
that is not in red). This figure will be discussed in more detail in Sections 4 and 7. The
strategy that is sketched is as follows. If (i) the FTS is live, which is the case whenever it has
no hidden deadlocks (so, unambiguous FTSs are live), and (ii) the property φ to be verified
is specified in either LTL or v-ACTLive�, then φ can be verified directly on the FTS (by
ignoring its feature expressions) and if (iii) φ holds, this validity is preserved in all LTSs
modelling product behaviour, i.e. φ holds for all products. If any of these three conditions
does not hold, the property needs to be verified with classical (family-based) approaches,
such as the ones mentioned above.

The verification methodology depicted in Fig. 4 thus indicates specific cases in which
verification of live FTSs reduces to verification of corresponding MTSs and LTSs (which,
as we will see, can be obtained straightforwardly by ignoring the feature expressions, and
distinguishing necessary and optional transitions in case of MTSs) with a linear complexity.

However, if either (i) the property to be verified is not a v-ACTLive� or LTL formula,
or (ii) the result of the verification is false, then the formula needs to be verified with clas-
sical family-based model checking or by means of product-based model checking, with an
exponential complexity (Classen et al. 2013, 2014).

3 Background

In this section, we provide some background needed for the sequel. Labelled Transition
Systems (LTSs) are the underlying behavioural structure of FTSs.

Definition 1 (LTS) A Labelled Transition System (LTS) is a quadruple L = (S,Σ, s0, δ),
where S is a finite (non-empty) set of states, Σ is a set of actions, s0 ∈ S is an initial state,
and δ ⊆ S × Σ × S is a transition relation.
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We call (s, a, s′) ∈ δ an a-(labelled) transition (from source state s to target state s′) and
we may also write it as .

We recall classical notions for LTSs that will be used throughout the paper.

Definition 2 (reachability) Let L = (S,Σ, s0, δ) be an LTS.
A sequence p = s0t1s1t2s2 · · · is a path of L if ti = (si−1, ai, si) ∈ δ for all i > 0; p is

said to visit states s0, s1, . . . and transitions t1, t2, . . . and we denote its ith state by p(i) and
its ith transition by p{i}.

A state s ∈ S is reachable (via p) in L if there exists a path p that visits it, i.e., p(i) = s

for some i ≥ 0; s is a deadlock if it has no outgoing transitions, i.e., � (s, a, s′) ∈ δ, for all
a ∈ Σ and s′ ∈ S.

A transition t = (s, a, s′) ∈ δ is reachable (via p) in L if there exists a path p that visits
it, i.e., p{i} = t , for some i > 0.

Example 1 In Fig. 1, we depict the LTSs L1 and L2, modelling the behaviour of two dif-
ferent coffee machines, adapted from ter Beek et al. (2017, 2019a). Each LTS has actions
to insert coins (ins) and to pour either standard (std) or extra large (xxl) coffee upon the
insertion of one or two coins, respectively. Clearly all states are reachable and there are no
deadlocks.

FTSs were introduced in Classen et al. (2010) to concisely model the behaviour of all the
products of an SPL, modelled as LTSs, in one transition system by annotating transitions
with conditions expressing their presence in (product) LTSs. Let B = {�, ⊥} denote the
Boolean constants true (�) and false (⊥), and let B(F ) denote the set of propositional
formulas over a set of features F (i.e., using features as propositional variables). We do not
formalise a language for propositional formulas in order to allow the inclusion of all possible
propositional connectives but, in particular, we include the constants from B. The elements
of B(F ) are also called feature expressions. An FTS is an LTS equipped with a feature
model and a function that labels each transition with a feature expression. In the following
definition, the feature model is represented by the set of its (product) configurations, where
each configuration is represented by a Boolean assignment to the features (i.e., selected =
� and unselected = ⊥).

Definition 3 (FTS) A Featured Transition System (FTS) is a sextuple F =
(S,Σ, s0, δ, F, �), where S is a finite (non-empty) set of states, Σ is a set of actions, s0 ∈ S

is the initial state, δ ⊆ S × Σ ×B(F ) × S is a transition relation, F is a set of features, and
� ⊆ { λ : F → B } is a set of (product) configurations.

Fig. 1 LTSs L1 and L2 modelling coffee machines
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Given a feature expression φ ∈ B(F ), we call (s, a, φ, s′) ∈ δ featured transition
(labelled with a and limited to configurations satisfying φ) and (s, a, �, s ′) ∈ δ must

transition. We may write featured transitions as .

The notions from Definition 2 (path, reachability, deadlock) are carried over to FTSs by
ignoring the feature expressions.

A configuration λ ∈ � satisfies a feature expression φ ∈ B(F ), denoted by λ |= φ,
whenever φ is valid in the interpretation λ, i.e., the result of substituting the value of the
features occurring as variables in φ according to λ is �. Thus, by definition, λ |= �.

Without loss of generality, in the sequel we only consider FTSs that do not contain two

featured transitions and such that φ 	= φ′. Any FTS that does not
satisfy this criterion can be transformed into one that does by replacing the two transitions

with one featured transition .

Definition 4 (product) Let F = (S,Σ, s0, δ, F, �) be an FTS.
The LTS specified by a particular configuration λ ∈ �, denoted by F |λ, is called a

product of F . It is obtained from F by first removing all featured transitions whose feature
expressions are not satisfied by λ (resulting in the LTS (S,Σ, s0, δ

′), with δ′ = { (s, a, s′) |
(s, a, φ, s′) ∈ δ and λ |= φ}), and then removing all unreachable states and their outgoing
transitions.

Given a featured transition (s, a, φ, s′) ∈ δ, we call (s, a, s′) ∈ δ′ its corresponding
(LTS) transition. The set of products of F is denoted by lts(F).

Note that, by construction: (i) each product does not contain unreachable states or tran-
sitions, (ii) each must transition of the FTS has a corresponding transition in the products
in which it is reachable, (iii) each product does not contain states or actions that were not
originally present in the FTS, and (iv) each featured transition has a unique corresponding
LTS transition when its source state is reachable.

The feature model expression of F , denoted by FMF , is a feature expression that rep-
resents � (like, e.g., the formula in conjunctive normal form

∨
λ∈� (

∧
f ∈F ({ f | λ(f ) =

� } ∪ {¬f | λ(f ) =⊥})). Thus, for all λ : F → B it holds that λ |= FMF if and only if
λ ∈ �. We may write FM instead of FMF if no confusion can arise.

Example 2 In Fig. 2, we depict an FTS F modelling the behaviour of the two coffee
machines from Example 1 as a product line of coffee machines, adapted from ter Beek
et al. (2017, 2019a). Imagine that extra large coffee is exclusively available for the Ameri-
can market, while standard coffee is exclusively available for the European market. To this
aim, F has transitions labelled with features $ and e, representing products for either the
American or the European market, respectively, and a must transition that must be present
in every product. Its feature model, depicted in Fig. 3(left), can be represented by the feature

Fig. 2 FTS F modelling a
product line of coffee machines
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Fig. 3 Feature models of product line of coffee machines (left), with a dead feature (middle), and with a false
optional feature (right)

expression FMF = $ ⊕ e, where ⊕ denotes the exclusive disjunction operation. Hence the
product configurations of F are � = {λ1, λ2}, where λ1($) = ⊥, λ1(e) = �, λ2($) = �,
and λ2(e) = ⊥. The LTSs F |λ1 = L1 and F |λ2 = L2, depicted in Fig. 1, model the
behaviour of the only two products of F : configuration λ1 for the European market and λ2
for the American market.

Parallel composition of FTSs is equal to the classical parallel composition of LTSs mod-
ulo projection (Classen 2011, 2013). Intuitively, parallel composition partially interleaves
the transitions of the LTSs, permitting asynchronous execution of their actions, except
for those with shared actions, which are synchronised, thus only permitting execution of
their actions at the same time. In case of FTSs, the feature expressions of synchronised
transitions are conjuncted,1 while each interleaved transition simply maintains its feature
expression (Classen 2011; Classen et al. 2013).

4 Ambiguities in FTSs

When applying automated analysis of feature models, the better known analysis operations
that are typically being performed concern the detection of anomalies (cf., e.g., Benavides
et al. 2010; Thüm et al. 2014). These anomalies reflect ambiguous or even contradictory
information. Examples include so-called dead and false optional features. A feature is dead
if it is not contained in any product configuration of the FTS, whereas it is false optional
if it is contained in all product configurations of the FTS even though it is not a designated
mandatory feature. Such anomalies are typically due to an incorrect use of cross-tree con-
straints. Consider the feature models depicted in Fig. 3. The one on the left corresponds to
the feature model expression $⊕e from Example 2 and it has neither dead nor false optional
features. The one in the middle corresponds to the feature model expression $ ∧ ($ ↑ e),
where ↑ is the negation of conjunction (a.k.a. not and), and it has a dead featuree, indicated
in red, because this optional feature is excluded by the mandatory feature $ and thus never
present. The feature model on the right, finally, corresponds to the feature model expression
$ ∧ ($ → e), meaning that e is false optional, indicated in red, because it is required by
the mandatory feature $ and as such always present.

In this section, we formalise equivalent notions in a behavioural setting, by adapting
the above notions to (featured) transitions of an FTS (Section 4.1). Furthermore, we define
ambiguous FTSs and we show how to transform any ambiguous FTS into an unambigu-
ous one (Section 4.2). This constitutes our envisioned engineering methodology, which is

1We foresee an optimisation of conjuncted feature expressions to foster useful output (e.g., the synchronisa-
tion of two must transitions could lead to a conjuncted feature expression � ∧ �, which would technically
not be a must transition according to Definition 3 and could thus be detected as a false optional transition, as
we will see in Definition 6(ii).
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sketched in Fig. 4 (the top-right red part) together with a number of verification options (the
part of Fig. 4 that is not red) organised in a strategy that was briefly outlined in Section 2 and
which will be discussed in more detail in Section 7. This engineering methodology improves
the clarity of behavioural SPL models, which is one of the contributions of this paper.

4.1 Behavioural ambiguities

Recall from Definition 4 that all states of a (product) LTS of an FTS are reachable from the
initial state.

Definition 5 (dead transition) We say that a transition (of an FTS) is dead to mean that in
all the FTS’s products the corresponding (LTS) transition is not reachable.

Clearly, since an FTS is intended to compactly represent the behaviour of all products of
a product line, a dead transition in an FTS indicates a modelling error that must be signalled
to the modeller so it can be corrected. Such correction can mean removing the transition or
changing its feature expression.

Definition 6 (false optional transition) We say that a transition (of an FTS) is false optional
to mean that: (i) it is not dead, (ii) it is not annotated with the feature expression �, and
(iii) its corresponding (LTS) transition is present in all the FTS’s products in which its source
state is present.

Definition 6 is a slightly revised version of that of ter Beek et al. (2019a, Def. 3.2), in
which condition (i) was not explicitly required. Note that condition (iii) does not imply

Fig. 4 Engineering methodology (top-right red part) and verification options (not in red)
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condition (i). In fact, condition (i) requires the source state of the considered transition to
be present (i.e., reachable) in at least one product of the FTS, which is not guaranteed by
condition (iii).

A false optional transition in an FTS indicates a redundancy, in the sense that the asso-
ciated feature expression can be replaced by � without changing the behaviour of any of
the products of the product line. This redundancy may be intentional syntactic sugar, to
underline the fact that the considered transition is part of the behaviour of those product
configurations that satisfy the feature expression, but otherwise it may be useful for the mod-
eller to know. Moreover, as we will see in Section 7, substitution of the feature expression
with � allows for more efficient verification because it results in one more must transition,
and thus one less feature expression to be evaluated.

Example 3 In Fig. 5(left), we depict an FTS F with features f1 and f2 and feature model
FM = f1 ⊕ f2. The LTSs F |λ1 and F |λ2 , depicted in Fig. 5(middle and right), model the
behaviour of its two valid product configurations: λ1 ={f1} and λ2 ={f2}. We immediately

see that transition is dead and transition is false optional.

An important safety property of systems concerns deadlock freedom, i.e., the system
should not reach a state in which no further action is possible, thus guaranteeing progress
or liveness (Alpern and Schneider 1985; Manna and Pnueli 1995). In case of configurable
systems (like FTSs) this notion can be extended to guaranteeing liveness for each product
variant (LTS).

In order to express this notion in the context of FTSs, we introduce the following defini-
tion (recall from Section 3 that a state of an FTS is said to be a deadlock if it has no outgoing
transitions).

Definition 7 (hidden deadlock state) We say that a state (of an FTS) is a hidden deadlock
to mean that: (i) it is not a deadlock in the FTS, whereas (ii) it is a deadlock in at least one
of the FTS’s products (LTSs).

Note that, because of condition (ii) in Definition 7, hidden deadlock states of an FTS are
present in one or more of its (product) LTSs.

A hidden deadlock in the FTS should definitely be signalled to the modeller, so it can be
checked whether the deadlocks in the LTSs should be remedied. If they should not, i.e., if
the deadlocks in the LTSs are intended or unavoidable, then this should be made explicit in
the FTS to improve understanding. Moreover, as we will see below, this enables a kind of
family-based verification.

Definition 8 (ambiguous FTS) We say that an FTS is ambiguous to mean that: (i) at least one
of its states is a hidden deadlock, or (ii) at least one of its transitions is dead or false optional.

Fig. 5 FTS F and its product LTSs F |λ1 and F |λ2
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Example 4 It is easy to see that state of the FTS F depicted in Fig. 5(left) is a hidden
deadlock state, because is a deadlock in the LTS F |λ1 . Indeed, F is an ambiguous FTS
(cf. also Example 3).

Now consider the ambiguous FTS F ′ depicted in Fig. 6(left) with features f1 and f2 and
feature model FM = f1 ⊕ f2.

The LTSs F ′|λ1 and F ′|λ2 , depicted in Fig. 6(middle and right), model the behaviour
of its two valid product configurations: λ1 = {f1} and λ2 = {f2}. Similar to Example 3,

transition is dead. However, transition is no longer false optional,
since it is indeed not present in F ′|λ2 even though its source state s1 is reachable in that
LTS. Moreover, not only state is a hidden deadlock (for the same reason as above) but so
is state , since it is a deadlock in F ′|λ2 . Hence also F ′ is ambiguous.

In Definition 8, an FTS is said to be ambiguous if it has a hidden deadlock state or a dead
or false optional transition. We can imagine further ambiguities. For instance, consider for

a moment an FTS with the two ‘nearly’ duplicate transitions and
(such FTSs are generally not considered in this paper, cf. Section 3). Then the second
transition is redundant, since the validity of its feature expression implies that of the first
transition, meaning that the second transition adds no behaviour. This clearly represents a
kind of ambiguity, since looking at that second transition in isolation it would seem that
execution of a requires the presence of features f and g, while actually the presence of f

suffices.
Clearly, it is unlikely that systems over a certain size are modelled as single mono-

lithic FTSs. Typically, (large) systems are designed in a modular way, as a composition of
(smaller) components. We will see examples of such systems in Section 6. Our engineering
methodology goes into that direction. The feedback that our analysis provides to the mod-
ellers offers them a means to revise their (small) models before composing these models to
form (larger) systems.

4.2 Resolving ambiguities

The initial part of our engineering methodology (i.e., the top-right red part of Fig. 4) con-
cerns checking for ambiguities. Next to providing feedback to the modeller, it is important
to know how to resolve ambiguities in an FTS. A dead transition could simply be removed,
but this might not be the right thing to do, since the modeller may simply have made a
mistake in the behavioural model or in the feature model. Likewise for a false optional tran-
sition, which however could also be intentional, to make explicit that the (corresponding)
transition is part of the behaviour of those product configurations that satisfy the associ-
ated feature expression. Finally, a hidden deadlock should either be made explicit in the
FTS, which can be done by adding a deadlock state to the FTS, or the deadlocks in the
LTSs should be remedied—again by changing the behavioural model or the feature model.

Fig. 6 FTS F ′ and its product LTSs F ′|λ1 and F ′|λ2
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Fig. 7 Unambiguous FTSs obtained from the FTSs of Figs. 5 and 6

Hence, based on the detailed feedback obtained, the modeller can iteratively improve and
check the FTS until the FTS is either unambiguous or ambiguous, but such that it is the FTS
as intended by the modeller.

In the latter case, according to the above recipes, any ambiguous FTS can be straightfor-
wardly turned into an unambiguous FTS by the following transformation:

1. remove the dead transitions;
2. turn the false optional transitions into must transitions; and
3. make explicit the hidden deadlocks by adding to the set of states S of the FTS a dis-

tinguished deadlock state s† /∈ S and, for each hidden deadlock state s, adding a new
transition (which we call a deadlock transition) with s as source, s† as target, and
labelled by a distinguished action † /∈ Σ and by a feature expression that negates the
disjunction of the feature expressions of all its source state’s outgoing transitions.

Note that step (3) needs to be performed only for those hidden deadlock states that have
not yet become explicit deadlock states upon the removal of dead transitions in step (1).

Example 5 In Fig. 7(left), we depict an unambiguous FTS F∗ that was obtained by trans-

forming the ambiguous FTS F of Fig. 5. We removed dead transition and false

optional transition was turned into must transition . Note that in this
case there was no need to add a deadlock transition from the hidden deadlock state to a
newly added explicit deadlock state, since has become an explicit deadlock state in the

FTS upon removal of the dead transition .
In Fig. 7(right), we depict an unambiguous FTS F ′∗ that was obtained by transforming

the ambiguous FTS F ′ of Fig. 6 as follows. We removed the dead transition

and we added the deadlock transition from the hidden deadlock state to the
newly added explicit deadlock state . Note that in this case, without adding this deadlock
transition, state would have remained a hidden deadlock state in F ′∗.

Note that the addition of explicit deadlock states and transitions does not preserve
bisimilarity (nor trace equivalence), which means that resolving the ambiguities does not
guarantee that the properties of the original FTS are maintained.2 However, if a modeller
decides to resolve ambiguities in an FTS (as signalled by our static analysis) through the
introduction of explicit deadlock states and transitions, then even though the resulting FTS
is no longer bisimilar to the original one, it has gained in clarity. Furthermore, as anticipated

2A property can still be verified by minor modifications of the formula (e.g., by expressing the v-ACTLive�
formula EF [¬a]� as EF [¬a ∧ ¬†]� or the LTL formula © � as © ¬†).
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earlier, a kind of family-based verification on the improved FTS becomes available to the
modeller, according to the strategy outlined in Fig. 4.

As said before, an ambiguous FTS may be due to a mistake of the modeller in defining
the feature model, in particular in the case of large feature models with many cross-
tree constraints. Here we provide a small example, leaving more meaningful examples to
Section 6.

Example 6 Consider again the FTS F depicted in Fig. 5(left), but now with feature model
FM = f1 → f2, i.e. the presence of feature f1 requires that of f2. In this case, the
LTS F |λ1 has two further a-transitions, viz. loops in states s0 and s2, meaning that F no
longer exhibits neither dead transitions nor hidden deadlock states—only the false optional

transition remains (cf. Examples 3 and 4).

5 Detecting ambiguities

In this section, we present an algorithm to detect behavioural ambiguity. It relies on express-
ing the conditions of being a hidden deadlock state, a dead transition, or a false optional
transition in an FTS as propositional formulas (in which the names of the FTS’s features,
states and transitions are used as propositional variables), thus reducing FTS ambiguity
detection to solving a set of SAT problems (Cook 1971) (i.e., to decide whether a given
propositional formula is satisfiable). While SAT solving is well known to be NP-complete,
SAT solvers are widely used for all kinds of static analysis on feature models with a sur-
prising effectiveness even for models with hundreds of thousands of clauses and tens of
thousands of variables (Mendonca et al. 2009; Liang et al. 2015).

To this aim, our implementation exploits an automatic SAT solver. SAT solving is an
active field of research (Heule et al. 2021; Bjørner et al. 2015; Hutter et al. 2017; Audemard
et al. 2016) and tools exist that compute, more or less efficiently, a solution for an input
formula, or fail if the formula is not satisfiable. Hence, by feeding the formula encoding an
ambiguity question to a SAT solver, we can obtain an answer to it. In our implementation, we
use the Z3 SMT solver (de Moura and Bjørner 2008) (that includes a SAT solver) developed
by Microsoft Research and freely available under the MIT license. The python code of our
implementation is publicly available (ter Beek et al. 2019c); it accepts FTSs in the format
.dot as input and all example models used in the remainder of this paper are provided.

5.1 FTS representation

Our algorithm assumes that the considered FTS is represented by the global data structure
fts that includes four fields:

1. states stores the set of all states in the FTS;
2. transitions stores the set of all transitions in the FTS;
3. initial stores the initial state of the FTS;
4. fm stores the formula FM (introduced before Example 2 in Section 3), which is a

formula in B(F ) that represents the feature model of the FTS.

Each state is represented by a data structure that includes three fields:

1. in trs stores the set of incoming transitions of this state;
2. out trs stores the set of outgoing transitions of this state;
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3. hdead is a Boolean flag used to record whether this state is a hidden deadlock.

Each transition is represented by a data structure that includes four fields:

1. bx stores the feature expression labelling the transition, i.e., a propositional formula in
B(F );

2. source stores the source state of the transition;
3. dead is a Boolean flag used to record whether this transitions is dead;
4. false opt is a Boolean flag used to record whether this transitions is false optional.

The Boolean flags in each state (field hdead) and transition (fields dead and false opt
are used to record the results of the analysis (i.e., the output of the algorithm); their initial
values are immaterial.

5.2 Propositional formulas expressing the conditions to be checked

Let F = (S,Σ, s0, δ, F, �) be an FTS. Let T be the set of the names of the transitions of the
FTS. In this section, we introduce propositional formulas on B(F ∪ S ∪ T ) that express the
conditions of being a hidden deadlock state, a dead transition, or a false optional transition
in the FTS.

Recall that an interpretation for a propositional formula in B(F ∪ S ∪ T ) is a function
I : (F ∪S ∪T ) −→ {�,⊥}. We say that a state or transition is selected in an interpretation
to mean that the associated propositional variable gets value � and, on the other hand, we
say it is deselected in an interpretation to mean that the associated propositional variable
gets value ⊥.

Notation 1 For the sake of simplicity, we abuse the notation of data structures for states
and transitions (cf. Section 5.1). We use fts.states as an alternative name for S, and
use fts.transitions as an alternative name for T . We use fts.initial to refer to
the initial state s0, use s ∈ fts.states and s = t.source (where t ∈ T ) to refer to the
corresponding state (an element of S), and use t ∈ fts.transitions, t ∈ s.in trs,
and t ∈ s.out trs to refer to the corresponding transition (an element of T ).

Let inner states denote the set fts.states\{fts.initial}. An initial path
is a path that starts from the initial state.

We first introduce some propositional formulas that, together with the formula fts.fm,
allow us to formalise the conditions that grasp the initial paths in the FTS’s products.

– φinitial is the formula fts.initial (i.e., the name of the initial state). This
formula is valid in an interpretation I iff I selects the initial state.

– φinner is the formula
∧

s∈inner states(s ⇒ atLeastOneTransition-
Of(s.in trs)), where atLeastOneTransitionOf(X) is a placeholder for

∨
t∈X

(t .bx ∧ t ∧ t .source). This formula is valid in an interpretation I iff I selects only
states that are reachable via selected transitions, with valid (in I) feature expressions,
that are outgoing from selected states.

– φsingle is the formula
∧

s∈fts.states atMostOneOf(s.out trs), where
atMostOneOf(X) is a placeholder for

∧
t∈X t ⇒ (

∧
t ′∈X\{t} ¬t ′). This formula is

valid in an interpretation I iff I selects at most one outgoing transition, for each state
(selected or not).

– end(s) is the formula s ∧ (
∧

t∈s.out trs ¬t). This formula is valid in an interpretation
I iff I selects the state s and deselects all outgoing transitions from that state.
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Next, we focus our attention on the conjunction of the above formulas.

– is useful state(s) is the formula fts.fm ∧ φinitial ∧ φinner ∧ φsingle ∧ end(s).
This formula is satisfiable (i.e., valid in some interpretation I) iff in at least one LTS
product there is a simple path (i.e., a path with no repeated states) that starts from the
initial state and ends in s.3

Example 7 Consider the FTS on the right.

It has no features and just one product configuration (represented by the mapping from
the empty set to B) which yields the LTS consisting of the initial state s0. Therefore,
fts.fm = �. States s and s1 are not useful (since they are not reachable from s0) and,
accordingly, the formulas is useful state(s) and is useful state(s1) are not sat-
isfiable. To see this, let t be the transition from s1 to s and let t1 be the transition from s1 to
s1.

– To satisfy is useful state(s) requires to assign � to s (because end(s) must be
satisfied), which in turn requires to assign � to both t and s1 (because φinner must be
satisfied), which in turn requires to assign ⊥ to t1 (because φsingle must be satisfied,
viz. only t can exit s1), which in turn implies that φinner cannot be satisfied (because at
least one transition has to enter s1) and therefore is useful state(s) cannot be satisfied.

– To satisfy is useful state(s1) requires to assign � to s1 and ⊥ to t1 (because
end(s1) must be satisfied), which in turn implies that φinner (and therefore
is useful state(s1)) cannot be satisfied.

We can straightforwardly define the formulas for checking the behavioural ambiguities
by exploiting the formula is useful state(s).

– exists deadlock(s) is the formula is useful state(s)∧∧
t∈s.out trs ¬t .bx. This formula

is satisfiable iff, in at least one LTS product, the state s is a deadlock—thus if s is not a
deadlock in the FTS, then s is a hidden deadlock (cf. Definition 7).

– is not dead transition(t) is the formula is useful state(t.source)∧
t .bx. This formula is satisfiable iff the transition t is not dead (cf. Definition 5).

– may be opt transition(t) is the formula is useful state(t .source) ∧
¬t .bx. This formula is satisfiable iff the LTS transition corresponding to transition t

(of the FTS) is not present in at least one of the FTS’s products in which its source state
is present—thus if t is not dead, then t is not false optional (cf. Definition 6).

Example 8 Consider the FTS F of Example 3. Let t0, t1, t2, and t3 be the transitions

, , , and , respectively.
We have that the formula is not dead transition(t3) is not satisfiable (therefore

t3 is dead) and the formula exists deadlock(s2) is satisfiable (therefore state s2 is a hidden
deadlock).

Moreover, the formula is not dead transition(t2) is satisfiable (therefore t2 is
not dead) and the formula may be opt transition(t2) is satisfiable (therefore t2 is
false optional).

3Note that there could be interpretations that fulfill is useful state(s) and include also non-initial
paths, but in any case s must still be reachable by an initial path that is within the interpretation.
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Consider the FTS F ′ of Example 4. Let t0, t1, t2, and t3 be the transitions ,

, , and , respectively.
We have that the formula is not dead transition(t3) is not satisfi-

able (therefore t3 is dead). Moreover, both formulas exists deadlock(s1) and
exists deadlock(s2) are satisfiable (therefore both s1 and s2 are hidden deadlocks).

We denote by λI the restriction of the interpretation I to features.
The following lemma formally states the meaning of the five components of the formula

is useful state(s).

Lemma 1 Let fts be the global data structure that represents the FTS F = (S,Σ, s0,

δ, F,�) and let I be an interpretation. Then

1. I |= fts.fm iff λI ∈ �.
2. I |= φinitial iff I(fts.initial) = �.
3. I |= φinner iff, for all s ∈ inner states, if I(s) = � then there is at least a

transition t ∈ s.in trs such that: I |= t .bx, I(t) = �, and I(t .source) = �.
4. I |= φsingle iff, for all s ∈ inner states, there is at most one transition t ∈

s.out trs such that I(t) = �.
5. I |= end(s) iff, I(s) = � and I(t) =⊥, for all t ∈ s.out trs, where s ∈

fts.states.

Proof Straightforward.

The next lemma formally states the meaning of the formula is useful state(s).

Lemma 2 Let fts be the global data structure that represents the FTS F = (S,Σ, s0,

δ, F,�) and let s′ be a state of F .
Then the formula is useful state(s′) is satisfiable iff there are an interpretation I
and an initial path P of F ending in s′ such that λI ∈ � and

1. I(s) = �, for each state s visited by P, and
2. I(t) = � and λI |= t .bx, for each transition t visited by P.

Proof We consider first the direction from right to left. Let I be an interpretation and P an
initial path of F ending in s′ such that λI ∈ � and conditions (1) and (2) hold. Consider the
interpretation I0 that maps to ⊥ all the states and transitions that are not in P and behaves as
I on all other arguments. Then it is immediate to check that I0 |= is useful state(s′)
holds (i.e., is useful state(s′) is satisfiable).

Consider now the other direction. Let I ′ be an interpretation satisfying
is useful state(s′), i.e., such that I ′ |= fts.fm, I ′ |= φinitial, I ′ |= $φinner,
I ′ |= φsingle, and I ′ |= end(s′) hold.

Immediately, λI′ ∈ � follows from I ′ |= fts.fm, while I ′(fts.initial) = � and
I ′(s′) = � follow from I ′ |= φinitial and I ′ |= end(s′), respectively.

Then the proof follows by induction on the number n of states selected by I ′ (note that
n must be at least one, since fts.initial is always selected).

– If n = 1, then we are selecting only one state, i.e., s′ and the initial state coincide.
Hence, the initial path is just s′ and the proof that conditions (1) and (2) hold is immediate.

Page 15 of 43    10Empir Software Eng (2022) 27: 10



– Let n > 1. If s′ is the initial state, then the proof is immediate (as for the case n = 1).
Thus, let s′ be different from the initial state. We know that s′ is selected in whatever
interpretation satisfying is useful state(s′). By Lemma 1(3), we know that there
are m ≥ 1 transitions {t1, . . . , tm} ∈ s.in trs such that I ′ |= ti .bx, I ′(ti ) = �, and
I ′(ti .source) = �. Moreover, we know that s′.out trs = ∅ by Lemma 1(5).

Let I0 be the interpretation that maps {s′, t1, . . . , tm} in ⊥ and behaves as I ′ on
all other arguments. For all transitions ti , we have that I0 |= end(ti .source) holds,
because by Lemma 1(3) there is at most a selected transition outgoing from ti .source
in I ′ and we deselected it. Moreover, I0 |= fts.fm, I0 |= φinitial, I0 |= φinner,
and I0 |= φsingle hold. Therefore I0 |= is useful state(ti .source) holds.

By induction we have that there are a configuration λI0 ∈ � and a selected initial
path P0 of F |λI0

that reaches t1.source and (together with I0) satisfies conditions (1)
and (2). Clearly, λI0 = λI′ (by construction of I0). Extending P0 with the transition
t1 and the state s′, we obtain an initial path P′ that reaches s′ and (together with I ′)
satisfies conditions (1) and (2).

Finally, the following theorem formally states the correctness of the
formulas exists deadlock(s), is not dead transition(t), and
may be opt transition(t).

Theorem 1 (correctness of the formulas for checking the behavioural ambiguities) Let fts
be the global data structure representing the FTS F = (S,Σ, s0, δ, F, �) and let s be a
state of F . Then

1. The formula exists deadlock(s) is satisfiable iff there is a configuration λ ∈ �

such that the state s is a deadlock in F |λ.
2. The formula is not dead transition(t) is satisfiable iff there is a configuration

λ ∈ � such that the LTS transition corresponding to transition t is reachable in F |λ.
3. The formula may be opt transition(t) is satisfiable iff there is a configuration λ ∈ �

such that the state t .source is reachable in F |λ and the LTS transition corresponding
to transition t is not reachable in F |λ.

Proof Straightforward from Lemma 2.

5.3 Algorithms

The algorithm in Listing 1 below uses the function check to verify whether a propositional
formula φ is satisfiable, namely to verify the existence of an interpretation (an assignment
of truth values to propositions in B(F ∪ S ∪ T )) that makes the formula valid. This is the
core functionality of all SAT solvers.

Theorem 2 (correctness of the ambiguities discovery algorithm) Let fts be a data struc-
ture representing an FTS. The execution of the algorithm in Listing 1 terminates and at the
end of the execution the following holds.

1. For each state s,
if s is a hidden deadlock, then s.hdead = True; otherwise s.hdead = False.

2. For each transition t ,
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Listing 1 Ambiguities discovery algorithm

(a) if t is dead, then t .dead = True; otherwise t.dead = False;
(b) if t is false optional, then t .false opt = True; otherwise t .false opt =

False.

Proof Correctness of the formulas exists deadlock(s), is not dead transition(t),
and may be opt transition(t) is stated by Theorem 1.

The algorithm first detects all the hidden deadlocks (lines 3–7, where the test in line 4
detects the states that are deadlocks in the FTS), thus establishing the invariant in lines 9–10.

Then it detects all the dead transitions and all the false optional transitions (lines 12–18,
where the test in line 15 detects the dead transitions that cannot be false optional because
they are dead or labelled with �), thus establishing the invariant in lines 20–21 while
keeping the invariant in lines 9–10 (since the Boolean flags hdead of the states are not
modified).

The termination of the algorithm is straightforward since the number of states and
transitions of the FTS is finite.

It is worth observing that, whenever one is only interested in detecting the hidden dead-
locks, it is enough to run only the first part (lines 1–10) of the algorithm in Listing 1: this
part represents a specialised algorithm that only detects hidden deadlocks.

Remark 1 (The FTS ambiguity detection problem is NP-complete) For every propositional
formula φ with variables in F , the FTS

is such that its (unique) transition is: (i) dead if and only if φ is not satisfiable (i.e. ¬φ is
valid); and (ii) false optional if and only if ¬φ is not satisfiable (i.e. φ is valid). Moreover,
state s0 is a hidden deadlock if and only if φ is not satisfiable. Thus, the FTS ambiguity
detection problem is NP-hard. Moreover, the algorithm in Listing 1 can be transformed into
an algorithm that, given the data structure fts (cf. Section 5.1) representing an FTS F with
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n states and m transitions, reduces (in polynomial time in the size of fts) the ambiguity
detection problem for F to n+ 2 ×m SAT problems (each problem consisting of a formula
whose size is linear in the size of fts), as follows:

– extend the data structure introduced in Section 5.1 by adding a field
hdead formula to each state and by adding a field dead formula and a field
false optional formula to each transition;

– replace line 7 by s.hdead formula := exist deadlock(s);
– replace line 14 by t .dead formula := is not dead transition(s); and
– replace lines 15–18 by t .false opt formula := may be opt transition(s).

Solving the SAT problems stored in the fields hdead formula, dead formula, and
false optional formula provides a solution to the ambiguity detection problem for
the given FTS, therefore we conclude that the FTS ambiguity detection problem is NP-
complete.

6 Benchmark examples

In this section, we apply the new algorithm to a number of exemplary FTSs from the litera-
ture. The python code of the implementation and all FTS models allowing the verification of
the examples presented in this section are publicly available (ter Beek et al. 2019c). We first
discuss the experiments (in Section 6.1) and then the corresponding performance results (in
Section 6.2).

6.1 Experiments

Vending Machine In Fig. 8, we depict the FTS modelling the behaviour of a configurable
vending machine from Classen (2011), an FTS benchmark which was used in ter Beek et al.
(2019a) and in many other publications (Classen et al. 2010, 2013; Devroey et al. 2014b,
2016b; ter Beek et al. 2015a, 2015b, 2019b; Dimovski et al. 2017; Dimovski and Waşowski
2017; Castro et al. 2018; Dimovski 2018, 2020; Dubslaff 2019). It serves a beverage (soda
or tea) either for free or upon payment, in which case a compartment is opened for the
customer to take the beverage after which it closes again. Its feature model is represented by
the formula s ∨ t over the 4 features {f, c, s, t}, thus resulting in 12 product configurations
(viz. 24 − 4, excluding the product configurations ∅, {f }, {c}, and {f, c} that lack both
features s for soda and t for tea). The FTS of the vending machine contains only 9 states
and 13 transitions.

Listing 2 reports the result of applying our static analysis algorithm to this FTS.
The FTS contains no dead transitions and no hidden deadlocks, but it does contain
the 6 false optional transitions (2, change, ¬f, 3), (4, return, c, 1), (5, serveSoda, s, 7),
(6, serveTea, t, 7), (8, take,¬f, 9), and (9, close,¬f, 1). Thus, the FTS is ambiguous, but
it would suffice to turn its false optional transitions into must transitions to make the FTS
unambiguous.

Coffee Machine In Fig. 9, we depict the FTS modelling the behaviour of a config-
urable coffee machine family from Belder et al. (2015). Originally introduced in Fan-
techi and Gnesi (2008), this is another SPL benchmark which was already used in ter
Beek et al. (2019a) and in a number of other publications (Asirelli et al. 2010, 2011;
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Fig. 8 FTS of the vending machine from Classen (2011)

ter Beek et al. 2012, 2013, 2015c, 2016a, 2016b; ter Beek and de Vink 2014a, 2014b;
Beohar et al. 2016, 2018).4 The coffee machine serves a (possibly sugared) beverage (cof-
fee, tea, or cappuccino) upon the insertion of a coin (euro or dollar), after which the customer
takes her/his beverage (possibly following a ringtone). Its feature model is represented by
the formula FMC = M ∧ W ∧ C ∧ (E ⊕ D) ∧ (P → R) ∧ (¬(P ∧ D)) over the fea-
tures Fc = {M,W,C,E, D,P, R, T , X}, resulting in 12 product configurations which
accept either euros or dollars and offer coffee (with sugar) and possibly tea and cappuccino
(upon a ringtone and only for euros). The FTS of the coffee machine contains 14 states and
23 transitions.

Listing 3 reports the result of applying our static analysis algorithm to this FTS. The FTS
contains no dead transitions and no hidden deadlocks, but it contains 14 false optional tran-
sitions such as (1, sugar, W, 2), (1, no sugar,W, 3), (2, coffee, C, 6), (8, pour tea, T , 12),
and (13, take cup, M, 0). Thus, the FTS is ambiguous, but it would suffice to turn its false
optional transitions into must transitions to make the FTS unambiguous.

Coffee/SoupMachine In Belder et al. (2015), this family of coffee machines was extended
with an optional soup component running in parallel with the beverage component. The
FTS modelling the behaviour of this soup component is depicted in Fig. 10.5 The resulting
family of vending machines is such that each product allows the insertion of either euros or
dollars (returned upon a cancel) in one of its components. The customer chooses a beverage
or, if available, a type of soup (at least one among chicken, tomato, pea), which requires
to place a cup. A cup detector is optional (mandatory for dollars). Whenever present, soup
is only poured if a cup was placed. Placing a cup may need to be repeated if not detected.
A choice for soup may be cancelled until a cup is detected. Optionally, a ringtone may
ring upon delivery (mandatory for cappuccino, as before), after which the customer takes
her/his cup (with a drink or soup) and can again insert a coin in one of the components.
The feature model of the soup component is represented by the formula FMC ∧ FMS ∧ SC,
where FMS = (U → SC) ∧ (S ↔ SC) ∧ (CS ∨ PS ∨ TS ∨ ¬S) ∧ ((D ∧ SC) → U), over
the features Fc ∪{SC, U, S,CS,PS, TS}. The FTS of the soup component contains 13 states
and 28 transitions.

4The only differences between the FTS used here and the one in ter Beek et al. (2019a) is the additional tran-
sition (1, cancelBev, X, 0), which allows to cancel a coin insertion in the presence of an additional optional
feature X, next to a renaming of the states and the features.
5While omitted in the component FTS drawn in Belder et al. (2015), once put in parallel, coin insertion for
soup requires the presence of the soup component (e.g., (0, insertSoup(Euro), SC ∧E, 1).
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Listing 2 Result of the static analysis on the FTS of Fig. 8

Listing 4 reports the result of applying our static analysis algorithm to this FTS.
The FTS contains no hidden deadlocks and no dead transitions, but it contains the
7 false optional transitions (3, place cup, U, 2), (5, place cup, U, 4), (7, place cup, U, 6),
(8, pour tomato, TS, 11), (9, pour chicken,CS, 11), (10, pour pea,PS, 11), and
(12, take soup,M, 0). Thus, the FTS is ambiguous, but it would suffice to turn its false
optional transitions into must transitions to make the FTS unambiguous.

The feature model of the composite FTS that results from running the (optional) soup
component depicted in Fig. 10 in parallel with the beverage component of the FTS of the
coffee machine depicted in Fig. 9 is represented by the formula FMC ∧ FMS over the features

Fig. 9 FTS of the coffee machine from Belder et al. (2015)
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Listing 3 Result of the static analysis on the FTS of Fig. 9

Fc ∪{SC, U, S,CS,PS, TS}, giving rise to 244 product configurations.6 The composite FTS
contains 182 states and 691 transitions.

Listing 5 reports the result of applying our static analysis algorithm to this composite
FTS. The composite FTS contains no hidden deadlocks, 284 false optional transitions and
8 dead transitions. The false optional transitions are obviously due to the relatively large
amount of false optional transitions in the two component FTSs. The dead transitions can
be explained by analysing the execution traces. Consider, for instance, the dead transition
(12, insertSoupDollar, SC ∧ D, 29). Its source state can be reached upon inserting a coin,
followed by choosing sugar and ordering cappuccino, which we recall to require feature P .
If the inserted coin was a euro, requiring feature E, then the transition cannot be executed
since features E and D exclude each other, while if the inserted coin was a dollar, requiring
feature D, then the transition cannot be executed since P and D exclude each other. Since
any product has either D or E, indeed in all product LTSs this transition is not reachable. A
similar reasoning applies to the skip transitions, which require a feature R that cannot be part
of product LTSs in which their sources states are reachable. Hence, the FTS is ambiguous,
but it would suffice to remove its dead transitions and turn its false optional transitions into
must transitions to make the FTS unambiguous.

Since neither the beverage component nor the soup component has any dead transitions,
this shows that the parallel composition of FTSs (with some features in common) without
dead transitions may result in a composite FTS with dead transitions. Furthermore, the size
of the composite FTS is such that analysis by hand is infeasible. In the remainder of this
section, we consider even larger examples to illustrate the scalability of our approach.

Mine Pump In Fig. 11, we depict the FTS modelling the behaviour of the system FTS
modelling the logic of a configurable controller of the mine pump model from Classen
(2010, 2011), a standard SPL benchmark for FTSs which was used in ter Beek et al. (2019a)
and in many other publications (Classen et al. 2010, 2012, 2013; Cordy et al. 2012, 2013b;
Dimovski et al. 2015, 2017; Devroey et al. 2016b; ter Beek et al. 2017, 2020b; Dimovski
and Waşowski 2017). The controller of this mine pump model is the parallel composition of
the system FTS with the state FTS, depicted in Fig. 12. The mine pump has to keep a mine
safe from flooding by pumping water from a shaft while avoiding a methane explosion.

Therefore, the controller interacts with an environment: it operates a water pump based
on water and methane level sensors, modelled by three further FTSs. The parallel composi-
tion of these five FTSs constitutes the complete mine pump model. We depict the FTS of the

6In Belder et al. (2015), only 118 of these configurations are valid due to additional quantitative constraints
on feature attributes omitted here (e.g. cost of features). We also omitted some mandatory features that do
not occur in the FTSs and are thus irrelevant for our purposes.
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Fig. 10 FTS of the soup component from Belder et al. (2015)

methane level in Fig. 13 and refer to Classen (2010, 2011) for the remaining FTSs. The fea-
ture model of the mine pump model can be represented by the formula φ = (c↔(ct∨cp))∧l

over the feature set F = {c, ct, cp, m, l, ll, ln, lh}, thus resulting in 64 products (viz. 26,
since φ is equivalent to considering features {ct, cp, m, ll, ln, lh} to be optional). The system

SOUP COMPONENT: live
LIVE STATES = [0,1,2,3,4,5,6,7,8,9,10,11,12]
DEAD TRANSITIONS = []
FALSE OPTIONAL TRANSITIONS = [(3,2,place_cup),(5,4,place_cup),(7,6,place_cup),
(8,11,pour_tomato),(9,11,pour_chicken),(10,11,pour_pea),(12,0,take_soup)]
HIDDEN DEADLOCK STATES = []

Listing 4 Result of the static analysis on the FTS of Fig. 10
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Listing 5 Result of the static analysis on the composite FTS resulting from the parallel composition of the
beverage component of the FTS of the coffee machine depicted in Fig. 9 and the soup component depicted
in Fig. 10

FTS of the mine pump model contains 25 states and 41 transitions.7 The controller of the
mine pump model, composed of the system and state FTSs, contains 77 states and 104 tran-
sitions. The complete mine pump model, composed of five FTSs, contains 418 states and
1,255 transitions.

Listing 6 reports the result of applying our static analysis algorithm to the system FTS.
The FTS contains no dead transitions, but 25 false optional transitions, among which
(s7, levelMsg, l, s20), and one hidden deadlock state, viz. s20. Indeed, state s20 is reachable
in all products upon the execution of two must transitions (the second one being the false
optional transition (s7, levelMsg, l, s20)), while s20 is a deadlock in all 8 products that lack
any of the features from the subset {ll, ln, lh}.

Hence the system FTS is ambiguous, but it would suffice to turn its false optional
transitions into must transitions and to add an explicit deadlock state s† and a transition
(s20, †, ¬ll ∧ ¬ln ∧ ¬lh, s†) to make the system FTS unambiguous.

Actually, a deadlock often indicates an error in the modelling, either in the feature model
or in the behavioural model, i.e., the FTS. In fact, another solution to make the system FTS
unambiguous would be to slightly change the feature model, e.g., by requiring the presence
of at least one of the features ll, ln, or lh via an or-relationship. Doing so, the feature model
becomes φ = (c ↔ (ct∨cp))∧ l ∧ (ll∨ln∨lh), thus resulting in 56 products (i.e., excluding
the 8 products over F that satisfy (c ↔ (ct ∨cp)) ∧ l, but lack any of the features from the
subset {ll, ln, lh}). In Classen (2010, 2011), and Classen et al. (2010), instead, an alternative
feature model in which only c (and implicitly ct and cp) and m are optional was considered,
resulting in only the four products over F that satisfy (c ↔ (ct ∧ cp)) ∧ l ∧ ll ∧ ln ∧ lh.

Yet another solution to make the system FTS unambiguous would be to slightly change
the FTS itself, to make sure that it contains neither a hidden nor an explicit deadlock state.
In this case, it would suffice to add one or more transitions to leave state s20 in a meaningful
way. This is the solution opted for in Classen et al. (2013), Dimovski et al. (2015), Dimovski
et al. (2017), ter Beek et al. (2017), and Dimovski and Waşowski (2017), which use the
specification in fPromela of the complete mine pump model as originally distributed with
SNIP (Classen et al. 2012) and its re-engineered successor ProVeLines (Cordy et al. 2013a)
(https://bitbucket.org/maxcordy/provelines-cora/) or their translations for mCRL2 (Cranen
et al. 2013; Bunte et al. 2019) (http://www.mcrl2.org/) or VMC (ter Beek et al. 2012;
ter Beek and Mazzanti 2014) (http://fmt.isti.cnr.it/vmc/). Basically, three transitions are
added to the system FTS of Fig. 11 from state s20 to the initial state s6 to cover the
cases in which features from the subset {ll, ln, lh} are missing, viz. (s20, highLevel,¬lh, s6),
(s20, lowLevel, ¬ll, s6), and (s20, normalLevel,¬ln, s6).

The false optional transitions and the hidden deadlock state of the system FTS are prop-
agated into the controller of the mine pump model, which we recall to be the parallel

7Transitions with more than one label are abbreviations for one transition for each label.
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Fig. 12 The state FTS of the mine pump model from Classen (2011)

composition of the system and state FTSs. Application of our static analysis algorithm to the
FTS of the controller of the mine pump model reports that the FTS contains no dead tran-
sitions, 59 false optional transitions, and 4 hidden deadlock states. The situation is different
for the complete mine pump model, which we recall to be the parallel composition of five
FTSs, viz. the system and state FTSs and three further FTSs that model a water pump and
water and methane level sensors. From the FTS of the methane level, depicted in Fig. 13,
we immediately note that the actions methaneRise and methaneLower are local actions of
this FTS that do not synchronise with any of the other four FTSs. Hence, while the solu-
tions suggested above would make the system FTS of Fig. 11 unambiguous, it is clear that

Fig. 13 FTS of the methane level environment from Classen (2011)
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Listing 6 Result of the static analysis on the FTS of Fig. 11

the FTS of the complete mine pump model is deadlock-free, since it can indefinitely exe-
cute the sequence of actions methaneRise followed by methaneLower. This is confirmed by
our static analysis algorithm applied to the FTS of the complete mine pump model, which
reports that the FTS contains no dead transitions and no hidden deadlock states, but a stun-
ning 308 false optional transitions.8 The fact that the system FTS has hidden deadlock states
that are no longer present in the FTS of the complete mine pump model demonstrates the
usefulness of analysing component FTSs in isolation.

In general, while the parallel composition of unambiguous FTSs does not introduce false
optional transitions, the composite FTS may contain dead transitions or hidden deadlock
states. We have seen an example of the introduction of dead transitions in the composite FTS
of the coffee and soup component, whose individual FTSs did not exhibit dead transitions.

The application of the static analysis algorithm to individual component FTSs is surely
desirable as it results in less ambiguous specifications of the components constituting a com-
posed system, and it possibly allows more efficient model checking of the composed system
(more on this in the next section, cf. the part of Fig. 4 that is not red). A further advan-
tage is that our approach becomes applicable also to feature-oriented systems composed
by superimposition, since in Dubslaff (2019) it is shown how to transform feature-oriented
systems composed by parallel composition into feature-oriented systems composed by
superimposition while maintaining behaviour and modularity.

Instead, the application of the static analysis algorithm to a composed FTS resulting from
the parallel composition of several FTSs is less desirable because the benefits of detecting
ambiguities are greatly reduced. This is due to the lack of a detailed specification of the com-
posed FTS, which is merely a semantic model without a matching syntactic specification.
Note that composed configurable systems can also be described as Multi SPLs (MPLs), i.e.,
sets of interdependent SPLs (Holl et al. 2012). It is not clear how to obtain results for com-
posed FTSs by reusing results of analyses performed in isolation on its component FTSs, in
analogy with recently proposed compositional approaches for analysing MPLs (Lienhardt
et al. 2018a; Damiani et al. 2019).

Claroline We conclude this section with a very large (monolithic) system. The Claroline
SPL is a configurable system whose FTS model, originally introduced in Devroey et al.
(2014a), was reverse-engineered from an Apache weblog (containing 12,689,030 HTTP
requests) of a dynamically configurable course platform used at the University of Namur.
The FTS model has since been used in several publications (Devroey et al. 2014c, 2015,
2016a, 2016b, 2017, 2018). The Claroline SPL has 44 features and its feature model is quite

8The FTS of the complete mine pump model could not be analysed in a reasonable amount of time with the
static analysis algorithm presented in ter Beek et al. (2019a).
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large: it is represented by a formula with 299 logical connectives (omitted here), resulting in
more than 5,000,000 product configurations. The FTS of Claroline contains 107 states and
11,236 transitions. Application of our static analysis algorithm reports (after running for
about one hour) that the FTS contains no dead transitions and no hidden deadlock states, but
259 false optional transitions. Note that, since the FTS of Claroline has been generated from
the analysis of actual execution paths, the discovery of dead transitions would have imme-
diately signalled some major bug either in the feature model or in the feature expressions,
or in the log analysis procedure.

6.2 Performance results

In Table 1, we report some data concerning the static analyses of the FTSs discussed above.
The FTSs of the vending machine, the coffee machine, and the soup component are all

live (i.e., no deadlocks), with no dead transitions, while a respective 46%, 61%, and 25% of
their transitions are false optional. Their static analyses are immediate. Also the FTS of the
coffee/soup machine is live, but 41% and 1% of its transitions are false optional and dead,
respectively. Its static analysis takes about a minute. The static analysis of the system FTS
of the mine pump and that of the mine pump controller (i.e., the parallel composition of
the system FTS and the state FTS) are immediate, but neither of these FTSs is live because
4% and 5% of their states, respectively, are hidden deadlocks. None of their transitions are
dead, but 61% and 57% are false optional, respectively. Instead, the FTS of the complete
mine pump is live and it has no dead transitions, but 25% of its transitions are false optional.
Its analysis is not immediate, but takes a few minutes. Recall that this analysis could not be
performed in a reasonable amount of time with the static analysis algorithm from ter Beek
et al. (2019a). The FTS of Claroline, finally, requires about an hour to analyse. It is live and
it has no dead transitions, but 2% of its transitions are false optional.

Next, we compare the current implementation of the static analysis algorithm, as intro-
duced in Listing 1, with the implementation used in ter Beek et al. (2019a), where an
algorithm looks for all simple paths from the initial state to each state by visiting all cycle-
free paths (starting from the initial state) in a depth-first manner. The results are reported
in Table 2, where timeout stands for ‘aborted after more than 2 hours’. The results show
a clear improvement in runtime, ranging from a 3.54x speedup for the FTS of the vending
machine to speedups of >7200x for the three largest FTSs. This demonstrates the improved
efficiency of the current implementation.

In Table 3, we report a comparison of the current implementation of the static analysis
algorithm with a specialised implementation that only detects hidden deadlocks, applied to
the three largest FTSs showcased in this section. This specialised implementation refers to
the first part (lines 1–10) of the static analysis algorithm in Listing 1, which (as pointed out
at the end of Section 5) represents a hidden deadlocks discovery algorithm (i.e., analysing
only liveness). The results show that only a fraction of the runtime of the current implemen-
tation is needed for deadlock detection, ranging from 6.06% for the FTS of the coffee/soup
machine to only 2.97% and 3.59% for the complete mine pump and Claroline FTSs,
respectively.

All the experiments presented in this section were performed on a Mac Pro (Late 2013)
3.7 Ghz Quad-Core with an Intel Xeon E5 processor with 10 Mb L3 cache and 64 Gb (four
16 Gb) of 1866 Mhz DDR3 ECC memory. All the experiments were performed five times
each and the average time and memory usage of each was collected and reported in the
tables. We used Python 3.6.
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7 Family-based verification

In analogy with anomaly detection in feature models, dead featured transitions in an FTS
clearly indicate a modelling error, whereas false optional featured transitions often provide
a wrong idea of the domain by giving the impression that certain behaviour is optional while
actually it is mandatory (i.e., it occurs in all products of the FTS). However, our engineer-
ing methodology (i.e., the top-right red part of Fig. 4) that allows the transformation of an
ambiguous FTS into an unambiguous FTS also serves another purpose, viz. to facilitate a
kind of family-based model checking of properties expressed as logic formulas. As antici-
pated in earlier sections, according to the strategy outlined in Fig. 4 (the part that is not red),
a property φ specified in either LTL or v-ACTLive� can be verified (with a linear complex-
ity) directly on an unambiguous FTS F (ignoring its feature expressions) such that φ holds
for all product LTSs in lts(F) whenever it holds for F . This strategy offering a number of
efficient verification options is another contribution of this paper.

An FTS that has no hidden deadlocks is said to be live. In this section, we show that a
live FTS enjoys the property that all valid linear-time LTL formulas are preserved by all its
products, as well as all valid branching-time v-ACTLive� properties (as we already showed
in ter Beek et al. (2019a)). Intuitively, these results are based on the fact that all transitions
(and thus paths) in products of an FTS F , i.e. LTSs in lts(F), also occur in F .

Branching-time Properties To start with the latter, v-ACTLive� is a rich fragment of
the variability-aware action-based and state-based branching-time modal temporal logic
v-ACTL and it is interpreted on so-called ‘live’ MTSs (ter Beek et al. 2015a, 2015b,
2016a, 2019d). A Modal Transition System (MTS) is an LTS that distinguishes admissible
(‘may’), necessary (‘must’), and optional (may but not must) transitions such that by defini-
tion all necessary and optional transitions are also admissible (Larsen and Thomsen 1988;
Křetı́nský 2017). In ter Beek et al. (2016a), an MTS is defined to be live if all its states are
live, where a live state of an MTS is such that it does not occur as a final state in any of its
products (these are LTSs obtained from the MTS in a way similar to Definition 4), resulting
in an MTS in which every path is infinite. Then it is proved that the validity of formulas
expressed in v-ACTLive� is preserved in all products (cf. ter Beek et al. 2016a, Theo-
rem 4), thus allowing a kind of family-based model checking of MTSs. It is not difficult to
see that this result continues to hold for MTSs whose every state is either live or final.

Note that any FTS F can be transformed into an MTS FMTS by considering its must
transitions as necessary transitions, its featured transitions as optional transitions, and all its
transitions as admissible, and by removing all feature expressions. If F is live, then FMTS is
live, with respect to the FTS’s set of products lts(F), because it has no hidden deadlocks.9

Moreover, all transitions of F whose corresponding (LTS) transitions are mandatorily
present in all products correspond to necessary transitions in FMTS. This demonstrates that
the above mentioned result from ter Beek et al. (2016a) can be carried over to live FTSs, thus
allowing a kind of family-based model checking of such FTSs for the v-ACTL fragment v-
ACTLive�. Hence, the following result holds, where |= denotes the satisfaction relation of
v-ACTLive� interpreted over MTSs.

9From VMC v6.4 onwards, final states of an MTS are no longer considered ‘hidden deadlocks’ (i.e., they are
considered live states) since they are deadlocks but not at all ‘hidden’. For such MTSs, the same preservation
properties of ter Beek et al. (2016a) apply.
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Proposition 1 (ter Beek et al. 2019a) Any formula φ of v-ACTLive� is preserved by live
FTSs: given a live FTS F , whenever FMTS |= φ, then F |λ |= φ for all products F |λ ∈
lts(F).

Furthermore, note that states in an FTS that are the source of at least one must transition
are by definition live. Hence, replacing all redundant feature expressions of false optional
transitions (syntactic sugar) with � results in more must transitions, thus allowing for a
more efficient kind of (family-based) verification.

Linear-time Properties In addition to ter Beek et al. (2019a), here we also consider linear-
time properties. As said before, a live FTS also enjoys the property that all valid linear-time
LTL formulas are preserved by all its products. This can be seen as follows.

A path in an LTS is said to be maximal if it cannot be extended further, i.e. it is infinite
or it ends in a deadlock state.

Model checking LTL formulas on an LTS reduces to analysing its maximal paths: an
LTL formula is valid if it holds for all maximal paths. These notions trivially carry over to
FTSs by ignoring their feature expressions. Clearly, if an FTS is live, i.e. it has no hidden
deadlocks, then the set of maximal paths of any product (LTS) is a subset of the set of
maximal paths of the FTS.

Hence, the following result holds, where FLTS denotes the LTS obtained from an FTS
F by removing its feature expressions and |= denotes the satisfaction relation of LTL
interpreted over LTSs.

Proposition 2 Any formula φ of LTL is preserved by live FTSs: given a live FTS F ,
whenever FLTS |= φ, then F |λ |= φ for all products F |λ ∈ lts(F).

The results presented in Propositions 1 and 2 show specific cases in which verifica-
tion of live FTSs reduces to verification (with a linear complexity) of corresponding MTSs
and LTSs that are obtained straightforwardly by ignoring the feature expressions (and dis-
tinguishing necessary and optional transitions in MTSs). This is made possible by the
engineering methodology sketched in Fig. 4 (the top-right red part). However, as illustrated
by the strategy outlined in Fig. 4 (the part that is not red), if either the property under veri-
fication is not an LTL or v-ACTLive� formula or the result of the verification is false, then
the formula needs to be verified with classical (family-based) model checking.

In the remainder of this section, we apply these results to example FTSs from Section 6
and provide examples of v-ACTLive� and LTL formulas to illustrate their impact. The
models allowing the verification of the example properties presented in this section are
publicly available (ter Beek et al. 2019c).

It is worth noticing that if we are interested in just the liveness of FTSs (e.g. to enable
family-based model checking of invariant properties), then the first part (lines 1–10) of the
static analysis algorithm in Listing 1 allows to establish the liveness of FTSs in a much more
efficient way (cf. Table 3). Recall that this part represents a hidden deadlocks discovery
algorithm, which we referred to as the specialised implementation in Section 6.

Vending Machine We have seen in Section 4.2 how to transform an ambiguous FTS into
an unambiguous one. Furthermore, we have seen above how to transform an FTS into an
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Fig. 14 MTS obtained from the FTS of Fig. 8

MTS. In Fig. 14, we depict the MTS 10 that is obtained in this way from the unambiguous
(and thus live) FTS (described in the beginning of Section 6) that corresponds to the FTS of
Fig. 8.

As we argued in the beginning of this section, the resulting MTS is live, with respect to
the FTS’s set of products, thus allowing family-based model checking for v-ACTLive� (cf.
Proposition 1). In fact, v-ACTLive� formulas can efficiently be verified on MTSs with the
variability model checker VMC (http://fmt.isti.cnr.it/vmc), which is a tool for the analysis
of branching-time properties over behavioural SPL models specified as an MTS with a set
of logical variability constraints (akin to feature expressions) (ter Beek et al. 2012; ter Beek
and Mazzanti 2014).

Originally, VMC used the variability constraints associated with the MTS to dynamically
evaluate the liveness of each node. Based on ter Beek et al. (2019a), where we showed how
to establish a priori the liveness of all nodes of an FTS, and thus of the MTS that can be
obtained by transformation, the most recent prototypical extension of VMC, version 6.5,
offers users the possibility to state explicitly that an MTS is live.

The input language of VMC is a process algebra. Listing 7 contains the specification
of the vending machine in the process-algebraic input language accepted by VMC. Note
that the system part or process model (i.e. without the constraints) can be seen as the nat-
ural encoding of the graph (MTS) of Fig. 14, with the process terms corresponding to
the states of the graph and SYS indicating the initial state. Intuitively, a.P models a pro-
cess that executes action a and then behaves as P, while P + Q models a process that
non-deterministically chooses to behave as either P or Q. Information on the modality of
the transitions (may, must) is defined as a special additional parameter associated to the
basic actions of the algebra, the default being must. Finally, Constraints { LIVE }
explicitly declares that the MTS is live, the novel feature of VMC v6.5.

Example formulas of branching-time properties of the vending machine that we verified
in a kind of family-based manner with VMC include the following:

1. AG AFpay∨free �: infinitely often, either action pay or action free is executed;
2. AG [open] AFclose �: it is always the case that the execution of action open is eventually

followed by that of action close;
3. AG AFcancel∨serveSoda∨serveTea �: infinitely often, either action cancel or action

serveSoda or action serveTea is executed;

10Dashed edges depict optional transitions and solid edges depict necessary transitions.
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Listing 7 Specification in VMC of MTS of Fig. 8

4. ¬E [� ¬teaUserveTea �]: it is not possible that action serveTea is executed without being
preceded by an execution of action tea;

5. [pay] AFtake∨cancel �: whenever action pay is executed, eventually also either action
take or action cancel is executed.11

Obviously, there are also numerous formulas of linear-time properties of the vending
machine that can be verified in such kind of family-based manner, with tools such as SPIN
(http://spinroot.com/). Example formulas include the following:12

1. � (selected ⇒ ♦served): after selecting a beverage, the machine will always eventually
serve a beverage;

2. � (served ⇒ ♦taken): after a beverage is served, the customer will always eventually
take the beverage.

VMC v6.5 has thus been tailored for family-based model checking of temporal logic
properties on FTSs (via their transformation in MTSs). At present, efficient SPL model
checking on FTSs can be achieved by using dedicated family-based model checkers such
as the ProVeLines (Cordy et al. 2013a) tool suite (including its predecessor SNIP (Classen
et al. 2012)) or fNuSMV (Classen et al. 2014), or, alternatively, by using one of the highly
optimised off-the-shelf model checkers like SPIN or mCRL2, which have recently been
made amenable to family-based SPL model checking on FTSs (Dimovski et al. 2015, 2017;
ter Beek et al. 2017, 2020b; Dimovski and Waşowski 2017).

Mine Pump We have seen in Section 6 that the complete mine pump model (an FTS with
418 states and 1,255 transitions) is live, thus allowing a kind of family-based model check-
ing for v-ACTLive� and LTL (cf. Propositions 1 and 2). In fact, we have done so for
the complete mine pump model specification in fPromela, as distributed with SNIP and
ProVeLines, and its translation for VMC (recall that the model specifications are publicly
available (ter Beek et al. 2019c)).

11Abusing notation, this concerns execution of transition (8, take, 9), not of (7, take, 1).
12In Classen et al. (2010, 2013), the states of an FTS are labelled with atomic propositions, omitted in figures
to avoid clutter. For LTL model checking with SPIN, we assume that states 5 and 6 of the FTS depicted in
Fig. 8 are labelled with the proposition selected, state 7 with the proposition served, and states 1 and 9 with
the proposition taken.
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Example formulas of branching-time properties of the complete mine pump that we
verified in such kind of family-based manner with VMC include the following:13

1. MAX X : (EX�
methaneRise∨methaneLower X): the system behaviour includes a (mandatory)

path that contains only variations of the methane level;
2. AG [palarmMsg] ¬E [� ¬setMethaneStopUpalarmMsg �]: it is not possible that two

palarmMsg actions occur without a setMethaneStop in between;
3. AG [highLevel] ¬E [� ¬pumpStartUlowLevel �]: it is not possible that the water level

decreases if the pump did not start;
4. AG ¬(pumpoff∧EXpumpStop �): a pumpStop action cannot occur if the pump is already

off;
5. AG ¬(¬ready ∧ EXpumpStart �): a pumpStart action cannot occur if the system is not

ready;
6. AG [stopCmd] ¬E [¬stopped UstartCmd �]: a start command cannot follow a stop

command if in the meantime the system did not stop.

Example formulas of linear-time properties of the complete mine pump model that we
verified in such kind of family-based manner with SPIN include the following:14

1. � (¬pumpOn∨stateRunning): if the pump is on, the actual pump state is set to running;
2. ( (�♦ readCommand )∧(�♦ readAlarm )∧(�♦ readLevel ) ) ⇒ (¬♦� (¬ pumpOn

∧¬methane∧highWater) ): if the controller can fairly receive each of the three message
types, then the pump is never indefinitely off when the water is high;

3. � ((¬pumpOn ∧ lowWater ∧ ♦highWater) ⇒ ((¬pumpOn) U highWater)): when the
pump is off and the water is low, it will only start once the water is high again.

These are precisely the properties #18, #34, and #41, respectively, as verified with both
SNIP and SPIN in Classen et al. (2013).

Toolchain In ter Beek et al. (2021), we present FTS4VMC, a tool developed specifically
as a front-end for VMC with a user-friendly GUI. The resulting toolchain allows a modeller
to analyse an FTS for ambiguities, remove them, transform the resulting live FTS into an
MTS and perform an efficient kind of family-based model checking of v-ACTLive� proper-
ties. The FTS4VMC implementation is publicly available from https://github.com/fts4vmc/
FTS4VMC.

8 Conclusion

In this paper, we have revisited several types of static analysis that can be performed over
an FTS as part of an engineering methodology. Concretely, we analyse FTSs for hidden

13In Classen (2010, 2011), the states of the FTSs constituting the complete mine pump model are labelled
with atomic propositions. In particular, the initial state of the FTS modelling the water pump, not depicted
here, is labelled with proposition pumpoff, while states s1 and s4 of the FTS depicted in Fig. 13 are labelled
with propositions ready and stopped, respectively.
14In the fPromela specification of the complete mine pump model distributed with SNIP and ProVeLines,
pumpOn and methane are Booleans that are set to true when the pump is turned on or methane is detected,
respectively, whereas the remaining variables are macros (e.g. stateRunning defines that the FTS depicted in
Fig. 13 is in state s5, readCommand defines that the FTS depicted in Fig. 11 has received a commandMsg,
and highWater defines that the FTS has received a levelMsg stating that the water level is high).
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deadlocks and anomalies in the form of false optional and dead transitions. The removal
of hidden deadlocks improves the clarity of FTSs and enables an efficient kind of family-
based model checking of live FTSs. Dead transitions identify real modelling errors present
in FTSs that should be removed. False optional transitions reveal redundancies in the feature
expressions labelling the FTSs. Moreover, replacing such syntactic sugar by � leads to more
must transitions, which eases verification and may increase the set of properties verifiable
by v-ACTLive�. We have presented a new algorithm for these static analyses of FTSs,
for which we have proved the correctness. We have evaluated the suitability of the new
algorithm by applying it to a large number of exemplary FTSs from the literature, and we
have also showed the usefulness for an efficient kind of family-based model checking of
FTSs. In particular, we have empirically demonstrated the superiority of the new algorithm
with respect to the algorithm presented in ter Beek et al. (2019a), by making feasible (in
reasonable time) the static analysis of FTSs of considerable size (cf. Table 2).

The python code implementing the algorithm and the specifications of all the models
that are needed to reproduce the experiments presented in Sections 6 (static analysis) and 7
(verification) are publicly available (ter Beek et al. 2019c). Also the implementation of the
FTS4VMC tool developed specifically as a front-end for VMC is publicly available (cf.
Section 7). A front-end tool for SPIN, based on a transformation from FTSs to PROMELA,
is ongoing work.

In principle, our static analysis checks could all be performed by classical family-based
model-checking approaches by expressing the ambiguity properties in CTL (exploiting the
fact that they concern reachability questions). However, verifying such properties for each
state and transition of an FTS requires a considerable number of verifications. Moreover,
the complexity of verifying a single CTL formula on an FTS is exponential in the number
of features (Classen et al. 2014). Note that the kind of family-based model checking we
make possible is linear in the size of the LTS or MTS that is obtained from a live FTS (by
ignoring its feature expressions). Nevertheless, we intend to investigate this issue in more
detail, also empirically, possibly exploiting symbolic representations.

Recently (Lienhardt et al. 2018b), a subset of the authors proposed an approach and a
tool for checking SPLs of statecharts (Harel 1987). The tool checks that all the products
can be generated and are well-formed statecharts. In future work, we would like to extend
it by adding behavioural ambiguity detection analyses like the ones presented in this paper.
We also would like to study how to adapt our static analysis algorithms to apply them
to high-level SPL modelling languages (e.g. fPROMELA (Classen et al. 2012, 2013) and
fNuSMV (Classen et al. 2014)). Finally, it would be interesting to mechanise our formal-
isations and associated proofs to provide further evidence of the soundness of our static
analysis techniques.
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Larsen KG, Nyman U, Waşowski A (2007) Modal I/O automata for interface and product line theories. In:
De Nicola R (ed) Proceedings of the 16th European symposium on programming (ESOP’07), LNCS,
vol 4421, Springer, pp 64–79. https://doi.org/10.1007/978-3-540-71316-6 6

Larsen KG, Thomsen B (1988) A modal process logic. In: Proceedings of the 3rd symposium on logic in
computer science (LICS’88), IEEE, pp 203–210. https://doi.org/10.1109/LICS.1988.5119
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