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Published online: 18 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com
Editor: Giuliano Antoniol

Abstract In event-driven systems, separating the reactive part of software (i.e.,
event-driven control) from the non-reactive part is a common design practice.
The reactive part is typically structured according to the states and transitions of
a system, whereas the non-reactive part is typically structured according to the
concepts of the application domain (e.g., the services provided by the system). In
such systems, the non-reactive part of software stimulates the reactive part with
event calls. Whenever the non-reactive part is modified (e.g., during evolution), the
existing event calls may become invalid, new event calls may become necessary, and
the two parts of software may become incompatible. Manually finding and repairing
these types of defects is a time-consuming and error-prone maintenance task. In this
article, we present a solution that combines source code model checking and aspect-
oriented programming techniques, to reduce the time spent by developers and to
automatically find defects, while performing the maintenance task mentioned above.
In addition, we present controlled experiments showing that the solution can reduce
the time by 75%, and enable the prevention of one defect per 140 lines of source
code.
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1 Introduction

In event-driven systems, separating the reactive part of software (i.e., event-driven
control) from the non-reactive part is a common design practice; the reactive part
is typically structured according to the states and transitions of a system (Harel
et al. 1990; Harel and Pnueli 1985; Harel 1987; Harel and Naamad 1996; Harel and
Politi 1998), whereas the non-reactive part is typically structured according to the
concepts of the application domain (e.g., system services and hardware components).
Examples of such systems include semiconductor manufacturing machines, digital
televisions, electron microscopes, and MRI1 scanners (van Engelen and Voeten
2007).

The reactive part of software responds to occurrences of events (Harel 1987); it
regulates the execution of the non-reactive part, through control calls (see Fig. 1).
Some of the events occur due to execution of the non-reactive part. To transmit these
occurrences to the reactive part, event calls (i.e., calls to the functions that stimulate
the reactive part) are inserted into (the source code of) the non-reactive part. Hence,
the control- and event calls connect the two parts of software.

An event-driven software system may evolve several times during its lifetime.
For instance, the system may be modified for implementing a new feature. Possible
human errors during an evolution result in various defects in the system. Whenever
the non-reactive part of software evolves,2 the following types of defects may emerge
at runtime:

– There is an execution of an event call, but no corresponding occurrence of the
event. Thus, the execution of the event call is invalid.

– There is an occurrence of an event, but no corresponding execution of an event
call. Thus, an execution of an event call is necessary.

– The reactive part waits for the execution of an event call, but the execution never
happens. Thus, the two parts of software are incompatible with each other.

Manually finding and repairing these types of defects is a time-consuming and
error-prone maintenance task. To reduce this time and to automatically find defects,
we developed a solution that consists of (a) a graphical language called VisuaL
(Güleşir 2008), which can be used for specifying event calls and compatibility con-
straints, (b) a source code analyzer for automatically verifying that the compatibility
constraints are satisfied, and (c) a source-to-source transformer for automatically
generating event calls. This solution is documented in (Güleşir 2008), and the
solution is related to multiple fields of software engineering: The graphical language
enables concern-shy programming (Lieberherr and Lorenz 2005); the analyzer can be
seen as a source code model checker (Visser et al. 2000; Corbett et al. 2000) and the
combination of the analyzer and the transformer exhibits some of the fundamental

1Magnetic Resonance Imaging
2The evolution of the reactive part of software is outside the scope of this article.
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Fig. 1 A conceptual model of
event-driven software systems

characteristics of a weaver (Kiczales et al. 1997) in aspect-oriented programming. In
this article, we discuss the defect types enumerated above, explain the solution, and
report on the controlled experiments we conducted for evaluating the solution.

In Section 2, an industrial application is presented and several terms are defined.
This application is the running example that we use for explaining the industrial
setting, defects types, the solution, and the experimental setup. In Section 3, we
discuss the defect types listed above. In Section 4, a brief overview of our solution is
provided. Sections 5–8 contain the solution. Sections 9–12 contain the experimental
evaluation, and the remaining sections contain the related work, discussion, and
conclusions.

2 An Example Application

A silicon wafer is a circular slice of silicon that is used for producing integrated
circuits (ICs). A wafer scanner is a semiconductor manufacturing machine that
exposes IC images onto silicon wafers. ASML Netherlands B.V. (ASML; http://www.
asml.com) is a company that produces wafer scanners, and an ASML wafer scanner
is a large-scale embedded system that has approximately 400 sensors, 300 actuators,
50 processors, and event-driven software containing around 15 million lines of source
code written in C (Kernighan and Ritchie 1978).

The reactive part of the wafer scanner software is structured according to the
states and transitions of the system, using statecharts (Harel 1987). The non-reactive
part is structured according to the activities (Harel 1987) (i.e., the services) of the
system, using a procedural decomposition. Both parts are implemented in C.

In Section 2.1, we present a simplified version of an ASML wafer scanner and
its event-driven software. We explain the activities that the simplified wafer scanner
can perform, and describe how these activities are controlled by a statechart, which
represents the reactive part of the event-driven software.

2.1 Simplified Wafer Scanner

A wafer scanner (Fig. 2) exposes an IC image on rectangular segments of a wafer.
Such a segment is called die. During an exposure, the wafer scanner uses a laser
beam to scan the image, and uses a lens to project the laser beam onto the die.

http://www.asml.com
http://www.asml.com
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Fig. 2 A snapshot of the wafer
scanner during scanning

2.1.1 Processing (an Activity of the Wafer Scanner)

A reticle is the material that contains the IC image to be exposed on dies. Before
scanning, a reticle must be loaded onto a platform called reticle stage, and a wafer
must be loaded onto a platform called wafer stage. Figure 2 shows a snapshot of the
wafer scanner during scanning: the lens and the laser source are fixed, the laser source
is emitting a laser beam, and the wafer stage and the reticle stage are moving in
opposite directions. Consequently, the IC image is being exposed on a die. When the
IC image is completely exposed on the die, the wafer stage will be moved to align the
next die with the lens. This activity is called advancing. The wafer processing activity
consists of advancing to a die, then scanning it, and repeating this (i.e., advancing and
scanning) for each die on the wafer.

2.1.2 Preprocessing (an Activity of the Wafer Scanner)

To produce faultless ICs, the wafer scanner’s actuators need to operate at a level of
precision that is measured in terms of nanometers. To attain this precision level, two
issues must be resolved: (a) The reticle must be clean, and (b) the wafer scanner must
know the shape imperfections of the wafer, so that the wafer scanner can compensate
accordingly during processing. Therefore, before processing, the wafer scanner must
carry out the preprocessing activity, which consists of cleaning the reticle if it is dirty,
and then measuring the shape imperfections of the wafer.

2.1.3 The Requirements of the Wafer Scanner

R1 The wafer scanner must start upon an external signal (e.g., an operator presses
the start button).

R2 The wafer scanner must completely process the wafer (i.e., the wafer scanner
must advance to a die, scan it, and repeat this for each die on the wafer).

R3 After processing, all ICs on the wafer must be faultless (i.e., before processing,
the wafer scanner must clean the reticle if it is dirty and then measure the
wafer).

R4 The wafer scanner must stop after the wafer is completely processed.
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Fig. 3 The wafer scanner’s
reactive behavior

2.1.4 The Reactive Part of the Event-Driven Software

Based on the requirement R1, let us define an event called start that occurs upon an
external signal, e.g., an operator presses the start button. Based on the requirement
R2, let us define an event called preprocessed that occurs upon a completion of the
preprocessing activity. Finally, based on the requirement R4, let us define an event
called processed that occurs upon a completion of the processing activity.

Considering all of the four the requirements and the event definitions above, the
reactive part of the wafer scanner software can be structured as the statechart in
Fig. 3. This statechart can be interpreted as follows: When the scanner is in the READY

state, if the start event occurs (e.g., an operator presses the start button), then the
scanner enters the PREPROCESSING state, where it starts the preprocessing activity
(i.e., calls the preprocess function, which will be defined later). If the scanner is in
the PREPROCESSING state, and if the preprocessed event occurs (i.e., if the preprocessing
activity is completed), then the scanner enters the PROCESSING state, where it starts
the processing activity (i.e., calls the process function, which will be defined later).
If the scanner is in the PROCESSING state, and if the processed event occurs (i.e., if the
processing activity is completed), then the scanner enters the final state (i.e., stops).

Based on a specific formal semantics of statecharts (e.g., (Harel and Naamad
1996)), one can manually implement the statecharts, or an implementation can be
generated by a tool (e.g., (Harel et al. 1990)). Since the implementation details of
the statechart in Fig. 3 are not important in this article, we assume that there is an
implementation in C, which operates as explained above.

2.1.5 The Non-reactive Part of the Event-Driven Software

The preprocessing activity (Section 2.1.2), can be implemented as the C function in
Listing 1.
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The processing activity (Section 2.1.1) can be implemented as the C function in
Listing 2.

The definitions of the global variables reticleIsClean and numberOfDies, and the
definitions of the functions cleanReticle, measureWafer, advance, and scan are not
provided in the listings, because they are not important in the context of this article.

The event-driven software resulting from the implementation of the statechart
and the activities fulfils R1, but not R2, R3 and R4; because the connection between
the statechart and the activities is currently incomplete: Currently, there is no func-
tionality that stimulates the implementation of the statechart, with the occurrences
of the preprocessed and processed events. We explain and implement this functionality,
in Section 2.2.

2.2 Connecting the Statechart and the Activities

Connecting the statechart and the activities consists of two steps: The first step is
creating the control calls (see Fig. 1). Harel (1987) refers to this step as “linking
activities to states”, which can be explained as follows: Upon entrance to a state,
calling a function realizing an activity. Control calls are usually specified while
creating the statecharts, which we also did: In Fig. 3, entry: preprocess() and entry: process()

are the control calls.
The second step for connecting the statechart and the activities is creating the

event calls (see Fig. 1): Stimulating the implementation of the statecharts with the
events that occur due to the execution of the non-reactive part (i.e., the activities).
In the remainder of this section, we present the details of the second step, which is
necessary for understanding the remainder of this article.

The second step requires identifying all the points (i.e., locations) in the im-
plementation (i.e., source code) of the activities where the events occur during
execution. For example, the preprocessed event occurs when the preprocessing activity
is completed (Section 2.1.4). Note that the preprocessing activity consists of cleaning
the reticle if it is dirty, and then measuring the shape imperfections of the wafer
(Section 2.1.2). Therefore, the preprocessed event occurs if one of the following
sequences of function calls is executed: <..., cleanReticle, ..., measureWafer>, or
<..., measureWafer>. By analyzing all possible paths through the implementation of
the preprocessing activity (i.e., Listing 1), we can find out whether such sequences
exist (note that both of the previously mentioned sequences exist in Listing 1). If
such a sequence exists, then we can find the syntactic location in the source code
where that sequence terminates (i.e., the location after ‘;’ in Line 7, Listing 1). We
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call such a location event point, because an event occurs when an execution reaches
that point. Now, let us define the term event point more precisely:

Definition An event e is mapped to a source code point pnt, if and only if e occurs
when an execution reaches pnt.

Definition A source code point pnt is an event point, if and only if an event is
mapped to pnt.

Using the definitions of the preprocessing and processing activities (Sections 2.1.2
and 2.1.1), we can identify the event points, as follows: The preprocessed event is
mapped to the point located after ‘;’ in Line 7, Listing 1. The processed event is mapped
to the point located after ‘}’ in Line 8, Listing 2. Hence, there are two event points:

1. The point located after ‘;’ in Line 7, Listing 1.
2. The point located after ‘}’ in Line 8, Listing 2.

After the identification of the event points, the implementation of the statechart
must be stimulated with the occurrences of the events that are mapped to the event
points. For this reason, typically a function that transmits the occurrence of an
event to the statecharts is called at each event point. Hence, we call such functions
event functions. Listings 3 and 4 show the implementations of the preprocessing and
processing activities after inserting calls to the event functions, say preprocessed and
processed, at the event points enumerated above.

The definitions of the event functions are typically located in the reactive-part of
event-driven software (see Fig. 1). They can be considered as the interface provided
by the reactive part to the non-reactive part; event calls (see Fig. 1) are the calls to the
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event functions. The implementation details of the event functions are not important
in this article.

The insertion of the event calls concludes the connection of the statechart and the
activities. Consequently, each requirement in Section 2.1.3 is fulfilled by the event-
driven software resulting from the connection explained in this section.

Note that the event points of the simplified wafer scanner are at the end of the
functions. In the software of the actual wafer scanner, however, there are usually
several other function calls between an event point and the end of a function. We
identified two typical reasons for this:

Modularity To optimize the modularity of the activities, engineers structure the
activities according to the concepts of the application domain (e.g.,
system services and hardware components); and this structure is not
always aligned with the structure of the states and transitions of the
system.

Concurrency At an intermediate step during an execution of a function, say f (i.e.,
the implementation of an activity), an event e occurs; e stimulates a
statechart s; s performs a transition to a next state, and calls another
function g (i.e., the implementation of another activity), in which case
f and g are executed concurrently.

We do not illustrate such modularity and concurrency cases in this article, because
they would unnecessarily complicate our example application.

In the software of the actual wafer scanner, the following cases exist, too: An event
is mapped to multiple points in one function; an event is mapped to multiple points
in multiple functions; multiple events are mapped to multiple points in one function.
Although we do not illustrate these complicated cases, our solution addresses them,
as well.

3 Defects During Activity Evolution

An event-driven software system may evolve several times during its lifetime. For
instance, the system may be modified for implementing a new feature. Possible
human errors during an evolution result in various defects in the system. Whenever
the activities evolve, event call- and compatibility defects may occur. Manually
finding and repairing these defects is a time-consuming and error-prone maintenance
task. In this section, we explain these defects, and show how they are manually found
and repaired (i.e., without any tool support) currently at ASML. To precisely explain
the defects, we first need to define the following terms:

Definition The event transmitting behavior (ETB) of a system is the behavior that is
implemented by the event calls.

Definition Let ep be an event point, and ec be an event call that transmits an
occurrence of a specific event e. ep and ec are related, if and only if e is mapped
to ep.
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Definition The ETB of a system is sound, if and only if each event call is located at
a related event point.

Definition The ETB of a system is complete, if and only if at each event point a
related event call is located.3

Note that the ETB presented in Section 2.2 is both sound and complete.

3.1 ETB Becomes Defective

If the activities evolve, then the ETB may become unsound or incomplete (i.e.,
defective), as we exemplify in this section. Note that, even if there is only one version
of activities (i.e., activities are implemented once and they do not evolve), the ETB
should still be sound and complete (i.e., defect-free).

3.1.1 ETB Becomes Unsound

Imagine that we remove the call to the measureWafer function from Line 7, Listing 3.
As a result, the call to preprocessed is located at a point to which the preprocessed event
is no longer mapped, because the wafer is not measured at that point. Hence, the
ETB is no longer sound, and the requirement R3 is no longer fulfilled: the processing
activity starts before the wafer is measured, which results in defective ICs. Therefore,
we must remove the call to preprocessed, to restore the soundness of the ETB.4

3.1.2 ETB Becomes Incomplete

Adding a new function call to the source code may result in a new event point
(i.e., a new mapping of an existing type of event to a source code point). In such
a case, the ETB becomes incomplete. To restore the completeness, adding a related
event call at the new event point is necessary. Otherwise, the system cannot sense
some occurrences of the event, and react to them. Consequently, (some of) the
requirements may not be fulfilled.

3.1.3 ETB Becomes both Unsound and Incomplete

Consider a new requirement stating “the wafer must be measured only if the reticle
is clean”, because the reticle cleaning activity may fail. To fulfill the requirement, we

3If multiple events are mapped to a point, then an ordering among the event calls is necessary.
4In this particular case, removing the call to measureWafer introduces, next to the unsoundness, an
additional defect explained in Section 3.2.
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can ‘wrap’ the call to measureWafer (Line 7, Listing 3) with an if block, as shown in
Listing 5.

In this case, the preprocessed event is mapped to the point located after ; in Line 9
where a call to preprocessed does not exist. Hence, the ETB is incomplete. In addition,
the call to preprocessed (Line 11) is located at a point to which preprocessed is not
mapped. Thus, the ETB is unsound.5 To restore the soundness and the completeness,
we must move6 the call to preprocessed from Line 11 to the point located after ; in
Line 9. Otherwise, the requirement R3 may not be fulfilled, because the wafer may
not be measured, and the reticle may be dirty.

Considering the execution semantics of the source code in Listing 5, one may
argue that the ETB is complete; because, whenever the preprocessed event occurs (i.e.,
whenever the measureWafer function is called), the preprocessed function is executed.
However, our definition of completeness is based on the syntactic structure of source
code (i.e., at each event point, which is a syntactic location in the source code, there
must be a related event-call), not on execution semantics. The rationale for this
choice will become clear in the upcoming case.

Now, let us consider an extract-function restructuring (Griswold and Notkin 1993)
that involves moving Lines 3–7 in Listing 3 to a new function newPreprocess, as shown
in Listing 6.

In this case, the ETB is both unsound and incomplete, similar to the previous case
explained in this section. Nevertheless, all the requirements are still fulfilled. This
is certainly what is expected from a restructuring. However, if the system evolves
further, and the newPreprocess function is called from an additional place different
than Line 3 (e.g., somewhere within the body of another function that we did not
present so far), then the new occurrences of the preprocessed event (i.e., the occurrences
due to the newly added call to newPreprocess, which is different than the call in
Line 3 in Listing 6) are not transmitted the statechart. Therefore, the current location
of the event call may result in defects as the system evolves. If the call to preprocessed

5Note that the addition of the if block simultaneously causes two independent defects: one unsound-
ness defect and one incompleteness defect.
6Doing this conflicts with the requirement R2, but we ignore this fact for the sake of illustration in
this article.
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in Line 4 is moved to the point located after ; in Line 13, then the ETB will become
sound and complete.

If our definition of completeness were based on the execution semantics instead
of the syntactic structure, then we could not recognize the fact that the location of
the event call (i.e., Line 4) may result in defects as the system evolves; because the
restructuring does not change the execution semantics, but it changes the syntactic
structure of the source code.

Another case in which the ETB becomes both unsound and incomplete is as
follows: If a new statement (e.g., a function call) is inserted after ; in Line 7 in
Listing 3, then the ETB becomes both unsound and incomplete.

Throughout Section 3.1, we discussed some of the evolution cases in which the
ETB of a system becomes defective. In contrast, one can imagine other cases in which
the ETB remains defect-free. For instance, if one or more statements are inserted
after ; in Line 5 in Listing 3, then the ETB is still sound and complete. In any case,
manually verifying that the ETB of a large-scale software system is defect-free is a
time-consuming and error-prone maintenance task.

3.2 Activity Becomes Incompatible

Let us reconsider the case in Section 3.1.1, where we remove the calls to measureWafer

and preprocessed in Listing 3. After removing the call to preprocessed, the statechart
is no longer stimulated with an occurrence of the preprocessed event. Consequently,
the wafer scanner cannot perform the transitions from the PREPROCESSING state to
the PROCESSING state, and from the PROCESSING state to the final state. Hence, the
requirements R2 and R4 cannot be fulfilled despite the sound and complete ETB.
Thus, we can conclude that an occurrence of the preprocessed event is mandatory
whenever the preprocess function is executed. Therefore, the call to measureWafer

must not be removed, as ‘dictated’ by the requirements (Section 2.1.3) and the
statechart in Fig. 3. Otherwise, the preprocessing activity becomes incompatible with
the statechart.

In general, if the activities of a given system are not compatible with the statecharts
of the system, then the system may not behave as intended (i.e., requirements
may not be fulfilled), despite a sound and complete ETB. The scenario explained
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above illustrates a typical incompatibility arising from possible human errors during
evolution of activities.

Based on the discussion in this section, one can imagine certain constraints on the
implementation of activities, such that these constraints are satisfied, if and only if
the activities are compatible with the statecharts. For example, the constraint in this
case would be “the preprocessed event must occur whenever the preprocess function is
executed”. We call such constraints compatibility constraints.

In contrast to the case presented in this section, one can imagine other cases in
which the activities remain compatible with the statecharts. For instance, if one or
more statements are inserted after ; in Line 5 in Listing 3, then the activity is still
compatible with the statechart. In any case, a manual verification of the compatibility
in a large-scale software system is a time-consuming and error-prone maintenance
task.

3.3 Other Defects

Possible human errors during the evolution of activities may cause other defects
than those we discussed so far in Section 3. For example, a human error during
the evolution of the measureWafer function, which is the implementation of the
wafer measuring activity, may lead to incorrect measurements, hence defective ICs.
Addressing these kinds of defects is beyond the scope of this article.

3.4 Problem Summary

Whenever the activities (i.e., the non-reactive part of software) evolve, the compat-
ibility between the activities and the statecharts (i.e., the reactive part of software)
has to be verified. If this verification fails, then the compatibility has to be maintained
(i.e., one or more compatibility defect has to be repaired). Next, the soundness and
completeness of the ETB has to be verified. If this verification fails, then the ETB
has to be maintained such that it remains sound and complete (i.e., one or more ETB
defects has to be repaired). The problem is that these verification and maintenance
tasks are time-consuming and error-prone, if they are manually performed.

3.5 Goals of this Research

To address the problem stated in Section 3.4, we defined the following goals to be
reached in this article:

1. Save the time spent by developers for the manual verification of compatibility.
2. Prevent human errors that are possibly made during the manual verification of

compatibility.
3. Ensure that the activities and statecharts are compatible.
4. Save the time spent by developers for the manual verification and maintenance

of the soundness and completeness of the ETB.
5. Prevent human errors that are possibly made during the manual verification and

maintenance of the soundness and completeness of the ETB.

In Section 4, we provide an overview of the solution that we developed for reaching
the goals stated above.
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4 A Four-Stage Solution

To reach the goals stated in Section 3.5, we developed a solution that

1. Automates the compatibility verification, so that compatibility defects are au-
tomatically found and reported to developers. Consequently, developers do
not need to manually search for compatibility defects; developers only need
to manually repair the reported defects, such that the automatic verification
mechanism does not report any compatibility defect any more. Note that the
automatic verification of the compatibility brings us to the first three goals stated
in Section 3.5.

2. Eliminates the necessity for the manual verification and maintenance of the
soundness and completeness of the ETB. This brings us to the last two goals
stated in Section 3.5.

As depicted in Fig. 4, our solution consists of 4 stages. In Section 4.1, we provide
an overview of these stages by explaining Fig. 4. In Section 4.2, we explain how this
solution brings us to the goals stated in Section 3.5.

4.1 An Overview of the Stages

4.1.1 Stage 1: Deriving and Specifying Compatibility Constraints

At this stage, a developer (or multiple developers) who knows the requirements (e.g.,
Section 2.1.3), the statecharts (e.g., Fig. 3), and the event-call-free implementations of
the activities (e.g., Listing 1 and 2), derives and specifies the compatibility constraints.
To specify the constraints, the developer uses VisuaL, which is a graphical language
for expressing logical and temporal properties of the behavior of algorithms. In
Section 5, we explain this stage in detail.

4.1.2 Stage 2: Specifying Events and Binding Event Calls

At this stage, using VisuaL, the developer specifies the events, and binds the event
calls to the event specifications. In Section 6, we explain this stage in detail.

Fig. 4 A four-stage solution
to automate the compatibility
verification, and to eliminate
the necessity for the manual
verification and maintenance
of the soundness and
completeness of the ETB
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4.1.3 Stage 3: Analysis

At this stage, a source code analyzer is provided with the compatibility constraints
from Stage 1, the event specifications and the bindings from Stage 2, and the event-
call-free implementations of the activities (e.g., Listings 1 and 2). All of these input
artifacts are stored in an pre-specified input directory (i.e., the folder containing the
input of the analyzer and transformer) that the analyzer and transformer know where
to find.

If the compatibility constraints are not satisfied (e.g., the case in Section 3.2),
then the analyzer outputs a compatibility error that is valuable for understanding the
incompatibility and repairing it. Here, the “repairing” means “modifying the event-
call-free implementation of activities (e.g., Listings 1 and 2), the specifications of
compatibility constraints (e.g., Figs. 5 and 6), or statecharts (e.g., Fig. 3); such that the
compatibility error disappears”. To repair an incompatibility, the developer should
decide which artifact(s) to modify. For example, a compatibility defect may indicate
that the activities and compatibility constraints are correct, but the statecharts are no
longer correct, because the activities have evolved and now the statecharts also need
to evolve to fulfill the new or changing requirements for the event-driven system. In
that case, the developer needs to modify statecharts to repair the incompatibility.

If the analyzer reports no error at this stage, then the analyzer outputs each event
point together with a related event call. In Section 7, we explain this stage in detail.

4.1.4 Stage 4: Transformation

At this stage, a source-to-source transformer is provided with the event-call-free
implementations of the activities (e.g., Listings 1 and 2) and the output of the
analyzer from Stage 3. At each event point, the transformer inserts the related event
call, which results in a sound and complete ETB (e.g., Listings 3 and 4). In Section 8,
we explain this stage in detail.

The transformer deposits the source code resulting from this stage to an output
folder that is different than the input folder mentioned in Section 4.1.3. The source
code that is deposited to the output folder is the input for the C compiler, and this
source code should not be modified by software engineers.

4.2 The Benefit of the Solution (i.e., How the Goals are Reached)

When software engineers implement the activities for the first time (without event
calls), the four stages can be performed to verify that the compatibility constraints
are satisfied, and to insert valid event calls, so that a sound and complete ETB is
generated.

Whenever software engineers modify the event-call-free implementation of the
activities (e.g., Listings 1 and 2) that is in the input folder mentioned in Section 4.1.3,
the Stages 3 and 4 can be automatically repeated (a) to re-verify that the compatibility
constraints are satisfied, and (b) to re-insert valid event calls; so that (a) a sound and
complete ETB is re-generated, and (b) the resulting source code is deposited to the
output folder mentioned in Section 4.1.3.7 This automatic repetition of the Stages 3
and 4 brings us to the goals stated in Section 3.5.

7The content of the output folder is deleted each time before Stage 4 is performed.
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Now, let us see our solution in more detail. In Section 5, we explain a way of
working for deriving and specifying compatibility constraints. This way of working is
the first stage of our solution.

5 Stage 1: Deriving and Specifying Compatibility Constraints

At Stage 1, a developer (or multiple developers) derives and specifies the compat-
ibility constraints. In this section, we explain Stage 1 in detail: First, we present
a systematic way to collect hints for deriving compatibility constraints. Next, we
explain how such hints can be used for deriving compatibility constraints from
requirements, statecharts, and source code. Finally, we explain how the derived
constraints can be specified using VisuaL.

5.1 The Hints for Deriving Compatibility Constraints

The hints for deriving the compatibility constraints are the events whose lack of
occurrence indicates an incompatibility exemplified in Section 3.2. We call such
events mandatory events, because if such an event does not occur, then some of
the requirements are not fulfilled. After the identification of mandatory events, the
compatibility constraints can be derived in such a way that the satisfaction of the
constraints guarantees the occurrences of the mandatory events.

The developer (see Fig. 4), who knows the requirements, the statecharts, and the
implementations of the activities, can identify the mandatory events: she picks an
event, say preprocessed, from the statechart in Fig. 3, and imagines what would happen
if this event would not occur: the wafer scanner could not perform the transitions
from the PREPROCESSING state to the PROCESSING state, and from the PROCESSING

state to the final state. Hence, the system could not fulfill the requirements R2
and R4. With this line of reasoning, the developer realizes that the preprocessed

event is mandatory. Note that the processed event (see Section 2.1.4) is a mandatory
event, too.

If the requirements are formally specified and ‘linked’ to the states and transi-
tions, then automating the identification of the mandatory events becomes possible.
However, this automation falls outside the scope of this article.

5.2 Deriving Compatibility Constraints

In this section, we explain how a developer can derive the compatibility constraints
whose satisfaction guarantees the occurrence of the mandatory event preprocessed.

These constraints can be derived from the following facts: (a) the preprocessed event
occurs when the preprocessing activity is completed, (b) the preprocessing activity is
“cleaning the reticle if it is dirty, and then measuring the shape imperfections of the
wafer” (Section 2.1.2), (c) the reticle cleaning activity, the wafer measuring activity,
and the preprocessing activity are respectively implemented within the cleanReticle,
measureWafer, and preprocess functions. Using these facts, the developer can derive
the following compatibility constraints:

C1 In each possible sequence of function calls from preprocess, there must be at
least one call to measureWafer.
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C2 In each possible sequence of function calls from preprocess, a call to
cleanReticle must not come later than a call to measureWafer.

There are two possible sequences of function calls from the preprocess function
in Listing 1: seq1 = <cleanReticle, measureWafer>, and seq2 = <measureWafer>. With
these sequences in mind, note that the preprocess function satisfies both C1 and C2.
As a result, the mandatory event preprocessed occurs each time the preprocess function
is executed.

In fact, C1 and C2 are stricter than necessary: they enforce that the preprocessed

event is mapped to the source code point(s) within the definition of the preprocess

function. However, it would equally be fine if the preprocessed event were mapped
to the source code point(s) in the definition of another function, say f , such that the
event occurs each time f is executed, and f is called each time the preprocess function
is executed. In this article, we only present stricter-than-necessary constraints due to
a limitation of the current analyzer implementation: the analyzer can reason about
function definitions as a single block, but it cannot reason about the nesting of
function calls. This is not a fundamental limitation; some of the existing program
analysis tools (e.g., CodeSurfer; http://www.grammatech.com) are already capable
of reasoning about the nesting of function calls. The current implementation of our
analyzer has proven to be useful despite this limitation (Sections 9–12).

The compatibility constraints that are related to the mandatory event processed

(i.e., the other event in Fig. 3) are provided in (Güleşir 2008).

5.3 Specifying Compatibility Constraints

After the developer derives the compatibility constraints, she needs to specify them
in VisuaL, so that the analyzer (see Fig. 4) can verify the implementations of the
activities. In this section, we explain how to specify C1 and C2 in VisuaL, and
informally discuss the syntax and semantics of VisuaL, using examples. If the readers
are interested in the general syntax and formal semantics of VisuaL, then we kindly
request them to see (Güleşir 2008), where an entire chapter is allocated to this topic.
Broadly speaking, a VisuaL specification can be considered as a special type of
Moore machine (Hopcroft and Ullman 1990).

5.3.1 Specifying C1

The specification of the compatibility constraint C1 is shown in Fig. 5. Informally,
the larger rectangle represents the source code of the preprocess function, the arrows
represent the function calls from preprocess, and the smaller rectangles represent the
source code points located after the function calls. Below, we explain the specification
in Fig. 5.

Inside the larger rectangle, there is a structure represented by the smaller rectan-
gles and the arrows. Such a structure is called a pattern.

The <<from>> preprocess label means the following: Each possible sequence of
function calls from the preprocess function must be matched by the pattern,8 else
there is an error.

8We precisely define this later in this section.

http://www.grammatech.com
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Fig. 5 The specification of
the compatibility constraint
C1 in VisuaL

The rectangle q0 represents the beginning of a given sequence of function calls,
because it has the <<initial>> label.

The $-labelled arrow originating from q0 matches each function call from the
beginning of a sequence, until a call to the measureWafer function is reached. This ‘until
condition’ is due to the existence of another arrow with measureWafer label originating
from the same rectangle. Hence, a $-labelled arrow is a ‘context-sensitive wildcard’
whose matching excludes the function calls that can be matched by the other arrows
originating from the same rectangle. In VisuaL, no two arrows originating from the
same rectangle can have the same label.

During the matching of a given sequence of function calls, when a call to the
measureWafer function is ‘reached’, this call is matched by the measureWafer-labelled
arrow. If the sequence terminates upon this match, then the sequence is matched
by the pattern, because the measureWafer-labelled arrow points to a rectangle that has
the <<final>> label. If there are additional function calls in the sequence, then each of
them are matched by the $-labelled arrow originating from q1. As a result, the pattern
matches any sequence containing at least one call to the measureWafer function. Hence,
Fig. 5 is a specification of the compatibility constraint C1.

The readers who are familiar with LTL (Clarke et al. 1999) may have noticed
that the VisuaL specification in Fig. 5 is in fact very similar to the LTL specification
eventually(measureWaf er). In Section 13, we discuss the similarities and differences
between VisuaL and LTL, in detail.

5.3.2 Specifying C2

The specification of the compatibility constraint C2 is shown in Fig. 6. q0 and q1 in this
figure are different rectangles than q0 and q1 in Fig. 5, because they are in different
specifications.

The <<initial-final>> label indicates that q0 has both the <<initial>> and the <<final>>

labels. The lack of an arrow originating from q2 indicates that the matching stops

Fig. 6 The specification of
the compatibility constraint
C2 in VisuaL
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when it ‘reaches’ q2. In such a case, the sequence is not matched by the pattern,
because q2 does not have the <<final>> label. In all other cases, either q0 or q1 is
‘reached’, and the sequence is matched by the pattern, because both q0 and q1 have
the <<final>> label. As a result, the pattern matches any sequence in which there is
no call to the cleanReticle function after a possible call to the measureWafer function.
Hence, Fig. 6 is a formal specification of C2.

Note that the $-labelled arrows in Fig. 6 are necessary for some of the desired
matchings: For example, <cleanReticle, measureWafer> is one of the possible sequence of
function calls from the preprocess function in Listing 1, and this sequence is ‘legal’
according to C2. If there were not a $-labelled arrow originating from q0, then the
cleanReticle call (i.e., the first call in the sequence) would not be matched by any arrow,
consequently the sequence would not be matched by the pattern.

The specifications of the compatibility constraints that are related to the manda-
tory event processed (i.e., the other event in Fig. 3) are provided in (Güleşir 2008).

6 Stage 2: Specifying Events and Binding Event Calls

At Stage 2, a developer (or multiple developers) formally specifies the events, and
binds the event calls to the event specifications. In this section, we explain the details
of Stage 2, by specifying the preprocessed event, and binding the preprocessed(); event
call, using VisuaL.

The preprocessed event occurs when the preprocessing activity is completed; and
the preprocessing activity is defined as “cleaning the reticle if it is dirty, and then
measuring the shape imperfections of the wafer” (Section 2.1.2). With this definition
in mind, the preprocessed event can be specified as the pattern shown in Fig. 7.

This pattern matches any sequence of function calls, because (a) all small rectan-
gles have the <<final>> label, and (b) a $-labelled arrow originates from each small
rectangle. This unconstrained matching is intentional, because the pattern is created
for specifying an event, which may or may not occur; in both cases there is no error.
In contrast, a compatibility constraint must be satisfied, otherwise there is an error.

Each time measureWafer is executed during an execution of preprocess, the
preprocessed event occurs. To detect such an occurrence, a measureWafer-labelled arrow
originates from each rectangle; each measureWafer-labelled arrow points to the same
rectangle (i.e., q1); and no arrow with a different label points to this rectangle. Thus,
q1 is the ‘hook’ for binding preprocessed();. The binding is done by placing an ellipse
containing the text preprocessed();, inside q1.

Fig. 7 The specification of
the preprocessed event and
the binding of the event call
preprocessed();, in VisuaL
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Although an occurrence of the preprocessed event involves a possible execution of
the cleanReticle function, we do not need to include any cleanReticle-labelled arrow in
the pattern shown in Fig. 7, because the satisfaction of the constraint C2, which is
specified in Fig. 6, guarantees that any call to cleanReticle, if it exists, comes before
any call to measureWafer.

Throughout Section 5, and so far in this section, we explained that the infor-
mation about a mandatory event consists of (a) specifications of the compatibility
constraints, (b) the specification of the event, and (c) the binding of the event
call to the event specification. Note that the information about the mandatory
event preprocessed is currently distributed over three VisuaL specifications: Figs. 5, 6,
and 7. To benefit from the advantages of the locality of information, one may
prefer to capture the whole information about a mandatory event in one concise
specification, using a single language. For example, the whole information about
the preprocessed event (i.e., the information captured in Figs. 5, 6, and 7) can also be
captured in one concise specification, as shown in Fig. 8.

This specification is concise, because (a) it has less number of rectangles and
arrows than the total number of rectangles and arrows in Figs. 5, 6, and 7; and (b)
none of the rectangles and arrows in Fig. 8 is unnecessary.

In general, if a specification in VisuaL consists of at least one compatibility con-
straint and event call binding, then the specification is a composite specification (e.g.,
Fig. 8). In (Güleşir 2008), we show that VisuaL specifications are closed under the
boolean composition operators “not”, “and”, “or”; and computation-theoretic com-
position operators “concatenation”, and “Kleene closure”. These closure properties
enable us to systematically compose multiple (composite) specifications to create a
single composite specification. In (Güleşir 2008), we also provide an algorithm for
minimizing (i.e., reducing as much as possible) the number of rectangles and arrows
of a given VisuaL specification, without altering its semantics.

Using the current version of VisuaL, one cannot specify the processed event (i.e.,
the other event in Fig. 3), which is mapped to the point located after ’}’ in Line 8,
Listing 2. The current version of VisuaL is not expressive enough for identifying this
point. We revisit this limitation in Section 14.1.

Fig. 8 The composite
specification in which the
compatibility constraints
C1 and C2 are specified,
preprocessed is specified,
and preprocessed();

is bound
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7 Stage 3: Analysis

At Stage 3, the ETB-free implementations of the activities are analyzed with respect
to the compatibility constraints from Stage 1 (Section 5), and the event points are
identified based on the event specifications from Stage 2 (Section 6). In this section,
we provide the details of Stage 3, which consists of three steps. For the sake of
conciseness in this section, we are going to use the composite specification (Fig. 8),
instead of the other specifications (Figs. 5, 6, and 7).

7.1 Step 1: Creation of Abstract Syntax Tree (AST)

If the preprocess function (Listing 1) is given to the analyzer as an input, then the
analyzer parses the preprocess function, and constructs an abstract syntax tree (Aho
et al. 1986) ASTpreprocess shown at the top of Fig. 9.

The rectangles labelled with FDef or FCall are the abstract nodes denoting a
function definition or a function call, respectively.

7.2 Step 2: Derivation of Simplified Control Flow Graph

We assume that the compatibility constraints and the events can be specified in terms
of function calls and the possible flow of control (Fenton and Pfleeger 1998) between
the function calls. Based on this assumption, only a part of the information that
is in the AST is needed during the analysis. Therefore, the analyzer constructs a
model (of the AST) that contains only the function calls and the flow of control
between them. We call this model simplified control flow graph (SCFG), which is
a ‘lightweight’ version of the traditional control flow graph (Fenton and Pfleeger

Fig. 9 The abstract syntax
tree (ASTpreprocess) and the
simplified control flow
graph (SCFGpreprocess)
of the preprocess function
in Listing 1
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1998). A formal definition of a SCFG and its relation to source code are provided in
(Güleşir 2008).

A SCFG decouples the analysis algorithm (explained in Section 7.3) from the
implementation language of the activities, which is C in this case. Consequently,
the implementation of the analysis algorithm does not need to be adapted if the
implementation language of the activities is changed to another language in which
the flow of control is explicit (i.e., imperative languages). Furthermore, the use of
a SCFG enables a simpler implementation of the analysis algorithm, and a higher
performance during analysis.

The analyzer traverses ASTpreprocess in the depth-first (Cormen et al. 2001) manner
to create SCFGpreprocess depicted at the bottom of Fig. 9. The black dot on the left
represents the initial node, which denotes the beginning of the preprocess function;
The cleanReticle-labelled ellipse represents an internal node that denotes the call
to cleanReticle; The measureWafer-labelled ellipse represents an internal node that
denotes the call to measureWafer; The circled black dot represents the final node, which
denotes the end of the preprocess function; And the arrows between these shapes
represent the possible flow of control between the entities denoted by the nodes. As
visualized by the dashed arrows, the analyzer maintains a one-to-one mapping from
the nodes of SCFGpreprocess to the related nodes of ASTpreprocess.

7.3 Step 3: Analysis of Simplified Control Flow Graph with Respect to VisuaL
Specification

To verify that the preprocess function satisfies the compatibility constraints C1 and
C2 presented in Section 5.2, the analyzer has to check whether all possible sequences
of function calls from the preprocess function are matched by the pattern depicted in
Fig. 8. To generate the function call sequences, the analyzer traverses SCFGpreprocess

in a depth-first manner, such that if the analyzer detects a cycle in the SCFG, the
analyzer backtracks. As understandable from SCFGpreprocess, there are two possible
sequences of function calls: seq1 and seq2, both of which are already presented in
Section 5.2. The analysis of these sequences reveals that each sequence ‘ends in’ q1
(see Fig. 8). Since this rectangle has the <<final>> label, each sequence is matched
by the pattern, which means the preprocess function satisfies both C1 and C2. If
the constraints were not satisfied, then the analyzer would output a compatibility
error containing a sequence that violates the constraint. Such an error is valuable for
finding and repairing an inconsistency.

During the analysis of seq1, q0 (see Fig. 8) is mapped to the cleanReticle-labelled
internal node of SCFGpreprocess, and q1 is mapped to the measureWafer-labelled internal
node. During the analysis of seq2, q1 is once more mapped to the measureWafer-
labelled internal node. Other rectangles (i.e., q2 and q3) are not mapped to any
node of SCFGpreprocess. This partial9 mapping from the set of the rectangles of
the specification to the set of the internal nodes of SCFGpreprocess is the output of
the analysis (i.e., Stage 3). As depicted in Fig. 4, this output is the input for the
transformation (i.e., Stage 4), which is explained in Section 8.

Statecharts are proposed for expressing the event-driven and continuous (non-
terminating) behavior of reactive systems (Harel et al. 1990; Harel and Pnueli 1985;

9In a general case, such a mapping is not necessarily partial.
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Harel 1987; Harel and Naamad 1996; Harel and Politi 1998). According to this pro-
posal, the activities must terminate upon execution. Hence, the possible sequences
of function calls from a function realizing an activity must be finite. Given this fact,
the verification algorithm can be explained as follows: Let ptrn denote a pattern that
represents a compatibility constraint cns. ptrn can be translated to a Moore machine
that accepts a set Sptrn of finite sequences. Let S f denote the set of possible sequences
of function calls from f . Note that S f can be computed by traversing SCFG f . f
satisfies cns if and only if S f ⊆ Sptrn. We compute this by finding the intersection of
the set of sequences accepted by Moore machines. A mathematical explanation of
the analysis algorithm and its asymptotic time complexity (polynomial) are provided
in (Güleşir 2008).

8 Stage 4: Transformation

At Stage 4, the transformer inserts the event calls at the event points identified at
Stage 3. In this section, we explain the details of Stage 4 using the output of the
example analysis presented in Section 7.3.

First, the transformer is provided with the partial mapping created during the
analysis (Section 7.3). Second, the transformer selects q1 (see Fig. 8), because q1

contains the event call to be inserted (i.e., preprocessed();). Third, the transformer
parses preprocessed(); and creates ASTpreprocessed(); shown in Fig. 10. Fourth, the
transformer inserts ASTpreprocessed(); as a sibling next to the upper FCall node in
Fig. 9, because during the analysis (Section 7.3), q1 was mapped to the measureWafer-
labelled ellipse in Fig. 9, and this ellipse is mapped to the upper FCall node (see the
dotted arrow between the measureWafer-labelled ellipse and the upper FCall node).
Finally, the transformer traverses the modified ASTpreprocess to output the source
code shown in Listing 3. A mathematical explanation of the transformation algorithm
is provided in (Güleşir 2008).

Whenever the event-call-free implementation of the activities (e.g., Listings 1
and 2) is modified, the Stages 3 and 4 can be automatically repeated to re-verify
that the compatibility constraints are satisfied, and to re-insert valid event calls, so
that a sound and complete ETB is re-generated. Consequently, the goals stated in
Section 3.5 can be reached.

IMPLEMENTATION We implemented both the analyzer and the transformer in
Java. We used an open source parser generator (ANTLR; http://www.antlr.org) to-
gether with an open source grammar (CGRAM; http://www.antlr.org/grammar/cgram)

Fig. 10 The abstract syntax
tree ASTpreprocessed(); of the
preprocessed(); event call

http://www.antlr.org
http://www.antlr.org/grammar/cgram


742 Empir Software Eng (2009) 14:720–777

to generate a parser for C. Thus, we used ANTLR as the platform on which we build
our analyzer and transformer. Alternatively, TXL (Cordy 2006) could also be used
for this purpose.

We implemented a plug-in for (BORLAND TOGETHER; http://www.borland.com/
us/products/together), so that the VisuaL specifications can be drawn in the activity
diagram editor of Borland Together, and they can be recognized by the analyzer as
input. The source code of the analyzer and the transformer is available upon request.

We tested the analyzer using an Intel(R) Pentium(R) M 1,700 MHz processor with
1 GB of RAM. With an industrial specification in VisuaL, which has 11 rectangles and
23 arrows, the analyzer can process industrial functions containing 280, 127, and 83
lines of code, in 70, 40, and 32 ms, respectively. The cyclomatic complexity number
(McCabe 1976) of these functions is 51, 27, and 20, respectively.

9 Experiment Definition and Planning

To see whether the analyzer and transformer can actually save time and prevent
human errors in real-life, we conducted controlled experiments. In this section, we
present the definition and planning of these experiments. For preparing, conduct-
ing, and documenting the experiments, we followed the guidelines proposed by
Kitchenham et al. (2002) and Wohlin et al. (2000).

9.1 Background Information

The software of the actual wafer scanner consists of around 200 software compo-
nents, most of which are designed and implemented in the way explained in Section 2.
In the past, one of the software teams developing and maintaining such a component
informed us about the excessive maintenance time they spend due to the defects
explained in Section 3. Therefore, we conducted this research.

The solutions presented in this article were tested within the context of the com-
ponent mentioned above. This component has 15 statecharts, each having on average
ten states and 15 transitions. The component contains 55,000 lines of source code, and
55 events mapped to 102 source code points distributed over 81 function definitions.
Hence, the component has 55 event functions, and 102 event calls distributed over 81
functions. Among the 200 components of the actual wafer scanner, this component
is a mid-sized one.

After we developed the solution, our purpose was to find answers to these
questions: Is VisuaL expressive enough to specify events and compatibility con-
straints in real-life? Can a professional software developer efficiently use VisuaL?
To find preliminary answers to these questions, we trained the domain expert of the
component, who is a software developer with 15 years of professional experience.
During the 1-h training, we used the material presented in this article. After the
training, the developer selected a statechart that has 18 states and 22 transitions, and
identified the part of the software component in which the corresponding activities
are implemented. This selection and identification was purely based on the existing
daily work that the expert had to carry out at that time.

Using the heuristic presented in Section 5.1, the developer identified three manda-
tory events. Then, the developer created three composite specifications in VisuaL,

http://www.borland.com/us/products/together
http://www.borland.com/us/products/together
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Table 1 The size and complexity of the VisuaL specifications, and the time that the domain expert
spent for creating the specifications

Specifications # Nodes # Edges Cyclomatic complexity Time (min)

Specification1 11 19 10 80
Specification2 11 23 14 47
Specification3 10 20 12 28

each of which consists of one compatibility constraint, one event definition, and one
event call binding.

In total, the developer worked 8 h under daily conditions: he was interrupted
by colleagues, phone calls, lunch and coffee breaks, etc. Using two video cameras,
we captured the developer, his screen, and his desk while he was working. The
resulting footage enabled us to accurately calculate the net amount of time he spent
for creating the specifications, which was 155 min.

The first specification created by the developer contains 11 nodes and 19 edges. To
create this specification, and to draw it using Borland Together, the developer spent
80 min in total. In Table 1, the data for each of the three specifications is listed.

Using the data presented in Table 1, one can calculate that the developer spent
on the average 160, 83, and 56 s per node or edge while creating Specification1,
Specification2, and Specification3, respectively. This calculation indicates that the
developer quickly gained speed in creating specifications. To be able to generalize
this conclusion to other developers however, we need to repeat this study with more
number of software developers.

To create the specifications, the developer had to rigorously analyze the rela-
tionship between the implementation, the detailed design, the architecture, and the
requirements of the software component. This rigorous analysis enabled him to find
one defect, which had to be repaired in the next release, four design anomalies
that required restructuring and maintenance, and one undocumented feature. Two
weeks earlier, the component in which the developer found these problems had been
maintained by himself, and reviewed by two of his colleagues.

9.2 Motivation and Overview

The purpose of this experiment is (a) to test whether the analyzer and transformer
can reduce the time spent by humans and prevent human errors, while humans are
removing incompatibilities and repairing ETB defects in industrial software, and (b)
to quantify the time reduction and error prevention.

We conducted this experiment twice. In the first experiment, 21 M.Sc. computer
science students from the University of Twente participated. In the second experi-
ment, 23 professional software developers from ASML participated.

During both experiments, the participants worked with three C functions (i.e., im-
plementations of three activities) selected by the domain expert from the component
of the wafer scanner software (see Section 9.1), and the corresponding specifications
that were created by the expert using VisuaL.

We injected an incompatibility defect, an unsoundness defect, and an incomplete-
ness defect into each function, and then we requested the participants to repair these
defects by modifying the functions, such that each function would conform to the
corresponding specification.
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9.3 Hypotheses

We formulated the following hypotheses to be tested in the first experiment:

– H0
1: The tools (i.e., the analyzer and the transformer) do not have any effect on

the amount of time spent by M.Sc. students.
– H0

2: The tools do not have any effect on the number of defects that M.Sc.
students leave unrepaired (i.e., not repaired) in source code.

We formulated the following hypotheses to be tested in the second experiment:

– H0
3: The tools do not have any effect on the amount of time spent by professional

developers.
– H0

4: The tools do not have any effect on the number of defects that professional
developers leave unrepaired in source code.

We chose 0.01 as the significance level for rejecting the hypothesis above.
In this article, we do not investigate the differences between M.Sc. students and

professional developers, because the experiments were executed under different
conditions, as we will explain in Section 10.2.

9.4 The Variables of the Experiment

9.4.1 Factors

– Tool support is the only factor of this experiment. This factor is measured in the
nominal scale, at two levels: exists, not exists.

9.4.2 Non-factor Independent Variables

There are two independent variables that we kept at fixed levels in this experiment.
The first one is the function-specification pair, and the second one is the injected
defect. Below, we explain these variables in detail.

– Function-Specification Pair is an independent variable kept at a fixed level:

Each participant was treated with the same set of three C functions and the cor-
responding VisuaL specifications. We measured the size and cyclomatic complexity
(McCabe 1976) of both the functions and the specifications.

For a given function, the size is measured by counting the physical lines of code,
and the complexity is measured by calculating the cyclomatic complexity number. In
Table 2, the size and complexity of the three functions are listed.

The domain expert selected these three functions, because he needed to maintain
the compatibility and ETB of these functions, at the time of the selection. These

Table 2 The size and
complexity of the C functions

Functions # Lines of code Cyclomatic complexity

Function1 88 20
Function2 127 27
Function3 280 51
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Table 3 Descriptive statistics
of the 55 functions in the file

Avg Min Max Std Dev

Lines of code 133 24 390 89
Cyclomatic complexity 28 4 114 20

functions are originally located in a file that has 55 functions. This file is one of
the several files in the software component mentioned in Section 9.1. For a better
understanding of the file, the descriptive statistics about the 55 functions can be found
in Table 3.

For a given VisuaL specification, the size is measured by counting the nodes and
the edges, and the complexity is measured by calculating the cyclomatic complexity
number. In Table 1, the size and complexity of the three specifications are listed.
These specifications were created by the domain expert at ASML. Specification1,
Specification2, and Specification3 respectively corresponds to Function1, Function2,
and Function3.

– Injected defect is an independent variable kept at a fixed level:

We injected the following defects into each of the three functions:

– We removed a first possible function call whose removal creates an incom-
patibility defect (e.g., the case in Section 3.2). The partial ordering (implied
by the control flow) of the function calls determined which function call is
“a first possible function call”. For example, if we wanted to inject such an
incompatibility defect to the preprocess function in Listing 1, then we would
remove the call to measureWafer from Listing 1.

– We added one control statement, such that this statement created an unsound-
ness and incompleteness defect (e.g., the case in Section 3.1.3). For example, if
we would like to inject such an unsoundness and incompleteness defect to the
preprocess function in Listing 3, then we would modify this function to obtain the
function in Listing 5.

We injected one incompatibility defect (see above) into each function that was
given to any participant. Thus, each participant was treated with 3 incompatibility
defects.

The unsoundness and incompleteness defects were injected only into the functions
that we gave to the participants who did not have the tool support, because only these
participants had to manually verify and maintain the soundness and completeness
of the ETB. Thus, there were three unsoundness and three incompleteness defects
given to the participants that did not have the tool support.

The participants who had the tool support did not have to repair unsoundness and
incompleteness defects, because they worked with event-call-free source code; the
tools generated the sound and complete ETB each time the participants modified
the source code to fix the incompatibility defect. Since there was only one event call
in each original function, removing the event calls from the source code of the tool-
supported participants did not make any significant difference in terms of the size
and complexity of the source code that we gave to the participants.
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9.4.3 Dependent Variables

There are two dependent variables in this experiment:

– Amount of time is a dependent variable measured in the ratio scale. We measure
this variable in terms of minutes. To clearly explain what this time measure
consists of, let us briefly revisit the steps of our approach:
As visible in Fig. 4, developers create three kinds of artifacts:

1. Developers write source code to implement activities without event calls;
e.g., Listings 1 and 2.

2. Stage 1: Developers create VisuaL diagrams that express temporal and
logical constraints, which we call compatibility constraints; e.g., Figs. 5
and 6.

3. Stage 2: Developers create VisuaL diagrams that express events and
binding of the event calls to the events; e.g., Fig. 7.

After these artifacts are created, the following steps are taken:

1. Stage 3: The event-call-free implementations of the activities (e.g.,
Listings 1 and 2) are checked against the compatibility constraints (e.g.,
Figs. 5 and 6).

2. Stage 4: If the source code conforms to the constraints, then the event
definitions and event call bindings (e.g., Fig. 7) are used for injecting event
calls (i.e., function calls) to the correct locations in the event-call-free
implementations of the activities (e.g., Listings 1 and 2). The result is the
source code that contains both the correct implementation of activities and
correct event calls (e.g., Listings 3 and 4).

Our time measure consists of the time that is spent for performing Stages 3 and
4, either with or without tool support. This time measure excludes the time that
is spent for the implementation of the activities, Stage 1, and Stage 2.

– Number of unrepaired defects (i.e., not repaired defects) is a dependent variable
measured in the absolute scale.

9.5 Selection of Participants

9.5.1 Selection of Students

This experiment was an integral part of the Software Management course at the Uni-
versity of Twente. Hence, the students of this course participated in the experiment.
These students were M.Sc. computers science students.

To collect some information about the software development experience of these
students, we asked them the size of the largest computer program they have written
using one of the imperative languages (e.g., C, Java). The students had to select one
of the following answers:

1. Less than 100 lines of source code
2. More than 100, less than 1,000 lines of source code
3. More than 1,000, less than 5,000 lines of source code
4. More than 5,000, less than 10,000 lines of source code
5. More than 10,000 lines of source code
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No student selected 1, four students selected 2, six students selected 3, seven
students selected 4, and four students selected 5.

None of the students had any previous experience with the instruments listed in
Section 9.7.

9.5.2 Selection of Developers

After we conducted the first experiment with the students, we presented the results
of this experiment together with the solution summarized in Section 4 to the
software developers of ASML. Out of approximately 500 software developers of
ASML, around 130 developers attended this presentation. After the presentation, we
invited these developers to participate in this experiment. Twenty three developers
(voluntarily) participated in the experiment. At the beginning of the experiment,
we requested the developers to indicate their professional software development
experience with the imperative programming languages (e.g., C, Java), in terms
of years. It turned out that each developer has at least four years of professional
experience.

Before we conducted the experiment with these developers, we asked the permis-
sion of the managers at ASML. Fortunately, we were permitted by the managers,
because they were also interested in knowing more about the potential benefits of
the tools.

None of the developers had any previous experience about the instruments listed
in Section 9.7, except two of the developers have previously seen the C functions
used in the experiment.

9.6 Experiment Design

As visible in Table 4, we designed an experiment that has one factor and two
treatments. The factor and its levels are already explained in Section 9.4.1. Each
level of the factor is a treatment in this experiment.

The participants were randomly assigned to one of the two treatments (i.e., there
were two independent groups of participants). We balanced the design by assigning
(almost) equal number of participants per treatment. In the remainder of this article,
we will use tool-supported participant for referring to a participant treated with the
tool support, and manual participant for referring to a participant treated without
tool support.

Table 4 The experiment has one factor with two levels each of which is one of the two treatments

Factor: tool support
Level: exists Level: not exists

Experiment 1 11 students 10 students
Experiment 2 12 developers 11 developers

The number of participants per treatment in each of the experiments is also shown in this table
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9.7 Instrumentation

The instruments of this experiment are

– the C functions into which we injected defects,
– the VisuaL specifications,
– the tools using which the participants repaired the defects (i.e., the analyzer and

the transformer),
– the tutorial slides that we presented to the participants to train them for repairing

the defects,
– the documents containing the stepwise instructions for the participants to repair

the defects, and
– the facilitating software that we developed for automatic data collection.

Interested readers can request the instruments from us by providing personal
details and affiliation. If ASML approves the request, then we can send a non-
disclosure agreement (NDA). After the NDA is signed and returned, we can provide
the instruments.

10 Experiment Operation

The operation phase of the experiment consisted of three steps: preparation,
execution, and data validation. In this section, we explain these steps in detail.

10.1 Preparation

We prepared a tutorial for teaching the participants how to (a) interpret the specifica-
tions, (b) relate the specifications to the source code, and (c) repair the defects in the
source code using the specifications. For the tool-supported participants, the tutorial
also included how to use the tools. We presented this tutorial before the experiment
as a slide show, and we distributed hard copies of the slides to the participants, after
the presentation.

We prepared step-wise instructions for the participants. By following these in-
structions, a participant could find the source code in the directory structure of the
computer, run the tools, etc.

We implemented facilitating software that puts a time stamp on the source code
modified by a participant, and logs the source code in a file. The manual participants
ran this software twice: once at the beginning of the treatment, and once at the
end of the treatment. The facilitating software was integrated with the tool support
(i.e., analyzer and transformer). Consequently, the tool-supported participants ran
the facilitating software at least twice: once at the beginning of the treatment (i.e.,
when they initially used the tool to find and understand the defects), once at the end
of the treatment (i.e., after they modified the source code), and zero or more times
during the treatment (i.e., each additional time they used the tool to see whether they
could successfully repair the defects).

We prepared an example treatment for the participants, so that they get used
to the tasks they are required to perform. In this way, we aimed at improving the
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accuracy of our measurements, by decreasing the learning overhead in the actual
treatments. The example treatment was the first treatment of each participant.

We conducted preliminary runs of the experiment to test the artifacts explained
above. These runs enabled us to improve the instruments of the experiment. The
four participants of these preliminary runs were different than the participants of the
actual experiment. During the analysis presented in Section 11, we excluded the data
of the preliminary runs.

To motivate the students for performing the tasks as carefully and quickly as they
can, we rewarded the first, second, and the third best performers in each of the tool-
supported and manual groups with 50 EUR, 40 EUR, and 30 EUR, respectively. The
ranking criterion was performing the tasks with least number of unrepaired defects in
least amount of time, where the number of unrepaired defects had priority over the
amount of time. Besides the top three prizes, each student received 10 EUR for his
participation. Before the students started the experiment, we informed them about
the prizes and the ranking criteria. The results of the students were kept anonymous,
and these results did not have any impact on their course grade.

We assumed that the developers were self-motivated, because they volunteered.
Therefore, we did not reward them with a prize.

10.2 Execution

During the experiment, the students worked at the computer laboratories of the
university, and they used the computers in the laboratories to modify source code,
and to run the tools.

To ensure the independence of the observations, each student participated in
the experiment at the same time. This required an instructor to give the tutorial
for the tool-supported group in a laboratory, and another instructor to give the
tutorial for the manual group in another laboratory. Moreover, the instructors and
two additional assistants were present at the laboratories.

The developers participated in the experiment at their offices at ASML, and they
participated in the experiment not at the same time but at various dates and times.
We could not avoid this due to the busy agendas of the developers. We ensured
the independence of observations as good as possible: We kept the participant list
secret (note that 23 out of 500 developers participated), and collected the material of
the experiment after the participation of each developer. During the experiment,
the developers used a computer whose setting was identical to the setting of the
computers used by the students in the laboratories.

For practical reasons, each the participant had a time limit of 3 h for performing
the tasks of the experiment.

10.3 Data Validation

As explained in Section 10.1, each participant ran a facilitating software that logs the
source code with a time stamp. The participants were not authorized to modify the
clock of the operating system.

To validate the data contained in the files, we compared the latest time stamp in a
file with the last modified time of the file. If they were different, this would indicate
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that the participant had manually modified the file, hence the data is invalid. In this
way, we found two invalid log files, and we did not include their data in the analysis.

We informed each participant about his result, and asked whether the result
is as he expected; each participant informed us that his result is as he expected.
This supports the claim that the participants have understood the instructions, and
followed them properly (i.e., this is a positive indication about the validity of data).

11 Data Analysis

By investigating the log files created during the experiment, we found out that
each tool-supported participant did not leave any unrepaired defects in the source
code. On the other hand, the manual participants left some unrepaired defects (see
Section 3). To calculate the number of unrepaired defects, we used the following
criteria: For each unsoundness situation (e.g., Section 3.1.1), we counted one defect.
For each incompleteness situation (e.g., Section 3.1.2), we counted one defect. For
each incompatibility situation (e.g., Section 3.2), we counted one defect.

By investigating the log files created during the experiment, we found out that
some of the manual participants introduced new defects while trying to repair the
defects that we originally injected. Since we counted the defects that remain in
the source code, this count includes both the unrepaired defects that we originally
injected, and the unrepaired defects that the participants introduced during the
experiment.

The raw data of the experiment is provided in Appendix. In the remainder of
this section, we analyze the data in three steps: First, we discuss the screening and
cleaning of the raw data, second we present the descriptive statistics of the clean
data, and third we present the statistical tests we applied to the hypotheses stated in
Section 9.3.

We used SPSS Version 12.0.1 for Windows (SPSS; http://www.spss.com/spss/) for
analyzing our data, and testing the hypotheses.

11.1 Screening and Cleaning the Data

Our investigations on the log files revealed that the logged data of one tool-supported
and one manual student were manually modified (i.e., corrupted). We understood
this by comparing the time stamps in the files with the last modified time of the files.
Consequently, we excluded their data from our calculations.

One of the tool-supported students could not finish the treatment within the given
amount of time, which was 3 h. Therefore, we excluded his data, too.

11.2 Descriptive Statistics

11.2.1 The Experiment with the Students

In Table 5, the descriptive statistics of the data collected from the experiment with
the students is presented.

Since each tool-supported student did not leave any unrepaired defects, the
descriptive statistics of the number of unrepaired defects in the existence of tool
support is omitted in Table 5.

http://www.spss.com/spss/
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Table 5 Thedescriptive statistics of the data collected from the experiment with the students

Tool support Statistic Std. error

Time Exists Mean 32.44 4.661
95% confidence Lower bound 21.70
Interval for mean Upper bound 43.19
5% trimmed mean 31.88
Median 27.00
Variance 195.528
Std. deviation 13.983
Minimum 17
Maximum 58
Range 41
Interquartile range 23
Skewness 1.005 0.717
Kurtosis −0.166 1.400

Not exists Mean 64.11 4.929
95% confidence Lower bound 52.75
Interval for mean Upper bound 75.48
5% trimmed mean 64.35
Median 67.00
Variance 218.611
Std. deviation 14.786
Minimum 40
Maximum 84
Range 44
Interquartile range 26
Skewness −0.268 0.717
Kurtosis −0.930 1.400

Unrepaired Not exists Mean 4.67 1.027
defects 95% confidence Lower bound 2.30

Interval for mean Upper bound 7.04
5% trimmed mean 4.63
Median 4.00
Variance 9.500
Std. deviation 3.082
Minimum 1
Maximum 9
Range 8
Interquartile range 7
Skewness 0.205 0.717
Kurtosis −1.568 1.400

The data consists of time measured in minutes, and the number of unrepaired defects. Since the
number of unrepaired defects is constant when the tool support exists, the related statistics is omitted
in this table

The mean amount of time spent by the tool-supported students is 32 min,10

whereas the mean amount of time spent by the manual students is 64 min. Hence,
we can conclude that the tools reduced the time spent by an average student
approximately by 50% in this experiment.

10Wherever it is appropriate, we present rounded numbers for increasing the readability of the text.
More accurate numbers are presented in the figures. For example, this number (i.e., 32) is presented
as 32.44 in Table 5.
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Table 6 The results of the normality tests for the data collected from the experiment with the
students

Tool support Kolgomorov–Smirnova Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Time Exists 0.264 9 0.071 0.881 9 0.161
Not exists 0.133 9 0.200b 0.965 9 0.853

Unrepaired defects Not exists 0.194 9 0.200b 0.898 9 0.243

Since the number of unrepaired defects is constant when the tool support exists, the related statistics
is omitted in this table
aLilliefors Significance Correction
bThis is a lower bound of the true significance

The mean number of unrepaired defects left by the tool-supported students is 0,
whereas the mean number of unrepaired defects left by the manual students is 5.
Since each participant worked with 500 lines of source code in total (see Table 2), we
can conclude that the tools enabled the prevention of approximately one defect per
500 ÷ 5 = 100 lines of source code in this experiment.

Note that the 5% trimmed means (i.e., the means calculated upon excluding 5%
of the data at the extremes) are very close to the original means. For instance, the
original mean of the amount of time in the existence of tool support is 32.44 min, and
the corresponding trimmed mean is 31.88 min. Due to the closeness of each trimmed
mean to the corresponding original mean, we can conclude that the extreme values
of the dependent variables do not have a strong influence on the original means.

The positive skewness of the time in the existence of tool support (1.005) indicates
that the majority of the tool-supported students spent less than 32 min during the
experiment. The negative skewness of the time in the lack of tool support (−0.268)
indicates that the majority of the manual students spent more than 64 min during the
experiment.

The negative values of Kurtosis indicate that the distributions of the values are
relatively flat (i.e., too many values at the extremes).

In Table 6, the results of the normality tests for the data collected from the
experiment with the students are shown. It is very likely for the amount of time
and the number of unrepaired defects to have a normal distribution, because the
significance values (shown as “Sig.” in Table 6) are greater than 0.05.

In Fig. 11a and b, the box plots of the amount of time versus tool support, and the
number of unrepaired defects versus tool support are respectively shown. The grey
rectangles represent 50% of the values, with the whiskers (i.e., the lines below and
above the rectangles) going to the minimum and the maximum values. SPSS did not
detect any outliers (i.e., there is no data point outside the minimum and maximum
ranges).

11.2.2 The Experiment with the Developers

In Table 7, the descriptive statistics of the data collected from the experiment with
the developers is presented.

Since each tool-supported developer did not leave any unrepaired defects, the
descriptive statistics of the number of unrepaired defects in the existence of tool
support is omitted in Table 7.
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(a) Time vs. tool support. (b) Unrepaired defectsvs. tool support.

Fig. 11 a, b Box plots of the results obtained from the experiment with M.Sc. students

The mean amount of time spent by the tool-supported developers is 12 min,
whereas the mean amount of time spent by the manual developers is 50 min. Hence,
we can conclude that the tools reduced the time spent by an average developer
approximately by 75% in this experiment.

The mean number of unrepaired defects left by the tool-supported developers is
0, whereas the mean number of unrepaired defects left by the manual developers is
3.5. Hence, we can conclude that the tools enabled the prevention of approximately
one defect per 500 ÷ 3.5 = 140 lines of source code in this experiment.

Note that the 5% trimmed means are very close to the original means. For
instance, the original mean of the amount of time in the existence of tool support
is 11.75 min, and the corresponding trimmed mean is 11.67 min. Due to the closeness
of each trimmed mean to the corresponding original mean, we can conclude that
the extreme values of the dependent variables do not have a strong influence on the
original means.

The positive skewness of the time in the existence of tool support (0.573) indicates
that the majority of the tool-supported developers spent less than 12 min during the
experiment. The negative skewness of the time in the lack of tool support (−0.542)
indicates that the majority of the manual developers spent more than 50 min during
the experiment.

The negative values of Kurtosis indicate that the distributions of the values are
relatively flat (i.e., too many values at the extremes).

In Table 8, the results of the normality tests for the data collected from the
experiment with the developers are shown. According to the Shapiro–Wilk test, it is
likely that the amount of time and the number of unrepaired defects have a normal
distribution, because the significance values are greater than 0.05.

According to the Kolgomorov–Smirnov test, it is not likely that the amount of time
has a normal distribution in the existence of tool support, because the significance
value 0.004 is less than 0.05. However, it is very likely that the amount of time in the
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Table 7 The descriptive statistics of the data collected from the experiment with the developers

Tool support Statistic Std. error

Time Exists Mean 11.75 0.889
95% confidence Lower bound 9.79
Interval for mean Upper bound 13.71
5% trimmed mean 11.67
Median 10.00
Variance 9.477
Std. deviation 3.079
Minimum 8
Maximum 17
Range 9
Interquartile range 6
Skewness 0.573 0.637
Kurtosis −1.270 1.232

Not exists Mean 49.73 4.200
95% confidence Lower bound 40.37
Interval for mean Upper bound 59.08
5% trimmed mean 50.14
Median 51.00
Variance 194.018
Std. deviation 13.929
Minimum 26
Maximum 66
Range 40
Interquartile range 21
Skewness −0.542 0.661
Kurtosis −0.854 1.279

Unrepaired Not exists Mean 3.64 0.704
defects 95% confidence Lower bound 2.07

Interval for mean Upper bound 5.21
5% trimmed mean 3.54
Median 3.00
Variance 5.455
Std. deviation 2.335
Minimum 1
Maximum 8
Range 7
Interquartile range 4
Skewness 0.422 0.661
Kurtosis −0.737 1.279

The data consists of time measured in minutes, and the number of unrepaired defects. Since the
number of unrepaired defects is constant when the tool support exists, the related statistics is omitted
in this table

lack of tool support and the number of unrepaired defects have a normal distribution,
because the significance value 0.2 is greater than 0.05.

In Fig. 12a and b, the box plots of the amount of time versus tool support, and
the number of unrepaired defects versus tool support are respectively shown. SPSS
did not detect any outliers (i.e., there is no data point outside the minimum and
maximum ranges in the box plots).
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Table 8 The results of the normality tests for the data collected from the experiment with the
developers

Tool support Kolgomorov–Smirnova Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Time Exists 0.298 12 0.004 0.879 12 0.086
Not exists 0.178 11 0.200b 0.924 11 0.349

Unrepaired defects Not exists 0.175 11 0.200b 0.912 11 0.254

Since the number of unrepaired defects is constant when the tool support exists, the related statistics
is omitted in this table
aLilliefors Significance Correction
bThis is a lower bound of the true significance

11.3 Hypothesis Testing

For testing the hypotheses stated in Section 9.3, we used the independent-samples
t-test provided by SPSS. The assumptions for using the t-test hold in our experiment:
each dependent variable is measured in the ratio scale (see Section 9.4.3); each
participant is randomly assigned to either the tool-supported or the manual group
(see Section 9.6); the observations made during the experiment are independent of
each other (see Section 10.2); it is likely that the dependent variables have a normal
distribution (see Section 11.2).

11.3.1 Testing H0
1

An independent-samples t-test was conducted to compare the amount of time spent
by the tool-supported students versus the manual students (see Table 9). Since the
significance value of Levene’s test (0.81) is greater than 0.05, the equality of variances
is assumed (i.e., the first row in Table 9 is considered). There was a significant
difference in the amount of time spent by the tool-supported students (Mean = 32;

(a) Time vs. tool support. (b) Unrepaired defects vs. tool support.

Fig. 12 a, b Box plots of the results obtained from the experiment with professional developers
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Std. Dev. = 14) and the manual students (Mean = 64; Std. Dev = 15; t(16) = −4.66;
p = 0.01). Therefore, we can reject H0

1.

11.3.2 Testing H0
2

An independent-samples t-test was conducted to compare the number of unrepaired
defects left by the tool-supported students versus the manual students (see Table 9).
Since the significance value of Levene’s test (0.00) is less than 0.05, the equality of
variances is not assumed (i.e., the fourth row in Table 9 is considered). There was a
significant difference in the number of unrepaired defects left by the tool-supported
students (Mean = 0; Std. Dev. = 0) and the manual students (Mean = 5; Std. Dev =
3; t(8) = −4.54; p = 0.01). Therefore, we can reject H0

2.

11.3.3 Testing H0
3

An independent-samples t-test was conducted to compare the amount of time spent
by the tool-supported developers versus the manual developers (see Table 10). Since
the significance value of Levene’s test (0.00) is less than 0.05, the equality of variances
is not assumed (i.e., the second row in Table 10 is considered). There was a significant
difference in the amount of time spent by the tool-supported developers (Mean =
12; Std. Dev. = 3) and the manual developers (Mean = 50; Std. Dev = 14; t(10.89) =
−8.84; p = 0.01). Therefore, we can reject H0

3.

11.3.4 Testing H0
4

An independent-samples t-test was conducted to compare the number of unrepaired
defects left by the tool-supported developers versus the manual developers (see
Table 10). Since the significance value of Levene’s test (0.00) is less than 0.05, equality
of variances is not assumed (i.e., the fourth row in Table 10 is considered). There was
a significant difference in the number of unrepaired defects left by the tool-supported
developers (Mean = 0; Std. Dev. = 0) and the manual developers (Mean = 3.6; Std.
Dev = 2.3; t(10) = −5.16; p = 0.01). Therefore, we can reject H0

4.

12 Validity Evaluation

In this section, we discuss the threats to the validity of the experiment. We organized
these threats using the categorization proposed in (Cook and Campbell 1979); each
title in this section is a category of validity threats. For each category, we first provide
a short explanation, and then discuss how we addressed this category of threats in our
experiment. Most of the short explanations are adopted from (Wohlin et al. 2000).

12.1 Conclusion Validity

This category of threats effect the ability to draw correct conclusion about the
relation between the treatment and the outcome of the experiment.

In our experiment, we identified two categories of threats to the conclusion
validity: low statistical power, and reliability of treatment implementation (Cook and
Campbell 1979).
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12.1.1 Low Statistical Power

The power of a statistical test is the ability of the test to reveal a true pattern in the
data. If the power is low, then there is a high risk that an erroneous conclusion is
drawn. Therefore, we performed a post-hoc analysis11 to find the actual power we
achieved in our statistical tests. This analysis revealed that the power we achieved is
more than or equal to 0.80, for each hypothesis. Since 0.80 is the commonly accepted
minimum level of power, we can conclude that the power level of our statistical tests
is not a major threat to the validity of our conclusions. The power we achieved also
indicates that the number of participants was sufficient for our experiments.

12.1.2 Reliability of Treatment Implementation

The implementation of a treatment means the application of the treatment to a
subject. To improve the reliability of treatment implementation, the implementation
must be as standard as possible over different participants and occasions.

In the experiment with the students, each student participated in the experiment
at the same time. This was important to avoid information exchange between the
students, hence to prevent the threat explained in Section 12.2.3. Consequently,
this required an instructor to give the tutorial for the tool-supported group in a
laboratory, and another instructor to give the tutorial for the manual group in
another laboratory. Since different instructors gave the tutorial, there may be a threat
to the reliability of treatment implementation.

12.2 Internal Validity

Internal validity threats are issues that can affect the measurements of the indepen-
dent variable, without the researcher’s knowledge. Therefore, these kinds of threats
may influence the validity of conclusions about a possible causal relationship between
a treatment and the corresponding outcome.

In our experiment, we identified and addressed three types of threats to the in-
ternal validity: maturation, instrumentation, and diffusion or imitation of treatments
(Cook and Campbell 1979).

12.2.1 Maturation

The maturation threat arises when subjects are affected negatively (e.g., tired or
bored), or positively (unintended learning) during the experiment.

To reduce the unintended learning effect in our experiment, we prepared an
example (i.e., preliminary) treatment for the participants, so that they got used to
the tasks they were required to perform. In this way, we aimed at improving the
accuracy of our measurements. The example treatment was the first treatment of
each participant, and the related data is excluded during the analysis presented in
Section 11.

11We used G*Power (Faul et al. 2007) for this analysis.
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12.2.2 Instrumentation

This type of threat arises from an improper design of instruments such as data
collection forms and document to be inspected in an inspection experiment.

We conducted preliminary runs of the experiment to test the quality of the
instruments listed in Section 9.7. These runs enabled us to improve the quality of
these instruments. The four participants of these preliminary runs were different than
the participants of the actual experiment. During the analysis presented in Section 11,
we excluded the data of the preliminary runs.

If the VisuaL specifications that were created by the domain expert were wrong,
then the results of the experiment would be skewed. This threat was partially
addressed by the fact that the specifications were reviewed by the colleagues of
the domain expert. Nevertheless, it was not possible for us to be absolutely sure
that the specifications were correct. Consequently, possible defects in the VisuaL
specifications is a threat to the internal validity.

The instructors used slides to give the tutorials. The slides of different instructors
(i.e, the instructor of the tool-supported students versus the instructor of the manual
students) were as similar as possible, but not exactly the same. The differences were
due to the fact that one instructor had to teach the tool-supported students how to
use the tools, and the other instructor had to teach the manual students how to repair
unsoundness and incompleteness defects. The fact that the tutorial slides of different
instructors were not exactly the same can be considered as a threat to the internal
validity.

12.2.3 Diffusion or Imitation of Treatments

This threat arises if participants are prematurely informed about the treatments, and
behave differently due to this information.

As explained in Section 10.2, we avoided this threat in the experiment with the
students, and we took effective precautions in the experiment with the developers so
that the developers do not prematurely inform each other about the experiment.

As explained in Section 9.5.2, we presented the solution summarized in Section 4
to the software developers of ASML, and then some of these developers volun-
teered to participate in our experiment. This presentation, of course, prematurely
informed the developers about the experiment. We do not think that this premature
information is a serious threat to the internal validity, because (a) both the tool-
supported and manual developers were equally informed, and (b) we do not compare
developers with students (developers were informed more than the students).

12.3 Construct Validity

Threats to construct validity influence the ability to draw correct conclusions about
the relation between the results of the experiment and the hypotheses that are being
tested using these results. Some of such threats are related to the experimental
design, and others are related to social factors.

In our experiment, we identified and addressed three types of threats to the
construct validity: confounding constructs and levels of constructs, restricted gen-
eralizability across constructs, and experimenter expectancy (Cook and Campbell
1979).
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12.3.1 Confounding Constructs and Levels of Constructs

These kinds of threats arise from the fact that there are confounding constructs
(e.g., experience of subjects) that are not taken into account in an experiment.

As explained in Section 9.5.1, we measured the programming experience of the
students to understand their background. However, we did not balance the tool
supported v.s. manual groups according to the experience of the students, because
we did not have any means to validate their programming experience. Instead, we
divided them randomly. As a result, in the tool supported group there were three
students with experience level 2 (see Section 9.5.1), three students with experience
level 3, three students with experience level 4, and three students with experi-
ence level 5. Whereas, in the manual group there were two students with experience
level 2, three students with experience level 3, four students with experience level 4,
and one student with experience level 5. The lack of balance in the experience may
be a threat to the validity of the results related to the students. However, we do not
think that this threat is severe, because the weighted average of the experience in
the tool-supported and manual groups were not too different (i.e., respectively 3.5
and 3).

We do not think that there is an important lack of balance due to the differences
in the programming experience of developers. In Section 9.5.2, we indicated that
each developer had at least 4 years of professional software development experience.
Considering the nature of the tasks in the experiment, we think that a developer with
4 years of experience can perform as well as a developer with more than 4 years of
experience.

12.3.2 Restricted Generalizability Across Constructs

These kinds of threats arise if the treatment may affect the studied construct
positively, but unintentionally affect the other constructs negatively.

In our experiments, the tool-supported participants were asked to remove only
incompatibility defects, because the tools ensured that there is no unsoundness or
incompleteness defect. Whereas, the manual participants were asked to remove both
incompatibility, and unsoundness and incompleteness defects. Thus, the participants
of different groups had to deal with different number of defects. This difference is
an inevitable consequence of our solution, and it can be considered as a threat to the
construct validity of our experiments.

12.3.3 Experimenter Expectancy

The experimenters may bias the result of an experiment based on what they expect
from the experiment. This is a threat to the construct validity.

The purpose of our experiment was to evaluate the tools developed by the first
author of this article. Hence, the experimenter expected that the tools are beneficial.
To eliminate this threat, we planned, conducted, and analyzed this experiment
together with the second author of this article, who did not have any specific
expectations from this experiment.



762 Empir Software Eng (2009) 14:720–777

12.4 External Validity

The threats to external validity limit the ability to generalize the results of the
experiment.

12.4.1 Interaction of Selection and Treatment

This threat arises if the selection of subjects do not adequately represent the
population for which the results need to be generalized.

The participants of this experiment are not randomly selected from a large pop-
ulation of developers and students. The developers were the volunteers at ASML,
and the students were the participants of a course at the university. Therefore, the
results of this experiment cannot be generalized for a larger population of students
and developers. However, this does not devaluate the results of this experiment,
because our purpose was to evaluate the tools, and we have empirical evidence that
the tools are beneficial both for a homogenous set of students, and a homogenous set
of developers.

12.4.2 Interaction of Setting and Treatment

This threat arises if the experimental setting or the instruments are not representative
of, for example, industrial practice.

In our experiments, we used real-life source code and real-life VisuaL specifica-
tions, but we injected relatively simple defects. Below, we explain why we could not
use real-life evolution scenarios instead of injecting simple defects.

At ASML, developers maintain source code upon receiving a “change request /
problem report (CRPR)”. Implementing a CRPR typically involves several modifica-
tions to the existing source code. Hence, a real evolution scenario typically consists of
several additions, deletions, and modifications of function calls, control statements,
variables etc. Using a real CRPR in our experiments was infeasible, because

– A CRPR is informally written in English. Therefore, different participants might
have (mis)interpreted the CRPR differently. Consequently, we would have lost
the control in the experiment, and the results would have been inconclusive.

– No matter there is tool support or not, domain expertise is necessary for
implementing a CRPR. Hence, the students could not have implemented the
CRPRs. Moreover, only two out of 23 developers were in the team that was
developing the software component we investigated. Hence, the remaining 21
developers were not domain experts, either.

– The implementation of a CRPR involves multiple changes to the source code.
The changes that were not due to the ETB defects or incompatibilities would
have been confounding factors in our experiment. In other words, we would have
lost control in the experiment, and the results would have been inconclusive.

– Due to the domain expertise required for implementing a CRPR, we cannot
estimate how much time is necessary for an average person to implement a given
CRPR. Since we could not occupy the participants for more than 3 h during the
experiment, we could not have used a real CRPR.
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Due to the reasons listed above, we had to inject relatively simple defects that
can be repaired without any domain knowledge. This may be a threat to the
generalization of our results to the industrial practice.

The domain expert specifically selected the three functions into which we injected
defects, because the expert had to maintain the compatibility and ETB of these
three functions, at the time of the selection. Therefore, we do not think that the rep-
resentativeness of the functions is a serious threat to the validity of our experiments.

12.4.3 Background of Participants

The background of the student participants is classified based on the size of the
largest program they have written using one of the imperative languages, whereas the
background of the developer participants is classified based on the number of years
of programming experience. Using a uniform criteria to classify the background of
both the students and the developers would not make sense, since students typically
do not have professional experience, and the professional developers typically write
programs on a daily basis over multiple years.

The non-uniform criteria for classifying the background of students and devel-
opers would be a threat to the validity of any conclusion that would compare the
performance of students with the performance of the developers. In this article, we
did not present such a conclusion; i.e., any conclusion that is presented in this article
is either about the students or the developers, but not the combination.

Intuitively, the use of tool support should reduce the difference between de-
velopers and students. However, this is not the case according to the results of
the experiments. The results suggest that the difference between the students and
the developers is smaller if there is no tool support: The manual students spent
128% (=64/50) of the time spent by manual developers, whereas the tool-supported
students spent 267% (=32/12) of the time that is spent by the tool-supported
developers. This counter-intuitive result would be a threat to the validity of any
conclusion that compares the performance of the students with the developers. In
this article, we do not present such a conclusion, because comparing the students
with developers was not our goal. If this were our goal, then we would have stated
additional hypotheses about the difference between students and developers, and we
would have designed the experiment differently. The existing design and execution
of the experiments are not suitable for comparing students and developers.

13 Related Work

The solution presented in this article (Sections 4–8) can be summarized as (a)
verifying given source code, and (b) inserting additional source code at well-defined
points (i.e locations) in the verified source code. Accordingly, the related work is
organized under these sections:

13.1 Formal Verification and Source Code Model Checking

VisuaL is a graphical language that is suitable for expressing constraints on the
behavior of algorithms. Such a constraint is a logical or temporal property that must
be satisfied by each possible execution of the corresponding algorithm.
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Fig. 13 A VisuaL specification
indicating that the last call
from the function f must
be a call to traceOut

Since an algorithm does not execute indefinitely (otherwise it would not be an
algorithm by definition (Linz 2001)), each possible execution of an algorithm is
finite. Thus, VisuaL is a language that is suitable for expressing properties of finite
executions. For example, the following constraint can be expressed using VisuaL, as
shown in Fig. 13.

C3 In each possible sequence of function calls from the function f, there must be
at least one call, and the last call must be a call to the function traceOut.

In contrast to the executions of algorithms, the executions of finite-state con-
current systems (Magee and Kramer 1999) or reactive systems (Harel and Pnueli
1985) are often infinite. Therefore, we call such systems non-terminating systems.
To express the logical and temporal properties of non-terminating systems, several
temporal logic formalisms are available: LTL (Clarke et al. 1999), CTL (Clarke et al.
1999), CTL* (Clarke et al. 1999), FLTL (Giannakopoulou and Magee 2003), (Letier
et al. 2005). To be able to express the constraint C3 (see above) using one of these
formalisms, one has to first translate the finite executions of the algorithm to infinite
executions. For example, if seq =<g, h, traceOut> is a finite sequence of function
calls representing an execution of the function f, then seq can be translated into
the infinite sequence seq′ =< g, h, traceOut,�, �, �, ... >, where � is a special
symbol marking the end of seq. Upon this translation, the infinite sequence seq′
can be checked against the LTL formula eventually(traceOut and (next �)). This
LTL formula is semantically different than the VisuaL specification shown in Fig. 13.
However, the formula ‘mimics’ the specification, provided that the finite sequences
are extended to infinite sequences as explained above. FLTL, CTL, CTL* can also
be used for creating formulas similar to the LTL formula stated above.

Event-based systems can be modelled as labelled transition systems (LTS) (Magee
and Kramer 1999), and these models can be checked by the LTSA tool (Magee and
Kramer 1999), based on the properties specified in FLTL. The nature of the models
that our analyzer checks is different from the nature of the models that LTSA tool
checks: Our analyzer checks a given SCFG (see Section 7.3), which is not an LTS.
However, one can transform a SCFG to an LTS, by labelling each edge with the label
of the target node. Upon this transformation, one can also perform the verification
using the LTSA tool. Nevertheless, LTSA neither can analyze nor transform source
code. The combination of our analyzer and transformer is capable of doing these.

Bandera (Corbett et al. 2000) is an integrated collection of analysis tools. Bandera
can (a) automatically extract finite-state models from Java code, for the verification
of LTL properties, (b) perform the automatic verification, and (c) automatically map
counter-examples to Java code. From this perspective, our analyzer is similar to
Bandera: Our analyzer can (a) automatically create the SCFG of a given C function
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(b) automatically perform the verification, (c) enumerate the function calls along a
path that is a counter example. Bandera can analyze Java source code but cannot
transform it. The combination of our analyzer and transformer can both analyze and
transform C code.

We perform static program analysis to verify source code. There is a substantial
body of research in static analysis (Ball and Rajamani 2002; Chen and Wagner 2002;
Das et al. 2002; Evans et al. 1994; Ashcraft and Engler 2002; Engler et al. 2000;
CodeSurfer, http://www.grammatech.com; CodeSonar, http://www.grammatech.
com; CoverityPrevent, http://www.coverity.com). This line of research does not focus
on source code transformation. Therefore, static analysis and verification tools do
not provide mechanisms for specifying events and binding event calls. Consequently,
using existing static analysis tools, one cannot solve the problems presented in
Section 3.1, at least in the way we solve them.

Interval logic, which is originally introduced by Schwartz et al. (1983), is a type of
temporal logic that is specifically designed for expressing abstract requirements that
a program must satisfy. Dillon et al. (1994a, b) have recognized the need for graphical
languages for expressing interval logic formulas, and they introduced Graphical
Interval Logic. Later, Bates (1995) introduced Event-Based Behavioral Abstraction
(EBBA) for debugging heterogenous distributed systems. EBBA provides a textual
way to express interval logic expressions.

Rosenblum (1991), presents Task Sequencing Language (TSL), which is designed
for expressing design constraints on the behavior of concurrent programs. TSL is
later evolved in to the architecture description language Rapide (Luckham and Vera
1995), which provides extensive support for event-based specifications of software
architectures.

Hendrickson et al. (2005) propose an approach that aids in understanding, debug-
ging, and visualizing the reactive behavior of event-driven systems. This approach
can address the problems due to possible mistakes during the evolution of state-
charts, which is mentioned as future work in Section 14.4.

13.2 Aspect-Oriented Programming (AOP)

In AOP terms, the ETB of a system is scattered (Kiczales et al. 1997) over and
tangled (Kiczales et al. 1997) with the implementations of the activities. Hence, the
ETB is a crosscutting concern (Kiczales et al. 1997). The event specifications (e.g.,
the pattern in Fig. 7) correspond to pointcuts (Kiczales et al. 1997), the event points
(e.g., the point located after ‘;’ in Line 7, Listing 1) correspond to joinpoints (Filman
et al. 2005), the event calls (e.g., preprocessed();) correspond to advices (Kiczales
et al. 1997), and the VisuaL specifications in which an event is specified and an event
call is bound (e.g., Fig. 7) correspond to aspects (Kiczales et al. 1997). Thus, part of
the solution presented in this article exhibits the fundamental characteristics of the
AOP technology. Note that our approach and the tools can be used for weaving not
only event calls but also arbitrary advice code.

In Section 9.1, we stated that there are 55 events mapped to 102 source code
points in the component using which we tested our the solution. Hence, a full-blown
application of our solution requires creation of 55 aspects for weaving 102 calls to
55 event functions at 102 joinpoints. That is, 1 aspect needs to be created per 1.9

http://www.grammatech.com
http://www.grammatech.com
http://www.grammatech.com
http://www.coverity.com
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joinpoints on the average. This means that the ETB of the system is not highly-
replicated, in contrast to the classical examples of crosscutting concerns: tracing,
parameter checking, etc. By addressing the problems presented in Section 3.1, we
have shown a case in which AOP can be useful for improving the evolvability of a
crosscutting concern that is not highly-replicated.

Recent research (Aldrich 2005; Sullivan et al. 2005) has raised awareness about the
problems of aspect-oriented systems in the context of software evolution. It is argued
that seemingly harmless modifications to base code may break the functionality of
aspects, which increases the workload of aspect developers, and sometimes makes
it infeasible to realize a working system. To address such problems, on one hand
Aldrich (2005) proposed to restrict joinpoint models and advising mechanisms.
His proposal has been incorporated to AspectJ (http://www.eclipse.org/aspectj/) by
Ongkingco et al. (2006). On the other hand, (Sullivan et al. 2005) proposed to
constrain the implementation of the base programs, so that the aspects can properly
function. Our solution follows the latter approach: The compatibility constraints
(Section 5) are interface specifications (Sullivan et al. 2005) (or contracts (Beugnard
et al. 1999)) that base code developers implement. The analyzer verifies whether
these interface specifications (or contracts) are correctly implemented. According to
the four levels of contracts proposed by Beugnard et al. (1999), the compatibility
constraints can be classified under the third level: “Constraints on the temporal
ordering of system services and method calls.”

In a nutshell, a VisuaL specification is a Moore machine-like automaton that
generates output strings from an output alphabet, while recognizing regular patterns
of input symbols from an input alphabet. Therefore, using VisuaL one can specify
history-sensitive pointcuts that can identify function call joinpoints, based on regular
patterns of function calls. Hence, VisuaL is related to some of the existing trace-
based and history-sensitive approaches (Allan et al. 2005; Douence et al. 2001, 2002,
2004). In these approaches, the state of the pointcut advances only if the encountered
input symbol is in the input alphabet. In VisuaL, however, one always explicitly
specifies the next state for the symbols that are not in the input alphabet as well.
In this respect, our language is similar to MOPS Chen and Wagner (2002). Using this
feature, one can naturally express “Function call c1 has to come immediately after
function call c2”, or “Whenever function call c1 comes immediately after function
call c2, weave advice A”.

VisuaL, enables concisely localizing the information about a mandatory event (see
Section 6 and Fig. 8). If the existing trace-based languages (Allan et al. 2005; Douence
et al. 2001, 2002, 2004) are used however, it is necessary to create at least one declare
error (AJ5, http://www.eclipse.org/aspectj/) pointcut for the compatibility constraints
(e.g., C1 and C2 in Section 5.2), and another one for the event specification. So, the
information about a mandatory event would be distributed over multiple pointcuts,
in which case conciseness and locality-of-information would be suboptimal.

The programming technique enabled by VisuaL can be considered as concern-shy
programming (Lieberherr and Lorenz 2005). The $-labelled arrows (see Figs. 5, 6,
7, and 8) abstract away from the function calls that are not parts of the concerns
represented by the VisuaL specifications. In our case, these concerns are either
compatibility constraints, or the events of a system.

Property checking and program queries are other applications of trace-based
approaches (Douence et al. 2005; Goldsmith et al. 2005; Martin et al. 2005). In these

http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
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approaches, one writes queries over execution traces of programs, often for detecting
errors, flaws, etc. Hence, weaving is not the purpose of these applications. In contrast,
our purpose is both weaving additional behavior, and enforcing design rules Sullivan
et al. (2005).

14 Discussion

In this section, we discuss VisuaL, the tools, and the generality of our approach, in
three separate sections.

14.1 VisuaL

In Section 2.2, we explained that the processed event is mapped to the point located
after ’}’ in Line 8, Listing 2. One can identify this point if and only if one can match
’{’ in Line 5 with ’}’ in Line 8. Parenthesis matching can be implemented in a given
language, if and only if the language can express context-free patterns. Using VisuaL
however, one can express only regular patterns. Therefore, VisuaL is not suitable for
identifying the point located after ’}’ in Line 8, Listing 2; hence to define the processed

event.
VisuaL is not expressive enough for constraining the possible sequences of func-

tion calls using data values. For example, one cannot specify the following constraint:
If a possible sequence of function calls from preprocess contains a subsequence in
which the value of reticleIsClean is 0 (i.e., false), then the last function call in this
subsequence must be a call to cleanReticle. To enable the specification of such
constraints, VisuaL must be extended with new constructs that enable data analysis.

VisuaL is a graphical language whose syntactic elements are labelled rectangles
and arrows. As the size and complexity of a VisuaL specification increases, the
comprehensibility and the ease of layout decreases. Therefore, it is essential that
compatibility constraints and events can be defined using relatively less rectangles
and arrows.

14.2 Using Our Approach in Legacy Systems

In this article, we focused on explaining how our solution could be applied from the
beginning of a new software project where the event calls are always automatically
inserted by our tools (i.e., never manually inserted by software engineers). Nev-
ertheless, for existing software systems where the event calls have been manually
inserted, our solution could still be beneficial: One can create VisuaL diagrams
for expressing (a) the compatibility constraints (e.g., C1 and C2 in Section 5.2),
and (b) the soundness and completeness properties of ETB. For example, two of
the soundness and completeness properties of the simplified wafer scanner that is
presented in Section 2 are as follows:

P1 In each possible sequence of function calls from preprocess, each call to
preprocessed must come immediately after a call to measureWafer.

P2 In each possible sequence of function calls from preprocess, each call to
measureWafer must be immediately be followed by a call to preprocessed.
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The ETB of the simplified wafer scanner is (a) unsound if P1 is not satisfied,
and (b) incomplete if P2 is not satisfied. Note that Listing 3 satisfies these properties.

If both the compatibility constraints and the soundness and completeness proper-
ties are specified using VisuaL, then each time software engineers modify the source
code containing the event calls, our analyzer can verify both the compatibility and the
soundness and completeness of the ETB of the system. In this way, our solution can
be beneficial for existing event-driven systems where engineers manually maintain
the ETB of the system.

Alternatively, one may also try using VisuaL, analyzer, and transformer to
automatically find and remove the event calls from an existing software system.
Afterwards, the same VisuaL specifications can be used for re-inserting the event
calls each time the event-call-free implementations of the activities are modified, as
explained throughout this article. Such a migration in a large scale legacy system
is probably easier imaginable than successfully done; we do not believe that such a
complete migration is practically feasible for most of the large-scale legacy systems
today.

14.3 Tools

The SCFG generator of the current analyzer has limitations that can be overcome
through further development. For example, the analyzer cannot recognize calls
through a function pointer. To overcome this limitation, we need to incorporate
pointer analysis capabilities to the current analyzer.

The current implementation of our analyzer cannot rule out infeasible paths
through a function, because it does not analyze the flow of data. This may result in
false positives during compatibility analysis: Some infeasible paths may indicate an
incompatibility for which our analyzer outputs an error. Although we did not come
across such paths while testing the solution in the limited scope defined in Section 9.1,
it is a limitation to be addressed in the future. This can be done using data flow analy-
sis. Existing commercial tools such as (CodeSonar, http://www.grammatech.com)
and (CoverityPrevent, http://www.coverity.com) are already capable of ruling out
infeasible paths.

The current implementation of our analyzer examines all paths through a function.
If a path does not conform to a corresponding VisuaL diagram, then the analyzer
reports a compatibility error containing the path. Since the analyzer examines all
paths, it is guaranteed that there are no false negatives (i.e. if the analyzer does not
report a compatibility error, then there is indeed no compatibility error).

Our transformer does not have the functionality to bind free variables (Allan et al.
2005) in the event calls to the variables in the context of the event points in the source
code. Therefore, the event calls are separately parsed and directly inserted. In case of
unresolved variables, we rely on the error mechanism of the C compiler that compiles
the transformed source code. The functionality to bind free variables is a part of our
future work.

ASML requested us to preserve the layout of the source code upon transforma-
tion; because they were interested in clearly seeing that the injected event calls are
the only modifications to the original source code. Therefore, we take care of the
location of comments, indentation, white spaces etc., as follows: For each token that
is encountered during parsing, we keep (a) the physical location of the token in terms

http://www.grammatech.com
http://www.coverity.com
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of line and column numbers, and (b) the size of the token. Comments are parsed
through a different token channel, so that we could exclude them from the actual
AST. We keep a link between a comment and the closest non-comment token that
comes before the comment in the source code. Whenever we inject an event call
by modifying the AST, we accordingly update the line and column numbers of the
tokens that follow the injected event call. To calculate the line and column numbers
of the injected event call, we do the following: If the previous token has no link to
a comment, then we use the location and size of the previous token in the AST to
calculate the location of the injected event call, otherwise we use the location and
size of the related comment.

14.4 Generality

In the industrial application, the C programming language was chosen to implement
the activities. Therefore, the implementation of our solution is specific for C. But,
the problems we discussed and the solution approach we proposed are general:
If the implementation language of the activities is changed to another procedural
programming language (e.g., Pascal (Wirth 1975)), then porting the solution boils
down to adapting the SCFG creation functionality of the analyzer.

In the object-oriented paradigm, the reactive behavior of the instances of a
class is typically modelled in UML statecharts (UML, http://www.uml.org/), and the
activities performed at a given state are typically implemented in the methods of
the class. Hence, the solution presented in this article can be applied in an object-
oriented context, too. But, certain issues need to be addressed: For example, due to
dynamic binding, statically resolving a method call to a unique method definition may
not be possible. Further research is necessary to address such issues if the solution is
applied in an object-oriented context.

In this article, we addressed some of the problems arising from the possible
mistakes during the evolution of activities. The problems due to possible mistakes
during the evolution of statecharts is a part of future work.

15 Conclusions

During the evolution of the non-reactive part of an event-driven system, several
types of defects may emerge. Manually finding and repairing these types of defects
is time-consuming and error-prone. To reduce the time and to prevent errors, we
used a solution that integrates source code model checking and aspect-oriented pro-
gramming techniques. This solution consists of a graphical language called VisuaL, a
source code analyzer, and a source-to-source transformer. The graphical language
is suitable for (a) specifying the compatibility constraints that ensure the correct
communication of the reactive and non-reactive parts of software, and (b) defining
the sequence of operations that result in an event to be responded by the reactive
part of software. The analyzer can verify that the implementation of the non-reactive
part satisfies the compatibility constraints; thus the analyzer can be seen as a source
code model checker. The combination of the analyzer and transformer can identify
the source code locations where the events occur, and then automatically insert the

http://www.uml.org/
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function calls that stimulate the reactive part upon such occurrences. Hence, this
combination can be seen as a weaver in aspect-oriented programming.

We conducted two controlled experiments to understand whether the solution
is beneficial in terms of time reduction and error prevention. Twenty-one M.Sc.
students participated in the first experiment, and 23 professional developers partici-
pated in the second experiment. In each experiment, the participants were randomly
divided into two balanced groups. Each group was treated with the same industrial
specifications, source code, and defects. We instructed one group to repair the defects
with the help of the analyzer and transformer, whereas the other group had to repair
the defects manually (i.e., without the help of the tools).

During the experiments, we observed that the participants did not have any diffi-
culty in understanding the specifications written in VisuaL; hence the 15-min tutorial
was sufficient for them to understand and use VisuaL specifications. Based on this
fact, we think that VisuaL can be a practical alternative to temporal logic formalisms
such as LTL, especially for writing temporal and logical properties of algorithmic
systems. Thus, VisuaL addresses the requirements specification problem stated by
Hatcliff and Dwyer (Hatcliff and Dwyer 2001): “... the difficulty of expressing
software requirements in the temporal specification languages of the existing model-
checking tools. Although model-checker property specification languages are built
on the theoretically elegant temporal logics, practitioners and even researchers find
it difficult to use them to accurately express complex event-sequencing properties.
Once written, the specifications are often hard to read and debug.”

By analyzing the data that we collected during the experiments, we observed that
an average tool supported student repaired all defects in 32 min; whereas an average
manual student spent 64 min to repair the defects, and left 5 not-repaired defects
in 500 lines of source code. These results indicate that the tools reduce the time of
an average student by 50% and prevent one error per 100 lines of source code. An
average tool supported developer repaired all defects in 12 min; whereas an average
manual developer spent 50 min to repair the defects, and left 3.5 not-repaired defects
in 500 lines of source code. These results indicate that the tools reduce the time of an
average developer by 75% and prevent one error per 140 lines of source code. The
results of both experiments are statistically significant. Moreover, a post-hoc power
analysis reveals that we achieved sufficient power in the experiments.

After we developed VisuaL and the tools, we proposed the managers at ASML
to adopt our tools to their organization, but the managers raised many questions
such as

1. Can an average developer read, understand, and create VisuaL diagrams?
2. Can an average developer efficiently and effectively use the output of the tools

to repair defects in source code?
3. How much benefit do the tools bring in?
4. What is the cost of creating VisuaL diagrams?
5. How should we store and version control VisuaL diagrams?
6. What do we need to do to integrate the tools into the existing build process

involving multiple development teams and multiple code streams?
7. How mature are the tools to be used in production?
8. Once the tools are adopted to the organization, how much maintenance is

needed to keep the tools up and running?
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9. How do VisuaL and the tools fit together with the existing tools and techniques
already used in the organization?

10. What percentage of the overall software development cost can be reduced by
the tools?

11. Can the benefit of VisuaL diagrams and the tools quickly exceed their cost?

Our experiments could answer only the first three questions. At least one case study
is needed to be able to answer the remaining questions. Such a case study could be
as follows: VisuaL and the tools could be used in a pilot project at ASML, where
multiple teams collaborate to maintain software on the basis of CRPRs mentioned
in Section 12.4.2. In such a pilot project, we could collect both quantitative and
qualitative data to answer the remaining questions of the managers at ASML.
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Appendix: Experimental Data

The data we collected during the experiment with the students is provided in
Tables 11 and 12; and the data we collected during the experiments with the
professional developers is provided in Tables 13 and 14.

The student S6 (see Table 11) could not finish the task within the given time frame,
which was 3 h. Therefore, we omitted the related data. In addition, the logged data
of the student S5 (see Table 11) and S17 (see Table 12) was corrupted. Therefore, we
excluded this data from our calculations.

Table 11 The data of the
tool-supported M.Sc. students

Student # Unrepaired defects Time in minutes

S1 0 39
S2 0 29
S3 0 26
S4 0 27
S5 N.A. N.A.
S6 N.A. N.A.
S7 0 24
S8 0 58
S9 0 21
S10 0 51
S11 0 17
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Table 12 The data of the manual M.Sc. students

Student Incompat. Unsound. Incomplete. Total def. Time (min)

S12 3 3 3 9 84
S13 1 0 1 2 60
S14 0 2 2 4 67
S15 1 2 2 5 49
S16 1 3 4 8 40
S17 N.A. N.A. N.A. N.A. N.A.
S18 0 0 1 1 72
S19 0 4 4 8 71
S20 1 2 1 4 81
S21 0 0 1 1 53

Table 13 The data of the
tool-supported professional
developers

Developer # Unrepaired defects Time in minutes

D1 0 16
D2 0 8
D3 0 9
D4 0 15
D5 0 10
D6 0 9
D7 0 10
D8 0 17
D9 0 13
D10 0 10
D11 0 10
D12 0 14

Table 14 The data of the manual professional developers

Developer Incompat. Unsound. Incomplete. Total def. Time (min)

D13 1 4 3 8 66
D14 1 1 1 3 26
D15 0 1 0 1 47
D16 0 1 1 2 44
D17 0 1 0 1 51
D18 2 2 2 6 61
D19 0 0 1 1 66
D20 0 1 2 3 59
D21 0 3 2 5 58
D22 0 2 3 5 29
D23 1 2 2 5 40



Empir Software Eng (2009) 14:720–777 773

References

Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0-201-10088-6

Aldrich J (2005) Open modules: modular reasoning about advice. In: European conference on
object-oriented programming

Allan C, Avgustinov P, Christensen AS, Hendren L, Kuzins S, Lhotàk O, de Moor O, Sereni D,
Sittampalam G, Tibble J (2005) Adding trace matching with free variables to aspectj. In:
OOPSLA ’05: proceedings of the 20th annual ACM SIGPLAN conference on object oriented
programming, systems, languages, and applications. ACM, New York, NY, USA, pp 345–364.
ISBN 1-59593-031-0

Ashcraft K, Engler D (2002) Using programmer-written compiler extensions to catch security holes.
In: IEEE symposium on security and privacy. Oakland, California, May

Ball T, Rajamani SK (2002) The slam project: debugging system software via static analysis. In:
POPL ’02: proceedings of the 29th ACM SIGPLAN-SIGACT symposium on principles of
programming languages. ACM, New York, NY, USA, pp 1–3. ISBN 1-58113-450-9

Bates PC (1995) Debugging heterogeneous distributed systems using event-based models of behav-
ior. ACM Trans Comput Syst 13(1):1–31

Beugnard A, Jézéquel J-M, Plouzeau N, Watkins D (1999) Making components contract aware.
Computer 32(7):0 38–45. ISSN 0018-9162

Chen H, Wagner DA (2002) Mops: an infrastructure for examining security properties of software.
Technical report, Berkeley, CA, USA

Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT, Cambridge
Cook TD, Campbell DT (1979) Quasi-experimentation: design and analysis issues for field settings.

Rand McNally Collage, Chicago
Corbett JC, Dwyer MB, Hatcliff J, Laubach S, Pǎsǎreanu CS, Zheng H (2000) Bandera: extracting
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Mehmet Akşit holds an M.Sc. degree from the Eindhoven University of Technology and a Ph.D.
degree from the University of Twente. Currently, he is working as a full professor at the Department
of Computer Science, University of Twente. He is the head of the Software Engineering chair and
the leader of the Twente Research and Education on Software Engineering (TRESE) Group. His
research interests include aspect-oriented software development, synthesis based software design,
application of fuzzy logic to software design processes, and design algebra for managing large design
spaces.


	Experimental evaluation of a tool for the verification and transformation of source code in event-driven systems 
	Abstract
	Introduction
	An Example Application
	Simplified Wafer Scanner
	Processing (an Activity of the Wafer Scanner)
	Preprocessing (an Activity of the Wafer Scanner)
	The Requirements of the Wafer Scanner
	The Reactive Part of the Event-Driven Software
	The Non-reactive Part of the Event-Driven Software

	Connecting the Statechart and the Activities

	Defects During Activity Evolution
	ETB Becomes Defective
	ETB Becomes Unsound
	ETB Becomes Incomplete
	ETB Becomes both Unsound and Incomplete

	Activity Becomes Incompatible
	Other Defects
	Problem Summary
	Goals of this Research

	A Four-Stage Solution
	An Overview of the Stages
	Stage 1: Deriving and Specifying Compatibility Constraints
	Stage 2: Specifying Events and Binding Event Calls
	Stage 3: Analysis
	Stage 4: Transformation

	The Benefit of the Solution (i.e., How the Goals are Reached)

	Stage 1: Deriving and Specifying Compatibility Constraints
	The Hints for Deriving Compatibility Constraints
	Deriving Compatibility Constraints
	Specifying Compatibility Constraints
	Specifying C1
	Specifying C2


	Stage 2: Specifying Events and Binding Event Calls
	Stage 3: Analysis
	Step 1: Creation of Abstract Syntax Tree (AST)
	Step 2: Derivation of Simplified Control Flow Graph
	Step 3: Analysis of Simplified Control Flow Graph with Respect to VisuaL Specification

	Stage 4: Transformation
	Experiment Definition and Planning
	Background Information
	Motivation and Overview
	Hypotheses
	The Variables of the Experiment
	Factors
	Non-factor Independent Variables
	Dependent Variables

	Selection of Participants
	Selection of Students
	Selection of Developers

	Experiment Design
	Instrumentation

	Experiment Operation
	Preparation
	Execution
	Data Validation

	Data Analysis
	Screening and Cleaning the Data
	Descriptive Statistics
	The Experiment with the Students
	The Experiment with the Developers

	Hypothesis Testing
	Testing H01
	Testing H02
	Testing H03
	Testing H04


	Validity Evaluation
	Conclusion Validity
	Low Statistical Power
	Reliability of Treatment Implementation

	Internal Validity
	Maturation
	Instrumentation
	Diffusion or Imitation of Treatments

	Construct Validity
	Confounding Constructs and Levels of Constructs
	Restricted Generalizability Across Constructs
	Experimenter Expectancy

	External Validity
	Interaction of Selection and Treatment
	Interaction of Setting and Treatment
	Background of Participants


	Related Work
	Formal Verification and Source Code Model Checking
	Aspect-Oriented Programming (AOP)

	Discussion
	VisuaL
	Using Our Approach in Legacy Systems
	Tools
	Generality

	Conclusions
	Appendix: Experimental Data
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


