
Empir Software Eng (2011) 16:544–586
DOI 10.1007/s10664-011-9158-8

A practice-driven systematic review of dependency
analysis solutions

Trosky B. Callo Arias · Pieter van der Spek ·
Paris Avgeriou

Published online: 24 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com
Editors: Muhammad Ali Babar, Arie van Deursen, and Patricia Lago

Abstract When following architecture-driven strategies to develop large software-
intensive systems, the analysis of the dependencies is not an easy task. In this
paper, we report a systematic literature review on dependency analysis solutions. De-
pendency analysis concerns making dependencies due to interconnections between
programs or system components explicit. The review is practice-driven because its re-
search questions, execution, and reporting were influenced by the practice of a group
of software architects at Philips Healthcare MRI. The review results in an overview
and assessment of the state-of-the-art and applicability of dependency analysis. The
overview provides insights about definitions related to dependency analysis, the sort
of development activities that need dependency analysis, and the classification and
description of a number of dependency analysis solutions. The contribution of this
paper is for both practitioners and researchers. They can take it as a reference to
learn about dependency analysis, match their own practice to the presented results,
and to build similar overviews of other techniques and methods for other domains
or types of systems.

Keywords Systematic review · Dependency analysis · Practice-driven ·
Large software-intensive systems · Architecture-driven · Evolvability

T. B. Callo Arias (B) · P. Avgeriou
University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
e-mail: trosky@cs.rug.nl

P. Avgeriou
e-mail: paris@cs.rug.nl

P. van der Spek
VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
e-mail: pvdspek@cs.vu.nl

Empir Software Eng (2011) 16:544–586 545

1 Introduction

The development of methods and techniques to understand and analyze software
systems is an active research area with considerable attention from the software
industry. Software organizations are aware of the fact that without sufficient under-
standing of the systems they develop, maintenance and evolution becomes expensive
and unpredictable. For instance, one of the major challenges in software maintenance
is the need to determine the effects of modifications made to a program (Loyall
and Mathisen 1993). The overall cost of a small change (affecting only a handful of
lines of code) can already be extremely high, especially when the information about
the interconnections between the components that make up the system is limited
or not reliable. This is true even for well-structured systems that minimize but do
not eliminate the interconnections among system objects that lead to unexpected
effects (Moriconi and Winkler 1990) and dependencies.

Some of the methods and techniques to increase the understanding of software
systems are especially geared to conduct dependency analysis. Dependency analysis
concerns making dependencies due to interconnections between programs or system
components explicit. Over the last decades, researchers have produced a number of
solutions (methods, tools, and techniques) to support the analysis of dependencies
in software systems. Our interest in dependency analysis has its origin in the context
of our research project (van de Laar et al. 2007). We investigate how to improve
the evolvability (the ability to respond effectively to change) of software-intensive
systems studying a Magnetic Resonance Imaging (MRI) system developed by our
industrial partner, Philips Healthcare.

In the context of our project, one of our early observations was that indeed
information about dependencies was needed and deemed important to improve
the evolvability of the Philips MRI system. However, we also observed that in the
development of this system, dependency analysis was a time-consuming activity
conducted on an ad hoc basis. This is mainly caused by the size and complexity of
the Philips MRI system and the lack of proper support within the organization (e.g.,
tools and techniques). Even though this situation was a good candidate for improve-
ments, our ability to propose or develop improvements was limited by the fact that
practitioners had an unclear perception about the value of dependency analysis and
how it could improve their practice. Thus, we decided to build an overview that prac-
titioners could use to improve their knowledge and perception about dependency
analysis.

In this paper, we report a systematic literature review (Kitchenham 2004a) that
we conducted to build the overview of dependency analysis. The review is practice-
driven due to three main factors. First, the research questions come from observa-
tions that we collected interacting with a group of architects and designers at Philips
Healthcare MRI. Second, the design and execution of the review protocol aimed at
finding and presenting research results that can be used by practitioners, rather than
research trends upon which researchers can base their future research. Third, the
review includes an assessment of research results taking into account the practical
characteristics of the Philips MRI system and its architecture-driven development
process.

We used the constructed overview to improve the practitioners’ knowledge about
dependency analysis, and identify the opportunities and constraints to improve

546 Empir Software Eng (2011) 16:544–586

dependency analysis in the practice of our industrial partner. The contribution of
this paper focuses primarily in supporting practitioners to learn about the state-of-
art in dependency analysis and how it matches the characteristics and development
of a representative large and complex software-intensive system. In addition, we
consider that other researchers can replicate our study to create similar overviews
of dependency analysis (or other techniques and method) for other domains or types
of systems.

Structure of the Paper The remainder of this paper is organized as follows. Section 2
describes the context in which we performed the review and the specific research
questions. Section 3 describes the protocol of the review. Section 4 starts the over-
view describing conceptual aspects related to dependency analysis. Next, Section 5
describes the application areas that dependency analysis contribute to. Section 6
describes a set of existing dependency analysis solutions classified by their source of
information. Section 7 completes the overview describing how existing definitions
and solutions match the practical requirements of our particular context and the
identified opportunities for improvement. In Section 8, we discuss threats to validity
for the review and the results. Finally, Section 9 provides some concluding remarks.

2 Context and Research Questions

We conducted the review as part of our research in the Darwin project (van de
Laar et al. 2007). This applied research project is currently underway at Philips
Healthcare. In this project we focus on how to improve the evolvability of software-
intensive systems studying a Magnetic Resonance Imaging (MRI) system. Thus,
when mentioning practitioners or in practice we refer to the developers and the
intrinsic development of the Philips MRI system respectively. In the rest of this
section, we describe the characteristics of the context of our research project and
the research questions that triggered our systematic literature review.

2.1 Magnetic Resonance Imaging Systems

Figure 1a shows an example of a modern MRI scanner. In clinical practice, MRI is
used to distinguish pathological tissue (such as a brain tumor) from normal tissue.
One advantage of an MRI scan is that it is believed to be harmless to the patient. It
uses strong magnetic fields and non-ionizing radiation in the radio frequency range,
unlike CT scans (where CT stands for computed tomography) and traditional X-rays
which both use ionizing radiation.

MRI scanners are among the most expensive medical equipment available today.
High-end scanners, such as the one shown in Fig. 1a, cost around $2.5 million USD.
Installation of the system in the hospital costs another $500,000 USD. The MRI
system is made up of three main components: a superconducting magnet, a gradient
system, and a radio frequency system. The magnet is the largest and most expensive
component of the scanner. Its strength is measured in tesla (symbol: T). The high-
end scanner shown here contains a 3 T magnet. In comparison, the strength of the
Earth’s magnetic field on the equator is 31 μT (3.1 × 10−5 T) and the strength of a
typical refrigerator magnet is 5 mT.

Empir Software Eng (2011) 16:544–586 547

(a) Philips 3T Achieva system. The small open-
ing (called the bore) is clearly visible. The casing
around it holds the superconducting magnet as
well as the liquid helium to cool it.

(b) The result of a scan showing a patient’s
lumbar spine.

Fig. 1 Impression of the Philips Healthcare MRI system

The whole system is controlled by a software system that runs in one or more com-
puters. The system with all its related components itself does not fit in a single room
(see Fig. 2), but comprises several rooms with different conditional requirements, to
house the subsystem components. Additional workstations can be part of the system
to allow physician access to the raw image data collected from various scans. Using
advanced algorithms, this data is processed into images like the one in Fig. 1b, which
allow physicians to diagnose patients during neural examinations.

2.2 The MRI Software

We consider the MRI system as a representative large software-intensive system. It
combines various hardware components with a fair amount of software into a single,
complex system. Figure 2 provides an impression of the system and organizational
complexity involved with, both in the system as well as in the organization. From
the previous section, the complexity of the hardware involved is obvious. Various

Fig. 2 Overview of the Philips MRI system size and complexity

548 Empir Software Eng (2011) 16:544–586

advanced pieces of hardware are combined into a single product controlled by a
proprietary software stack. The software comprises several million lines of code
written in nine different programming languages (heterogeneous implementation).
Also, the software has a long history of being exposed to numerous changes and is
composed of legacy parts associated to large investments in both time and money.

Next to the technical complexity of the system, development of a large software-
intensive system also involves a high level of organizational complexity. Figure 2
shows the number of people involved with the evolutionary development of the
MRI scanner. MRI development requires a multidisciplinary design team with
competences in areas such as physics, electronics, mechanics, material science, soft-
ware engineering, and clinical science. All of the different disciplines have to work
together effectively on many aspects of system design. Adding to the complexity
is that the work is carried out in geographically spread locations and in different
timezones.

Furthermore, the knowledge about the system is spread among the experts of
the organization, and when it comes to the oldest parts of its implementation, this
knowledge may be limited because the documentation is either not up-to-date or
not readily available. Thus, this system creates several special requirements for the
dependency analysis, for instance due to the size of its implementation and the need
to cross the barriers imposed by its heterogeneity and complexity.

Finally, the architecture-driven development process at Philips Healthcare MRI
is also an important factor. At Philips Healthcare MRI the overall software devel-
opment is monitored by the Software Architecture Team (SWAT). This team is
responsible for the general architecture of the system. The system is decomposed
in several subsystems and components which are the responsibilities of software
designers. Most of the implementation is done by programmers. The different roles
also point to different requirements in terms of the knowledge they require. The
architects are mostly interested in high-level, architectural dependencies. On the
other hand, programmers see dependencies in terms of source-code level constructs
such as function calls. As we will see later, these different perspectives influence
various aspects of this review such as the relevant sources of information.

2.3 Research Questions

Table 1 shows the set of research questions that we aimed to answer by conducting
the systematic review. We have defined this set of questions trying to generalize the
following observations that arose within our interaction with practitioners:

1. We observed that many of the activities that practitioners perform are based on
implicit knowledge identified as experience or domain knowledge. This implicit
knowledge is hard to grasp, describe, and often differs in specialization and
complexity from the knowledge in the literature. Through our interaction with
practitioners, we identified that the perception of what constitutes a dependency
was part of the implicit knowledge. Also, in the literature, if definitions are
provided, they usually vary widely. Thus we found the need to get an overview of
the existing definitions of a ‘dependency’ and see how these definitions matched
the implicit definitions of the practitioners.

2. Our interaction with practitioners started assuming that dependency analysis was
useful. However, we soon realized that we needed explicit evidence to support

Empir Software Eng (2011) 16:544–586 549

Table 1 Research questions and motivation

RQ1. What are the proposed definitions of dependencies?
Motivation: In order for dependency analysis solutions to meet practical requirements, the
starting point is to understand what constitute a dependency.

RQ2. Why is dependency analysis needed (application areas)?
Motivation: Identify the needs/issues/problems that can be addressed using dependency analysis
within the context of developing software-intensive systems.

RQ3. What are the available dependency analysis solutions?
Motivation: Obtain an overview of the existing solutions and the required resources in order to
be able to complement, build on top or reuse these solutions.

RQ4. Are the proposed definitions and solutions usable in practice?
Motivation: Evaluate existing definitions and solutions based on the characteristics and
requirements of software-intensive systems.

our assumption and convince the practitioners. We needed evidence to show
why dependency analysis is necessary and useful for practitioners. Thus, we
found the need to get an overview about the typical use cases and application
areas for which researchers have developed dependency analysis solutions. More
importantly, we wanted to find out how these areas matched the actual needs of
practitioners.

3. Practitioners were using and testing several solutions to support the architecting
process. They concluded that none of these solutions provided the desired
support for dependency analysis. The goal of the practitioners was to find out
how to solve particular dependency analysis problems using available resources.
Practitioners often decide for solutions that use available and less expensive
resources. Therefore, we had to present them with the problems that current
solutions solve and what resources they require.

4. Finally, the goal of closely working together with practitioners was to identify
which definitions and solutions can be useful and applicable according to their
needs.

2.3.1 Target Audience

As one of the goals of the project is to support the SWAT at Philips Healthcare with
identifying dependencies in their software system, we aimed at making the results
of this review usable for them and, more in general, for people working with large,
software-intensive systems. Next to that, the results of this review should provide
dependency analysis researchers a better insight in the needs that practitioners
have, the subjects that have already been covered, and the subjects that still require
attention and could be useful in everyday practice.

3 Design of the Review

The protocol for conducting our review is based on the guidelines for systematic lit-
erature reviews as proposed in Kitchenham (2004a). Figure 3 illustrates the protocol
which distinguishes four main phases: study search and selection, data extraction,
data synthesis, and interpretation. The last phase, interpretation, is an addition to

550 Empir Software Eng (2011) 16:544–586

Fig. 3 Overview of the systematic review process

the proposed guidelines (Kitchenham 2004a), which was necessary to assess the
applicability of the study results by practitioners. In the remainder of this section
we describe the motivation and settings for the execution of each of the phases in the
protocol. The threats to the validity of this study are discussed in Section 8.

3.1 Study Search and Selection

In this phase, we focused on the process to search and select articles from the
literature. The process includes an automatic keyword search strategy and a filtering
of the search results. This process enabled the selection of 70 articles.

3.1.1 Study Search

Our search process employs an automatic keyword search strategy using Google
Scholar1 as the search engine. We choose this combination because we want practi-
tioners to be able to replicate our search and find the articles using accessible

1http://scholar.google.com/

http://scholar.google.com/

Empir Software Eng (2011) 16:544–586 551

resources. Further motivation and discussion of this choice is detailed in Section 8.
To limit the amount of papers from areas of research other than computer science,
we enabled an advanced search option in Google Scholar which tries to limit the
subject area to papers from “engineering, computer science, and mathematics”. In
addition, we set the search option to search articles published over the last ten years.
We experimented with several different search queries and, in the end, used the
following three:

1. "+(dependency OR dependence OR dependencies) analysis"
"software (system OR program)"

2. "dynamic|static|behavioral|structural
dependence|dependency" "analysis|identification|"
+software "program|system"s

3. +software intitle:Describing|Analyzing|Extracting
|Representing|Tracking|Using intitle:dependencies
|dependency

The first query is designed to find papers related to dependency analysis on
software. Our preliminary investigation showed that the word dependency occurs in
three forms together with the word analysis. Therefore, we require that at least one
of the forms occurs in the search result. This query produced a set SR1 of 703 search
results.

The second query looks for papers mentioning specific types of dependencies. As
we will explain in Section 4.2, several types of dependencies exist. Usually, the focus
of a particular study is on a subset of these types. This query therefore tries to identify
papers which mention at least one of the dependency types. This query produced a
set SR2 of 818 search results.

The third query is more restrictive than the first two. This query searches for
software-related articles that explicitly state, i.e., in the title, that they are doing
something with dependencies. The result of this query was a set SR3 of 204 search
results.

We designed the first two search queries in a initial phase of the study (pilot). The
third search string was designed taking into account the results of the pilot phase.
Figure 4 zooms into the study search and selection phase of the review protocol. In
particular, we illustrate the processing of the search results through three filtering
phases (pilot selection, final selection, and quality assessment). For each phase, we
describe the input (sets of search results or selected papers from previous phase),
the output (the number of candidate, in conflict, and excluded papers), number of
reviewers, and the set of selected papers.

3.1.2 Study Selection

The study selection was implemented as an exclusion process of two phases, i.e. pilot
selection and final selection, evaluating the three sets of search results (see Fig. 4).
The pilot selection consists of two filters (1a and 1b). The input for this phase was
the union of the first two sets of search results: 1,423 unique search results and 98
duplications.

In filter 1a, we excluded results that were obviously false positives. False positives
include results from other fields than software engineering and computer sciences
that Google Scholar did not filter. The first two authors reviewed the search results

552 Empir Software Eng (2011) 16:544–586

Fig. 4 Study selection and quality assessment process

independently from each other looking at the title and the venue of the paper linked
by the search result. The output of this step was the common selection of 68 candidate
papers, the exclusion of 1,257 results, and 98 results with no common agreement
(marked as Papers in conflict). This set of papers in conflict was the input for filter
1b where we conducted a shared discussion on each paper. The output of filter 1b
increased the set of candidate papers to 92 and the number of excluded results to
1,331. After this filter, we concluded the pilot selection and designed the third query
string taking into account the results from the shared discussion.

The final selection took place through the use of filter 2. The input for this filter
was the union of the third set of search results and the set of candidate papers from
the pilot selection: 212 unique search results and 84 duplications. We followed the
same process as in the pilot selection scanning the titles, venues, and abstracts. We
extended the false positive criteria excluding papers that have relation to the domain
of computer science but not software engineering, e.g. bio-informatics (Fundel et al.
2007), and papers that use dependency analysis for different purposes than for
analyzing software, e.g. state/event model checking (Lind-Nielsen et al. 2001). The
output consisted of 152 candidate papers and the 60 false positives.

3.1.3 Quality Assessment

We conducted a third filter to assess the quality and relevance of the 152 candidate
papers. The quality criteria that we used were based on three properties that a paper
should have to fit in the context of our review. First, a paper provides a definition
or description of the addressed dependency. Second, a paper provides information
about the use cases or application area of the proposed solution. Third, a paper was

Empir Software Eng (2011) 16:544–586 553

peer-reviewed and published at a venue related to the field of software engineering.
The scores that we used for the first two properties are: Y (yes) when the definition
or description is explicit, P (partly) when the definition or description is implicit, and
N (no) when the definition or description can not be readily inferred.

Each of the first two authors independently annotated the papers with the
description and score of the properties. Then, we compared, discussed, and resolved
differences between individual annotations. This process enabled the identification
of a set of four papers with the same authors and equal content but, with different
titles, abstracts, and venues. The output of the quality assessment was the final selec-
tion of 70 papers and the exclusion of 82 papers, including the identified duplications
(see Fig. 4). Table 2 lists the selected papers grouped by the venue and the respective
venue type. In Tables 7, 8 and 9, the columns Definition and Application area match
the selected papers to our quality assessment properties. According to our judgment,
the selected 70 papers are those that provide the most clear definitions of dependency
or explicitly state the purpose of the solution described in the paper.

3.2 Data Extraction

The data extraction was a manual process. We divided the selected papers into two
sets and the first two authors processed one set each. We extracted two types of
data from each of the selected papers (see Fig. 3). First, the bibliographical reference
including the paper’s title, authors, venue (journal or conference), and the URL
for the digital version. Second, we extended the annotations made for the quality
assessment (see Section 3.1.3) to identify a set of relevant properties in each paper
regarding our research questions:

– For RQ1, a set of definitions about dependencies and types of dependencies.
– For RQ2, a list of use cases or development activities that dependency analysis

contribute to.
– For RQ3, the types of sources of information used by dependency analysis

solutions.

3.3 Data Synthesis

In this phase, we summarized and tabulated the extracted data following a bottom-up
process. We aimed at producing the foundations for the overview (see the transition
between data extraction and data synthesis in Fig. 3). Thus, we focused on the
analysis of the extracted data to answers our first three research questions (see
Table 1). The results are presented in Sections 4, 5, and 6 as summaries and catego-
rizations that practitioners can use as overviews at first and then, if needed, as links
or references to investigate details.

3.4 Interpretation

In the interpretation phase we aimed at collecting the information to answer our
fourth research question (see Table 1). The interpretation process started with
presenting the summaries for RQ1 (see Section 4), RQ2 (see Section 5), and RQ3
(see Section 6) to the practitioners. We iterated several times to agree on the content
and format of the summaries, and to capture the practitioners’ perception. We

554 Empir Software Eng (2011) 16:544–586

T
ab

le
2

V
en

ue
s

an
d

se
le

ct
ed

pa
pe

rs

T
yp

e
A

cr
on

ym
V

en
ue

an
d

se
le

ct
ed

pa
pe

rs

C
on

fe
re

nc
e

A
P

A
Q

S
A

si
a-

P
ac

if
ic

C
on

fe
re

nc
e

on
Q

ua
lit

y
So

ft
w

ar
e

(C
he

n
et

al
.2

00
0)

A
SE

IE
E

E
/A

C
M

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
A

ut
om

at
ed

So
ft

w
ar

e
E

ng
in

ee
ri

ng
(B

re
iv

ol
d

et
al

.2
00

8;
V

ie
ir

a
an

d
R

ic
ha

rd
so

n
20

02
)

A
SP

L
O

S
In

te
rn

at
io

na
lc

on
fe

re
nc

e
on

A
rc

hi
te

ct
ur

al
su

pp
or

tf
or

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

an
d

op
er

at
in

g
sy

st
em

s
(N

ar
ay

an
as

am
y

20
06

)
C

A
iS

E
In

te
rn

at
io

na
lC

on
fe

re
nc

e
A

dv
an

ce
d

In
fo

rm
at

io
n

Sy
st

em
s

E
ng

in
ee

ri
ng

(K
ha

n
et

al
.2

00
8)

C
A

SC
O

N
C

on
fe

re
nc

e
of

th
e

C
en

te
r

fo
r

A
dv

an
ce

d
St

ud
ie

s
on

C
ol

la
bo

ra
ti

ve
re

se
ar

ch
(R

on
en

et
al

.2
00

6)
C

O
M

P
SA

C
In

te
rn

at
io

na
lC

om
pu

te
r

So
ft

w
ar

e
an

d
A

pp
lic

at
io

ns
C

on
fe

re
nc

e
(M

cC
om

b
et

al
.2

00
2;

M
or

ae
s

et
al

.2
00

5)
C

SM
R

E
ur

op
ea

n
C

on
fe

re
nc

e
on

So
ft

w
ar

e
M

ai
nt

en
an

ce
an

d
R

ee
ng

in
ee

ri
ng

(X
ia

o
an

d
T

ze
rp

os
20

05
)

IC
A

C
In

te
rn

at
io

na
lC

on
fe

re
nc

e
on

A
ut

on
om

ic
C

om
pu

ti
ng

(L
ie

ta
l.

20
05

b)
IC

C
S

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
C

on
ce

pt
ua

lS
tr

uc
tu

re
s

(C
ox

et
al

.2
00

1)
IC

C
SA

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
C

om
pu

ta
ti

on
al

Sc
ie

nc
e

an
d

A
pp

lic
at

io
ns

(M
ao

et
al

.2
00

7)
IC

F
C

A
In

te
rn

at
io

na
lC

on
fe

re
nc

e
F

or
m

al
C

on
ce

pt
A

na
ly

si
s

(P
fa

lt
z

20
06

)
IC

P
C

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
P

ro
gr

am
C

om
pr

eh
en

si
on

(L
ie

nh
ar

d
et

al
.2

00
7)

IC
SE

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
So

ft
w

ar
e

E
ng

in
ee

ri
ng

(L
aw

an
d

R
ot

he
rm

el
20

03
a;

M
au

le
et

al
.2

00
8;

V
ie

ir
a

et
al

.2
00

1;
Z

im
m

er
m

an
n

an
d

N
ag

ap
pa

n
20

08
)

IC
SE

A
In

te
rn

at
io

na
lC

on
fe

re
nc

e
on

So
ft

w
ar

e
E

ng
in

ee
ri

ng
A

dv
an

ce
s

(A
lz

am
il

20
07

)
IC

SM
In

te
rn

at
io

na
lC

on
fe

re
nc

e
on

So
ft

w
ar

e
M

ai
nt

en
an

ce
(B

al
m

as
et

al
.2

00
5;

B
in

kl
ey

an
d

H
ar

m
an

20
05

;C
os

se
tt

e
an

d
W

al
ke

r
20

07
;

D
on

g
an

d
G

od
fr

ey
20

07
;E

is
en

ba
rt

h
et

al
.2

00
1;

H
as

sa
n

an
d

H
ol

t2
00

4;
Is

hi
o

et
al

.2
00

4;
Já

sz
et

al
.2

00
8;

K
or

el
et

al
.2

00
2)

IS
C

C
In

te
rn

at
io

na
lC

on
fe

re
nc

e
on

C
om

pu
te

rs
an

d
C

om
m

un
ic

at
io

ns
(K

el
le

r
et

al
.2

00
0)

M
O

D
E

L
S

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
M

od
el

D
ri

ve
n

E
ng

in
ee

ri
ng

L
an

gu
ag

es
an

d
Sy

st
em

s
(G

ar
ou

si
et

al
.2

00
6)

O
O

P
SL

A
C

on
fe

re
nc

e
on

O
bj

ec
t-

or
ie

nt
ed

pr
og

ra
m

m
in

g,
sy

st
em

s,
la

ng
ua

ge
s,

an
d

ap
pl

ic
at

io
ns

(S
an

ga
le

ta
l.

20
05

)
O

T
M

O
n

th
e

M
ov

e
to

M
ea

ni
ng

fu
lI

nt
er

ne
tS

ys
te

m
s

C
on

fe
de

ra
te

d
C

on
fe

re
nc

es
(X

ia
o

an
d

U
rb

an
20

08
)

P
D

P
T

A
In

te
rn

at
io

na
lC

on
fe

re
nc

e
on

P
ar

al
le

la
nd

D
is

tr
ib

ut
ed

P
ro

ce
ss

in
g

T
ec

hn
iq

ue
s

an
d

A
pp

lic
at

io
ns

(K
el

le
r

an
d

K
ar

20
00

)
Q

SI
C

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
Q

ua
lit

y
So

ft
w

ar
e

(L
ia

ng
li

et
al

.2
00

6)
SE

R
A

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
So

ft
w

ar
e

E
ng

in
ee

ri
ng

R
es

ea
rc

h,
M

an
ag

em
en

ta
nd

A
pp

lic
at

io
ns

(H
ua

ng
an

d
So

ng
20

07
;V

as
ila

ch
e

an
d

T
an

ak
a

20
05

)
T

C
S

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
T

es
ti

ng
C

om
pu

te
r

So
ft

w
ar

e
(R

ys
er

an
d

G
lin

z
20

00
)

V
L

D
B

In
te

rn
at

io
na

lc
on

fe
re

nc
e

on
V

er
y

la
rg

e
da

ta
ba

se
s

(S
te

in
le

et
al

.2
00

6)
W

C
R

E
W

or
ki

ng
C

on
fe

re
nc

e
on

R
ev

er
se

E
ng

in
ee

ri
ng

(C
al

lo
A

ri
as

et
al

.2
00

8;
M

oi
se

an
d

W
on

g
20

05
)

Empir Software Eng (2011) 16:544–586 555

T
ab

le
2

(c
on

ti
nu

ed
)

T
yp

e
A

cr
on

ym
V

en
ue

an
d

se
le

ct
ed

pa
pe

rs

Jo
ur

na
l

SN
A

C
M

Si
gp

la
n

N
ot

ic
es

(C
he

n
et

al
.2

00
2;

L
ie

ta
l.

20
05

a)
IJ

SE
K

E
In

te
rn

at
io

na
lJ

ou
rn

al
of

So
ft

w
ar

e
E

ng
in

ee
ri

ng
an

d
K

no
w

le
dg

e
E

ng
in

ee
ri

ng
(I

vk
ov

ic
an

d
K

on
to

gi
an

ni
s

20
06

;S
ta

ff
or

d
an

d
W

ol
f2

00
1;

X
in

g
an

d
St

ro
ul

ia
20

06
)

IS
T

In
fo

rm
at

io
n

an
d

So
ft

w
ar

e
T

ec
hn

ol
og

y
(J

ia
ng

et
al

.2
00

8)
JS

M
E

Jo
ur

na
lo

fS
of

tw
ar

e
M

ai
nt

en
an

ce
an

d
E

vo
lu

ti
on

:R
es

ea
rc

h
an

d
P

ra
ct

ic
e

(G
lo

ri
e

et
al

.2
00

9)
N

T
C

S
N

ew
T

ec
hn

ol
og

ie
s

on
C

om
pu

te
r

So
ft

w
ar

e
(Z

ha
o

20
01

)
T

A
C

O
A

C
M

T
ra

ns
ac

ti
on

s
on

A
rc

hi
te

ct
ur

e
an

d
C

od
e

O
pt

im
iz

at
io

n
(T

al
la

m
an

d
G

up
ta

20
07

)
T

O
SE

M
A

C
M

T
ra

ns
ac

ti
on

s
on

So
ft

w
ar

e
E

ng
in

ee
ri

ng
an

d
M

et
ho

do
lo

gy
(R

ob
ill

ar
d

20
08

)
T

SE
IE

E
E

T
ra

ns
ac

ti
on

s
on

So
ft

w
ar

e
E

ng
in

ee
ri

ng
(E

gy
ed

20
03

;E
is

en
ba

rt
h

et
al

.2
00

3)
Sy

m
po

si
um

SA
C

A
C

M
Sy

m
po

si
um

on
A

pp
lie

d
C

om
pu

ti
ng

1
(B

oh
ne

te
ta

l.
20

09
)

E
SE

M
In

te
rn

at
io

na
lS

ym
po

si
um

on
E

m
pi

ri
ca

lS
of

tw
ar

e
E

ng
in

ee
ri

ng
an

d
M

ea
su

re
m

en
t(

C
at

al
do

et
al

.2
00

8;
N

ag
ap

pa
n

an
d

B
al

l2
00

7)
IM

IF
IP

/I
E

E
E

In
te

rn
at

io
na

lS
ym

po
si

um
on

In
te

gr
at

ed
N

et
w

or
k

M
an

ag
em

en
t(

B
ro

w
n

et
al

.2
00

1)
IS

C
IS

In
te

rn
at

io
na

lS
ym

po
si

um
on

C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

es
(J

ou
rd

an
et

al
.2

00
6)

IS
SR

E
In

te
rn

at
io

na
lS

ym
po

si
um

on
So

ft
w

ar
e

R
el

ia
bi

lit
y

E
ng

in
ee

ri
ng

(L
aw

an
d

R
ot

he
rm

el
20

03
b;

Z
im

m
er

m
an

n
an

d
N

ag
ap

pa
n

20
07

)
IS

ST
A

In
te

rn
at

io
na

ls
ym

po
si

um
on

So
ft

w
ar

e
te

st
in

g
an

d
an

al
ys

is
(X

in
an

d
Z

ha
ng

20
07

)
M

E
T

R
IC

S
In

te
rn

at
io

na
lS

ym
po

si
um

on
So

ft
w

ar
e

M
et

ri
cs

(L
ei

tc
h

an
d

St
ro

ul
ia

20
03

)
N

O
M

S
N

et
w

or
k

O
pe

ra
ti

on
s

an
d

M
an

ag
em

en
tS

ym
po

si
um

(G
ao

et
al

.2
00

4)
SF

M
In

te
rn

at
io

na
lS

ch
oo

lo
n

F
or

m
al

M
et

ho
ds

:S
of

tw
ar

e
A

rc
hi

te
ct

ur
es

(S
ta

ff
or

d
et

al
.2

00
3)

W
or

ks
ho

p
D

SO
M

IF
IP

/I
E

E
E

In
te

rn
at

io
na

lW
or

ks
ho

p
on

D
is

tr
ib

ut
ed

Sy
st

em
s:

O
pe

ra
ti

on
s

an
d

M
an

ag
em

en
t

(A
ga

rw
al

et
al

.2
00

4;
G

up
ta

et
al

.2
00

3)
IW

P
C

In
te

rn
at

io
na

lW
or

ks
ho

p
on

P
ro

gr
am

C
om

pr
eh

en
si

on
(C

he
n

an
d

R
aj

lic
h

20
00

)
IW

P
SE

In
te

rn
at

io
na

lW
or

ks
ho

p
on

P
ri

nc
ip

le
s

of
So

ft
w

ar
e

E
vo

lu
ti

on
(Z

ha
o

20
02

)
M

SR
In

te
rn

at
io

na
lW

or
ks

ho
p

on
M

in
in

g
So

ft
w

ar
e

R
ep

os
it

or
ie

s
(K

ag
di

an
d

M
al

et
ic

20
07

)
P

A
ST

E
A

C
M

SI
G

P
L

A
N

-S
IG

SO
F

T
W

or
ks

ho
p

on
P

ro
gr

am
A

na
ly

si
s

fo
r

So
ft

w
ar

e
T

oo
ls

an
d

E
ng

in
ee

ri
ng

(Z
ha

ng
an

d
R

yd
er

20
07

)
V

IS
SO

F
T

In
te

rn
at

io
na

lW
or

ks
ho

p
on

V
is

ua
liz

in
g

So
ft

w
ar

e
fo

r
U

nd
er

st
an

di
ng

an
d

A
na

ly
si

s
(H

ol
m

es
an

d
W

al
ke

r
20

07
)

556 Empir Software Eng (2011) 16:544–586

captured this perception by observing and asking practitioners about their concerns
regarding the applicability and potential usage of the information presented in the
summaries. Then, we used the collected perception to build the summary for RQ4
(see Section 7).

4 Overview of Concepts about Dependencies

Dependency analysis aims to make information about dependencies explicit and
accessible, which is of paramount importance when changing or evolving a software
system (Loyall and Mathisen 1993; Podgurski and Clarke 1990). However, this
requires knowledge on what a dependency is. Therefore, we have looked at existing
definitions of dependencies in the literature.

4.1 Definition of Dependencies in the Literature

Much of the present literature takes the definition of dependency for granted
and where definitions are given, they vary widely. One of the first definitions of
dependency in the literature of computer science was stated by Stevens et al. (1974):
a dependency is the degree to which each component relies on each one of the other
components in the software system. The fewer and simpler the connections between
components, the easier it is to understand each component without reference to other
components. This definition, introduced in 1974, has since been used by many authors
and applied to various different areas.

Another definition, similar to the one provided by Stevens et al., is proposed by
Vieira and Richardson (2002). They state that dependencies reflect the potential
for one component to affect (via the various in and outputs) or be affected by the
elements (e.g., other components, the platform on which it runs) that compose the
system. Although this definition is similar to, it is not the same as the definition pro-
vided by Stevens et al. as Vieira and Richardson have removed the notion of strength
from their definition.

Most of the more recent definitions (Cox et al. 2001; Loyall and Mathisen
1993; Mehta et al. 2000; Podgurski and Clarke 1990; Stafford and Wolf 1998)
describe dependencies in software systems as relations between components. These
dependencies, regardless of their complexity, provide mechanisms for transferring
data, control, or both from one component to another. Transfer of control and
data are often related to structures in the system source code like function calls
and conditional statements. Unfortunately, these definitions are hard to use when
looking at a system in other ways than by examining the source code. For instance,
looking at the dynamic behavior of the system often involves abstractions which are
not available in the source code.

Therefore, some authors choose more high-level definitions and look at depen-
dencies as interactions between different managed objects or components which are
only observable from outside of the application (Allen and Garlan 1997; Keller et al.
2000). These dependencies can even run between elements which are not part of the
same system. This is especially the case when trying to identify so-called operational
dependencies as described by Brown et al. (2001). An example of these dependencies

Empir Software Eng (2011) 16:544–586 557

are dependencies between a web application, the web naming service it relies on, the
underlying database, and the operating system.

4.2 Types of Dependencies

Besides the concept of dependencies, literature also describes various types of
dependencies. However, we consider that they all fit into three main categories which
we will discuss below.

Structural Dependencies Often, when talking about dependencies, what is actually
meant are structural (Allen and Garlan 1997; Stafford and Wolf 1998) dependencies
among parts of a system. Structural dependencies have been widely discussed in
the literature. Structural dependencies can be divided into several subcategories:
content dependencies, common dependencies, external dependencies, control de-
pendencies, stamp dependencies and data dependencies (also called data flow de-
pendencies) (Allen and Garlan 1997; Balmas et al. 2005; Myers 1975; Podgurski and
Clarke 1990; Stafford and Wolf 1998; Stevens et al. 1974). Although most structural
dependencies can be found by inspecting the source code (i.e. static analysis of the
source code), structural dependencies also exist on the level of models and applica-
tion execution. An example of a structural dependency at the execution level is a
web server which executes a diagnostic routine in order to determine whether there
is a problem with the TCP/IP-stack that is provided.

Behavioral Dependencies In contrast to structural dependencies, behavioral
(Stafford and Wolf 1998) or interaction (Allen and Garlan 1997) dependencies
often involve abstractions not directly provided by programming languages: use of
public interfaces (e.g. external programs or devices), event broadcast, client-server
protocols, temporal ordering, etc. (Allen and Garlan 1997; Li et al. 2005a; Mehta
et al. 2000; Stafford and Wolf 1998). Using the previous example for dependencies at
the application management level again, a behavioral dependency exists between the
web server and the TCP/IP-stack as well, because the web server needs the TCP/IP-
stack in order to perform its tasks.

Traceability Dependencies In an iterative process, a developer cannot discard the
requirements after the design is built nor can a developer discard the design after
the source code is programmed (Egyed 2003). Therefore, developers have the
need to maintain the inter-relationships between the different artifacts. These inter-
relationships are called traceability dependencies and they characterize the depen-
dencies between requirements, design, and code (Egyed 2003; Gotel and Finkelstein
1994; Watkins and Neal 1994). Traceability dependencies are different from the other
two types of dependencies in that they do not represent dependencies between the
same type of elements, i.e. between code elements or dynamic aspects of a program,
but between different kinds of development artifacts.

5 Application Areas of Dependency Analysis

In this section we aim to answer our second research question, Why is dependency
analysis needed? (see Table 1). Our answer to this question is an overview of a set

558 Empir Software Eng (2011) 16:544–586

T
ab

le
3

O
ve

rv
ie

w
of

th
e

ap
pl

ic
at

io
n

ar
ea

s
in

cl
ud

in
g

re
le

va
nt

lit
er

at
ur

e

A
pp

lic
at

io
n

ar
ea

In
cl

ud
es

R
ef

er
en

ce
s

A
pp

lic
at

io
n

P
ro

bl
em

de
te

rm
in

at
io

n
(B

ro
w

n
et

al
.2

00
1;

L
ie

ta
l.

20
05

b;
G

ao
et

al
.2

00
4;

le
ve

la
na

ly
si

s
A

ut
om

at
ed

di
st

ri
bu

te
d

m
an

ag
em

en
t

K
el

le
r

an
d

K
ar

20
00

;R
on

en
et

al
.2

00
6;

an
d

m
an

ag
em

en
t

P
la

tf
or

m
an

d
co

m
po

ne
nt

s
po

rt
in

g
M

cC
om

b
et

al
.2

00
2;

G
up

ta
et

al
.2

00
3;

Se
rv

ic
e

m
an

ag
em

en
t

K
el

le
r

et
al

.2
00

0;
St

ei
nl

e
et

al
.2

00
6;

R
oo

tc
au

se
an

d
fa

ul
tl

oc
al

iz
at

io
n

A
ga

rw
al

et
al

.2
00

4;
X

ia
o

an
d

U
rb

an
20

08
)

M
ai

nt
ai

ni
ng

co
rr

ec
tn

es
s

of
co

nc
ur

re
nt

pr
oc

es
se

s
A

rc
hi

te
ct

ur
e

A
rc

hi
te

ct
ur

e
un

de
rs

ta
nd

in
g

(V
ie

ir
a

an
d

R
ic

ha
rd

so
n

20
02

;S
ta

ff
or

d
an

d
W

ol
f2

00
1;

de
sc

ri
pt

io
n/

C
od

e
ar

ch
it

ec
tu

re
an

al
ys

is
V

ie
ir

a
et

al
.2

00
1;

St
af

fo
rd

et
al

.2
00

3;
an

al
ys

is
D

es
cr

ip
ti

on
of

co
m

po
ne

nt
-b

as
e

sy
st

em
s

Z
ha

o
20

01
;S

an
ga

le
ta

l.
20

05
)

A
na

ly
si

s
of

fo
rm

al
ar

ch
it

ec
tu

ra
ld

es
cr

ip
ti

on
s

C
ha

ng
e

im
pa

ct
C

ha
ng

e
im

pa
ct

in
as

pe
ct

-o
ri

en
te

d
so

ft
w

ar
e

(Z
ha

o
20

02
;M

ao
et

al
.2

00
7;

H
as

sa
n

an
d

H
ol

t2
00

4;
an

al
ys

is
C

ha
ng

e
im

pa
ct

of
co

m
po

ne
nt

-b
as

ed
sy

st
em

s
L

aw
an

d
R

ot
he

rm
el

20
03

b;
K

ag
di

an
d

M
al

et
ic

20
07

;
C

ha
ng

e
pr

ed
ic

ti
on

B
in

kl
ey

an
d

H
ar

m
an

20
05

;H
ua

ng
an

d
So

ng
20

07
;

D
ep

en
de

nc
e

cl
us

te
rs

an
d

de
pe

nd
en

ce
po

llu
ti

on
R

ob
ill

ar
d

20
08

;B
re

iv
ol

d
et

al
.2

00
8;

D
yn

am
ic

im
pa

ct
an

al
ys

is
of

ob
je

ct
-o

ri
en

te
d

pr
og

ra
m

s
X

in
g

an
d

St
ro

ul
ia

20
06

;M
au

le
et

al
.2

00
8;

E
ff

ic
ie

nt
so

ur
ce

co
de

na
vi

ga
ti

on
G

lo
ri

e
et

al
.2

00
9;

K
ha

n
et

al
.2

00
8)

E
vo

lv
ab

ili
ty

an
d

m
od

ul
ar

it
y

re
la

ti
on

Id
en

ti
fi

ca
ti

on
of

cl
as

s
ch

an
ge

pr
of

ile
s

Im
pa

ct
of

da
ta

ba
se

sc
he

m
a

ch
an

ge
In

de
pe

nd
en

td
ev

el
op

m
en

t
M

od
el

s
an

d
so

ur
ce

co
de

sy
nc

hr
on

iz
at

io
n

R
eq

ui
re

m
en

tc
ha

ng
e

im
pa

ct
on

ar
ch

it
ec

tu
ra

le
le

m
en

ts

Empir Software Eng (2011) 16:544–586 559

P
ro

gr
am

/s
ys

te
m

A
na

ly
si

s
of

co
nc

ur
re

nc
y

(C
he

n
an

d
R

aj
lic

h
20

00
;C

he
n

et
al

.2
00

2;
un

de
rs

ta
nd

in
g

A
na

ly
si

s
of

m
ul

ti
-l

an
gu

ag
es

/p
ol

y-
lin

gu
al

sy
st

em
s

C
os

se
tt

e
an

d
W

al
ke

r
20

07
;M

oi
se

an
d

W
on

g
20

05
;

Id
en

ti
fi

ca
ti

on
of

dy
na

m
ic

co
nt

ro
ld

ep
en

de
nc

ie
s

X
in

an
d

Z
ha

ng
20

07
;J

ia
ng

et
al

.2
00

8;
P

ro
gr

am
sl

ic
in

g
an

al
ys

is
H

ol
m

es
an

d
W

al
ke

r
20

07
;J

ás
z

et
al

.2
00

8;
R

eu
se

an
al

ys
is

P
fa

lt
z

20
06

)
Q

ua
lit

y
as

su
ra

nc
e,

P
re

di
ct

io
n

of
de

fe
ct

s
an

d
fa

ilu
re

s
(G

ar
ou

si
et

al
.2

00
6;

Z
im

m
er

m
an

n
an

d
N

ag
ap

pa
n

20
07

,
te

st
in

g
an

d
E

xp
la

in
po

st
-r

el
ea

se
fa

ilu
re

s
20

08
;Z

ha
ng

an
d

R
yd

er
20

07
;K

or
el

et
al

.2
00

2;
de

bu
gg

in
g

F
or

ec
as

ti
ng

th
e

lo
ad

le
ve

lo
fs

ys
te

m
co

m
po

ne
nt

s
R

ys
er

an
d

G
lin

z
20

00
;M

or
ae

s
20

05
;

In
te

rc
la

ss
te

st
in

g
Jo

ur
da

n
et

al
.2

00
6;

Is
hi

o
et

al
.2

00
4;

M
od

el
-b

as
ed

re
gr

es
si

on
te

st
in

g
B

oh
ne

te
ta

l.
20

09
;N

ar
ay

an
as

am
y

20
06

;
Sc

en
ar

io
-b

as
ed

te
st

in
g

N
ag

ap
pa

n
an

d
B

al
l2

00
7)

T
es

ts
ui

te
re

du
ct

io
n

A
sp

ec
t-

or
ie

nt
ed

de
bu

gg
in

g
B

ug
in

tr
od

uc
ti

on
in

C
/C

++
pr

og
ra

m
s

R
ep

la
y

de
bu

gg
in

g
fo

r
m

ul
ti

-t
hr

ea
de

d
pr

og
ra

m
s

R
ef

ac
to

ri
ng

an
d

A
ss

es
si

ng
m

od
ul

ar
iz

at
io

n
an

d
pr

od
uc

ti
vi

ty
(L

ei
tc

h
an

d
St

ro
ul

ia
20

03
;A

lz
am

il
20

07
;

m
od

ul
ar

iz
at

io
n

R
et

ur
n

on
in

ve
st

m
en

to
fr

ef
ac

to
ri

ng
C

at
al

do
et

al
.2

00
8;

D
on

g
an

d
G

od
fr

ey
20

07
)

U
nd

es
ir

ed
de

pe
nd

en
cy

re
m

ov
al

U
se

of
de

si
gn

pa
tt

er
ns

an
d

po
te

nt
ia

lp
ro

bl
em

s
T

ra
ce

ab
ili

ty
an

d
Id

en
ti

fi
ca

ti
on

of
tr

ac
e

re
la

ti
on

sh
ip

s
(E

gy
ed

20
03

;V
as

ila
ch

e
an

d
T

an
ak

a
20

05
;

fe
at

ur
e

an
al

ys
is

L
in

k
re

qu
ir

em
en

ts
an

al
ys

is
an

d
de

si
gn

Iv
ko

vi
c

an
d

K
on

to
gi

an
ni

s
20

06
;C

he
n

et
al

.2
00

0;
M

od
el

s
an

d
so

ur
ce

co
de

sy
nc

hr
on

iz
at

io
n

E
is

en
ba

rt
h

et
al

.2
00

3;
E

is
en

ba
rt

h
et

al
.2

00
1;

F
ea

tu
re

lo
ca

ti
on

an
d

an
al

ys
is

L
ie

nh
ar

d
et

al
.2

00
7)

560 Empir Software Eng (2011) 16:544–586

of activities that dependency analysis solutions in the literature claim to support or
address. Our motivation to present this answer under these terms is motivated by
what we observed in practice. We noticed that practitioners often relate their needs
to the activities they perform within the different phases of a given development
project. However, we also observed that these needs are often not explicit nor are
they easy to identify. Especially from the research perspective, what specific activities
practitioners follow and need support for, is an interesting topic.

We consider that providing this answer, even before identifying the various
existing solutions, is useful for two reasons. First is to establish the communication
with practitioners. And second is to identify whether dependency analysis support
the activities that practitioners actually perform.

Table 3 lists various activities, identified through the review, that dependency
analysis solutions in general claim to support. We have classified these various activi-
ties as a set of application areas that match to actual tasks conducted by practitioners
within the development and maintenance of software systems. In addition, Table 3
provides references to the solutions which, according to our criteria, explicitly focus
on the given application area. In the rest of this section we describe each of the
identified application areas and how dependency analysis support them.

5.1 Application Level Analysis and Management

When systems are deployed in the field and used by end-users, system’s components
or applications result in more places and paths than those considered within the
design and development. Application level analysis and management focuses on the
behavior of systems in the field and related ”end-user noticeable” system aspects,
e.g., performance, availability, and other end-user-visible metrics (Brown et al. 2001).
Information about dependencies in this context is often necessary and useful to
support system managers and administrators who concern about the effects and
propagation of system applications problems in the field. The available dependency
analysis solutions to support this area (see Table 3) aim at identifying structural and
behavioral dependencies between major elements of a running system (subsystems.
applications, services, data repositories etc.). These solutions support practitioners
in the management of end-user-reported problems conducting activities such as
automated distributed management (Keller and Kar 2000), problem determina-
tion (Agarwal et al. 2004; Brown et al. 2001; Gao et al. 2004; Gupta et al. 2003; Li et al.
2005b), root cause analysis and fault localization (Steinle et al. 2006), and maintaining
the correctness of concurrency in multi processes systems (Xiao and Urban 2008).

5.2 Architecture Description and Analysis

Due to the increasing size and complexity of software systems, architectural de-
scriptions has become important assets for development organizations. Practitioners
such as software architects and designers often construct and use architectural
descriptions to facilitate the communication within the various stakeholders. Prac-
titioners use architectural descriptions to extract information about many aspects
of a system’s structure and behavior, and including dependencies at an architecture

Empir Software Eng (2011) 16:544–586 561

level. In the literature, a number of dependency analysis solutions are presented
to support dependency analysis as part of activities related to the construction and
use of architectural descriptions (see Table 3). These activities include, the analysis
and understanding of formal architectural descriptions (Stafford and Wolf 2001;
Stafford et al. 2003; Zhao 2001), code architecture analysis (Sangal et al. 2005),
and the description of large component-base systems (Vieira et al. 2001; Vieira and
Richardson 2002).

5.3 Change Impact Analysis

An area in which dependency analysis is often applied is for assessing the impact
of changes, i.e. change impact analysis (often just referred to as software mainte-
nance). Change impact analysis is used by practitioners (e.g., architects, designers,
developers, and testers) who often need to assess the effect of a change in the system
they develop or maintain. This analysis is important because changes in one part of a
system do not stand on their own, but require further modifications in other parts of
the system.

Dependency analysis support change impact analysis in many different ways (see
Table 3). First, some solutions are presented to support change impact analysis on
specific type of systems, e.g., aspect-oriented (Zhao 2002), component-based (Mao
et al. 2007), and object oriented (Huang and Song 2007; Xing and Stroulia 2006).
Second, many solutions are for supporting activities that facilitate change impact
analysis, e.g., change prediction (Hassan and Holt 2004; Kagdi and Maletic 2007;
Law and Rothermel 2003b), identification of dependence clusters and dependence
pollution (Binkley and Harman 2005), dynamic impact analysis in object-oriented
programs (Huang and Song 2007), identification of class change profiles (Xing and
Stroulia 2006), impact of database schema change (Maule et al. 2008), and efficient
source code navigation (Robillard 2008). Third, a number of other solutions are
presented to support change impact on development aspects such as the relation
between evolvability and modularity (Breivold et al. 2008), independent develop-
ment (Glorie et al. 2009), and requirement change impact on architectural elements
(Khan et al. 2008).

5.4 Program/System Understanding

It is well-known that within development and maintenance, practitioners spend a
considerable amount of time studying artifacts such as source code and documen-
tation. This is often necessary to gain a sufficient level of understanding about the
system they develop or maintain. Program and system understanding, therefore,
is another popular area that dependency analysis solutions support (see Table 3).
Dependency analysis is presented to support the understanding of systems like con-
current software systems (Chen and Rajlich 2000) and multi-languages/poly-lingual
systems (Cossette and Walker 2007; Moise and Wong 2005). The main activities that
enable program understanding and are supported by dependency analysis include the
identification of particular types of dynamic dependencies (Jász et al. 2008; Pfaltz
2006; Xin and Zhang 2007), program slicing analysis (Jiang et al. 2008), and reuse
analysis (Holmes and Walker 2007).

562 Empir Software Eng (2011) 16:544–586

5.5 Quality Assurance, Testing and Debugging

Quality attributes include reliability, availability, safety, and performance. Assuring
these quality attributes in a software system is an important concern for practitioners,
especially when developing dependable software-intensive systems (e.g., command
and control systems, aircraft aviation systems, robotics, and nuclear power plant
systems). Testing and debugging are the usual activities that development organiza-
tions perform to verify and assure the quality of such systems. Dependency analysis
support support quality assurance through various planning and implementation
activities (see Table 3).

In the planning, dependency analysis support the forecasting of load levels of
system components (Garousi et al. 2006), and prediction of defects and failures
(Zimmermann and Nagappan 2007, 2008). Forecasting the load level of system
components is supported by analyzing behavioral dependencies on model designs
and aims at devising appropriate provisions for the most dependable entities of a
system before implementation. Also, practitioners (e.g. managers) could identify
in advance the system or program units that are more likely to face defects and
compromise the system’s quality. With this information in advance, practitioners
can estimate the time and cost for the design and execution of testing activities,
especially for the units that may need to be tested the most. Some of the main testing
activities supported by dependency analysis are design of interclass testing (Zhang
and Ryder 2007), model-based regression testing (Korel et al. 2002), scenario-based
testing (Ryser and Glinz 2000), and test suite reduction (Jourdan et al. 2006).

Dependency analysis solutions can also be used to explain post-release failures
(Nagappan and Ball 2007) and to deliberately insert faults into source code (Moraes
et al. 2005) to accelerate errors and failures situations. These activities are useful
to observe the system’s behavior in the presence of faults and therefore identify
the source code elements that should be monitored for debugging during the imple-
mentation. Debugging is looking for the anomalies in the code, which are syntactic
patterns that evidence a programming error or irrespective use of the language
specification, e.g., using a variable before it has been defined. Dependency analysis
supports debugging for looking for various kinds of anomalies in program state-
ments (Podgurski and Clarke 1990), bug introduction in C/C++ programs (Bohnet
et al. 2009), replay debugging for multi-threaded programs (Narayanasamy 2006),
and even debugging of aspect-oriented software (Ishio et al. 2004).

5.6 Refactoring and Modularization

A long-standing technique for improving an existing design is diligent restructuring
through local code transformations, commonly knows as “Refactoring” (Fowler
1999). In the area of refactoring, dependency analysis solutions provide support for
predicting the Return on Investment (ROI) for possible design restructuring (Leitch
and Stroulia 2003). It is often hard for practitioners decide and quantify the trade-
off between the up-front cost of restructuring and the expected downstream savings.
Similar to refactoring, taking decisions about modularization is hard in practice.

Modularization is often considered as a beneficial technique to reduce inter-
dependencies among the components of a system. Dependency analysis supports
practitioners in the identification of dependencies that should be taken into account

Empir Software Eng (2011) 16:544–586 563

for modularization and reduction of work dependencies (Cataldo et al. 2008).
The support includes how to detect and model the kind of dependencies that go
against modularization and are candidates to be removed. The first kind are the
relationships that appear due to the particularities of the implementation paradigm
and design (Dong and Godfrey 2007). The second kind are redundant relationships
that create undesired coupling between implementation modules, which often do not
contribute to the respective system function output (Alzamil 2007).

5.7 Traceability and Feature Analysis

Software development artifacts such as model descriptions, specifications, and source
code are highly interrelated. Changes in one artifact effect another thus setting in
motion a cascade of changes. Trace dependencies characterize such relationships in
an abstract fashion. A common problem in practice is that the absence of information
about trace dependencies or the uncertainty of its correctness, limits the usefulness
of software models during software development activities. In the literature several
solutions are presented to address this situation (see Table 3). The support include
automated approaches to generate and validate trace dependencies (Egyed 2003),
solutions to link the result of requirement analysis, i.e. scenario descriptions, with
model designs (Vasilache and Tanaka 2005), and solutions to synchronize design
models and the respective implementation code (Ivkovic and Kontogiannis 2006).

Similar to the identification of trace information, it is important to identify which
parts of the source code implement a given system feature (system’s externally visible
behavior). This information is in general not obvious or outdated, which causes that
understanding the system becomes harder every time a feature is changed. Thus
dependency analysis solutions provide support for the identification and analysis
of system features mainly by conducting scenario-based analysis (Chen et al. 2000;
Eisenbarth et al. 2001, 2003; Lienhard et al. 2007).

6 Existing Dependency Analysis Solutions

In this section, we present the answer to our third research question (see Table 1)
describing existing dependency analysis solutions. To structure the description, we
classify the existing solutions by their source of information. Dependency analysis
solutions take the source of information as input data and transform it into infor-
mation at a higher level of abstraction. Information at a higher level of abstraction
is then be used to reason about the dependencies and to solve issues in the various
application areas (see Section 5). The sources of information used among existing
dependency solutions can be classified in three groups: source code, descriptions and
models, and run-time monitored and configuration data.

There are alternative criteria to classify dependency analysis solutions, e.g., the
kind of information output, the required interaction, or the degree of user interven-
tion. However, our decision to classify dependency analysis solutions by the source
of information was driven by the resource constrained perspective of practitioners
(see Section 2.3). Presenting existing solution by their source of information helped
us to make the required resources explicit, i.e. the sort of data that practitioners may
require or should make it available to use a given solution.

564 Empir Software Eng (2011) 16:544–586

6.1 Source Code-based Solutions

Source code is, if not the most popular, the most well-known source used by depen-
dency analysis solutions. Source code provides syntactic and semantic information
that describes the implementation and the structure of a software system. Syntactic
and semantic information in the source code are respectively represented by the
abstract syntax tree and abstract semantic graphs. Both, semantic and syntactic code
information describe code artifacts (e.g. variables, operators, methods, classes) and
relationships between them.

Dependency analysis solutions using code information are often used to identify
structural dependencies at different levels of abstractions (e.g. program statements,
module, and file level). Among solutions that analyze source code data one can
distinguish three groups based on the analysis approach: static, dynamic, and change
history analysis (see Table 4).

In Table 4, we illustrate the match between the analysis approach (or combination
of approaches), the application area, and the reference to the identified depen-
dency analysis solution(s). Although the identified approaches are very different,
these approaches share two main underlying characteristics. First, the identification
and description of dependencies is bases on the Program Dependency Graph
(PDG) (Ferrante et al. 1987; Podgurski and Clarke 1990). PDG is a classic depen-
dency model to identify data and control dependencies between program statement
elements (variables, operators, and operands). Second, the identified relationships or
dependencies link source code related artifacts, but at different levels of abstraction
(e.g. program statements, classes, modules, and even groups of source code files).

6.1.1 Static Analysis

Dependency analysis solutions based on static analysis are extensions of the PDG
(Chen and Rajlich 2000; Chen et al. 2000; Ishio et al. 2004; Leitch and Stroulia 2003;
Zhao 2002) and the Dependency (or Design) Structure Matrix (DSM) (Breivold
et al. 2008; Sangal et al. 2005). A variety of static analysis techniques are used by
dependency solutions to discover and organize dependency information in graphs
and matrices. These techniques are approximation algorithms (Zhang and Ryder
2007), context-sensitivity dataflow (Maule et al. 2008), formal concept analysis and
clustering (Glorie et al. 2009), island grammars (Cossette and Walker 2007), search-
based slicing (Jiang et al. 2008), source code navigators for heterogeneous code
(Moise and Wong 2005), topology analysis (Robillard 2008), and annotations and
navigation models (Holmes and Walker 2007). The goal of these techniques is to
reflect the system structure and highlight patterns and problematic relationships that
practitioners deal with through various application areas (see Table 4).

6.1.2 Dynamic Analysis

Dependency analysis solutions based on dynamic analysis use source code-based
data in the form of execution traces. An execution trace can be identified as function,
procedure, or method being called. Execution traces are collected using techniques
such as source code instrumentation, platform profiling, and compiler profiling. Most
techniques and tools for execution trace analysis are presented for specific paradigms
and even specific programming languages (Hamou-Lhadj and Lethbridge 2004).

Empir Software Eng (2011) 16:544–586 565

Table 4 Dependency analysis solutions using source code-based information

Approach Application areas References

Static analysis Architecture description/analysis (Sangal et al. 2005)
Change impact analysis (Binkley and Harman 2005;

Breivold et al. 2008;
Glorie et al. 2009;
Hassan and Holt 2004;
Maule et al. 2008;
Robillard 2008;
Zhao 2002)

Program/system understanding (Chen and Rajlich 2000;
Cossette and Walker 2007;
Holmes and Walker 2007;
Jiang et al. 2008;
Moise and Wong 2005)

Feature analysis (Chen et al. 2000;
Glorie et al. 2009)

Quality assurance and testing (Ishio et al. 2004;
Zhang and Ryder 2007)

Refactoring (Dong and Godfrey 2007;
Leitch and Stroulia 2003)

Dynamic analysis Change impact analysis (Huang and Song 2007;
Law and Rothermel 2003a, b;
Tallam and Gupta 2007)

Program/system understanding (Jász et al. 2008; Pfaltz 2006;
Xin and Zhang 2007)

Refactoring and modularization (Alzamil 2007)
Traceability and feature analysis (Egyed 2003; Lienhard et al. 2007)

Change history Change impact analysis (Kagdi and Maletic 2007)
analysis Refactoring and modularization (Cataldo et al. 2008)

Debugging (Nagappan and Ball 2007)
Combined static and Application level analysis (Ronen et al. 2006)

dynamic analysis Quality assurance (Zimmermann and Nagappan
2007, 2008)

Feature analysis (Eisenbarth et al. 2001, 2003)
Combined static, Refactoring and modularization, (Bohnet et al. 2009)

dynamic, and change change impact analysis,
history analysis and debugging

In the cases of dependency analysis, most solutions are to analyze object oriented
implementations exploring relationships such as inheritance, polymorphism, and
dynamic binding of languages such as Java and C++ (Egyed 2003; Lienhard et al.
2007).

The dynamic analysis techniques used among dependency analysis solutions
include, footprint graph analysis (Egyed 2003), clustering (Xiao and Tzerpos 2005),
whole path profiling (Law and Rothermel 2003a, b), object flow analysis (Lienhard
et al. 2007), redundant coupling detection (Alzamil 2007), online detection (Xin and
Zhang 2007), execute after/before analysis (Jász et al. 2008), compression and tra-
versing of traces (Tallam and Gupta 2007), and formal concept analysis (Pfaltz 2006).
These techniques enable dependency analysis in two ways. First, these techniques

566 Empir Software Eng (2011) 16:544–586

identify relationships between object oriented code artifacts, e.g., objects, classes,
and methods that happen at run-time. Second, these solutions also identify traceabil-
ity dependencies between system features, execution scenarios, design models, and
object oriented code artifacts. Table 4 illustrates the application areas supported by
these various techniques. For a more exhaustive analysis of solutions that analyze
execution traces, without a particular focus on dependencies, we refer the reader
to Hamou-Lhadj and Lethbridge (2004).

6.1.3 Historical Analysis

Dependency analysis solutions based on historical analysis use the change history of
source code artifacts. Change history of source code artifacts provides information
about change patterns, e.g. a set of code files that were changed together frequently
in the past. Change patterns are the relationships that solutions in this group
characterize as dependencies. The identified historical analysis techniques include
the analysis of modification requests (Cataldo et al. 2008), co-change mining (Kagdi
and Maletic 2007), and analysis of churn metrics (Nagappan and Ball 2007). Table 4
illustrates the application areas supported by these various techniques.

6.1.4 Combining Information Sources

Some dependency analysis solutions propose combinations of analysis approaches
to increase the completeness and precision of the identified information about de-
pendencies. We identified two main combinations: static with dynamic analysis, and
static with dynamic and change history, which are applied to support various appli-
cation areas (see Table 4).

The techniques used by solutions that combine static and dynamic analysis include
concept analysis (Eisenbarth et al. 2001, 2003), pattern languages (Ronen et al.
2006), and network analysis (Zimmermann and Nagappan 2007, 2008). Concept
analysis is applied using a scenario-based approach that combines execution traces
and static relationships. A pattern language is applied to abstract execution traces
into relationships that describe the access to system level resources, e.g. databases,
message queues, and control systems. Network analysis is applied to track depen-
dency information at the function level (including calls, imports, exports, RPC, COM,
and Registry accesses) and present it at the level of binaries and system modules.

A solution that combines static with dynamic and change history analysis is pre-
sented in Bohnet et al. (2009). The technique of this solution focuses on the reduction
of change sets (historical information) by projecting them onto execution traces and
static relationships that involve the source code artifacts in the change sets.

6.2 Descriptions and Model-based Solutions

System documentation often includes diagrammatic and semi-formal descriptions
that are created to describe the structure and behavior of a software system at a
high level of abstraction. Diagrammatic descriptions include representations such as
chart UML diagrams and sketches with blocks and arrows. Semi-formal descriptions
include descriptions using Architectural Description Languages (ADLs) and Inter-
face Description Languages (IDLs), which are initiatives of the software architecture

Empir Software Eng (2011) 16:544–586 567

research community and component-based platform respectively to describe systems
at an architectural level.

Table 5 lists the identified dependency analysis solutions that use diagrammatic
representations and semi-formal descriptions to identify dependencies (behavioral
and structural) at a high level of abstraction such as architectural level, rather than
at the level of source code artifacts.

6.2.1 Diagrammatic Descriptions

Dependency analysis solution work with various types of diagrammatic represen-
tations such as top-down descriptions (McComb et al. 2002), component-based
models (Vieira and Richardson 2002), matrix models (Khan et al. 2008; Mao et al.
2007; Xing and Stroulia 2006), chart diagrams (Garousi et al. 2006; Moraes et al.
2005; Ryser and Glinz 2000), and business process models (Ivkovic and Kontogiannis
2006; Vasilache and Tanaka 2005). Top-down descriptions are used to construct
dependency models for application level analysis (McComb et al. 2002). Component-
based models are used to construct Component Based Dependency Models (CBDM)
for describing and inferring data/control and direct/indirect dependencies between
components (Vieira and Richardson 2002), and between components’ access points,
i.e. interfaces and ports but using semi-formal interface specifications (Vieira et al.
2001). Matrix models are the basis for the construction of dependency matrices to an-
alyze changes in UML models and detect design-level structural modification (Khan
et al. 2008; Mao et al. 2007; Xing and Stroulia 2006).

Dependency analysis solutions use chart diagrams for several purposes. Model-
Based Behavioral Dependency Analysis (MBBDA) (Garousi et al. 2006) derive be-
havioral dependency information from UML design models. Chart diagrams are also
used to identify chaining in class interfaces from class diagrams and support quality
assurance and testing activities (Moraes et al. 2005; Ryser and Glinz 2000). A final

Table 5 Dependency analysis solutions using description and model-based information

Approach Application areas References

Analysis of Application level analysis and management (McComb et al. 2002)
diagrammatic Architecture description/analysis (Vieira and Richardson 2002)
descriptions Change impact analysis (Mao et al. 2007;

Khan et al. 2008;
Xing and Stroulia 2006)

Quality assurance (Garousi et al. 2006;
Ryser and Glinz 2000;
Moraes 2005)

Traceability (Ivkovic and Kontogiannis 2006;
Vasilache and Tanaka 2005)

Analysis of Architecture description/analysis (Stafford and Wolf 2001;
semi-formal Zhao 2001;
descriptions Vieira et al. 2001;

Stafford et al. 2003)
Testing (Korel et al. 2002;

Jourdan et al. 2006;
Liangli et al. 2006)

568 Empir Software Eng (2011) 16:544–586

set of solutions using diagrammatic representations apply formal concept analysis to
cluster objects in business process models that can be considered dependent (Ivkovic
and Kontogiannis 2006; Vasilache and Tanaka 2005). The cluster identified by these
solutions enable the analysis of the traceability between requirement analysis and
design.

6.2.2 Semi-formal Descriptions

Solutions that use semi-formal descriptions written on ADLs include chaining
analysis (Stafford and Wolf 2001; Stafford et al. 2003) and the construction of
architectural dependency graphs (ADG) (Zhao 2001). Chaining analysis is used
to identify behavioral dependencies using syntactic and structural information of
descriptions in an ADL. The ADG solution uses the syntactic and structural informa-
tion of descriptions written in the Acme ADL for identifying component-component
dependencies. Chaining and ADG analyze ADL’s descriptions in a similar way
than the solutions that analyze source code, i.e., analysis of semantic and syntactic
information. However, in contrast to source code, ADL’s source elements represent
architecture level elements of the software system such as components, connectors,
and ports.

Extended Finite State Machine (EFSM) models (Jourdan et al. 2006; Korel
et al. 2002) are another semi-formal descriptions that describe software systems and
are used by some dependency analysis solutions. Dependency analysis enables the
analysis of differences between a original ESFM model and a modified model, which
help to identify the modified elements and support the reduction of regression testing
activities.

6.3 Run-time Monitored and Configuration-based Solutions

When analyzing an existing system either functioning in the field or under testing,
different sources of information appear available. These sources include run-time
monitored data and configuration repositories, which provide information about the
execution and setting of the system components.

Table 6 lists a set of dependency analysis solutions that use run-time monitored
data and configuration repositories. The solutions in this set share a number of com-
mon characteristic. First, most of these solutions are dedicated to support application
level analysis and management activities (see Section 5.1). Second, these solutions
see major elements of a running system (subsystems, applications, services, data

Table 6 Dependency analysis solutions using configuration and actual execution-based information

Approach Application areas References

Analysis of Application level (Agarwal et al. 2004; Li et al. 2005b;
monitored data analysis and Steinle et al.2006; Xiao and Urban 2008;

management Brown et al. 2001; Gupta et al. 2003;
Gao et al. 2004; Callo Arias et al. 2008)

Debugging (Narayanasamy 2006)
Analysis of Application level (Keller et al. 2000; Keller and Kar 2000)

configuration analysis and
repositories management

Empir Software Eng (2011) 16:544–586 569

repositories etc.) as black boxes. Third, these solutions focus on the identification and
analysis of structural and behavioral dependencies between major system elements.

6.3.1 Run-time Monitored Solutions

Run-time monitored data describe events that happen within the execution of a
system (e.g. errors, warnings, resource usage). This data is captured by the system
infrastructure or with the facilities of the run-time platform (e.g. operating system,
middleware, virtual machine). Logging is the most popular system infrastructure
among software systems to collect monitored data. Logging data is stored in repos-
itories with system specific formats, which dependency analysis solutions analyze
using data mining algorithms to support offline construction of dependency mod-
els (Callo Arias et al. 2008; Steinle et al. 2006; Xiao and Urban 2008). Self healing
systems provide monitoring infrastructure similar to logging that dependency analy-
sis solutions use to support online construction and analysis of dependency matrices
(Gao et al. 2004).

Most run-time platforms provide built-in instrumentation for monitoring statistic
data about system and platform resources, e.g., invocation and average execution
time counters, which are primarily used for accounting and performance tuning
purposes. The monitored statistics are stored in system repositories with generic
formats for all systems running on a given platform. Dependency analysis solutions
first populate these repositories using fault injection and perturbation of system com-
ponents. Then, the solutions analyze the repositories using data-mining algorithm,
statistical analysis, (Agarwal et al. 2004; Brown et al. 2001; Gupta et al. 2003; Li
et al. 2005b). Other solutions use hardware-based monitoring mechanisms to capture
shared memory dependencies for supporting debugging activities (Narayanasamy
2006).

6.3.2 Conf iguration Repositories

Configuration repositories provides information about the setting and configuration
of the elements and environment of software systems. For example, system
configuration repositories that keep track of the installed software packages, filesets,
and their versions are the Windows Registry of Microsoft Windows platforms, AIX
Object Data Manager (ODM) on IBM AIX platforms, and DPKG on Linux/Debian
platforms. Configuration repositories can be analyzed to extract functional and
structural information for dependency analysis (Keller et al. 2000; Keller and Kar
2000). For instance, functional information helps to identify the system available
services (e.g. database service, name service, end-user application service etc.) and
structural information the technical descriptions of the characteristics of software
components that realize the identified services.

7 Applicability of Dependency Analysis

In this section we present the summary of the information that we captured in the
interpretation phase (see Section 3.4), with respect to the applicability of definitions
related to dependencies and the types of dependency analysis solutions in practice.

570 Empir Software Eng (2011) 16:544–586

The former is presented in Section 7.1. The latter is elaborated in Sections 7.2, 7.3
and 7.4, where each section corresponds to one type of dependency analysis solutions
and is divided in two parts:

– First, we summarize the value, practitioners’ concerns, and opportunities for im-
provement that we identified for the given type of dependency analysis solution.

– Second, we complement the quality assessment of the selected papers
(Section 3.1.3) with our assessment about each paper’s applicability in practice
(see columns ’Case’, ’Easy to Use’, and ’Ready to Use’ in Tables 7, 8 and 9). This
quality assessment is in turn based on two factors: the literature and the

Table 7 Assessment of studies using source code-based information

Reference Definition Application Case Easy Ready
area to use to use

Alzamil (2007) P Y Toy P N
Binkley and Harman (2005) Y P OS P N
Bohnet et al. (2009) Y Y Industrial Y N
Breivold et al. (2008) Y Y Industrial P P
Cataldo et al. (2008) P P None N N
Chen and Rajlich (2000) P P OS P P
Chen et al. (2000) Y P None N N
Cossette and Walker (2007) P Y OS P N
Dong and Godfrey (2007) Y P OS N N
Egyed (2003) Y Y Industrial N P
Eisenbarth et al. (2001) P Y OS P P
Eisenbarth et al. (2003) Y Y OS N N
Glorie et al. (2009) Y Y Industrial N P
Hassan and Holt (2004) P Y OS Y N
Holmes and Walker (2007) P Y Toy Y N
Huang and Song (2007) Y Y Toy P N
Ishio et al. (2004) P Y OS N N
Jász et al. (2008) P Y OS N P
Jiang et al. (2008) P P OS N N
Kagdi and Maletic (2007) Y Y None N N
Law and Rothermel (2003b) Y Y Industrial N P
Leitch and Stroulia (2003) P Y Industrial N P
Lienhard et al. (2007) Y Y OS N N
Maule et al. (2008) P Y Industrial Y P
Moise and Wong (2005) Y Y OS P P
Nagappan and Ball (2007) Y Y Industrial Y P
Pfaltz (2006) Y P OS N N
Robillard (2008) P Y OS N N
Ronen et al. (2006) P P Industrial P P
Sangal et al. (2005) Y P OS P P
Tallam and Gupta (2007) Y P OS N N
Xiao and Tzerpos (2005) P P OS N Y
Xin and Zhang (2007) Y P Toy N N
Zhang and Ryder (2007) Y Y OS P N
Zhao (2002) N P Toy N N
Zimmermann and Nagappan (2007) Y Y Industrial Y P
Zimmermann and Nagappan (2008) Y Y Industrial N N

Empir Software Eng (2011) 16:544–586 571

Table 8 Assessment of studies using description and model-based information

Reference Definition Application Case Easy Ready
area to use to use

Garousi et al. (2006) Y P Industrial P N
Ivkovic and Kontogiannis (2006) N Y Toy N N
Jourdan et al. (2006) Y Y Toy N N
Khan et al. (2008) Y Y Industrial Y P
Korel et al. (2002) Y Y Toy P Y
Liangli et al. (2006) N P None N N
Mao et al. (2007) N Y None N N
McComb et al. (2002) Y N Industrial N N
Moraes et al. (2005) Y Y OS N N
Ryser and Glinz (2000) Y Y Other N N
Stafford et al. (2003) P P None P N
Stafford and Wolf (2001) Y P Toy N N
Vasilache and Tanaka (2005) P N None N N
Vieira et al. (2001) Y P Toy N N
Vieira and Richardson (2002) Y P None P N
Xing and Stroulia (2006) P P OS Y P
Zhao (2001) Y Y None N N

practitioners’ perception. From the literature, we distinguish the type of sys-
tem used for the validation of the proposed solution: Industrial, Open Source
(OS), Toy (typically a very small piece of software not available on any open
source website such as Sourceforge), Other (typically an experiment show-
ing proof of the concept), or None. From the practitioners’ perception (see
Sections 7.2, 7.3 and 7.4), we distinguish whether the solution is easy to use and
ready to use in our context. For Easy to Use, Y (yes) means that the overhead to
identify dependencies is negligible; P (partly) means that we can cope with the
overhead and required resources without considerable effort; N (no) means that
there are major concerns about overhead and required resources. For Ready to

Table 9 Assessment of studies using configuration and run-time monitored information

Reference Definition Application Case Easy Ready
area to use to use

Agarwal et al. (2004) Y Y Other N N
Callo Arias et al. (2008) Y P Industrial P P
Brown et al. (2001) P Y Other N N
Gao et al. (2004) N Y Toy N N
Gupta et al. (2003) Y Y Other N N
Keller et al. (2000) Y Y Industrial P P
Keller and Kar (2000) Y Y Industrial P P
Li et al. (2005b) N P Toy N N
Narayanasamy (2006) Y Y Other N N
Steinle et al. (2006) P Y Industrial N N
Xiao and Urban (2008) Y Y Other N N

572 Empir Software Eng (2011) 16:544–586

Use, Y (yes) means that tool-support and a well defined application process are
readily available for the solution (e.g. a tool can be downloaded from a public
website); P (partly) means that we can implement tool-support and application
process of the solution without considerable effort; N (no) means that there
are major concern about identifying and implementing the tool-support and
application process for the solution.

7.1 Applicability of Definition of Dependencies

Although the literature provides various conceptual definitions, we observed that
they do not immediately capture what is considered a dependency in practice. If
we look back at our first research question: What are the proposed def initions of
dependencies? and then ask do they match the practice?, we identified that the answer
to the second part is ’no’, at least not entirely. There are two major reasons for that:
first, the definitions only concern specific types of dependencies and thus have a very
narrow scope; second, they do not take into account the context of the system or the
organization. We elaborate on these reasons in the next two paragraphs.

Practitioners would primarily find a definition useful if it applies to any kind of
dependency: for example a dependency in the source code, a dependency which
exists between components at run-time, or any other kind of dependency involving
elements such as data and hardware resources (i.e. dependencies to the aggregate
system). All of these aspects need to be studied because they influence the work
of software developers’. Therefore the current definitions are not broad enough to
encompass these different types of dependencies but they only deal with specific
types.

The second concern of practitioners is that whether something is a dependency or
not, depends on the situation. In practice, relationships among system elements are
characterized as dependencies taking into account the system’s characteristics, the
development organization, and the development infrastructure. Thus, when develop-
ment activities are distributed over multiple practitioners (e.g. architects, designers,
and developers), and standard development environments (including compilers),
support the various development activities, a call relationship between two functions
can be considered as a dependency if the two sides of the relationship are managed
by different practitioners. However, a similar relationship between components con-
trolled by the same practitioner is usually not considered as a relevant dependency.
In other words, as long as a practitioner can manage a relationship without the
attention of more practitioners or additional tooling, such a relationship is usually
not considered to be a relevant dependency.

To alleviate these two issues, we came up with a definition, based on the literature,
our observations, and discussions with practitioners at Philips Healthcare. The
definition, which resembles the definition described in De Souza (2005) is as follows:

In a large software-intensive system, a dependency is a relationship between
two or more of the system’s components or with the aggregate system. It
causes that, when one of the involved components changes, the development
organization needs to make considerable changes in one or more of the related
components or the aggregate system.

Empir Software Eng (2011) 16:544–586 573

7.2 Source Code-based Solutions

7.2.1 Static Analysis

Source code-based solutions that use static analysis are usually meant for identifying
structural dependencies. As structural dependencies are implemented through code
constructs such as function calls and shared variables, approaches that use this
information have a high degree of accuracy when it comes to the dependencies they
identify.

Furthermore, as the dependencies relate to tangible, explicit constructs that one
can point out directly in the source code, analyzing and resolving problems with
them is a relatively straightforward activity for practitioners compared to solutions
described in Sections 6.2 and 6.3. In the latter two cases, it is usually necessary
to “translate” the high-level dependencies to the underlying code constructs. This
makes source code-based solutions very pleasant for practitioners (e.g., programmers
and designers) and partly explains the appeal these solutions have on them.

In practice, however, there are concerns about the scalability and heterogeneity
of solutions using static analysis. The first concern is about the enormous volume of
information (in the form of dependency graphs) that is generated by these solutions.
Thus a considerable effort is need to extract or identify actual dependencies. Part of
this problem is caused by the low granularity used by most static analysis methods,
which does not align with the high-level perspective of practitioners like software
architects and managers. A second concern is that currently most static analysis
solutions are not designed to cross the boundaries between software components
implemented with different programming languages. This problem is even big-
ger when the implementation use languages with different paradigms (e.g. proce-
dural and object-oriented) and off-the-shelf components whose source code is not
available.

There is some room for improvement for the scalability and heterogeneity of static
analysis solutions. For example, heterogeneity is addressed in Kontogiannis et al.
(2006) for large multi-language software systems. However, Moise and Wong (2005)
and Cossette and Walker (2007) showed that mechanisms and extensions of static
cross-language analysis are still expensive and miss dependencies due to dynamic
behavior. Thus, static analysis solutions do need to be complemented at least with
dynamic analysis solutions. In practice, we observed that such combination will be
need to analyze the role of source code artifacts in the following type of relationships.
First, some relationships arise due to differences between implementation, deploy-
ment, and the actual system platform. For example, the actual code components that
are deployed and used during execution could be different from, but compatible with,
the ones used in the implementation and build time. Second, other relationships arise
due to communication and interactions between software and hardware elements,
which are relevant to manage the performance and availability of a system.

7.2.2 Dynamic Analysis

Dynamic analysis solutions share the properties of and complement static analysis
solutions. In addition, dynamic analysis solutions have two main advantages over
static analysis solutions. First, they enable the identification of relationships between
code artifacts that only happen at runtime. Second, their sources of information,

574 Empir Software Eng (2011) 16:544–586

i.e., execution traces do not depend on the specific syntax or semantic of individual
programming languages, which makes the application of dynamic analysis solutions
easier when working with a systems with heterogeneous implementation.

In practice, however, we observed that there are two main aspects that practition-
ers concern about working with dynamic analysis solutions. First, we need to balance
the overhead produced by the techniques that are used to collect execution traces,
e.g., source code instrumentation, platform profiling, and compiler profiling. The
application of these techniques to a system with heterogeneous and large source code
repository, and with components with partial or no source code available produces
changes in the original runtime behavior of the system. These changes include var-
iations of end-user-visible metrics such as performance and reliability, which are im-
portant qualities of large and complex system.

Second, we need to choose and plan the instrumentation level to mange the
overhead, but also the amount of execution traces. If the instrumentation is done
at the level of functions, methods, or other fine grain code elements the amount of
execution traces will be large. Then, processing this fine grain data to extract useful
high-level information will be difficult. This situation is a well know issue, which can
be addressed with summarizing and visualization techniques (Cornelissen et al. 2007;
Safyallah and Sartipi 2006).

7.2.3 Historical Analysis

Historical analysis solutions are a bit different from static and dynamic analysis
solutions. Historical analysis solutions happen to identify dependencies that are
not based on explicit source code constructs. Nevertheless, these dependencies are
interesting for practitioners because they can show relationships between elements
that are managed by different teams or organizations. In Section 7.1 we described
that practitioners are interested in dependencies that require them to make changes
in different parts of the system. By analyzing historical data, it is possible to identify
files that changed together in the past and may change in the future irrespective of
how the dependency has been implemented.

In practice, however, the availability and quality of historical data play an impor-
tant role in how well historical analysis solutions identify useful relationships. We
observed that historical data can be easily discarded due to changes or restructures
in the source code archive. Thus, relationships being identified based on previous
historical data will not longer exist.

7.2.4 Semantic Analysis

Recently, the semantics of source code has been used to identify related parts of
in the software archive. By looking at the frequencies of words in files, classes, or
functions relations between files can be uncovered (Kuhn et al. 2007; Marcus and
Poshyvanyk 2005; Marcus et al. 2005; Spek et al. 2008). Similar to relationships
identified by historical analysis, relationships identified in this way are not directly
based on source code constructs. Relationships identified in this way, can point to
related parts in the source code even when there is no structural dependency present.
Similar to historical analysis solutions, this should facilitate identifying relevant
dependencies irrespective of the underlying implementation. However, as there is

Empir Software Eng (2011) 16:544–586 575

currently only limited practical experience with these approaches, their practical
applicability is subject for further study.

7.2.5 Applicability in Practice

In short, source-code based solutions identify dependencies through code constructs
such as function calls and shared variables. Approaches that use this concrete
evidence have a high degree of accuracy when it comes to the dependencies they
identify, which makes them very reliable and very attractive for practitioners as the
resulting information is very tangible. These properties make these techniques espe-
cially well suited for, amongst other things, predicting the impact of changes, refac-
toring and feature analysis as can be seen from Table 4. However, due to their nature
they are less suited to analyze the runtime system behavior. Furthermore, there is
still some research necessary in order to handle the massive amount of data ob-
tained from large software-intensive systems and cross the borders of heterogeneous
implementations.

7.3 Model-based Solutions

7.3.1 Diagrammatic Descriptions

Diagrammatic descriptions such as design models and architectural views are the
source of information for architecture-driven approaches. Practitioners i.e. software
architects and designers, like to facilitate the communication between them during
development projects by means of these descriptions. We observed that conducting
dependency analysis using design models and documents helps to identify depen-
dencies between components. For instance, when phasing-out a legacy component,
architects and designers analyze design documentation to plan the phasing-out
process. Practitioners try to identify all of the dependencies between the component
and the rest of the system. Once the dependencies are identified, some design
documents may be created to describe what the dependencies and how to remove
them. Later on, during the execution of the phasing-out process, developers interact
with designer and follow the design documents to implement the actual changes in
the system.

In practice, however, we observed that using design models and architectural
descriptions to identify dependencies is not a straightforward activity due to one
important factor: keeping the models and documents up-to-date. Keeping design
models and architectural descriptions up-to-date and synchronized with the imple-
mentation is often a deficient activity. We observed that additional effort is needed
to update and create models. Practitioners often need to reverse engineer the system
realization by consulting experts and studying the system’s source code. This activity
is often hard to do with large and heterogeneous implementations maintained in a
geographically spread organization operating in different time zones.

7.3.2 Semi-formal Descriptions

ADLs (Stafford and Wolf 2001; Zhao 2001) and EFSM (Jourdan et al. 2006; Korel
et al. 2002) are some of the tools that have emerged as potential solutions for formally
describing system architectures at a higher level of abstraction. These initiatives
provide support for modeling not just the system structure, but also the behavior

576 Empir Software Eng (2011) 16:544–586

and communication between components. Thus, we consider that the introduction
of these initiatives to architecture description can ease architectural analysis, i.e.
dependency analysis at an early stage.

However, our observation in practice is that practitioners, i.e. architects and
designers, often use informal diagrammatic representations rather than semi-formal
descriptions such as ADLs or EFSMs. The reasons for this situation and which
should be addressed include the lack of knowledge dissemination (e.g. industrial
experiences), tool support to use these semi-formal language descriptions, and
support to link semi-formal descriptions to implementation.

7.3.3 Traceability

New requirements often trigger changes among software elements, such as architec-
ture, design, and implementation. Thus, two-way traceability between requirements
and the software architecture elements satisfying the requirements is needed, espe-
cially to keep architecture and design descriptions updated and inline with the new
requirements as well as with the implementation. Solutions that identify traceability
dependencies (Egyed 2003) represent alternatives to improve the synchronization
between design and implementation. These solutions can improve the use of di-
agrammatic and semi-formal description for dependency analysis. However, since
traceability analysis uses code or execution-based information, its application should
take into account our observations in Section 7.2.

7.3.4 Applicability in Practice

In brief, solutions using diagrammatic and semi-formal descriptions are more appeal-
ing for practitioners following architecture-driven approaches. The Practitioners find
useful these solutions for the abstraction level and support to describe dependency
information at an architecture level. However, for an efficient application of these so-
lutions, we need to keep up-to-date and synchronize the system requirements, design,
and implementation. Thus, dependency analysis solutions will need to address these
factors before hands. For example, we need solutions that improve the accessibility
and validity of architecture and design descriptions taking into account the size
of development organization, constant system evolution, distributed development
locations, extensive documentation, and the mental models of practitioners.

7.4 Run-time Monitored and Configuration-based Solutions

Solutions using run-time monitored and configuration data have considerable contri-
bution to support architecture-driven processes. These solutions facilitate the under-
standing of the system execution at a system level, including software and hardware
components. Dependency models at this level are easy to integrate into the system
documentation, and reusable in further dependency analysis activities (Brown et al.
2001). In practice, we observed three main aspects that support their application.
First, these solutions are not limited by implementation technology borders. Second,
the techniques used by these solutions to collect runtime data are considered less
intrusive. And third, these solutions identify dependencies without requiring access
to the system source code. Nevertheless, the identified dependencies are limited to
those monitored scenarios and the components whose configuration was analyzed.

Empir Software Eng (2011) 16:544–586 577

However, we observed that the analysis of major system components as black
boxes needs to be adjusted for dependency analysis within the development cycle
of large systems. Often in a development cycle, changes in the implementation
may eventually cause undesired variations of end-user-visible properties. Thus to
tune variations, we need to improve the transparency of these solutions. Thus, we
can be able to trace back the change and identify the faulty element (e.g. running
application, object, class, or method).

7.4.1 Combining Information Sources

Combining sources of information is an approach that source code-based solutions
(Section 6.1) use as a way for coping with incompleteness of independent solutions.
We observed that combining different sorts of run-time monitored data like logging
and process activity,2 helps to link system run-time components (seen as black boxes)
to source code related artifacts, e.g., binaries and libraries.

7.4.2 Applicability in Practice

In brief, we found that solutions using run-time monitored and configuration infor-
mation are used and applicable in practice due to two main characteristics. First,
practitioner highlight that these solutions are non-intrusive with respect to the
development activities. Often, in a research setting, the overhead and maintenance
cost of an infrastructure to collect data for dependency analysis is overlooked. In
contrast, practitioners are more concerned about the cost and overhead of main-
taining a reliable and up-to-date instrumentation of their system. This is even more
important, in heterogeneous situations where multi-vendor components are used and
instrumentation cannot be inserted into the system for security, licensing, lack of
knowledge, or other technical constraints.

Second, although these solutions are limited by their coverage and links to the
system source code, practitioners consider these solutions valid approximations,
especially for problem-driven approaches. In practice, the analysis is restricted to
a representative set of execution scenarios and additional solutions are available to
provide links to source code artifacts (see Section 6.1).

8 Threats to Validity

In this section we discuss the threats to the validity of the study, in terms of internal
validity (the validity of the actual review) and external validity (the generalizability
of the results for other domains).

8.1 Internal Validity

8.1.1 About the Study Search

Search Strategy At the time we began the review, we had a limited knowledge about
dependency analysis research and related set of venues where we could conduct

2This reference has been removed in order to hide personal information of the authors.

578 Empir Software Eng (2011) 16:544–586

a manual search. Thus, we decided for an automatic keyword search strategy with
Google Scholar, considering that practitioners could easily replicate it and we could
find relevant papers in a short time.

Although systematic reviews often involve automatic keyword searches, Brereton
et al. (2007) pointed out that: “Current software engineering search engines are
not designed to support systematic literature reviews. Unlike medical researchers,
software engineering researchers need to perform resource-dependent searches”.
Thus, our choice of an automatic keyword search strategy is a threat to validity for
the completeness of our search results.

A manual search on specific venues is another alternative for study search. This
alternative is consistent with the practices of other researchers looking at research
trends (Cornelissen et al. 2009; Kitchenham et al. 2009). However, manual search
process of a specific set of venues often implies missing relevant studies from
excluded venues (Kitchenham et al. 2009). Based on the number of venues in Table 2,
we consider that identifying a representative set of venues related to dependency
analysis is hard, especially without prior experience or the advice of experts in the
topic.

The effectiveness of both automatic keyword and manual searches is arguable for
search studies. To evaluate the implications of a manual search, we provide Table 2
with a representative set of venues. It would be of great interest to take this set of
venues as a reference, in order to replicate our search study for dependency analysis
and compare the results.

Google Scholar Another threat to validity for our search study is the choice for
Google Scholar as the search engine. This engine has both advantages and draw-
backs. Google Scholar is easily accessible and often the first choice for practitioners
when looking for a solution to a problem they are faced with. This search en-
gine offers a search experience familiar to anyone with even limited exposure to
Google (Robinson and Wusteman 2007). This search engine allowed us to search
across different digital libraries (e.g., IEEEXplore and ACM Portal) and cove
various venues (see Table 2). Nevertheless, the software of Google Scholar has poor
performance with the highly structured and tagged scholarly documents. It still has
serious deficiencies with basic search operations, and does not have any sort options
(beyond the questionable relevance ranking) (Jacsó 2008). Also, it offers filtering
features by data elements, which are present only in a very small fraction of the
records (such as broad subject categories) and/or are often absent and incorrect in
Google Scholar even if they are present correctly in the source items (Jacsó 2008). A
more thorough review of the advantages and disadvantages of Google Scholar can
be found in Jacsó (2008) and Lewandowski (2010).

There are two alternatives to Google Scholar. The first is using the various search
engines of digital libraries. However, one would need to identify a representative
set of digital libraries and cope with the limitations in the search engines of those
electronic libraries (e.g. ACM Portal does not support complex logical combina-
tion (Brereton et al. 2007; Kitchenham 2004b)). The second is using search engines
of dedicated databases of research literature. For example, Scopus3 is an option that

3http://www.scopus.com/

http://www.scopus.com/

Empir Software Eng (2011) 16:544–586 579

could support our search queries and perhaps provide less false positives. However,
engines of this type are not yet known and accessible to most practitioners.

8.1.2 About the Study Selection

Through the study selection process, we noticed the risk of bias due to our preference
for solutions related to our individual research interests and time constraints. To
reduce bias due to our research preferences, we decided to pay attention and
discuss papers in conflict (see Pilot Selection in Section 3.1.2), but still this process
only involved two reviewers. An alternative could be the inclusion of a third-party
reviewer with a particular or broad research interest about dependency analysis.

Another threat for the study selection was constraints in time and effort: we decide
not to extend the study search during the process since we need to deliver results to
the practitioners. We could have extended the search and selection with references
in the selected papers and include gray literature sources such as PhD theses and
technical reports. It could have helped us to find more relevant studies, which could
influence the practitioners’ perception and the results of the review. But due to the
practical nature of our project, we could not exceed our time budget.

8.1.3 About the Quality Assessment

Our decisions for the quality criteria definition and evaluation were based on our
judgment on the content of the selected papers. The given scores aim at illustrating
the basis of our judgment, but a quantitative analysis on them could provide
explicit evidence to support our decision. A quantitative analysis would be useful
to investigate relationships between quality factors (Kitchenham et al. 2009) or char-
acterizations to identify research trends and avenues for future research (Cornelissen
et al. 2009). We consider this as promising future work.

8.1.4 About Data Extraction and Data Synthesis

The data extraction and data synthesis in our study were driven by the goal and
context of the review. A validity threat is that we extracted the data working on
two different sets of papers without directly checking the extraction. To mitigate this
threat, we checked and improved the extracted data afterwards by working together
in two occasions. First, during the synthesis process where we merged the extracted
data to construct the summaries. Second, interacting with practitioners to adjust the
structure and content of the summaries. Although this process gave us confidence
about the quality of the data extraction and data synthesis process, similar quality
could be achieved with less effort following a extractor/checker mode (Kitchenham
et al. 2009) early during the data extraction phase.

8.2 External Validity

The information in the study is based on research results from the literature accord-
ing to the perception and judgment of a number of practitioners in Philips MRI.
Thus, a potential threat to validity is that the information in the overview is specific
to our research context and cannot be considered generalized to other organizations
or domains.

580 Empir Software Eng (2011) 16:544–586

However, we argue that the MRI system is representative of large and complex
systems, and that the MRI development organization is characteristic of other orga-
nizations. In fact, there are many other organizations developing similar large and
complex systems. A modern car, for instance, may contain 20–30 microprocessors,
with software controlling aspects such as engine ignition, pollution control, security,
air-conditioning, car radio, or even the seat position (Stevens 1998). Another exam-
ple of a complex system are modern televisions (van Ommering 2002), which consist
of mechanics, electro-optics, electronics, and software. It typically takes 100 software
engineers 2 years to build the software for a high-end television. Many more com-
parable complex systems exist, such as cellular phones (Neuvo 2004), copiers, wafer
steppers used in the semiconductor industry, and airplanes (Kossiakoff and Sweet
2002). In this sense, the study is a representative reference for other practitioners and
researchers working with dependency analysis, similar development organizations,
and similar types of systems.

9 Concluding Remarks

We have followed the guidelines for systematic review to present research results
about dependency analysis and to assess their value. The results of this review
describes the match between research and practice as elaborated throughout the
answers to our research questions that build the overview. It has helped us to identify
opportunities to improve dependency analysis as part of the development of the Phil-
ips MRI system.

Researchers and practitioners can use the overview to learn about the state-of-
art in dependency analysis and how it matches the characteristics and development
of a representative large and complex software-intensive system. Researchers can
take into account the research opportunities and findings described in Section 7.
Furthermore, the information in the overview can be used to identify trends in
research practices, e.g., to identify the usual venues for dependency analysis, the ap-
plication areas with more attention, the most popular sources of information, and the
usual validation.

Finally, the conduction of this review is our attempt to match an existing method-
ology to a particular problem domain (Glass 2004). In this sense, researchers and
practitioners can take this review as a reference in three contexts. First is for
researchers and practitioners working in the same domain, who can match their
own practice to the presented results. Second is to construct a similar overview of
dependency analysis matching the development and characteristic of systems in other
domains, e.g., enterprise software systems. Third is to construct similar overviews
about other software engineering methods or techniques for systems in the domain
of the MRI system, as well as, for systems in other domains.

Finally, we consider that other researchers can use the practice-driven approach of
this review to evaluate other types of solutions and that it not only describes practical
issues, but also exposes research opportunities that can have a strong impact on
the way that software organizations develop large and complex software-intensive
systems.

Empir Software Eng (2011) 16:544–586 581

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Agarwal MK, Appleby K, Gupta M, Kar G, Neogi A, Sailer A (2004) Problem determination using
dependency graphs and run-time behavior models. In: Sahai A, Wu F (eds) 15th IFIP/IEEE
international workshop on distributed systems: operations and management. Springer, pp 171–
182

Allen R, Garlan D (1997) A formal basis for architectural connection. ACM Trans Softw Eng
Methodol 6(3):213–249. doi:10.1145/258077.258078

Alzamil Z (2007) Redundant coupling detection using dynamic dependence analysis. In: Interna-
tional conference on software engineering advances (ICSEA 2007)

Balmas F, Wertz H, Chaabane R, Artificielle L (2005) Visualizing dynamic data dependences as a
help to maintain programs. In: International conference on software maintenance

Binkley D, Harman M 2005 Locating dependence clusters and dependence pollution. In: 21st IEEE
international conference on software maintenance, pp 177–186

Bohnet J, Voigt S, Döllner J (2009) Projecting code changes onto execution traces to support
localization of recently introduced bugs. In: ACM symposium on applied computing. ACM, New
York, pp 438–442

Breivold HP, Crnkovic I, Land R, Larsson S (2008) Using dependency model to support software
architecture evolution. In: 23rd IEEE/ACM international conference on automated software
engineering-workshops, ASE workshops, pp 82–91

Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying the sys-
tematic literature review process within the software engineering domain. J Syst Softw 80(4):571–
583. doi:10.1016/j.jss.2006.07.009

Brown A, Kar G, Keller A (2001) An active approach to characterizing dynamic dependencies
forproblem determination in a distributed environment. In: IEEE/IFIP international symposium
on integrated network management proceedings, pp 377–390

Callo Arias TB, Avgeriou P, America P (2008) Analyzing the actual execution of a large software-
intensive system for determining dependencies. In: Proceedings of the 2008 15th working con-
ference on reverse engineering, pp 49–58

Cataldo M, Herbsleb JD, Carley KM (2008) Socio-technical congruence: a framework for assess-
ing the impact of technical and work dependencies on software development productivity.
In: 2nd international symposium on empirical software engineering and measurement. ACM,
Kaiserslautern, pp 2–11

Chen K, Rajlich V (2000) Case study of feature location using dependence graph. In: 8th inter-
national workshop on program comprehension. IEEE Computer Society, Washington, DC,
p 241

Chen Z, Xu B, Yang H, Liu K, Zhang J (2000) An approach to analyzing dependency of concurrent
programs. In: The first Asia-Pacific conference on quality software (APAQS’00), vol 3, p 12

Chen Z, Xu B, Zhao J (2002) An overview of methods for dependence analysis of concurrent
programs. ACM Sigplan Not 37:45–52

Cornelissen B, Holten D, Zaidman A, Moonen L, van Wijk JJ, van Deursen A (2007) Understanding
execution traces using massive sequence and circular bundle views. In: ICPC’07. IEEE Computer
Society, Washington, DC, pp 49–58. doi:10.1109/ICPC.2007.39

Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A systematic survey of
program comprehension through dynamic analysis. Tech. rep. doi:10.1109/TSE.2009.28

Cossette B, Walker R (2007) Polylingual dependency analysis using island grammars: a cost versus
accuracy evaluation. In: IEEE international conference on software maintenance. ICSM 2007,
pp 214–223

Cox L, Delugach H, Skipper D (2001) Dependency analysis using conceptual graphs. In: Proceedings
of the 9th international conference on conceptual structures, ICCS, pp 117–130

De Souza C (2005) On the relationship between software dependencies and coordination: field
studies and tool support

http://doi.acm.org/10.1145/258077.258078
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1109/ICPC.2007.39
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.28

582 Empir Software Eng (2011) 16:544–586

Dong X, Godfrey M (2007) System-level usage dependency analysis of object-oriented systems. In:
Proc. of the intl. conference on software maintenance, pp 375–384

Egyed A (2003) A scenario-driven approach to trace dependency analysis. IEEE Trans Softw Eng
29:116–132

Eisenbarth T, Koschke R, Simon D (2001) Aiding program comprehension by static and dynamic
feature analysis. In: Proceedings of the international conference on software maintenance, pp
602–611

Eisenbarth T, Koschke R, Simon D (2003) Locating features in source code. IEEE Trans Softw Eng
29:210–224

Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence graph and its use in opti-
mization. ACM Trans Program Lang Syst 9(3):319–349. doi:10.1145/24039.24041

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley, Boston
Fundel K, Kuffner R, Zimmer R (2007) RelEx–relation extraction using dependency parse trees.

Bioinformatics 23(3):365
Gao J, Kar G, Kermani P (2004) Approaches to building self healing systems using dependency

analysis. In: IEEE/IFIP network operations and management symposium, NOMS 2004, vol 1, pp
119–132. doi:10.1109/NOMS.2004.1317649

Garousi V, Briand L, Labiche Y (2006) Analysis and visualization of behavioral dependencies among
distributed objects based on UML models. In: Nierstrasz O et al (eds) International conference
on model driven engineering languages and systems. Springer

Glass RL (2004) Matching methodology to problem domain. Commun ACM 47(5):19–21. doi:
10.1145/986213.986228

Glorie M, Zaidman A, Van Deursen A, Hofland L (2009) Splitting a large software repository for
easing future software evolution—an industrial experience report. J Softw Maint Evol Res Pract
21(2):113–141

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In: Proc. first
int’l conf. requirements eng., pp 94–101

Gupta M, Neogi A, Agarwal M, Kar G (2003) Discovering dynamic dependencies in enterprise
environments for problem determination. In: Brunner M, Keller A (eds) 14th IFIP/IEEE in-
ternational workshop on distributed systems: operations and management

Hamou-Lhadj A, Lethbridge TC (2004) A survey of trace exploration tools and techniques. In:
CASCON’04. IBM Press, pp 42–55

Hassan A, Holt R (2004) Predicting change propagation in software systems. In: Proceedings of 26th
international conference on software maintenance (ICSM’04)

Holmes R, Walker R (2007) Task-specific source code dependency investigation. In: 4th IEEE
international workshop on visualizing software for understanding and analysis, 2007. VISSOFT
2007, pp 100–107

Huang L, Song Y (2007) Precise dynamic impact analysis with dependency analysis for object-
oriented programs. In: Fifth international conference on software engineering research, man-
agement and applications, pp 374–381. doi:10.1109/SERA.2007.46

Ishio T, Kusumoto S, Inoue K (2004) Debugging support for aspect-oriented program based on
program slicing and call graph. In: Proc. 20th IEEE international conference on software main-
tenance, pp 178–187

Ivkovic I, Kontogiannis K (2006) Towards automatic establishment of model dependencies using
formal concept analysis. Int J Softw Eng Knowl Eng 16:499–522

Jacsó P (2008) Google scholar revisited. Online Inf Rev 32(1):102–114
Jász J, Beszédes A, Gyimóthy T, Rajlich V (2008) Static execute after/before as a replacement of

traditional software dependencies. In: IEEE international conference on software maintenance.
ICSM 2008, pp 137–146

Jiang T, Gold N, Harman M, Li Z (2008) Locating dependence structures using search-based slicing.
Inf Softw Technol 50:1189–1209. doi:10.1016/j.infsof.2007.11.001

Jourdan Gv, Ritthiruangdech P, Ural H (2006) Test suite reduction based on dependence analysis.
In: Al ALE (ed) 21th international symposium computer and information sciences. Springer, pp
1021–1030

Kagdi H, Maletic J (2007) Combining single-version and evolutionary dependencies for software-
change prediction. In: Fourth international workshop on mining software repositories. IEEE
Computer Society , p 17

Keller A, Blumenthal U, Kar G (2000) Classification and computation of dependencies for distrib-
uted management. In: Fifth international conference on computers and communications (ISCC
2000)

http://doi.acm.org/10.1145/24039.24041
http://dx.doi.org/10.1109/NOMS.2004.1317649
http://doi.acm.org/10.1145/986213.986228
http://dx.doi.org/10.1109/SERA.2007.46
http://dx.doi.org/10.1016/j.infsof.2007.11.001

Empir Software Eng (2011) 16:544–586 583

Keller A, Kar G (2000) Dynamic dependencies in application service management. In: International
conference on parallel and distributed processing techniques and applications

Khan S, Greenwood P, Garcia A, Rashid A (2008) On the impact of evolving requirements-
architecture dependencies: an exploratory study. In: Bellahsène Z, Léonard M (eds) 20th in-
ternational conference advanced information systems engineering, pp 243–257

Kitchenham B (2004a) Procedures for performing systematic reviews. Tech. rep., Joint Technical
Report Keele University TR/SE0104 and NICTA 0400011T.1

Kitchenham B (2004b) Software productivity measurement using multiple size measures. IEEE
Trans Softw Eng 30(12):1023–1035. doi:10.1109/TSE.2004.104. Member-Mendes, Emilia

Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic literature
reviews in software engineering—a systematic literature review. Inf Softw Technol 51(1):7–15.
doi:10.1016/j.infsof.2008.09.009

Kontogiannis K, Linos P, Wong K (2006) Comprehension and maintenance of large-scale multi-
language software applications. In: ICSM ’06. IEEE Computer Society, Washington, DC, pp
497–500. doi:10.1109/ICSM.2006.20

Korel B, Tahat L, Vaysburg B (2002) Model based regression test reduction using dependence
analysis. In: Proceedings. International conference on software maintenance, pp 214–223

Kossiakoff A, Sweet WN (2002) Systems engineering: principles and practice. Wiley-Interscience
Kuhn A, Ducasse S, Gîrba T (2007) Semantic clustering: identifying topics in source code. Inf Softw

Technol 49(3):230–243. doi:10.1016/j.infsof.2006.10.017
Law J, Rothermel G (2003a) Incremental dynamic impact analysis for evolving software systems. In:

Proceedings of the international symposium on software reliability engineering, pp 430–441
Law J, Rothermel G (2003b) Whole program path-based dynamic impact analysis. In: 25th interna-

tional conference on software engineering. IEEE Computer Society, Washington, DC, pp 308–
318

Leitch R, Stroulia E (2003) Assessing the maintainability benefits of design restructuring us-
ing dependency analysis. In: Proc. of the 9th international symposium on software metrics,
pp 309–322

Lewandowski D (2010) Google scholar as a tool for discovering journal articles in library and
information science. Online Inf Rev 34(2):250–262. doi:10.1108/14684521011036972

Li B, Zhou Y, Wang Y, Mo J (2005a) Matrix-based component dependence representation and its
applications in software quality assurance. ACM SIGPLAN Not 40:36

Li Y, Zhang M, Hou C (2005b) An active method to building dynamic dependency model for
distributed components. In: ICAC ’05: Proceedings of the second international conference
on automatic computing. IEEE Computer Society, Washington, DC, pp 337–338. doi:10.1109/
ICAC.2005.7

Liangli M, Houxiang W, Yansheng L (2006) The design of dependency relationships matrix to im-
prove the testability of component-based software. In: Sixth international conference on quality
software. QSIC 2006, pp 93–98

Lienhard A, Greevy O, Nierstrasz O (2007) Tracking objects to detect feature dependencies. In: 15th
IEEE international conference on program comprehension, pp 59–68

Lind-Nielsen J, Andersen H, Hulgaard H, Behrmann G, Kristoffersen K, Larsen K (2001)
Verification of large state/event systems using compositionality and dependency analysis. Form
Methods Syst Des 18(1):5–23

Loyall JP, Mathisen SA (1993) Using dependence analysis to support the software maintenance
process. In: ICSM ’93. IEEE Computer Society, Washington, DC, pp 282–291

Mao C, Zhang J, Lu Y (2007) Using dependence matrix to support change impact analysis for CBS.
In: Fifth international conference on computational science and applications (ICCSA 2007), pp
192–200. doi:10.1109/ICCSA.2007.25

Marcus A, Poshyvanyk D (2005) The conceptual cohesion of classes. In: ICSM ’05. IEEE Computer
Society, Washington, DC, pp 133–142. doi:10.1109/ICSM.2005.89

Marcus A, Rajlich V, Buchta J, Petrenko M, Sergeyev A (2005) Static techniques for concept location
in object-oriented code. In: IWPC ’05, pp 33–42

Maule A, Emmerich W, Rosenblum D (2008) Impact analysis of database schema changes. In: 30th
international conference on software engineering, pp 451–460

McComb D, Robe S, Hoare S, Crawford-Hines S (2002) Dependency analysis and visualization as
tools to prolong system life. In: Proceedings of the 26th annual international computer software
and applications conference (COMPSAC’02), pp 463–465

Mehta NR, Medvidovic N, Phadke S (2000) Towards a taxonomy of software connectors. In: ICSE
’00. IEEE Computer Society, Los Alamitos, p 178. doi:10.1109/ICSE.2000.10009

http://dx.doi.org/10.1109/TSE.2004.104
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1109/ICSM.2006.20
http://dx.doi.org/10.1016/j.infsof.2006.10.017
http://dx.doi.org/10.1108/14684521011036972
http://dx.doi.org/10.1109/ICAC.2005.7
http://dx.doi.org/10.1109/ICAC.2005.7
http://dx.doi.org/10.1109/ICCSA.2007.25
http://dx.doi.org/10.1109/ICSM.2005.89
http://doi.ieeecomputersociety.org/10.1109/ICSE.2000.10009

584 Empir Software Eng (2011) 16:544–586

Moise D, Wong K (2005) Extracting and representing cross-language dependencies in diverse soft-
ware systems. In: WCRE ’05, Washington, DC, USA: IEEE Computer Society, pp 209–218

Moraes RLO, Martins E, Mendes NV (2005) Fault injection approach based on dependence anal-
ysis. In: COMPSAC’05. IEEE Computer Society, Washington, DC, pp 181–188. doi:10.1109/
COMPSAC.2005.78

Moriconi M, Winkler TC (1990) Approximate reasoning about the semantic effects of program
changes. IEEE Trans Softw Eng 16(9):980–992

Myers G (1975) Reliable software through composite design. Petrocelli/Charter, New York
Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field failures:

an empirical case study. In: First international symposium on empirical software engineering and
measurement, ESEM 2007, pp 364–373

Narayanasamy S, Pereira C, Calder B (2006) Recording shared memory dependencies using strata.
In: Proceedings of the 12th international conference on architectural support for programming
languages and operating systems. ACM, p 240

Neuvo Y (2004) Cellular phones as embedded systems. In: IEEE international solid-state circuits
conference, pp 32–37

Pfaltz JL (2006) Using concept lattices to uncover causal dependencies in software. In: Missaoui
R, Schmid J (eds) 4th international conference formal concept analysis, vol 3874. Springer,
p 233

Podgurski A, Clarke LA (1990) A formal model of program dependences and its implications for
software testing, debugging, and maintenance. IEEE Trans Softw Eng 16(6):965–979

Robillard M (2008) Topology analysis of software dependencies. ACM Trans Softw Eng Methodol
(TOSEM) 17:18. doi:10.1145/13487689.13487691

Robinson ML, Wusteman J (2007) Putting google scholar to the test: a preliminary study. Program:
Electronic Library and Information Systems 41(1):71–80

Ronen I, Dor N, Porat S, Dubinsky Y (2006) Combined static and dynamic analysis for inferring
program dependencies using a pattern language. In: Conference of the Center for Advanced
Studies on Collaborative Research, p 3

Ryser J, Glinz M (2000) Using dependency charts to improve scenario-based testing. In: Proceedings
of the 17th international conference on testing computer software (TCS2000)

Safyallah H, Sartipi K (2006) Dynamic analysis of software systems using execution pattern mining.
In: ICPC ’06. IEEE Computer Society, Washington, DC, pp 84–88. doi:10.1109/ICPC.2006.19

Sangal N, Jordan E, Sinha V, Jackson D (2005) Using dependency models to manage complex
software architecture. In: Proceedings of the 20th annual ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications. ACM, p 176

Spek Pvd, Klusener S, van de Laar P (2008) Towards recovering architectural concepts using latent
semantic indexing. In: CSMR ’08: Proceedings of the 2008 12th European conference on soft-
ware maintenance and reengineering. IEEE Computer Society, Washington, DC, pp 253–257.
doi:10.1109/CSMR.2008.4493321

Stafford JA, Wolf AL (2001) Architecture-level dependence analysis for software systems. Int J
Softw Eng Knowl Eng 11:431–451

Stafford J, Wolf A, Caporuscio M (2003) The application of dependence analysis to software ar-
chitecture descriptions. In: Bernardo M, Inverardi P (eds) Third international school on formal
methods for the design of computer, communication and software systems: software architec-
tures, pp 52–62

Stafford JA, Wolf AL (1998) Architecture-level dependence analysis in support of software mainte-
nance. In: ISAW ’98. ACM Press, New York, pp 129–132. doi:10.1145/288408.288441

Steinle M, Aberer K, Girdzijauskas S, Lovis C (2006) Mapping moving landscapes by mining moun-
tains of logs: novel techniques for dependency model generation. In: Proceedings of the 32nd
international conference on very large data bases. VLDB Endowment, p 1102

Stevens R (1998) Systems engineering: coping with complexity. Prentice Hall
Stevens W, Myers G, Constantine L (1974) Structured design. IBM Syst J 13(2):115–139
Tallam S, Gupta R (2007) Unified control flow and data dependence traces. ACM TACO 4(3).

doi:10.1145/1275937.1275943
van de Laar P, America P, Rutgers J, van Loo S, Muller G, Punter T, Watts D (2007)

The Darwin project: evolvability of software-intensive systems. In: Evol’07, pp 48–53. Paris,
France

van Ommering R (2002) Building product populations with software components. In: ICSE ’02:
Proceedings of the 24th international conference on software engineering. ACM, New York,
pp 255–265. doi:10.1145/581339.581373

http://dx.doi.org/10.1109/COMPSAC.2005.78
http://dx.doi.org/10.1109/COMPSAC.2005.78
http://dx.doi.org/10.1145/13487689.13487691
http://dx.doi.org/10.1109/ICPC.2006.19
http://dx.doi.org/10.1109/CSMR.2008.4493321
http://doi.acm.org/10.1145/288408.288441
http://dx.doi.org/10.1145/1275937.1275943
http://doi.acm.org/10.1145/581339.581373

Empir Software Eng (2011) 16:544–586 585

Vasilache S, Tanaka J (2005) Bridging the gap between analysis and design using dependency
diagrams. In: Third ACIS int’l conference on software engineering research, management and
applications (SERAŠ05)

Vieira M, Dias M, Richardson D (2001) Describing dependencies in component access points. In:
Procs of the 23rd intern. conf. on software engineering

Vieira M, Richardson D (2002) Analyzing dependencies in large component-based systems. In: 17th
IEEE international conference on automated software engineering, ASE 2002, pp 241–244

Watkins R, Neal M (1994) Why and how of requirements tracing. IEEE Softw 11(4):104–106.
doi:10.1109/52.300100

Xiao C, Tzerpos V (2005) Software clustering based on dynamic dependencies. In: Proceedings of
the ninth European conference on software maintenance and reengineering, pp 124–133

Xiao Y, Urban SD (2008) Recovery of concurrent processes in a service composition environment
using data dependencies. In: Proceedings of the OTM 2008 confederated. Springer, pp 139–156

Xin B, Zhang X (2007) Efficient online detection of dynamic control dependence. In: Proceedings of
the 2007 international symposium on software testing and analysis. ACM, p 195

Xing Z, Stroulia E (2006) Understanding the evolution and co-evolution of classes in object-oriented
systems. Int J Softw Eng Knowl Eng 16:23–51

Zhang W, Ryder B (2007) Discovering accurate interclass test dependences. In: 7th ACM
SIGPLAN-SIGSOFT workshop on program analysis for software tools and engineering, pp,
55–61

Zhao J (2001) Using dependence analysis to support software architecture understanding. In: New
technologies on computer software

Zhao J (2002) Change impact analysis for aspect-oriented software evolution. In: International
workshop on principles of software evolution, pp 108–112

Zimmermann T, Nagappan N (2007) Predicting subsystem failures using dependency graph com-
plexities. In: Proceedings of the The 18th IEEE international symposium on software reliability.
IEEE Computer Society, pp 227–236

Zimmermann T, Nagappan N (2008) Predicting defects using network analysis on dependency
graphs. In: Proceedings of the 30th international conference on software engineering, pp 531–
540

Trosky B. Callo Arias received an Engineer’s degree in informatics and systems from Universidad
Nacional San Antonio Abad del Cusco-Peru in 2002, and a Master’s degree in computer science
from Göteborg University-Sweden in 2005. He is a PhD candidate in the Software Engineering and
Architecture Group of University of Groningen. His professional experience and interest include
the architecture and design of software solutions for high-tech products, embedded systems, and
distributed systems.

http://dx.doi.org/10.1109/52.300100

586 Empir Software Eng (2011) 16:544–586

Pieter van der Spek received a master’s degree in informatics from Delft University of Technology
in 2004. After his master’s degree, he worked for several years at a small consultancy firm and was
responsible for design, development, and testing of various software products. In 2006, he became
a PhD-researcher at the VU University Amsterdam working on methods to facilitate tasks related
to maintaining software systems. In 2010, he received his PhD-degree at the VU University. He is
presently working for a large technical IT service provider. His research interests include reverse
engineering, software maintenance, and design of high-tech products and embedded systems.

Paris Avgeriou is Professor of Software Engineering in the Department of Mathematics and
Computing Science, University of Groningen, the Netherlands where he has led the Software
Engineering research group since September 2006. Before joining Groningen, he was a post-doctoral
Fellow of the European Re-search Consortium for Informatics and Mathematics (ERCIM). He has
participated in a number of national and European research projects directly related to the European
industry of Software-intensive systems. He has co-organized several international workshops, mainly
at the International Conference on Software Engineering (ICSE). He sits on the editorial board of
Springer Transactions on Pattern Languages of Programming. He has published more than 90 peer-
reviewed articles in international journals, conference proceedings, and books. His research interests
lie in the area of software architecture, with strong emphasis on architecture modeling, knowledge,
evolution, and patterns.

	A practice-driven systematic review of dependency analysis solutions
	Abstract
	Introduction
	Context and Research Questions
	Magnetic Resonance Imaging Systems
	The MRI Software
	Research Questions
	Target Audience

	Design of the Review
	Study Search and Selection
	Study Search
	Study Selection
	Quality Assessment

	Data Extraction
	Data Synthesis
	Interpretation

	Overview of Concepts about Dependencies
	Definition of Dependencies in the Literature
	Types of Dependencies

	Application Areas of Dependency Analysis
	Application Level Analysis and Management
	Architecture Description and Analysis
	Change Impact Analysis
	Program/System Understanding
	Quality Assurance, Testing and Debugging
	Refactoring and Modularization
	Traceability and Feature Analysis

	Existing Dependency Analysis Solutions
	Source Code-based Solutions
	Static Analysis
	Dynamic Analysis
	Historical Analysis
	Combining Information Sources

	Descriptions and Model-based Solutions
	Diagrammatic Descriptions
	Semi-formal Descriptions

	Run-time Monitored and Configuration-based Solutions
	Run-time Monitored Solutions
	Configuration Repositories

	Applicability of Dependency Analysis
	Applicability of Definition of Dependencies
	Source Code-based Solutions
	Static Analysis
	Dynamic Analysis
	Historical Analysis
	Semantic Analysis
	Applicability in Practice

	Model-based Solutions
	Diagrammatic Descriptions
	Semi-formal Descriptions
	Traceability
	Applicability in Practice

	Run-time Monitored and Configuration-based Solutions
	Combining Information Sources
	Applicability in Practice

	Threats to Validity
	Internal Validity
	About the Study Search
	About the Study Selection
	About the Quality Assessment
	About Data Extraction and Data Synthesis

	External Validity

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

