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Abstract Advancements in remote sensing and com-
putational tools have increased our awareness of large-
scale environmental problems, thereby creating a need
for monitoring, assessment, and management at these
scales. Over the last decade, several watershed and
regional multi-metric indices have been developed to
assist decision-makers with planning actions of these
scales. However, these tools use remote-sensing prod-
ucts that are subject to land-cover misclassification, and
these errors are rarely incorporated in the assessment
results. Here, we examined the sensitivity of a
landscape-scale multi-metric index (MMI) to error from
thematic land-cover misclassification and the implica-
tions of this uncertainty for resource management deci-
sions. Through a case study, we used a simplified flood-
plain MMI assessment tool, whose metrics were derived
from Landsat thematic maps, to initially provide results
that were naive to thematic misclassification error.
Using a Monte Carlo simulation model, we then incor-
porated map misclassification error into our MMI,
resulting in four important conclusions: (1) each metric
had a different sensitivity to error; (2) within each met-
ric, the bias between the error-naive metric scores and
simulated scores that incorporate potential error varied

in magnitude and direction depending on the underlying
land cover at each assessment site; (3) collectively, when
the metrics were combined into a multi-metric index, the
effects were attenuated; and (4) the index bias indicated
that our naive assessment model may overestimate
floodplain condition of sites with limited human impacts
and, to a lesser extent, either over- or underestimated
floodplain condition of sites with mixed land use.
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Introduction

Advances in ecological assessment tools designed to
assist in the management of aquatic systems at broad
spatial scales have paralleled increased access to
remote-sensing products and advances in geographic
information processing. Remote-sensing products, such
as thematic maps from Landsat or orthorectified imag-
ery, provide the necessary baseline data to link alter-
ations in landscape structure to perturbations in ecosys-
tem functions at these large scales. These remote-
sensing data have known errors that should be, and
generally are, clearly articulated in the metadata or
associated accuracy reports. However, efforts to incor-
porate these errors into ancillary products, such as as-
sessment tools, remain limited (Shao and Wu 2008).
Ignoring the implications of these known errors on the
results of assessment models potentially affects the level
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of confidence that resource managers have in the infor-
mation the tools provide, and ultimately determines the
extent to which the tool is used.

Indicator-based ecological assessment models have
been developed to provide decision and policy makers
with the needed ecological information for determining
resource management decisions, communicating those
decisions to the public, and developing rules to protect
resources (Turnhout et al. 2007; Dramstad 2009). In
reviews of contemporary aquatic assessment models,
the multi-metric index (MMI) was the predominant
indicator-based approach (Diaz et al. 2004; Fennessy
et al. 2004; Böhringer and Jochem 2007). MMI tools
developed for assessments at watershed scales (Brooks
et al. 2004; Tiner 2004; Weller et al. 2007; Meixler and
Bain 2010), regional scales (e.g., Reiss and Brown
2007; Collins et al. 2008), or compiled to provide na-
tional scale assessments (USEPA 2013) commonly use
remotely sensed data and imagery to develop scale-
appropriate metrics (Fennessy et al. 2007). While carto-
graphic data generally follow standardized reporting
guidelines that articulate known uncertainties inherent
in the product (Foody 2002), incorporating these known
uncertainties into MMI tools is rare (Fore et al. 1994;
Whigham et al. 1999; Stein et al. 2009) and tends to be
absent in the assessment implementation and reporting
phase (e.g., Smith et al. 1995; Hauer et al. 2002; Klimas
et al. 2004; Collins et al. 2008).

Ideally, a well-constructed ecological MMI model is
designed to facilitate resource decisions by providing
straightforward analyses of ecological data to enable
translation to management applications (Barbour et al.
1999). However, addressing the implications of uncer-
tainty in these tools can be complex. The challenge is to
provide a pathway to incorporate known uncertainties
from multiple scale-appropriate data sources into an
assessment tool used by planners, policy makers, law-
yers, and scientists. In this paper, we address two ques-
tions to meet this challenge: How sensitive is a
landscape-scale multi-metric index to error from input
data (specifically thematic land-cover misclassifica-
tion)? What are the implications of this uncertainty for
resource management decisions?

Methods

To answer these questions, we developed a multi-metric
index that uses thematic Landsat data to provide an

assessment of floodplain conditions along 250 km of
the Flathead River in northwestern Montana, USA.
Typical of most multi-metric indices, our initial assess-
ment did not account for misclassification errors within
the thematic map and produced metric and index scores
that were considered naive. We then provided an error
simulation model to incorporate known map classifica-
tion error into our multi-metric assessment tool by de-
veloping multiple potential map realizations based on
classification probabilities and potential spatial correla-
tions. We applied our MMI to each realization to bind
the potential stochasticity of the classification error
(noise) into a distribution of potential assessment scores.
We then compared this distribution to the naive score to
determine potential bias and the implications of that bias
on management decisions.

Study area and site selection

Our assessment model was centered on the Flathead
River system above Flathead Lake within northwestern
Montana, USA and included portions of the North Fork,
Middle Fork, and main stem of the Flathead River
(Fig. 1). The study area consisted of land use and land
cover (LULC) typical in floodplains of larger rivers in
the Northern and Canadian Rocky Mountains (Fig. 2).
The North Fork of the Flathead River has its headwaters
in southeastern British Columbia, Canada and enters the
study area as it crosses the U.S. border. Within the study
area, the river flows 93 km south-by-southeast along the
northwest boundary of Glacier National Park (GNP)
through a broad U-shaped valley with expansive low-
gradient montane alluvial floodplains that are predomi-
nantly covered with forest and grasslands (simply called
Bunmanaged lands^ here) and occasional pasture, as
well as urban and exurban development (called “man-
aged lands” here). The Middle Fork has its headwaters
in the Bob Marshall Wilderness Area and enters the
study area as it emerges from the wilderness complex
and meets the southwest GNP boundary. Within the
study area, the Middle Fork flows 70 km through a
series of confined and unconfined reaches within a
narrow valley that also contains U.S. Highway 2, the
Burlington Northern Santa Fe Railroad transportation
corridor, and the small town of West Glacier, MT at the
southwestern tip of GNP. The main Flathead River
channel begins at the North andMiddle Fork confluence
and flows about 86 km southerly leaving the study area
as it enters the 480 km2 Flathead Lake. Along the way,
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this sixth-order river leaves the confined forested slopes
and enters a broad piedmont valley floodplain
consisting of agricultural, urban, and exurban develop-
ment interspersed with floodplain forest.

Nineteen assessment areas were selected based on
continuous floodplain reaches separated by geomorphic
constrictions on the river valley (Fig. 1): nine sites on
the North Fork (numbered N-1 through N-9 from down-
stream to upstream), three sites on theMiddle Fork (M-1
through M-3), and seven on the Flathead River main
stem (F-1 through F-7). These sites consisted of both
broad alluvial depositional areas typically associated
with floodplain ecosystems and confined reaches with
limited floodplain. Local biological diversity of river
and floodplain systems is strongly influenced by sur-
rounding land-use at several scales including local
buffers (Morley and Karr 2002; Allan 2004; Pennington
et al. 2010). To account for local land-use impacts

adjacent to floodplain habitats, we established a 1-km
buffer to the entire floodplain area and delineated 19
buffer assessment sites perpendicular to the outer edge
of each floodplain assessment site. The assessment sites
and their buffers collectively have land use that ranges
from forest to agriculture to urban, with human popula-
tion densities ranging from 1 to 636 people per kilome-
ter (Montana State Library 2011, Fig. 2).

The 19 assessment sites were digitized in ArcGIS
10.0 (ESRI 2011) with the assistance of 2005 back-
ground orthoimagery from the USDANational Agricul-
ture Imagery Program (NAIP; USGS 2014). Digitaliza-
tion was aided with a 30-m digital elevation map (USGS
2013), visual assistance from oblique views within Goo-
gle Earth’s 3-D models (Google Earth 2013), oblique
imagery from aerial reconnaissance, and multiple site
visits. Unless otherwise stated, all data collection, orga-
nization, and subsequent analyses were conducted in

Fig. 1 Location of study area and
the 19 floodplain assessment
sites. N-1 through N-9 are on the
North Fork of the Flathead, M-1
through M-3 are on the Middle
Fork, and F-1 through F-7 are
sites on the Flathead River main
stem
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ArcGIS 10.0 (ESRI 2011) and the R system for statisti-
cal computing (R Core Team 2013).

Multi-metric index case study

Multi-metric indices are composed of qualitative mea-
sures of the condition of biotic and abiotic structural
attributes that, in combination, support ecological func-
tion or maintain ecosystem integrity. To create metrics, a
score is assigned (e.g., 0-1, 1-100) to the attribute; to
create an index, these metrics are combined in a manner
that best describes the attribute’s relative contribution to
system function or integrity. The metric scores and
index model are based on reference data, literature,
and expert opinion of model developers to assess spe-
cific ecosystem aspects important to management (e.g.,
habitat, ecosystem services, or overall function). In
practice, a robust landscape-scale floodplain assessment
model may incorporate attributes from multiple spatial
datasets, such as road densities, wetland inventories, soil
databases, elevation, slope, and human population den-
sity. In this case study, for illustrated purposes only, we
developed a simplified MMI with metrics derived from

a single thematic map, the 2006 National Land Cover
Database (NLCD), to specifically address aspects of
uncertainty that arise from a single data source. For this
case study, we followed MMI general protocols (e.g.,
Smith et al. 1995; Barbour et al. 1999; Stoddard et al.
2008) to develop a simplified tool to address the overall
condition of native floodplain cover.

NLCD thematic classified maps were developed for
the conterminous United States by a coalition of U.S.
agencies (MRLC 2013) using Landsat Thematic Map-
per (TM) data for the 1992 map (Vogelmann et al. 2001)
and Landsat Enhanced ThematicMapper+ (ETM+) data
for maps from years 2001 (Homer et al. 2007), 2006
(Fry et al. 2011), and 2011 (Jin et al. 2013). From 2001
on, NLCD used a decision-tree-based supervised clas-
sification approach to create a land-cover classification
scheme at a spatial resolution of 30 m, followed by the
aggregation of pixels to achieve a minimum mapping
unit of approximately 0.40 ha, to assign pixels to one of
16 classes (Homer et al. 2004, 2007). The supporting
NLCD literature also provided accuracy assessments in
the form of a confusion matrix containing overall, pro-
ducer’s, and user’s accuracy calculations that clearly

Fig. 2 Percent cover of land-cover classes and population density (Montana State Library 2011) for each assessment site (floodplain and
buffer area combined)
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articulated map classification error (MRLC 2013). The-
se products do not require the map user to collect or
process additional data; therefore, we applied the same
limitation and did not collect additional site-specific
accuracy data for this study beyond what was supplied
with the NLCD product. Here, we used the 2006 NLCD
classified map from Path 41 and Row 26 (MRLC 2013)
clipped to our floodplain and buffer polygons for each
of the 19 assessment areas.

Landscape metrics

For our landscape-scale MMI, we derived two metrics
from the 2006 NLCD data: (1) a perturbation metric that
assessed land-use intensity and (2) a fragmentation met-
ric that measured land-cover configuration. Each metric
was first calculated for the buffer and floodplain areas
and then subsequently combined into the assessment
index.

Perturbation metric for buffer and floodplain areas
(MetBP and MetFP) The aerial extent of human-altered
land cover within an assessment site is a commonly used
indicator of the site’s overall anthropogenic stressors
(O’Neill et al. 1999; Tiner 2004; Brown and Vivas
2005). To extract this information from the NLCD cat-
egorical maps, 16 land-cover classes from the original
map were binned into five major land-use groups that
best represented the anthropogenic land-use disturbance
gradient found within the study area (Table 1): (1)
unmanaged lands, (2) low-intensity agriculture, (3)
high-intensity agriculture, (4) low-intensity urban, and
(5) high-intensity urban. Because we were developing
an assessment of native floodplain cover condition, we
treated all such cover as a single Bunmanaged land^
cover class.

For the purposes of this study, each of the five land-
cover groupings was subjectively weighted, based on
expert opinion, to represent the degree of divergence
from land cover that was characteristic of unperturbed
conditions typical of Rocky Mountain valleys (Table 1).
Within each assessment area, buffer (MetBP) and flood-
plain (MetFP) areas were separately scored using Eq. 1:

Met ¼
Xx

x¼1

X
CLx*wLx

� �

N
ð1Þ

where the metric score (Met) for the buffer or floodplain
assessment area is equal to the total raster cells per cover

class (CLx) multiplied by the weighted sub-score for that
class (wLx) from Table 1, summed across all classes (x),
then divided by the total cell count (N) of the assessment
area to obtain a score that ranges between 0.0 and 1.0.
The closer the metric score is to 1.0, the more likely the
area has land-cover characteristics of an undisturbed
system. A score closer to 0.5 represents agricultural land
cover, and 0.0 represents an area dominated by urban
land-cover.

Habitat fragmentation metric for buffer and floodplain
areas (MetBF and MetFF) The above perturbation met-
rics assess the extent of human alteration. However, two
sites with the same relative abundance of unmanaged
land could provide different levels of structural support
for native biota depending on the degree of fragmenta-
tion (Vogt et al. 2007). Our fragmentation metric mea-
sured the degree of continuity within landscape patterns
(Gustafson 1998; O’Neill et al. 1999). We used a mor-
phological spatial pattern analysis (MSPA) GIS tool
(Joint Research Station 2014) to identify the extent of
contiguous and isolated patches, perforations within
those patches due to agriculture and urban areas, and
the amount of edge between these managed and unman-
aged lands. The MSPA input required a binary map
consisting of unmanaged lands from Table 1 and a cover
type called managed lands that was created by binning

Table 1 NCLD cover types binned to reflect a gradient of major
land-use categories and the weighted sub-score assigned to each
category, reflecting the gradient of land-use intensity used in the
perturbation metric

Buffer and floodplain land-use criteria Weighted
sub-score

Unmanaged land cover: land-cover characteristic
of Rocky Mountain floodplain systems, which
include open water, forest, shrub, herbaceous,
and wetlands cover classes. NCLD Codes 11,
12, 41, 42, 43, 52, 71, 90, and 95

1.0

Low-intensity agriculture: herbaceous areas used
for pasture and hay. NCLD code 81

0.8

High-intensity agriculture: cultivated row crops.
NCLD code 82

0.5

Low-intensity urban: developed open space and
low-intensity developed lands. NCLD codes
21 and 22

0.2

High-intensity urban: barren ground
(predominantly gravel mines, but also includes
to a much lesser extent cobble), as well as
medium- and high-intensity developed lands.
NCLD codes 23, 24, and 31

0.0
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all agriculture and urban land-cover types in Table 1.
The output of the MSPA tool was a map containing a
mutually exclusive set of seven patch and edge structur-
al classes within the floodplain and its buffer (Vogt et al.
2007; Soille and Vogt 2009; Suarez-Rubio et al. 2012):
(1) core areas, (2) patch edges, (3) loops, (4) bridges, (5)
branches, (6) islets, and (7) managed lands. Each struc-
tural class was subjectively assigned a weighted sub-
score based on an expert opinion that represented the
degree of fragmentation or edge (Table 2). The structural
class assignments were then clipped to each buffer and
floodplain assessment site.

The fragmentation metric score for both the buffer
(MetBF) and floodplain (MetFF) was calculated using
Eq. 1, where total raster cells per MSPA structural class
(CLx) at each site were determined and multiplied by the
weighted sub-score (wLx) from Table 2. The closer the
metric score was to 1.0, the more the likely the area had
contiguous land-cover characteristic of an undisturbed

system; the closer to 0.0, the more likely the area had a
contiguous cover of managed land.

Flathead river floodplain condition index

Finally, we applied the index model (Eq. 2) to calculate
the Flathead River floodplain habitat condition based on
land-use intensity and habitat fragmentation:

Index ¼ MetBP þ MetBFð Þ
.
2

� �
þ MetFP þ MetF F

� �.
3 ð2Þ

The condition of the buffer influences the condition
of the floodplain (Allan 2004); therefore, we first aver-
aged the buffer metrics (MetBP and MetBF). We then
added that product to the floodplain metrics (MetFP
and MetFF) and averaged the final product to provide a
score between 0 and 1. Scores closer to 0.0 represented a
disturbed landscape and scores closer to 1.0 represented
an intact ecosystem in excellent condition. This MMI
provided a naive estimate of ecological conditions and
was, in essence, the data collection component of the
methods. The following data analysis methods address
the impact of input map error on these results.

Data analysis

We addressed map misclassification effects on the MMI
results by first reducing the map error from the original
NLCD 2006map (MRLC 2013) where possible without
additional data collection. Then we incorporated the
remaining unavoidable error into the metrics and index.
Finally, we tested the bias of the naive MMI results
when we incorporated this remaining error.

Reducing uncertainty

Twomaps were created for the study area: (1) a land-use
map used to assess the two perturbation metrics and (2)
a binary map used to assess the two fragmentation
metrics. Each map was created by aggregating thematic
classes from the original data, thereby decreasing the
thematic resolution of the original land cover classifica-
tion. We aggregated the confusion matrix from the orig-
inal accuracy assessment to create new confusion ma-
trices for each new map. We also calculated the overall
accuracy indices (Congalton and Green 2008) and com-
pared these to the original 2006 NLCD accuracy indices
(Fry et al. 2011) to determine the effects of changing
thematic resolution on error.

Table 2 Description of structure categories of the fragmented
landscape and the weighted sub-score assigned to each category,
reflecting the gradient of habitat quality used in the fragmentation
metric

Fragmentation structure Weighted
sub-score

Core areas—pixels of unmanaged lands inside of
a defined 90-m (3 pixels) wide patch width
(pixel value from a post MSPA map are 17,
117)

1.0

Patch edge—pixels of unmanaged lands that are
comprised of patch edge adjacent to managed
land-cover type (MSPA pixel value 3, 5, 35,
67, 103, 105, 135, 167)

0.8

Loop—pixels that connect one patch of core
unmanaged lands to the same core area and are
completely made up of edge (MSPA pixel
value 65, 69, 165, 169)

0.6

Bridge—pixels that connect one patch of core
unmanaged lands to another core area and are
completely made up of edge (MSPA pixel
value 33, 37, 133, 137)

0.6

Branch—pixels that emanate from core, bridge,
or loops into managed lands and are
completely made up of edge (MSPA pixel
value 1, 101)

0.4

Islet—pixels of unmanaged lands within a patch
of managed lands that is completely made up
of edge (MSPA pixel value 9, 109)

0.2

Managed lands—all remaining pixels (MSPA
pixel value 0, 100)

0.0
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Error simulation model

Simulation models that use available confusion matrix
information to account for misclassification error were
developed in the 1990s (Fisher 1994; Hess and Bay
1997; Wickham et al. 1997). These models convert
confusion of matrix user’s or producer’s accuracy infor-
mation to a matrix of probabilities that inform the like-
lihood that an individual pixel is misclassified (Hess and
Bay 1997). To meet the needs of potential resource
managers, we created a matrix of probabilities based
on user’s accuracy. This BUser’s Probability Matrix^
(UPM) is the proportion of locations classified in the
map as ki (mapped pixels in class (k) found across all
reference columns i through n) in a confusion matrix.
For example, a hypothetical accuracy assessment was
conducted on 100 randomly selected pixels mapped as
forest (k). These mapped pixels were checked against
ground reference data; 90 pixels were determined to be
forest (k1) and the remaining 10 were grassland (k2).
From these hypothetical accuracy data, our UPM would
assume that there was a 90 % probability that any
forested pixel in our map was actually forest and a
10 % probability that it was actually grassland. Follow-
ing this, we created UPMs for all thematic classes from
the confusion matrices of both the perturbation land-
cover and binary fragmentation input maps (Tables 3
and 4).

In geographic studies, it is accepted that Bnearby
things are more similar than distant things^ (Tobler
1970) and is the basis of most spatial autocorrelation
studies and tools (Goodchild 2004). Because we did not
collect additional data, we could not assess the spatial
structure of the error. Therefore, in the second step of
our s imula t ion model , we incorpora ted an

autocorrelation filter proposed by Wickham et al.
(1997), which assumes an overall 10 % difference in
the classification error between the edge and interior
pixels of a land-cover patch as a result of the influence
of correlation between classified pixels (Congalton
1988). Applying a 10 % spatial autocorrelation filter
decreased the likelihood of classification errors within
patches (salt and pepper errors) and also increased the
likelihood of misclassifications near patch boundaries
that were generally associated with errors resulting from
mixed pixels and spatial misregistration. We applied a
3×3 moving window to locate the patch interior and
edge in the two metric input maps. We then created
filters that decreased the effects of the UPM by 5 %
for the interior pixels and increased the UPM by 5 % at
the patch edge. Additionally, we tested the Wickham
et al. (1997) 10% autocorrelation modification against a
20 % gradient to determine sensitivity of the simulated
index results to these modifications.

Finally, to account for the remaining classification
error, we applied a confusion frequency simulation
Monte Carlo model (CFS) that takes advantage of the
a priori error probabilities in the UPMs to create sto-
chastic realizations of our perturbation and fragmenta-
tion input maps (Fisher 1994;Wickham et al. 1997). For
each simulation, the CFS (1) identified cover class k
assigned to an individual map pixel, (2) drew a random
variable from a uniform (0, 1) distribution, (3) adjusted
the random variable with the autocorrelation filter, (4)
determined the probabilities with all reference classes
(k1–kn) associated with cover class k in the UPM, (5)
assigned reference class ki to the output simulation for
that cell based on the modified random value and user
probability, and (6) repeated this process for all remain-
ing classes to create a single simulated realization of the

Table 3 User probability matrix represents the likelihood that a pixel on the perturbation map is actually one of several ground-reference
pixels (UPM is used to support the perturbation metric simulation)

Reference (k1–k5)

Map (k) Unmanaged
lands

Low-intensity
agriculture

High-intensity
agriculture

Low-intensity
urban

High-intensity
urban

Unmanaged lands 93.10 3.24 1.68 1.78 0.20

Low-intensity agriculture 16.32 77.29 1.25 4.88 0.26

High-intensity agriculture 4.02 5.50 88.05 2.40 0.03

Low-intensity urban 19.96 5.10 5.14 65.40 4.40

High-intensity urban 18.32 0.81 0.27 8.31 72.29
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map. The CFS was conducted under the assumptions
that each pixel was eligible for selection, and each pixel
was independently classified (Hess and Bay 1997).With
this process, 1000 Monte Carlo simulations were creat-
ed for each map. For the fragmentation map, the MSPA
tool was applied to each simulated output.

Metric and index error assessment

Following each simulation, we calculated a buffer and
floodplain score for each metric (Eq. 1) and total index
score (Eq. 2), generating a distribution of 1000 potential
metrics and condition scores. It was assumed that each
Monte Carlo simulation was an independent sample of
that classification error and that the distribution of sim-
ulated metric and index scores represented a raw sto-
chastic sample of the error model behavior. We did not
make assumptions about the structure of the simulated
distributions. Therefore, we chose a Wilcoxon signed
rank test to test for differences between simulated site
results. Additionally, to give an estimate of the potential
variability in metric and index scores due to misclassi-
fication, 95 % confidence intervals around the mean
simulated score were derived from the 2.5th and
97.5th percentile of the metric and index scores distri-
bution. The mean was chosen over the median as a
conservative estimate of that distribution. Finally, the
difference between original naive and simulated scores
determined the bias of the naive assessment.

Results

Naive multi-metric index results

Typical of most MMIs, the initial results of this model
were reported assuming that the input data was free from
error (naive results). The final naive index scores

articulated in the synoptic map (Fig. 3) closely matched
the land-use/land-cover gradient across the study area
(Fig. 2). Areas with intact, unmanaged lands scored in
the upper index range (>0.90), areas with a mix of low-
intensity agriculture and unmanaged lands scored in the
middle range (~0.70–0.80), and areas with a mix of
high- and low-intensity residential, agriculture, and un-
managed lands scored toward the lower end of the range
(0.50–0.70).

Map classification resolution

Aggregating land-cover groups lowered the resolution
of thematic classifications in the original dataset from 16
classes to five classes for the perturbation map (Table 1)
and two classes for the fragmentation map (Table 2).
The 2006 NLCD map reported, at a national scale, an
overall map accuracy of 78 % for maps classified into
their standard 16 Level 2 land-cover classes (Wickham
et al. 2013). For the perturbation metrics, the original
16×16 confusion matrix collapsed into a 5×5 matrix,
thereby decreasing thematic resolution and increasing
overall accuracy to 90%. For the fragmentation metrics,
a 2×2 confusion matrix summarized the binary cover
classes with an overall accuracy of 92 %.

Confusion frequency simulation results

For the error simulationmodel, user probability matrices
(Tables 3 and 4) and autocorrelation filters were used in
the confusion frequency simulations to provide a distri-
bution of metrics and index scores, with 95 % confi-
dence intervals (Fig. 4).1 The simulated and naive re-
sults closely match the LULC gradient across the study
area (Fig. 2). A pairwise Wilcoxon signed rank test was
applied to all simulated index sites using both the 10 and
20% autocorrelation filter under the null hypothesis that
there were no differences between the simulated sites.
For sites N-2 and N-3, there was very strong evidence
that they have the same mean index score (p value equal
to 1.0) using the 10 % filter, but there was strong
evidence that all sites were different (p value<0.001)
using the 20 % filter. Sites N-2 and N-3 both had naive
score of 1.0 and all other naive scores were different. All
remaining sites failed to support the null hypothesis,

1 Mean and 95 % confidence interval for the metric and index
scores are available in the Appendix.

Table 4 User probability matrix represents the likelihood that a
pixel on the fragmentation map is actually one of several ground-
reference pixels (UPM is used to support the fragmentation metric
simulations)

Reference (k1–k2)

Map (k) Unmanaged lands Managed lands

Unmanaged lands 93.10 6.90

Managed lands 10.39 89.61
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showing strong evidence of a difference between sites (p
value<0.001) for both filters.

Sensitivity of simulated results to land cover

Information from two sites with very different land
covers (N-3 and F-4) provided an illustrative example
of assessment metrics and index responses to map mis-
classifications. Site N-3 is located adjacent to Glacier
National Park and is classified in the original NLCD
map as 99.7 % unmanaged lands and 0.3 % low-
intensity agriculture (Fig. 5 and Table 5), with a human
population density of 3 people per kilometer. Site F-4 is
located in the Kalispell Valley and contains a portion of
the town of Columbia Falls, MTand nearby agricultural
activities. The original land-use intensity classified this
site as 22.6 % unmanaged lands, 42.2 and 19.8 % low-
and high-intensity agriculture, respectively, and 13.6
and 1.8 % low- and high-intensity urban, respectively

(Fig. 5 and Table 5), with a human population density of
639 people per kilometer. The landscape pattern struc-
tural classes in the two sites (Table 6) also reflect the
land-use distributions. Site N-3 received metric and
index scores of 1.0 for the naive assessment consistent,
with its nearly contiguous cover of unmanaged lands
(Table 7). Site F-4 scored 0.61 for the naive index score
consistent, with its urban and agricultural land use
mixed with patchy unmanaged land cover.

For illustrative purposes, a single simulation was
performed using the 10 % autocorrelation filter to create
the map realizations in Fig. 5. The simulated realization
reflects potential errors along patch edges and salt and
pepper errors within patches (Fig. 5). These simulated
errors decreased the overall cover of unmanaged lands
in Site N-3 by about 2.4 % as these pixels were
reassigned to low-intensity agriculture and urban land
cover (Table 5). These reassigned pixels were peppered
across the landscape (Fig. 5) and changed the

Fig. 3 Synoptic map of Flathead
River MMI scores
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composition of the landscape pattern structural classes
(Table 6). These changes resulted in a slight decrease in
the buffer and floodplain perturbation metrics of 0.005
and 0.004, respectively, a larger decrease in the buffer
and floodplain fragmentation metric scores of 0.057 and
0.053, respectively, and an overall decrease in the index
from 1.0 to 0.97 (Table 7).

In the site F-4 simulation, numerous former agricul-
ture and low-intensity urban pixels were reassigned to
unmanaged lands, increasing the percent cover of un-
managed lands from 23 to 32 %. There was also a slight
increase in the high-intensity urban cover from 2 to 4 %.
These changes were along patch edges and peppered
within the patches (Fig. 5). Although there was an
increase in the cover of unmanaged lands, there was a
decrease in continuous patch cover in these lands. Be-
cause the buffer areas originally had higher urban and
agriculture cover, the redistribution of pixel classes in
the simulation resulted in increased mean perturbation
and fragmentation metric scores in the buffer by 0.030
and 0.011, respectively. However, the floodplain origi-
nally had higher cover of unmanaged lands, and, as in
site N-3, the redistribution of pixel classes in the simu-
lated map decreased cover of unmanaged lands, which

decreased both mean perturbation and fragmentation
metric scores in the buffer by 0.009 and 0.018, respec-
tively. After the index calculation, changes in the metric
scores were essentially eliminated, with no change be-
tween the naive and mean-simulated index that both
scored 0.53 after rounding (0.534 and 0.531, respective-
ly; Table 7).

Metric and index bias

Bias between the naive index score and simulated re-
sults was determined using the 10 % autocorrelation
filter. The difference between the naive score and total
distribution of simulated scores indicated a bias in the
estimation of the index and metrics resulting from mis-
classification (Fig. 6). The fragmentation metric showed
a greater bias in sites dominated by unmanaged lands
(Fig. 6a). Within the perturbation metric, sites with
heterogeneous land use had a negative bias between
the naive and simulated results (Fig. 6b). Collectively,
there was a positive bias between most naive and sim-
ulated index results, with the highest bias in sites dom-
inated by unmanaged lands (Fig. 6c). Our model
showed that the fragment metric had a positive average

Fig. 4 Naive data (stars) and distribution boxplots of simulated fragmentation (a), perturbation (b) scores averaged from the buffer and
floodplain results, and index (c) scores with 10 % autocorrelation filters (black) and 20 % autocorrelation filters (gray)
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bias of 3.91 %, with a maximum of 6.08 % for the
floodplain area of N-6 and a minimum of −18.22 %

for the buffer area of agriculture and urban site F-4. The
perturbation metric had a negative average bias of

Fig. 5 Perturbation and fragmentation maps for sites N-3 (above) and F-4 (below). Sample maps represent area demarked by yellow box in site
maps. Naive maps are derived from original NLCD data and simulated maps are a realization from a single iteration of the CFS error model

Table 5 Percent of land-cover classes from the original and simulated maps for sites N-3 and F-4

Percent cover of perturbation classes

Unmanaged
lands

Low-intensity
agriculture

High-intensity
agriculture

Low-intensity
urban

High-intensity
urban

Site F-4 Original 22.67 42.23 19.76 13.56 1.79

Simulation 31.51 35.25 18.61 10.25 4.39

Site N-3 Original 99.73 0.27 – – –

Simulation 97.58 2.37 – 0.01 0.04
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−0.41 %, with a maximum of 2.16 % for the floodplain
area of N-6 and a minimum of −11.02 % for the buffer
area of urbanized site F-5. The naive index had positive
average bias of about 2.39 %, with a maximum of
3.62 % at site N-6 and a minimum of −0.051 % at site
F-5.

Discussion

The confusion frequency simulation error model used
here reveals that classification error affects assessment
results in four important ways. First, naive results com-
mon to many large landscape assessment and monitoring
efforts provide a biased estimate of habitat conditions
compared to results that include errors. Second, depending
on the land-cover composition of the assessment site, the
magnitude and direction of this bias changes (Figs. 5 and
6 and Tables 6 and 7). Third, the magnitude and direction
of the bias is independent for each metric (Fig. 6a, b).
Finally, when these metrics are combined into an index,
this bias is partially attenuated (Fig. 6c and Table 7).

All maps contain errors, and accuracy assessments
provide insight into the extent and nature of misclassi-
fications that are present. The confusion matrix is a
foundation of classification accuracy assessment (Foody
2002). The NLCD 2006 map used here provides a
confusion matrix associated with an accuracy assess-
ment conducted at a continental scale only (Wickham
et al. 2013). Fang et al. (2006) found that confusion
matrices developed closer to the site of interest have
much different error rates than regional or continental
matrices. At any scale, the confusion matrix also has its
own suite of inherent uncertainties. For instance, collec-
tion of reference data can also contain unmeasured
sources of error (Foody 2002), and ground accuracy
assessment teams may be inconsistent in the classifica-
tion of mixed land cover in the assessment area or
stratified random reference samples that may not capture
spatially specific classification error (e.g., near patch
edges). Additionally, although a confusion matrix is
excellent at capturing thematic errors of omission and
commission, it cannot capture all the non-thematic error
that affects classification, such as misregistration of the
image with ground data (Stehman 1997). Ultimately,

Table 6 Percent of landscape pattern structural classes from the original and simulated maps for sites N-3 and F-4

Percent cover of landscape pattern structures classes

Core Edge Loop Bridge Branch Islet Managed lands

Site F-4 Original 11.66 6.63 0.47 0.53 2.04 1.34 77.33

Simulation 7.89 7.28 1.14 1.90 2.82 4.55 74.43

Site N-3 Original 99.52 0.42 0.06 – – – –

Simulation 74.85 17.43 4.10 0.24 0.05 – 3.34

Table 7 Metric and index results for naive and simulated distribution for sites N-3 and F-4, including resulting bias

Perturbation Fragmentation Index

Buffer Floodplain Buffer Floodplain

Site F-4 Original 0.62 0.84 0.06 0.42 0.53

Simulation 0.650 (±0.004) 0.831 (±0.004) 0.071 (±0.003) 0.402 (±0.007) 0.531 (±0.003)

Bias −0.030 0.009 −0.011 0.018 −0.001
Site N-3 Original 1.00 1.00 1.00 1.00 1.00

Simulation 0.995 (±0.001) 0.996 (±0.002) 0.943 (±0.006) 0.947 (±0.020) 0.971 (±0.007)

Bias 0.005 0.004 0.057 0.053 0.029
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obtaining a reliable confusion matrix and associated
indices can be problematic (Pontius and Millones
2011). However, it currently remains the core accuracy
assessment tool (Foody 2002). Regardless, the map user
will be limited to the data provided unless they conduct
their own accuracy assessment effort.

Confusion frequency simulation error models devel-
oped for categorical thematic maps use available infor-
mation from the confusion matrix to account for errors
resulting from misclassification (Fisher 1994; Hess and
Bay 1997; Wickham et al. 1997; Langford et al. 2006).
In the simulated realizations used here, pixels within the
homogeneous unmanaged land cover are reclassified
according to the user probability matrix, resulting in
increased land-use heterogeneity and, thereby, lower
assessment metric and index scores (Fig. 4). In contrast,
sites with heterogeneous land uses are remixed to an
alternative version of heterogeneity, resulting in a sim-
ulated map that may have higher or lower assessment
scores depending on the ratio and spatial composition of
managed to unmanaged lands in the original map
(Figs. 2 and 4). Although this assessment did not have
sites of homogeneous urban cover, such sites would be

reclassified to have a higher cover of unmanaged lands
according to the UPMs in Tables 3 and 4, which would
raise the assessment metric and index scores.

Reducing error where possible is a first step to ad-
dressing uncertainty. The initial dataset provided an
overall accuracy of 78 % for the 2006 NLCD
continental-scale accuracy assessment. To create our
assessment model, it was necessary to aggregate several
of the land-cover categories into land-use groups, there-
by lowering map classification resolution and resulting
in increased overall accuracy to 90 % for the perturba-
tion map and 92 % for the binary map. There were no
radical departures between the between the naive and
simulated results (Fig. 4), likely because of the input
maps’ higher accuracies. However, if an alternative
arrangement of the thematic input data were required
to measure other aspects of the ecosystem, then the
results would be different.

Because we intentionally did not collect site-specific
map accuracy data, we remain ignorant of the spatial
structure of the map error. However, we recognize that
spatial autocorrelation affects the extent of misclassifi-
cation within and between land-cover patches

Fig. 6 Distribution boxplots of bias of fragmentation (a), perturbation (b) scores averaged from the buffer and floodplain results, and index
scores (c) for each assessment site
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(Congalton 1988). When applied here, the 10 % spatial
autocorrelation filter decreases the randomly located
misclassifications within patches (salt and pepper error)
and increases the misclassifications near patch bound-
aries. However, when applying the 20% autocorrelation
filter, this effect is exaggerated, resulting in simulated
results that trend toward the naive results and an overall
decrease in bias between the naive and simulated metric
and index scores (Fig. 4). Without collecting the re-
quired local reference data to test the true relationships
with autocorrelations, we felt it was best to be conser-
vative in the face of uncertainty (Armstrong 2001) and
applied the 10 % autocorrelation filter to the CFS error
model. Ultimately, without an estimate of the structure
of the spatial error, our simulation will likely contain its
own misclassifications. However, our simulated values
of ecological condition provide a more conservative
estimate than our naive model results.

A remote-sensing product, such as the NLCD
(MRLC 2013), is an appealing source of information
for regional ecosystem assessment and monitoring. The
NLCD provides thematic land-cover information and
accuracy assessments that do not require the end-user
to conduct the expensive and time-consuming (Foody
2002; Fang et al. 2006) necessary steps to process and
analyze raw Landsat imagery or to collect additional
accuracy assessment data (Homer et al. 2004, 2007).
The above approach is not intended to be an assessment
of the quality of the NLCD product; rather, it is intended
to serve as a straightforward approach that could be used
with any number of land-cover products.

Because we were interested in the uncertainty effects
arising from a single source of input data and its impact
on model outcomes, this case study did not address the
other important sources of uncertainty that can manifest
in the context and structure of ecosystem models (Walk-
er et al. 2003; Refsgaard et al. 2007). Context refers to
conditions and circumstances that frame the problem of
interest from the perspective of the end-user (Walker
et al. 2003). Our simplified case study assessed the
overall condition of native floodplain habitats, which
determined binning of the thematic data, weighting of
the metrics sub-index scores, and the structure of the
multi-metric model. If the model-building team and
resource managers decide that other aspects of the sys-
tem are important, such as the condition of floodplain
wetlands, backwater channels, or forests, then structure
of the binned input data would be different. Even with
the model we chose, there were uncertainties built in to

its structure and relationships between input data (in-
cluding size of buffer, scale of assessment reaches, and
binning of thematic data), metrics derived from these
data, and their sub-index scores (Cressie et al. 2009).
This epistemic uncertainty, due to imperfect knowledge,
can be reduced through an increased understanding of
how the modeled system works or refining of input data
and its analysis. We recognize that any modeling effort
should account for epistemic uncertainty due to model
structure, and these efforts should be communicated to
the end-user (Walker et al. 2003; Janssen et al. 2005;
Refsgaard et al. 2007). However, for this effort, we were
only interested in stochastic uncertainty due to inherent
variability of the input data and its impact on the model
outcome. Therefore, we accepted our simplified multi-
metric case study for its consistent, albeit imperfect,
structure.

Implications of land-cover misclassification to resource
decisions

Millions of dollars are spent annually in the U.S. on
ecological monitoring, assessment, and restoration
(Lovett et al. 2007; USEPA 2012). Landscape metrics
and indices assist decision makers with allocating lim-
ited funds by prioritizing monitoring, protection, and
restoration efforts (Hyman and Leibowitz 2000; Lausch
and Herzog 2002; Steel et al. 2004; Hierl et al. 2008).
Landscape metrics and indices are also frequently used
to refine or test finer-scale monitoring and assessment
tools (Stein et al. 2009; Rains et al. 2013). Also, quality
thresholds are frequently used to trigger management
actions and addressing the effects of classification error
on assessment metric and index scores can assist deci-
sion makers in determining which sites are above or
below such thresholds. However, the influence of clas-
sification accuracy on landscape indices has been large-
ly ignored (Shao and Wu 2008). Without error assess-
ment, applications of large landscape models for con-
servation decisions or finer-scale model development
may be flawed.

Critical examinations of index-based approaches in
the scientific literature (May 1985; Seegert 2000; Green
and Chapman 2011) have addressed the shortcomings
of metrics and indices in terms of sensitivity, calibration,
and information loss. What are not seen in the literature
are criticisms from the intended end-users of such
models. Even if the scientific criticisms are accounted
for, these models may fall into disuse when passed from
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scientist to end-user due to the overall lack of confi-
dence in the assessment tool that results from uncertain-
ty in its input data, the metrics it uses, and the output it
creates. Tracking and reporting uncertainty is consid-
ered best practice in most remote-sensing and
quantitative-modeling efforts. Although scientists have
a general operational definition of uncertainty based on
a model’s statistical properties, when applied to resource
management, uncertainty in scientific outcomes poten-
tially translates into a state-of-confidence that the deci-
sion maker has in its application. Policy makers view
these uncertainties in association with their management
goals and priorities (Walker et al. 2003).

The confusion frequency simulation error model
used here is dependent on user probability matrices
derived from the binned confusion matrix. If the
original thematic map was binned differently to suit
an assessment of different system attributes, then the
UPMs, subsequent simulated realization of the
maps, and resulting simulated metric and index
would also change. By applying the CFS error mod-
el, we establish a distribution of potential metric and
index scores and, therefore, bind the effect of the
classification error. With our case study, the simu-
lated results did not diverge greatly from the naive
results (Fig. 4c). However, there are a few points of
caution that should be kept in mind. First, the mea-
sured differences between the naive and simulated
results of both the metrics and index imply that
using naive results alone can be problematic. Sec-
ond, although the CFS error model provides insight
into potential land-cover realizations, changes in
simulated assessment scores in area of homogeneous
cover (e.g., Fig. 5 site N-3) can be also problematic.
Finally, given the assessment scale and data resolu-
tion, both our naive and simulated results can dis-
tinguish between sites across the range of land use.
However, to distinguish between sites with similar
land use would require a different assessment tool to
address local-scale disturbances. Nonetheless, pro-
viding information about error to the decision
makers helps improve the state-of-confidence in
the assessment tool.

Nevertheless, merely providing information on error
within the model results does not necessarily assist the
end-user in their ability to absorb that uncertainty into
their decision. Interpretation tools, such as fuzzy sets
and fuzzy operational rules, make it possible to for-
malize the knowledge of experts to provide

information to assist the model end-user in areas where
numerical data may be limited (Uricchio et al. 2004).
Still, applying well-established approaches to charac-
terize and interpret the degrees of uncertainty within
data (e.g., rough sets, fuzzy sets, probability density
functions) do not guarantee the assessment model will
be used. As a tool, index-based assessments exist in
the difficult area between science and policy (Turnhout
et al. 2007), and scientists and model builders are not
necessarily involved in the ultimate use of their prod-
uct as a decision tool. Ideally, during the assessment
tool development process, the science team works with
the policy and stakeholders team to create a product
that accounts for uncertainty and clearly articulates the
limitations of the model in a manner that is easily
understood by the end-user, so that the degrees and
types of uncertainty in the model output can be rea-
sonably absorbed into their decision process in a
straightforward manner (Niemi and McDonald 2004;
Turnhout et al. 2007).

Many of the historical advancements of assess-
ment are well documented in the scientific literature.
However, much of its development and application
occurred in management settings (e.g., Adamus
et al. 1987; Brinson et al. 1994; Hawkins et al.
2000; Hauer et al. 2002). Today, there are over 400
contemporary biological and structural assessment
methods applied across a suite of environmental
problems (Bartoldus 1999; Diaz et al. 2004;
Fennessy et al. 2004; Böhringer and Jochem 2007).
As the ease of access to classified Landsat products
and geographic information tools increase, the num-
ber of landscape assessment metrics will likely ex-
pand as tools are developed to address a multitude
of landscape-scale environmental problems. Each of
these new metrics will have their unique sensitivity
to classification error. For instance, several authors
have already found that some landscape metrics are
more sensitive to classification error than others
(Hess and Bay 1997; Wickham et al. 1997; Shao
et al. 2001; Langford et al. 2006). As our work has
shown, metrics also respond differently to classifi-
cation error across disturbance gradients associated
with changes in LULC in each assessment site.
Incorporating error sensitivity tests into the assess-
ment model building process can help determine the
level of classification errors that can be tolerated for
existing and new landscape metrics and subsequent
indices (Shao and Wu 2008).
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Conclusion

Our results elucidate the potential bias between the more
common naive approach to ecological assessment and
an approach that includes error. We show an increase in
overall map accuracy as the 16 land-cover categories in
the original NLCD thematic map was aggregated into
the five land-use groups for the perturbationmap and the
two land-cover groups for our fragmentation map. The-
se aggregated maps inform probabilities of misclassifi-
cation within a confusion frequency simulation error
model. The assessment metrics within our multi-metric
index respond in different ways to map error depending
on the land-cover pattern of each assessment site. When
combined into an index, it appears that naive scores
slightly over-estimate ecological quality within sites
comprised of contagious unmanaged lands that are as-
sociated with higher quality floodplains. Additionally,
the naive scores could potentially underestimate the
quality in more disturbed sites comprised of heteroge-
neous land uses. Naive approaches are easier to imple-
ment. However, recognizing that using such an ap-
proach is biased may help with the end-user’s state-of-
confidence in the landscape assessment tool.
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Appendix

Confusion frequency simulation metric results Using
the confusion frequency simulation, each pixel retained
its class assignment or was reassigned according to an
outcome of a uniform random draw between 0 and 1 that
was adjusted by the spatial autocorrelation filter. One
thousand simulations of each metric were performed
and an index score was calculated per iteration. These
simulations provide a distribution of index scores and a
95 % confidence interval given the probabilities of class
assignment (Tables 8, 9, and 10). The simulated data are
provided in three significant digits to demonstrate the
limitations of confidence intervals. The naive results are
provided for comparison purposes and are reported in
two significant digits, which is a general precision stan-
dard for most 0–1 MMI results.

Table 8 Perturbation metric results and confidence intervals from the 1000Monte Carlo confusion frequency simulations and naive results
for comparison

Buffer perturbation Naive score Floodplain perturbation Naive score

Site 2.50 % 50 % 97.50 % 2.50 % 50 % 97.50 %

F-1 0.705 0.707 0.709 0.69 0.914 0.917 0.920 0.93

F-2 0.620 0.622 0.624 0.58 0.788 0.790 0.791 0.79

F-3 0.658 0.660 0.662 0.64 0.861 0.863 0.865 0.88

F-4 0.646 0.650 0.653 0.62 0.827 0.831 0.835 0.84

F-5 0.652 0.655 0.659 0.59 0.798 0.802 0.806 0.79

F-6 0.856 0.859 0.862 0.83 0.847 0.857 0.865 0.85

F-7 0.873 0.875 0.877 0.86 0.919 0.925 0.930 0.93

M-1 0.939 0.941 0.942 0.94 0.860 0.865 0.870 0.86

M-2 0.981 0.982 0.982 0.98 0.912 0.914 0.917 0.92

M-3 0.965 0.966 0.967 0.96 0.948 0.951 0.954 0.95
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Table 8 (continued)

Buffer perturbation Naive score Floodplain perturbation Naive score

Site 2.50 % 50 % 97.50 % 2.50 % 50 % 97.50 %

N-1 0.977 0.979 0.980 0.98 0.960 0.963 0.966 0.98

N-2 0.994 0.995 0.996 1.00 0.994 0.996 0.997 1.00

N-3 0.994 0.995 0.995 1.00 0.994 0.996 0.998 1.00

N-4 0.994 0.994 0.995 1.00 0.969 0.972 0.975 0.99

N-5 0.992 0.992 0.993 1.00 0.985 0.987 0.988 0.99

N-6 0.979 0.979 0.980 0.99 0.947 0.949 0.951 0.97

N-7 0.961 0.962 0.963 0.97 0.894 0.897 0.899 0.91

N-8 0.995 0.995 0.996 1.00 0.979 0.981 0.982 0.99

N-9 0.880 0.881 0.881 0.88 0.993 0.994 0.994 1.00

Table 9 Fragmentation metric results and confidence intervals from the 1000 Monte Carlo confusion frequency simulations and naive
results for comparison

Buffer fragmentation Naive score Floodplain fragmentation Naive score

Site 2.50 % 50 % 97.50 % 2.50 % 50 % 97.50 %

F-1 0.165 0.168 0.170 0.17 0.733 0.740 0.747 0.79

F-2 0.077 0.079 0.081 0.07 0.387 0.390 0.392 0.41

F-3 0.092 0.094 0.097 0.09 0.535 0.540 0.545 0.57

F-4 0.068 0.071 0.074 0.06 0.395 0.402 0.409 0.42

F-5 0.251 0.255 0.260 0.26 0.494 0.501 0.508 0.53

F-6 0.709 0.715 0.722 0.75 0.657 0.676 0.692 0.72

F-7 0.713 0.717 0.722 0.76 0.766 0.780 0.792 0.83

M-1 0.845 0.849 0.852 0.90 0.620 0.631 0.640 0.67

M-2 0.920 0.924 0.928 0.98 0.685 0.691 0.697 0.73

M-3 0.893 0.896 0.899 0.95 0.857 0.866 0.876 0.92

N-1 0.898 0.905 0.912 0.96 0.807 0.817 0.826 0.87

N-2 0.932 0.942 0.952 1.00 0.925 0.947 0.967 1.00

N-3 0.937 0.943 0.949 1.00 0.926 0.947 0.965 1.00

N-4 0.937 0.942 0.947 0.99 0.838 0.849 0.859 0.90

N-5 0.933 0.938 0.942 0.99 0.903 0.911 0.918 0.97

N-6 0.890 0.895 0.899 0.95 0.743 0.749 0.754 0.80

N-7 0.804 0.809 0.813 0.85 0.454 0.460 0.465 0.48

N-8 0.939 0.945 0.949 1.00 0.873 0.881 0.889 0.93

N-9 0.941 0.946 0.951 1.00 0.940 0.947 0.954 1.00
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