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Abstract This work investigates the potential of com-
bining the outputs of multiple low-cost sensor technol-
ogies for the direct measurement of spatio-temporal
variations in phenomena that exist at the interface be-
tween our bodies and the environment. The example
used herein is the measurement of personal exposure to
traffic pollution, which may be considered as a function
of the concentration of pollutants in the air and the
frequency and volume of that air which enters our lungs.
The sensor-based approach described in this paper
removes the ‘traditional’ requirements either to model
or interpolate pollution levels or to make assumptions
about the physiology of an individual. Rather, a wholly
empirical analysis into pollution exposure is possible,
based upon high-resolution spatio-temporal data drawn
from sensors for NO2, nasal airflow and location (GPS).
Data are collected via a custom smartphone application
and mapped to give an unprecedented insight into ex-
posure to traffic pollution at the individual level. Whilst
the quality of data from low-cost miniaturised sensors is
not suitable for all applications, there certainly are many

applications for which these data would be well suited,
particularly those in the field of citizen science. This
paper demonstrates both the potential and limitations of
sensor-based approaches and discusses the wider rele-
vance of these technologies for the advancement of
citizen science.

Keywords GIS . Sensors . Citizen science . Traffic
pollution exposure

Introduction

This paper investigates the use of new sensor technolo-
gies for the measurement of phenomena that occur at the
interface between our bodies and immediate surround-
ing environment. An example of such a phenomenon is
air pollution, which, particularly in urban areas, is an
involuntary and ubiquitous environmental risk to public
health and motor vehicles are a major contributor to this
(Galatioto et al. 2014; WHO 2013; Smallbone 2012;
Wakefield et al. 2001; Bickerstaff and Walker 2001).
There is a great deal of evidence that traffic pollution has
a number of chronic and acute health implications rang-
ing from irritation to the eyes, nose and throat to nausea;
respiratory problems; cardiovascular events; cancer; and
even death and that children, pregnant women, the
elderly and those with asthma and other respiratory
diseases are at greatest risk (Steinle et al. 2015;
Galatioto et al. 2014; Davies and Whyatt 2014;
Nieuwenhuijsen et al. 2014; WHO 2013; Sharker and
Karimi 2014; Shah et al. 2013; Heinrich et al. 2005). An
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individual’s exposure to air pollution is typically
greatest when travelling and depends principally upon
the duration of exposure and volume and concentration
of pollutants inhaled (Davies and Whyatt 2014;
Hatzopoulou et al. 2013; de Nazelle et al. 2012; Yu
et al. 2012; Int Panis et al. 2010). The major factors that
affect exposure therefore include the physiological (e.g.
individual fitness and breathing patterns), the environ-
mental (e.g. meteorological conditions, terrain) and the
human (e.g. traffic volume and composition, fuel type,
the impact of buildings in forming ‘street canyons’)
factors. Exposure is a product of variations in both time
and space, with even small variations in the precise
spatio-temporal position of an individual within the
microenvironment important in determining their level
of exposure (Yu et al. 2012; de Nazelle et al. 2012).
Indeed, Galatioto et al. (2014) concluded from their
investigation into pollution microenvironments that it
is impossible to assign a traffic pollution profile ‘type’
to a location based upon traffic flow profiles alone, even
through pollutant levels are governed by traffic
emissions.

Given the above, it is understandable that there has
been an increase in public concern relating to air pollution
in recent years. Whilst a significant amount of research
regarding the monitoring and modelling of pollution has
been undertaken, few studies tell us much about public
understanding of air pollution, how it is experienced and
how this experience varies between individuals (Howel
et al. 2003; Day 2007). Bickerstaff (2004) and Wakefield
et al. (2001) discuss factors that influence our experience
and perception of air pollution, describing social, cultural
and institutional factors, and comment that observable or
‘sensate’ effects of pollution upon the physical environ-
ment (e.g. visible pollution ‘hazes’, changes in colour or
growth of vegetation or olfactory evidence) are required
for people to identify the presence of pollutants. In the
absence of such direct indicators, individuals may form
perceptions based upon indirect indicators such as the
number of cars visible, discolouration of masonry (e.g.
Brimblecombe and Grossi 2010; Brimblecombe and
Grossi 2009) or even unrelated phenomena such as litter
or graffiti. These perceptions will vary between individ-
uals, even under the same conditions (Bickerstaff 2004)
and will, in turn, affect the perceptions of the various
places that they occupy and the activities that they under-
take within those places.

Traffic-related air pollution comprises a complex
mixture of gaseous compounds and particles that are

emitted directly from vehicle exhaust (e.g. NO, CO,
CO2), physical processes such as brake and tyre wear
and chemical processes, including the formation of O3

and NO2 (de Nazelle et al. 2012; Semenza et al. 2008).
The pollutant ‘cocktail’ may vary considerably through
space and concentrations can decrease sharply within
short distances from roads, particularly under certain
wind conditions (Hatzopoulou et al. 2013; de Nazelle
et al. 2012; Beckerman et al. 2008; Gilbert et al. 2003).
For this reason, the modelling of pollutant concentra-
tions within traffic microenvironments is complex and
difficult, especially when compounded by the plethora
of physical, meteorological and other factors that influ-
ence the level of exposure at a given time and location.
Meng et al. (2012) have shown through a comprehen-
sive research synthesis of literature from the past
30 years that ambient NO2 is a good proxy for personal
exposure to traffic pollution (also Galatioto et al. 2014),
but no evidence of directly measuring personal exposure
has been demonstrated so far; this is the approach that
this paper seeks to explore.

In the UK, local authorities are required to monitor
ambient pollutant levels using networks of automated
monitoring stations (reporting data at hourly intervals)
and non-automated monitoring stations (where data are
manually collected either daily, weekly or monthly). A
comprehensive understanding of pollution levels, how-
ever, particularly with regard to impact upon the public,
is confounded by inadequate or incomplete data and
monitoring initiatives by professional scientists and
government agencies (Conrad and Hilchey 2011).
Whilst effective in terms of accuracy and stability for
their primary purpose (comparing pollution levels
against UK and EU air quality standards), automated
monitoring stations are expensive and complex to oper-
ate, resulting in them only being located at a relatively
small number of fixed locations, covering only a frac-
tion of polluted areas in many cities (Galatioto et al.
2014; de Nazelle et al. 2013; Snyder et al. 2013; Sharker
and Karimi 2014; Gerharz et al. 2009). As a result, there
are significant limitations upon the number of sensors
that may be deployed, who can collect data, the reasons
for which data are collected, and how data are accessed
(Snyder et al. 2013). Real-time data are not generally
made available to the public, who are typically informed
through a ‘Daily Air Quality Index’ that characterises air
quality on a ten-point scale, which in turn is divided into
four ‘bands’ ranging from ‘low’ (1–3) to ‘very high’
(10) (DEFRA 2015). This index is based upon
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recommendations made by Smallbone (2012), follow-
ing an analysis of how to make the issue of air pollution
accessible and understandable to the public, and
supports the findings of Day (2007) and Bickerstaff
(2004), who found that a relative scale most effectively
represented the way in which the public thought about
air pollution. The use of relative indices such as this is,
therefore, the most common approach to the online
dissemination of air quality information, though it
should be noted that the values to which these relative
values relate vary significantly, even within EUmember
states (van den Elshout et al. 2008).

Given the number of both personal and environmental
factors involved, the task of modelling personal exposure
to traffic pollution is particularly challenging and typical-
ly relies upon many assumptions and proxies in order for
estimations to be made. Models are particularly challeng-
ing at the local scale, where variation in pollutant con-
centration can be considerable and directly related to
local vehicle characteristics, traffic volumes, congestion
levels, the shape of the built environment and the orien-
tation of roads (Galatioto et al. 2014). Because of this,
alongside the reported low correlations between ambient
fixed-site measurements and personal exposure (Gerharz
et al. 2009) and the high spatio-temporal variability in
both people and pollution, fixed monitors alone cannot
provide good estimates of individual exposure (Gerharz
et al. 2009, Steinle et al. 2015).

As a result, there has been a significant amount of
research relating to the estimation of personal exposure
to pollutants using a variety of modelling techniques
(Davies and Whyatt 2014; Hatzopoulou et al. 2013; de
Nazelle et al. 2012; Gulliver and Briggs 2011; Crabbe
et al. 2000), by deploying networks of low-cost sensors
(Galatioto et al. 2014) or by directly sensing pollutant
concentrations using portable sensors (Kingham et al.
2013; Greaves et al. 2008). There is, however, surprisingly
little evidence of attempts to directly sense both pollution
levels and physiological condition. Some notable
exceptions to this include Int Panis et al. (2010) and
Nieuwenhuijsen et al. (2014), both of which suffer from
sensors that, whilst portable, are still bulky, power-hungry
and too expensive to operate at the individual level, mak-
ing uptake unlikely beyond the participants of the studies
themselves (Snyder et al. 2013; Nieuwenhuijsen et al.
2014). Recent developments in sensor technologies, how-
ever, are providing citizens with the ability to easily and
inexpensively detect a wide variety of both physiological
and environmental phenomena (Huck et al. 2014). Uptake

of these sensors is increasing and a number of ‘citizen
science’ applications already exist, though they typically
focus upon either the environment or the self, with the
interaction between the two yet to be explored and re-
search accounting for perceptions of the environment lim-
ited to the simple, non-automated collection and interpo-
lation of geotagged data, such as Pooley et al. (2010).

These developments in sensor technologies have largely
been driven by the parallel development of the ‘Quantified
Self’ (QS) and the ‘Internet of Things’ (IoT). Swan (2012a)
provides a relatively comprehensive review of the technol-
ogies involved in QS, describing sensors for movement,
sound, light, electrical potential, temperature, moisture,
location, heart rate and Galvanic Skin Response (GSR) as
well as their potential uses in to health applications such as
‘Ubiquitous Healthcare’ (Gubbi et al. 2013) and ‘e-
Healthcare’ (Luo et al. 2010). The IoT, on the other hand,
effectively represents an evolution of the current Internet
into a network of objects that harvest environmental infor-
mation (such as air quality, water quality, soil moisture and
traffic counts) through sensing (Gubbi et al. 2013).
Developments in both QS and IoT have led to the rapidly
increasing availability of low-cost miniaturised sensors
(Swan 2012a). These sensors have been used for some
years now, but thus far, research has been quite introverted,
focussing upon the self and not yet fully engaging with
subjects’ relationship to, and interaction with, their sur-
rounding environment. Example applications include
health monitoring (Worringham et al. 2011; Ramalingam
et al. 2012; Swan 2012b); physical activity monitoring
(Duncan et al. 2009; Fjørtoft et al. 2009; Fjørtoft et al.
2010; Castellano and Casamichana 2010); a number of
consumer lifestyle and fitness applications (examples listed
in Swan 2012b); and a variety of environmental citizen
science applications, such as Weather Underground
(Weather Underground 2017), Air Quality Egg (Air
Quality Egg 2017) or Smart Citizen (Smart Citizen
2017), all of which seek to sense and share meteorological
data with online communities. Commercial applications
based upon the same technologies are also starting to
emerge (e.g. TDC Systems 2017), offering the ability to
provide real-time feedback relating to a variety of phenom-
ena such as traffic or air quality monitoring, though such
services are yet to enjoy the low cost that is typically
associated with these applications.

Such solutions are significantly cheaper and more
flexible than the fixed-location automatic monitoring
stations described earlier in this paper but are less accu-
rate and precise. For many applications, however, the
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highest levels of precision and accuracy are not neces-
sary (Snyder et al. 2013; Steinle et al. 2015), meaning
that these more inexpensive devices may be employed
to help ‘democratise’ the sensing of environmental phe-
nomena such as traffic pollution, meteorological condi-
tions and so on. It could also be argued that, since the
data collected from automatic monitoring stations are
reduced into an index before being released online, the
public does not enjoy the greatest levels of precision
anyway, and so these new technologies have the poten-
tial to provide a reasonable alternative for many appli-
cations. Furthermore, the availability and low-cost of
such sensors allow individuals and researchers to ‘mix
and match’, allowing not only direct investigation of
environmental phenomena such as traffic pollution but
also physiological measurements such as heart rate or
breathing patterns. This facilitates novel analyses of
interactions between the individual and the environment
(such as that presented herein), individuals’ perceptions
of the environment, the influence of those individual
perceptions upon formation of place attachments and
any effects upon behaviour that arise from those
perceptions.

The followingwork aims to investigate the potential of
these sensor technologies in order to explore possibilities
for more complex portable applications arising from the
combination of personal and environmental sensors in
order to learn more about the spatial and temporal nature
of interactions between individuals and their surround-
ings. This will be achieved by the direct measurement of
personal exposure to traffic pollution, through the real-
time spatio-temporal capture of traffic pollution concen-
trations and nasal breathing rates. The measurement of
‘personal exposure’ to air pollution has been described as
a ‘critical link’ between ambient air pollution and human
health effects (Snyder et al. 2013). Furthermore, the
ability to directly capture high-resolution, georeferenced
data relating to an individual’s physiology and ambient
pollution levels provides a low-cost, novel approach to
the construction of individual records of ‘exposure’ at
times and locations that are relevant to individuals’ nor-
mal spatio-temporal movements. As part of this process,
an evaluation will also be presented as to the suitability of
the devices used for this type of analysis. It is clear from
the outset that these emergent technologies are not yet
suitable for epidemiological applications, but this work is
intended as a forward-looking analysis of the future ap-
plications of cutting edge technologies, and there are
many applications for which these technologies are

already well suited, including those within the sphere of
citizen science. Insights into the relationship between the
individual and the environment have the potential to
allow unprecedented research into the impact of environ-
mental phenomena upon the individual, the impact of
resulting knowledge upon perception and behaviour and
even the potential impact upon policy as the public be-
comes more conversant in issues such as traffic pollution.

Method

In order to capture real-time georeferenced ‘tracks’ of
personal exposure to traffic pollution, a number of differ-
ent sensors and technologies (both production and proto-
type) were obtained, including those for location, ambi-
ent pollution concentration and nasal airflow. Firstly,
location and timestamps were collected using the on-
board GPS receiver and real-time clock on an Android
mobile phone. These data were accessed using a custom
Android application, which also acts to read data from the
various sensors via Universal Serial Bus (USB) and log
these data against a timestamp and GPS-derived location
at given intervals. The collected data are displayed in
real-time on the screen and also written to a comma-
separated values (CSV) file on the device for later inspec-
tion and analysis. The CSV format was chosen because it
is easily compatible with a number of Geographical
Information System (GIS), statistical, database and other
analytical and visual software packages. The application
also provides the user with real-time feedback of their
location (via a Google Map), which may be compared
with the real-time data feedback in order to identify
spatial context for any variation in the phenomena being
recorded (e.g. local hot spots of traffic pollution). The
basic functionality of the logging application is illustrated
in Fig. 1, and a labelled screenshot of the user interface is
given in Fig. 2. The application has been made available
Open Source for the use of other researchers and citizens,
and the source code is available for download at
https://github.com/jonnyhuck/SpatialLogger.

Traffic pollution was measured by directly sensing
ambient NO2 concentration, which is a marker for traffic
pollution (Hatzopoulou et al. 2013), using an e2V
‘MiCS-2710’ NO2 sensor (e2V 2008) mounted upon a
Libelium ‘Waspmote’ development board via its ‘Gases
Board’ shield (Libelium 2017). A simple custom soft-
ware application that reads the sensor and writes the data
out to USB in the correct format for integration with the
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Android application was loaded onto the board in order
to facilitate data collection. The MiCS-2710 is a minia-
ture silicon semiconductor that alters in resistance based
upon the ambient concentration of NO2: this resistance
may therefore be recorded and used in order to establish
relative concentrations of NO2. Such sensors were orig-
inally designed for leak detection purposes, though these
are widely used for air quality monitoring within citizen
science applications (e.g. Smart Citizen 2017).
Laboratory calibration of this sensor was performed as

part of this work, which involved housing the sensor and
board in a sealed chamber that was flushed with known
concentrations of NO2 from a certified 50 ppm NO2 gas
standard diluted to the required concentrations with zero
grade air. Gas flows were controlled using mass flow
meters.

Nasal airflow data were collected using a Cooking
Hacks ‘Airflow Sensor’ (Cooking Hacks 2014),
mounted upon an Arduino ‘Uno’ development board
(Arduino 2017) with the Cooking Hacks ‘e-Health’
shield (Cooking Hacks 2014). As with the NO2 device,
the Arduino board is programmed with a simple soft-
ware application in order to read the sensor and write the
data out to USB. The Airflow Sensor comprises a flex-
ible thread that fits behind the ears and a set of two
prongs, which are placed in the nostrils. These prongs
contain a simple thermocouple resistor that changes in
resistance as air is blown across it, permitting the fre-
quency and relative depth of breathing to be calculated
by comparison with the timestamps and from the mag-
nitude of the values, respectively. Both sets of sensors
were chosen for their ready commercial availability and
the comparative ease with which they may be set up and
implemented by users who may not be intimately famil-
iar with software or hardware development. They are
both shown in Fig. 3. This sensor-based approach

Fig. 1 An illustration of the function of the ‘Spatial Logger’
software

Fig. 2 Screenshot of the ‘Spatial
Logger’ application for Android,
with interface elements labelled
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removes the requirement to model or interpolate pollu-
tion levels or make assumptions about the physiology of
an individual, thus permitting a wholly empirical anal-
ysis into air pollution exposure to take place.

For the purposes of this project, data are sampled
every second, thus allowing microenvironmental varia-
tions in NO2 concentration to be recorded along with
nasal airflow depth and frequency, providing a more
elegant allowance for phenomena such as respiratory
recovery rate, which are typically omitted from ap-
proaches that attempt to derive pollution exposure from
fixed pollution surfaces and terrain models (e.g. Davies
and Whyatt 2014). Once the data are collected, the three
components (NO2, breathing frequency and breathing
depth) may be combined in order to calculate a value
for exposure. In the case of the analysis given in this
paper, this was undertaken following data collection, but
such data processing could equally be undertaken in real
time, with these calculations undertaken on either the
development boards or within the smartphone application
prior to being written to the CSV file. A simple equation
for relative exposure was used for the purposes of this
work, whereby NO2 concentration (‘NO2’), nasal airflow
depth (‘AirDepth’) and nasal airflow frequency
(‘AirFreq’) all contribute equally to the exposure value.
This calculation (given below) is based upon that used by
Int Panis et al. (2010) and is predicated upon the simple
assumption that (cet. par.) doubling either the pollutant
concentration, the airflow depth or the airflow rate would
double exposure, and reducing any one component to 0

would reduce exposure to 0. The use of this equation
does, of course, assume a liner relationship between these
three variables and personal exposure. We believe that
this assumption is acceptable for the purpose of this study
in lieu of a detailed investigation into the nature of the
relationship. The calculation returns a value on a relative
index scale of 0 (no exposure) to 1 (highest exposure) and
is given in Eq. (1).

NO2 exposure ¼ NO2 concentration

MAX NO2 concentrationð Þ
� �

� Airflow depth

MAX Airflow depthð Þ
� �

� Airflow rate

MAX Airflow rateð Þ
� �

ð1Þ

Equation (1): Calculation for indexed relative NO2

exposure. Data are returned on a scale of 0 (no exposure)
to 1 (highest exposure).

An important consideration in the implementation of
any sensors is data validation (Snyder et al. 2013;
Steinle et al. 2015), and, as is to be expected from
sensors such as those used in this analysis, the data
collected are not of comparable quality to those collect-
ed from their more expensive and well-established
counterparts, such as would be used by government or
medical institutions (e2V 2008; Libelium 2014;
Cooking Hacks 2014). This was confirmed by the lab-
oratory calibrations undertaken as part of this work,

Fig. 3 The Cooking Hacks e-
Health sensor boards for airflow
(left) and the Libelium Waspmote
Gases sensor board for pollution
(right). A standard credit card
(85.60 × 53.98 mm)-sized card
has been included in the image for
scale
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which demonstrated that whilst the sensors do react well
to variations in NO2 concentrations in relative terms, the
‘calibration curves’ vary over time making it difficult to
reliably quantify precise pollutant concentrations.
Nevertheless, for the purposes of this work, which aims
to provide users with data on a relative scale, these
devices are sufficient and any loss in precision is offset
by the low cost and portability. It is well established that
phenomena such as pollution are very difficult to com-
municate to the public (Longhurst 2005), and accord-
ingly, this work describes exposure and its component
parts on a simple scale ranging from ‘lowest’ to
‘highest’, which reflects the manner in which citizens
are most likely to understand (Smallbone 2012;
Bickerstaff 2004) and reflects the approach used by
DEFRA for online access to air quality data (DEFRA
2015; Ayres 2011) and by some commercial applica-
tions (e.g. LEO 2015). This approach is supported by
Day (2007), who suggests that pollution data should be
interpreted on relative scales, as they can only ever
represent a ‘snapshot’ of values in time, and
Bickerstaff (2004), who reports that pollution values
and terminology are considered to be ‘too complex
and technical’ by the public, making a relative scale
perhaps more appropriate.

Results

Data relating to NO2 concentration, nasal airflow fre-
quency and nasal airflow depth were collected for a
number of different routes, days and times around the
city of Lancaster, Lancashire, UK. As the purpose of this
research is to characterise exposure to air pollution for a
given individual and journey and not to aggregate data
across multiple routes or individuals in order to charac-
terise pollution exposure for given locations, the results
presented herein comprise data collected for an individ-
ual on a single journey. The individual in question was a
28-year-old male with a good level of fitness and no
known health issues. The presented journey relates to
data collected during themorning rush hour on a circular
route around the city of Lancaster, Lancashire, UK,
which is illustrated in Fig. 4. This route was designed
in order to take in areas of heavy traffic and congestion,
residential areas and parkland, as well as areas of both
gentle and steep gradient (all of which can be seen in
Fig. 4) in order to illustrate the response of the sensors
and resulting calculations of personal exposure between

these locations. The data collected for NO2 concentra-
tion, airflow depth and airflow rate are presented in
Fig. 5, on relative scales from lowest to highest values,
in the manner described above.

Encouragingly, many of the characteristics of the data
presented in Fig. 5 are ‘as expected’, with NO2 concen-
trations at their highest levels around the traffic lights in
the traffic control zone; nasal airflow depth at its greatest
whilst climbing a steep hill; and nasal airflow frequency
at its greatest following the climb of a steep hill (during a
period of respiratory recovery). These data are shown as
a combined value for personal NO2 exposure (as per
Eq. (1)) in Fig. 6, which displays some ‘expected’ points
of high exposure within the pollution control zone
(especially near traffic lights; labelled in Fig. 4), as well
as some that are perhaps less obvious, such as following
a climb of a steep hill, which led to a much greater
airflow depth (during the climb of the steep slope; see
Fig. 5) and frequency (following the climb of the steep
slope; see Fig. 5). It is notable that despite comparatively
low levels of NO2, personal exposure was often greater
in the residential area than in much of the pollution
control zone (both labelled in Fig. 6), principally due
to elevated breathing rates following the climb of the
steep slope. Though primarily intended to illustrate the
potential of the relevant technologies, these findings are
of great interest, as they challenge the commonly held
assumption that exposure to traffic pollution would
always be greatest in the areas where the volume of
traffic is greatest. These findings serve to illustrate the
importance of sensing both physiological (breathing)
and environmental (ambient NO2 concentration) data
in the investigation of exposure, as opposed to relying
upon pollution data alone. Whilst this work does not
seek to make any claims about health outcomes or
behavioural impacts, such tools as are demonstrated
here could be of value to health professionals or psy-
chologists for further investigation in such areas.

It is important to recognise that the map presented in
Fig. 6 is designed to represent the exposure for a given
individual, route, mode of transport (walking, cycling,
etc.), meteorological condition and time of day, week
and year and that a variation in any of these could
change the result significantly. A pedestrian walking
this route at 9:00 on a weekday morning, for example,
would most likely experience greater exposure than at
9:00 on a Sunday morning, or 9:00 on a weekday
evening, when there are fewer cars on the road.
Similarly, exposure will vary between different
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individuals (based upon age, gender, health, etc.), whose
respiratory patterns will react in different ways to jour-
ney duration, and changes in elevation and meteorolog-
ical conditions (e.g. temperature, humidity, etc.). It is for
this reason that data such as those presented here should
not simply be aggregated in an attempt to characterise
‘exposure levels’ for particular locations but are rather
intended be used at the individual level in order to
provide high-resolution information relating to personal
levels of exposure.

For example, the user in Fig. 6 experienced high
levels of exposure in the residential area (see Fig. 4)
because they were still breathing heavily following
walking up the steep hill (see Fig. 5). Where the same
location accessed by a different route, then nasal airflow
values could reasonably be expected to be much lower
which, in combination with the relatively low levels of
NO2 concentration at this location, would result in a
greatly reduced level of exposure. This is important, as
many current approaches to the monitoring of pollution
are reliant upon models that ascribe single values to

locations and so do not account for any of the other
variables that are significant in determining the effect of
that pollution upon the individual. Whilst preferable for
many purposes, at the level of the individual citizen,
such approaches do not provide the depth of information
that is given by the method presented here. With route
maps such as that in Fig. 6, for example, an individual
citizen may characterise their journey to work and so be
empowered to modify their route in order to reduce their
exposure to traffic pollution. As is demonstrated by the
comparison of Figs. 5 and 6, this would not be as
effective using data relating to NO2 concentrations
alone.

Discussion and conclusions

This paper has provided a novel system that is capable
of directly sensing personal exposure to traffic pollution
without the requirement for the multitude of proxies and
assumptions that are commonly seen in more traditional

Fig. 4 A description of the route used for data collection, designed to take in several areas with different characteristics. Base map contains
OS data ©Crown Copyright/database right 2016
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model-based approaches. The ability to undertake per-
sonal exposure monitoring, such as has been demon-
strated here, could empower citizens to assess the im-
pact that pollution has upon their daily lives (Snyder
et al. 2013), as well as the opportunity to make changes
to their routine (route, mode of travel or time of travel,
for example) in order to minimise their exposure to
pollutants and thus gain the associated health benefits.
The sensor technologies demonstrated here might be
considered as a step towards the ‘democratisation’ of
data collection. The low power requirement and minia-
ture size of the sensors make portability for mobile
applications, such as have been demonstrated here,
much more realistic, as all but the most motivated

individuals are unlikely to carry expensive or bulky
devices and heavy batteries with them in order to collect
data.

Studies have shown that information relating to am-
bient pollution levels has little effect upon public behav-
iour and that concerns about air-quality very rarely
figure in people’s motivation to change their transport
behaviour (Longhurst 2005; Bickerstaff and Walker
2001). By revealing the complexity of issues such as
personal exposure to pollution to participating members
of the public, however, it is hoped that theymay become
more engaged with the issue of air pollution in a way
that is otherwise very difficult to achieve due to the
‘invisibility’ of the phenomenon to our normal senses

Fig. 5 The influence of NO2 concentration (left), nasal airflow depth (centre) and nasal airflow rate (right) that contributed to the ‘exposure’
map given in Fig. 6. Base map contains OS data ©Crown Copyright/database right 2016
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(Coulton et al. 2014; Bickerstaff 2004). This
democratisation of sensor technologies may be seen as
a positive step forward in the continued development of
citizen science, and particularly in the field of
Volunteered Geographic Information (Goodchild
2007), with citizens empowered to gain a greater under-
standing of the relationship between their bodies and the
environment, identifying sources of pollution, making
more informed decisions relating to proposed develop-
ments and so on. Naturally, such developments may also
carry implications for the government, local councils
and regulatory bodies, who may have to make changes
to their operations in order to prepare for challenges to
their measurements from the public and may have to
increase public engagement on these issues in order to

supply more detailed information to a public that is
increasingly knowledgeable and conversant about is-
sues such as traffic pollution exposure.

Conversely, there is the potential that technologies
such as this could contribute to the supposed creation of
a generation of ‘worried well’, who become overly
reliant upon, and even obsessed with so called ‘health
apps’ (BMJ 2015; Cooper 2015). Spence (in BMJ
2015), for example, describes such applications and
devices as ‘untested and unscientific’ and as having
the potential to incite anxiety in individuals who become
obsessed with monitoring phenomena such as their own
heart rate, blood pressure or (in the case of the technol-
ogies presented here) exposure to air pollution. It should
be noted, however, that the existence of such effects are

Fig. 6 A map illustrating
personal exposure to NO2 for a
given individual and journey
around Lancaster town centre
during the morning rush hour. A
description of the route taken is
given in Fig. 4, and the three input
datasets used to calculate these
values are presented in Fig. 5.
Base map contains OS data
©Crown Copyright/database
right 2016

114 Page 10 of 14 Environ Monit Assess (2017) 189: 114



disputed (e.g. Husain in BMJ 2015), and any evidence
of harm has yet to be identified (Husain in BMJ 2015).
As such, whilst issues such as this should certainly be
considered in the development of these technologies, it
is perhaps too early to become unduly concerned with
potential negative impacts upon users.

As with other areas of citizen science, care must be
taken with the promise of democratisation, which can be
an insufficient description in the context of technology.
This is because merely increasing the number of people
that can access and use these tools will not necessarily
guarantee universal access and will typically be biased
towards and benefit the technology savvy, educated and
more affluent members of society (Haklay 2013).
Similarly, the promise of ‘democracy’ may only be
realised if citizens are able to understand the limitations
of the devices that they are using. For example, there is
no doubt that the inexpensive miniature sensors used
within this study cannot provide comparable precision
or accuracy to their more authoritative counterparts that
are available at many times the cost and are used by
government and medical institutions for the measure-
ment of biometric and environmental phenomena. As is
stated by Steinle et al. (2015), however, ‘for many
monitoring objectives, including those related to
Citizen Science, it is not critical to meet the same accu-
racy requirements of reference or equivalent instru-
ments’ (also Snyder et al. 2013). Accordingly, the ben-
efits of portability and low-cost associated with these
sensors far outweigh the lower levels of accuracy and
precision for the purposes of citizen science, but only if
those levels of accuracy and precision are understood by
the users. Otherwise, citizens are not being empowered,
but rather misled as to the extent of their power.

The development of miniature, low-power sensor
platforms such as those used within this study is still in
the relatively early stages, and it can be expected that
further developments will see an increase in quality
along with further reductions in cost and size over the
coming years. Accordingly, there is the potential for
more research in this area as these technologies continue
to develop. One important area for further research
would be a detailed investigation into the relationship
between breathing and ambient pollution concentra-
tions, the validation of the simple exposure equation
that has been used in this work and the possible devel-
opment of more sophisticated exposure calculations
through studies of the wider population. This is impor-
tant, as the results presented here have clearly indicated

the importance of breathing rate and depth in the under-
standing of pollution exposure, meaning that walking
speed and fitness may be of equal or greater importance
to reducing levels of exposure to pollution than the
ambient concentration of the pollutants themselves.
The validation or empirical reformulation of this equa-
tion is, therefore, necessary to furthering the understand-
ing of pollution exposure at the individual level and to
the further application of sensor technologies, such as
have been demonstrated in this work. An additional line
of further research could be the aggregation of data
collected from devices such as these. As has been de-
scribed above, the devices presented are not intended for
data aggregation. However, the continued development
of better-quality sensors along with the use of tech-
niques such as machine learning in order to control for
variations in physiology, weather conditions and time
and date could mean that this is possible in the future.
Such a platform would, however, likely require a very
large network of active sensors in order to be effective,
and considerations such as privacy (in the case of both
physiological and location data) would also be of para-
mount importance.

The ability to monitor not just air pollution, but
personal exposure to air pollution using low-cost, por-
table and easy to use sensors has the potential to provide
citizens and communities with the opportunity to direct-
ly monitor phenomena that can benefit their lives and
wellbeing. These benefits can include contributions to-
wards environmental democracy, scientific literacy and
the development of social capital, whereby pro-
environmental and pro-social behaviour and a ‘steward-
ship ethic’ may arise from greater levels of public en-
gagement with, and understanding of, issues such as
personal exposure to air pollution (Conrad and Hilchey
2011). As well as facilitating the modification of behav-
iour in order to minimise exposure (in route selection for
a commute to work, for example Gerharz et al. 2009),
this technology could also make communities more
conversant on air quality issues, better able to develop
community-based strategies for its management (Snyder
et al. 2013; Steinle et al. 2015) and better able to chal-
lenge the ‘official’ view of pollution, allowing citizens
to challenge government policies using their own data.
This effect has already been demonstrated by the
‘Extreme Citizen Science’ (ExCiteS) group at UCL,
for example, who empowered citizens to monitor noise
pollution from a contentious local scrapyard, resulting in
the revocation of the scrapyard’s licence due to the
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violation of noise limits (reported by Rowland 2012).
Furthermore, revealing the complexity of issues such as
air pollution to participating members of the public can
act to engage them with and educate them about the
issue of traffic pollution in a way that is otherwise very
difficult due to the invisibility of this phenomenon to our
normal senses (Coulton et al. 2014; Bickerstaff 2004).
Further investigation could therefore take place into the
impact of knowledge relating to these otherwise unde-
tectable phenomena upon citizens’ behaviour, and the
extent to which revealing the complex variations in
traffic pollution exposure makes individuals more en-
gaged with pollution as a significant risk to health and
more pro-active in dealing with this and other similar
environmental issues. Over time, such techniques may
also be useful for the validation of exposure models
such as that proposed by Davies and Whyatt (2014),
as well as broadening understanding of perceptions of a
wide variety of environmental phenomena through di-
rect sampling, with potential applications far beyond
those discussed in this paper.

It should be noted that the open source software
application described in this paper is capable of logging
data from any sensor or device via USB, and as such,
applications are in no way limited to traffic pollution but
could include any number or combination of biometric,
environmental or other data. It is therefore hoped that
the work presented in this paper and associated open
source software will stimulate further research into the
ways in which technologies developed within QS and
IoT may be applied to other areas of research, particu-
larly sensing the interaction between humans and our
environment and the democratisation of information
that this can create.

This study represents a step forward both in the
monitoring of personal exposure to pollution and in
the application of portable sensor technologies to a
variety of purposes. Crucially, this work has taken a step
towards the measurement of personal exposure to air
pollution, which was described as a critical link between
ambient air pollution and human health effects (Snyder
et al. 2013) and also has addressed the issues highlighted
by Nieuwenhuijsen et al. (2014) relating to the ease of
wear and operability of the sensors for the person using
the equipment, which has previously hampered the
widespread deployment of portable sensors within the
field of citizen science. By addressing these key issues,
it is hoped that this work will stimulate further research
into the possibilities arising from the combination of

physiological and environmental sensors, both within
the academy and amongst citizen scientists, in order that
a greater level of understanding of public exposures to
environmental phenomena may be achieved.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.

References

Air Quality Egg (2017). Air quality egg. http://airqualityegg.com.
Accessed 19/01/2017.

Arduino (2017). Arduino. http://arduino.cc. Accessed 19/01/2017.
Ayres, J. (2011). Review of the UK air quality index. The Medical

E f f e c t s o f A i r Po l l u t a n t s . h t t p s : / /www.gov.
uk/government/uploads/system/uploads/attachment_
data/file/304633/COMEAP_review_of_the_uk_air_quality_
index.pdf. Accessed 14/02/2017.

Beckerman, B., Jerrett, M., Brook, J. R., Verma, D. K., Arain, M.
A., & Finkelstein, M. M. (2008). Correlation of nitrogen
dioxide with other traffic pollutants near a major expressway.
Atmospheric Environment, 42(2), 275–290.

Bickerstaff, K. (2004). Risk perception research: socio-cultural
perspectives on the public experience of air pollution.
Environment International, 30(6), 827–840.

Bickerstaff, K., & Walker, G. (2001). Public understandings of air
pollution: the ‘localisation’ of environmental risk. Global
Environmental Change, 11(2), 133–145.

BMJ. (2015). Can healthy people benefit from health apps? BMJ,
2015(350), h1887.

Brimblecombe, P., & Grossi, C. M. (2009). Millennium-long
damage to building materials in London. Science of the
Total Environment, 407(4), 1354–1361.

Brimblecombe, P., & Grossi, C. M. (2010). Potential damage to
modern building materials from 21st century air pollution.
The Scientific World Journal, 10, 116–125.

Castellano, J., & Casamichana, D. (2010). Heart rate and motion
analysis by GPS in beach soccer. Journal of Sports Science
and Medicine, 9(1), 98–103.

Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen
science and community-based environmental monitoring:
issues and opportunities. Environmental Monitoring and
Assessment, 176(1–4), 273–291.

Cooking Hacks (2014). Airflow sensor for e-health platform.
http://www.cooking-hacks.com/airflow-sensor-breathing-
ehealth-medical. Accessed 21/03/2015.

Cooper, C. (2015) Fitness wristband apps just make healthy people
anxious. The Independent. Wednesday 15 April 2015 pp.5.

Coulton, P., Jacobs, R., Burnett, D., Gradinar, A., Watkins, M., &
Howarth, C. (2014). Designing data driven persuasive games
to address wicked problems such as climate change. In

114 Page 12 of 14 Environ Monit Assess (2017) 189: 114

http://airqualityegg.com
http://arduino.cc
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/304633/COMEAP_review_of_the_uk_air_quality_index.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/304633/COMEAP_review_of_the_uk_air_quality_index.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/304633/COMEAP_review_of_the_uk_air_quality_index.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/304633/COMEAP_review_of_the_uk_air_quality_index.pdf
http://www.cooking-hacks.com/airflow-sensor-breathing-ehealth-medical
http://www.cooking-hacks.com/airflow-sensor-breathing-ehealth-medical


Proceedings of MindTrek 2014, November 4–7, 2014,
Tampere, Finland.

Crabbe, H., Hamilton, R., et al. (2000). Using GIS and dispersion
modelling tools to assess the effect of the environment on
health. Transactions in GIS, 4(3), 235–244.

Davies, G., &Whyatt, J. D. (2014). A network-based approach for
estimating pedestrian journey-time exposure to air pollution.
Science of the Total Environment, 485, 62–70.

Day, R. (2007). Place and the experience of air quality. Health &
Place, 13(1), 249–260.

DEFRA (2015). Defra national statistics release: air quality statis-
tics in the UK, 1987 to 2014. https://www.gov.
uk/government/uploads/system/uploads/attachment_
data/file/517681/Air_Quality_National_Statistic_2015_
final.pdf. Accessed 14/02/2017.

de Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A.,
Kubesch, N., & Nieuwenhuijsen, M. (2012). A travel mode
comparison of commuters exposures to air pollutants in
Barcelona. Atmospheric Environment, 59, 151–159.

de Nazelle, A., Seto, E., Donaire-Gonzalez, D., Mendez, M.,
Matamala, J., Nieuwenhuijsen, M. J., & Jerrett, M. (2013).
Improving estimates of air pollution exposure through ubiq-
uitous sensing technologies. Environmental Pollution, 176,
92–99.

Duncan, J. S., Badland, H.M., & Schofield, G. (2009). Combining
GPS with heart rate monitoring to measure physical activity
in children: a feasibility study. Journal of Science and
Medicine in Sport, 12(5), 583–585.

e2V (2008). MiCS-2710 NO2 sensor datasheet. http://www.
cdiweb.com/datasheets/e2v/mics-2710.pdf. Accessed 21/03
/2015.

Fjørtoft, I., Kristoffersen, B., & Sageie, J. (2009). Children in
schoolyards: tracking movement patterns and physical activ-
ity in schoolyards using global positioning system and heart
rate monitoring. Landscape and Urban Planning, 93(3),
210–217.

Fjørtoft, I., Löfman, O., & Thorén, K. H. (2010). Schoolyard
physical activity in 14-year-old adolescents assessed by mo-
bile GPS and heart rate monitoring analysed by GIS.
Scandinavian Journal of Public Health, 38(5 suppl), 28–37.

Galatioto, F., Bell, M. C., & Hill, G. (2014). Understanding the
characteristics of the microenvironments in urban street can-
yons through analysis of pollution measured using a novel
pervasive sensor array. Environmental Monitoring and
Assessment, 186(11), 7443–7460.

Gerharz, L. E., Krüger, A., & Klemm, O. (2009). Applying indoor
and outdoor modeling techniques to estimate individual ex-
posure to PM2.5 from personal GPS profiles and diaries: a
pilot study. Science of the Total Environment, 407(18), 5184–
5193.

Gilbert, N. L.,Woodhouse, S., Stieb, D. M., & Brook, J. R. (2003).
Ambient nitrogen dioxide and distance from a major high-
way. Science of the Total Environment, 312(1), 43–46.

Goodchild, M. F. (2007). Citizens as sensors: the world of
volunteered geography. GeoJournal, 69(4), 211–221.

Greaves, S., Issarayangyun, T., & Liu, Q. (2008). Exploring var-
iability in pedestrian exposure to fine particulates (PM 2.5)
along a busy road. Atmospheric Environment, 42(8), 1665–
1676.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013).
Internet of Things (IoT): a vision, architectural elements, and

future directions. Future Generation Computer Systems,
29(7), 1645–1660.

Gulliver, J., & Briggs, D. (2011). STEMS-air: a simple GIS based
air pollution dispersion model for city-wide exposure assess-
ment. Science of the Total Environment, 409, 2419–2429.

Haklay, M. (2013). Neogeography and the delusion of
democratisation. Environment and Planning A, 45(1), 55–69.

Hatzopoulou, M., Weichenthal, S., Barreau, G., Goldberg, M.,
Farrell, W., Crouse, D., & Ross, N. (2013). A web-based
route planning tool to reduce cyclists exposures to traffic
pollution: a case study in Montreal, Canada. Environmental
Research, 123, 58–61.

Heinrich, J., Schwarze, P. E., Stilianakis, N., Momas, I., Medina,
S., & Totlandsdal, A. I. (2005). Studies on health effects of
transport-related air pollution. InM.Krzyzanowski, B. Kuna-
Dibbert, & S. J. Denmark (Eds.), Health effects of transport-
related air pollution (pp. 25–65). Copenhagen: World Health
Organisation.

Howel, D., Moffatt, S., Bush, J., Dunn, C. E., & Prince, H. (2003).
Public views on the links between air pollution and health in
Northeast England. Environmental Research, 91(3), 163–
171.

Huck, J., Whyatt, D., Coulton, P., & Gradinar, A. (2014). Mapping
traffic pollution exposure: the quantified self. In J.
Drummond (Ed.), Proceedings of the GIS Research UK
22nd Annual Conference: the University of Glasgow 16th–
18th April, 2014 (Vol. Vol. 1, pp. 243–251). Glasgow:
Geomatic Group, University of Glasgow.

Int Panis, L., de Geus, B., Vandenbulcke, G., Willems, H.,
Degraeuwe, B., & Bleux, N. (2010). Exposure to particulate
matter in traffic: a comparison of cyclists and car passengers.
Atmospheric Environment, 44(19), 2263–2270.

Kingham, S., Longley, I., Salmond, J., Pattinson, W., & Shrestha,
K. (2013). Variations in exposure to traffic pollution while
travelling by different modes in a low density, less congested
city. Environmental Pollution, 181, 211–218.

LEO (2015). Small low cost environmental monitoring challenge.
http://www.leadingedgeonly.com/providers/_e363-low-cost-
environmental-monitoring.aspx?goal=0_c999f25821-2355
e73e16-178687169. Accessed 01/03/2015.

Libelium (2014). New calibrated gas sensors allow maximum accu-
racy for industrial, environmental, agriculture and farming ap-
plications. http://www.libelium.com/new-calibrated-gas-
sensors-allow-maximum-accuracy-for-industrial-
environmental-agriculture-and-farming . Accessed 10/10/2014.

Libe l ium (2017) . Waspmote . h t tp : / /www. l ibe l ium.
com/products/waspmote. Accessed 19/01/2017.

Longhurst, J. (2005). 1 to 100: creating an air quality index in
Pittsburgh. Environmental Monitoring and Assessment,
106(1–3), 27–42.

Luo, H., Ci, S., Wu, D., Stergiou, N., & Siu, K. C. (2010). A
remote markerless human gait tracking for e-healthcare based
on content-aware wireless multimedia communications.
Wireless Communications, IEEE, 17(1), 44–50.

Meng, Q. Y., Svendsgaard, D., Kotchmar, D. J., & Pinto, J. P.
(2012). Associations between personal exposures and ambi-
ent concentrations of nitrogen dioxide: a quantitative research
synthesis. Atmospheric Environment, 57, 322–329.

Nieuwenhuijsen, M. J., Donaire-Gonzalez, D., Foraster, M.,
Martinez, D., & Cisneros, A. (2014). Using personal sensors
to assess the exposome and acute health effects. International

Environ Monit Assess (2017) 189: 114 Page 13 of 14 114

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/517681/Air_Quality_National_Statistic_2015_final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/517681/Air_Quality_National_Statistic_2015_final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/517681/Air_Quality_National_Statistic_2015_final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/517681/Air_Quality_National_Statistic_2015_final.pdf
http://www.cdiweb.com/datasheets/e2v/mics-2710.pdf
http://www.cdiweb.com/datasheets/e2v/mics-2710.pdf
http://www.leadingedgeonly.com/providers/_e363-low-cost-environmental-monitoring.aspx?goal=0_c999f25821-2355e73e16-178687169
http://www.leadingedgeonly.com/providers/_e363-low-cost-environmental-monitoring.aspx?goal=0_c999f25821-2355e73e16-178687169
http://www.leadingedgeonly.com/providers/_e363-low-cost-environmental-monitoring.aspx?goal=0_c999f25821-2355e73e16-178687169
http://www.libelium.com/new-calibrated-gas-sensors-allow-maximum-accuracy-for-industrial-environmental-agriculture-and-farming
http://www.libelium.com/new-calibrated-gas-sensors-allow-maximum-accuracy-for-industrial-environmental-agriculture-and-farming
http://www.libelium.com/new-calibrated-gas-sensors-allow-maximum-accuracy-for-industrial-environmental-agriculture-and-farming
http://www.libelium.com/products/waspmote
http://www.libelium.com/products/waspmote


Journal of Environmental Research and Public Health,
11(8), 7805–7819.

Pooley, C. G., Whyatt, J. D., Walker, M., Davies, G., Coulton, P.,
& Bamford, W. (2010). Understanding the school journey:
integrating data on travel and environment. Environment and
Planning A, 42(4), 948–965.

Ramalingam, A., Dorairaj, P., & Ramamoorthy, S. (2012).
Personal Safety Triggering System on Android Mobile
Platform. arXiv:1208.3138.

Rowland, K. (2012) Citizen science goes ‘extreme’. http://www.
nature.com/news/citizen-science-goes-extreme-1.10054.
Accessed 01/07/2015.

Semenza, J. C.,Wilson, D. J., Parra, J., Bontempo, B. D., Hart, M.,
Sailor, D. J., & George, L. A. (2008). Public perception and
behavior change in relationship to hot weather and air pollu-
tion. Environmental Research, 107(3), 401–411.

Shah, A. S., Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A.
L., Donaldson, K., Newby, D. E., & Mills, N. L. (2013).
Global association of air pollution and heart failure: a sys-
tematic review and meta-analysis. The Lancet, 382(9897),
1039–1048.

Sharker, M. H., & Karimi, H. A. (2014). Computing least air
pollution exposure routes. International Journal of
Geographical Information Science, 28(2), 343–362.

Smallbone, K. (2012). Individuals interpretation of air quality
information: follow up investigation into the proposed air
quality health advice. Report for DEFRA. Available at:
http://uk-air.defra.gov.uk/library/reports?report_id=720

Smart Citizen (2017). Smart citizen. http://www.smartcitizen.me.
Accessed 19/01/2017.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,
Williams, R. W., Hagler, G. S., & Preuss, P. W. (2013). The
changing paradigm of air pollution monitoring.
Environmental Science & Technology, 47(20), 11369–11377.

Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M.,
Braban, C. F., Leeson, S. R., Heal, M. R., Harrison, D.,
Lin, C., & Wu, H. (2015). Personal exposure monitoring of
PM 2.5 in indoor and outdoor microenvironments. Science of
the Total Environment, 508, 383–394.

Swan,M. (2012a). Sensormania! The Internet of Things, wearable
computing, objective metrics, and the quantified self 2.0.
Journal of Sensor and Actuator Networks, 1(3), 217–253.

Swan, M. (2012b). Health 2050: the realization of personalized
medicine through crowdsourcing, the quantified self, and the
participatory biocitizen. Journal of Personalized Medicine,
2(3), 93–118.

TDC Systems (2017). TDC systems. http://www.tdcsystems.co.
uk. Accessed 19/01/2017.

van den Elshout, S., Léger, K., & Nussio, F. (2008). Comparing
urban air quality in Europe in real time: a review of existing
air quality indices and the proposal of a common alternative.
Environment International, 34(5), 720–726.

Wakefield, S. E., Elliott, S. J., Cole, D. C., & Eyles, J. D. (2001).
Environmental risk and (re)action: air quality, health, and
civic involvement in an urban industrial neighbourhood.
Health & Place, 7(3), 163–177.

Weather Underground (2017). Weather underground. http://www.
wunderground.com. Accessed 19/02/2017.

WHO (2013) Review of evidence on health aspects of air pollu-
tion—REVIHAAP Project. World Health Organisation
REVIHAAP Project Technical Report.

Worringham, C., Rojek, A., & Stewart, I. (2011). Development
and feasibility of a smartphone, ECG and GPS based system
for remotely monitoring exercise in cardiac rehabilitation.
PloS One, 6(2), e14669.

Yu, Q., Lu, Y., Xiao, S., Shen, J., Li, X., Ma, W., & Chen, L.
(2012). Commuters exposure to PM1 by common travel
modes in Shanghai. Atmospheric Environment, 59, 39–46.

114 Page 14 of 14 Environ Monit Assess (2017) 189: 114

http://www.nature.com/news/citizen-science-goes-extreme-1.10054
http://www.nature.com/news/citizen-science-goes-extreme-1.10054
http://uk-air.defra.gov.uk/library/reports?report_id=720
http://www.smartcitizen.me
http://www.tdcsystems.co.uk
http://www.tdcsystems.co.uk
http://www.wunderground.com
http://www.wunderground.com

	Combining physiological, environmental and locational sensors for citizen-oriented health applications
	Abstract
	Introduction
	Method
	Results
	Discussion and conclusions
	References


