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Abstract The classic purely mechanical approach to materials with simple kinematic in-
ternal constraints is supplemented. A right Cauchy–Green tensor which locally represents
the kinematically admissible restricted domain of a finite hyperelastic stress response func-
tion is constructed explicitly. It satisfies all imposed constraints identically. It is obtained
by a procedure which annihilates the banned modes of deformation in the actual place-
ment. A unique direct sum based stress decomposition is obtained. Further, a procedure is
provided, to seamlessly relax constraints, or reversibly, that allows constraints to smoothly
develop under loading starting from an unconstrained description. The involved relaxation
of internal constraints is briefly illustrated herein. References to published full feathered
applications are given where the method is used and verified in finite element form.

Keywords Internal constraints · Incompressible · Inextensible · Angle preserving ·
Constrained convected metric

Mathematics Subject Classification (2000) 74A05 · 74A20 · 74B20 · 74S05

1 Introduction

The standard reference to the classic purely mechanic theory of simple kinematic constraints
is Truesdell and Noll [1, Sect. 30]. It covers the historical aspects and provides an axiomatic
presentation of theory with examples to incompressibility and simple inextensibility. It de-
fines the mechanical reactions to imposed purely kinematic constraints as the energy conju-
gate stress, that is workless in all deformations satisfying the constraint. Further, the classic
theory defines the constitutively determinate work performing stress, called the extra stress,
as the difference between the total stress and the workless, constitutively indeterminate,
stress. Thus, it introduces an additive decomposition of the total stress. Relying on these
definitions, the so-called Principle of material determinism for simple materials subject to
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internal constraints is laid down. Notably, it leaves the mechanical interpretation of the in-
troduced Lagrange multipliers undetermined.

Later, the so-called constraint manifold theory by Podio-Guidugli [3], Gurtin and Podio-
Guidugli [5], Podio-Guidugli and Vianello [4] and recently Vianello [6], and by Carlson et
al. [7], to mention a few, updated the classic theory using geometric–algebraic analogies
from linear-algebra. The additive stress decomposition emerges from spanning the workless
stress on the normals to the set of constraints. The work-performing stress is isolated as the
orthogonal complement, spanned by the tangent set.

The normalisation condition removing the indeterminate part from the extra stress, which
makes the stress decomposition unique, is only mentioned as an option in [1, Sect. 30]. It
is invoked firmly in the constraint manifold theory (see, e.g., [7]), where orthogonality is
assumed between the workless and the work-performing stresses. The constraint manifold
theory concludes making the direct sum based stress decomposition unique by constructing
the orthogonal projection to the set of constraint normals. It is concluded that the normali-
sation condition as presented in [1, Sect. 30] and in [7] is an auxiliary assumption to make
the stress decomposition unique.

According to Steigmann [11] the subject of materials with internal constraints is not espe-
cially well treated in text and monographs. The necessity and usefulness of a normalisation
condition, introduced in [1, Sect. 30], has been questioned, see for example Bertram and
Glüge [9]. Negahban [10] discusses different assumed stress decompositions and normali-
sations. Normalised work performing stresses are more seldom used in analytic works. See,
for example, the presentation of the classic families of controllable non-homogeneous solu-
tions of arbitrary isotropic incompressible materials in Truesdell and Noll [1, Sects. 56 and
57]. In computational mechanics, on the other hand, the advantage of using the normalised
deviatoric description of the work-performing stresses in nearly incompressible hyperelas-
ticity was early recognised by Simo, Taylor and Pister [14] and is firmly established.

This contribution is confined to isothermal conditions. The thermodynamic considera-
tions are consequently reduced to the Clausius-Planck form of the second law. The appear-
ing stress reactions herein are constitutively indeterminate, spatial scalar fields. Interesting
phenomena per se of type ageing, damage, growth and remodelling are out of the scope. Ex-
tensions to thermoelasticity are considered in, [5, 8, 10]. For viscous Newtonian fluids, the
dissipation in the presence of an incompressibility constraint is accounted for both mechan-
ically and thermally by the set of Navier-Stokes equations which have a very rich literature.
Further, modern elasto-plasticity is based on hyperelasticity while requesting the dissipative
plastic flow to be isochoric, governed by the second law of thermodynamics, see Simo and
Hughes [24]. Finally, Bertram and Glüge [9] propose extensions to second order gradient
materials with internal constraints and discuss additional considerations bringing in ther-
momechanics. It is concluded that the fundamental aspects of internal constraints, may very
well be introduced for (hyper-)elasticity and later be elaborated on for other material classes.

Further, this contribution has application in computational mechanics. There, kinematic
internal constraints are part of the strong statement of the boundary value problem, in a
Dirichlet sense. That is, the constraint manifold restricts the set of admissible transplace-
ments, also called the set of admissible trial solutions. Its tangent set is known as the set of
admissible variations/test functions. Consequently, it is restricted by the first variations of
the constraints, i.e., with the tangent set to the constraint manifold.

Putting it all together, this contribution presents the unified theoretical development pub-
lished as verified finite element implementations [27, 29, 31] which extends the classic the-
ory of kinematic internal constraints, [1, Sect. 30] and [3–5, 7]. The claimed extensions
concern, governing theory and procedures for,
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(C1) modification of an actual Cauchy–Green tensor to become an element of the constraint
manifold, and for,

(C2) relaxing constraints1 by turning them into variable substitutions, making the material
‘nearly’ constrained, and finally by,

(C3) indicating the impact of these two contributions on the solutions of boundary value
problems in computational solid mechanics.

Using the modified Cauchy-Green tensor as an argument of the hyperelastic stored en-
ergy function confines its domain to the actual constrained situation.2 Using the Clausius-
Planck form of the second law of thermodynamics (for isothermal processes) and employ-
ing the famous Coleman Noll procedure [2] induces automatically the proper direct sum
decomposition of the stress into a workless reactive part and a work performing active part.3

Turning constraint equations into variable substitutions (C2) allows a seamless description
from unconstrained to fully constrained and reverse under loading for example. Finally, con-
tribution (C3) bridges material mechanics and computational mechanics.

Incompressibility, inextensibility and preservation of the angle between two material el-
ements is considered here. Combinations of them are considered as example applications.
Put in other words, (C1) allows to state an internally constrained finite hyperelastic (bound-
ary value) problem in an inner product vector space that preserves volume, length or angle,
simply or in combination. The construction of the constrained right Cauchy–Green stretch
tensor is performed by a rank-one update procedure annihilating one target banned mode
at the time in the Eulerian convected metric tensor representing the actual transplacement,
in the sense of Green an Zerna [15]. In other words, the annihilation is done point-wise
by composition in the local material fibre triad. The result is pulled back to the reference
placement where the constrained right Cauchy–Green stretch tensor is the Lagrangian form
of the Eulerian convected metric tensor. It should not be confused with the augmenting in-
ternal variable representing physical metric tensor introduced by Valanis and Valanis and
Panoskaltsis [25, 26]. The right Cauchy–Green tensor and the convected Lagrangian metric
tensor are equivalent designations used interchangeably.

Following the fibre deformation in terms of convected local fibre triads is a key ingredi-
ent providing maximum possible direct insight into a phenomenologic type of description,
[16]. It takes advantage of given preferred directions. The verification of the finite element
realisation of the stiffening two-fibre family reinforcement (Example 2 herein), can be found
in the recently published work [31]. To my best knowledge, this work is the first of its kind.

This contribution is concluded in that spirit by briefly presenting the option (C2) to relax
internal constraints keeping4 the direct sum decomposition of the stress used in the fully con-
strained case. Tested and verified finite element implementations which can be interpreted
in terms of the so-called generalised metric approach are available. The 3-field, displace-
ment, dilatation and pressure formulation by Simo, Taylor and Pister [14, (1985)] for near
incompressibility is the first to be mentioned. The following formulations [27–30] for near
incompressibility and/or strongly transversely isotropic finite hyperelasticity are further re-
alizations.

The outline of the remainder of this contribution is: The notation used is given in a short
paragraph in the Appendix A. A condensed exposition of the kinematics used is given in

1Called extrapolating off the manifold by Carlson et al. [7].
2For example, the unimodular Cauchy–Green tensor for incompressibility.
3For example, decomposition in a spherical and a traceless part for incompressibility.
4Transforming the Lagrange multiplier to a constitutively determinate stress response function.
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Sect. 2. The kinematic aspects of simple internal constraints are gathered in Sect. 3. The pro-
cedure to construct the constrained right Cauchy-Green tensor is presented in Sect. 3.2, (C1).
The constitutive aspects of simple internal constraints are illustrated for finite hyperelastic-
ity in Sect. 4. The relaxation of internal constraints, in other words, the procedure to connect
with the related unconstrained material is briefly presented in Sect. 5. The claimed general-
isation of the classic theory is discussed in Sect. 6. The note is summarised and concluded
in Sect. 7. Small examples are used to illustrate concepts and show applications throughout
the note. Finite element applications are found in [27–31].

2 Kinematics

Adopting the continuum mechanics view, let κ t : B → E be a smooth time-dependent em-
bedding of a material body B into the differentiable Euclidean point manifold E . The trans-
lation space at instant t ≥ 0 associated with E is denoted Ut . The placement of, or region
occupied by, the material body at time t is the image Pt := κ t (B). The position of a mate-
rial particle X ∈ B is given by x t := κ t (X) ∈ Pt . The placement P0 := κ0(B) at the instant
t = 0 is used as a reference. The reference position is denoted X := κ0(X). The embedding
is invertible, for X ∈ P0, X = κ−1

0 (X) ∈ B. The abbreviated notation x := κ t (X) is used
for the actual position and the actual placement is denoted P = κ t (B). The composed point
mapping,

ϕ(X, t) := κ t ◦ κ−1
0 : P0 �→ P,

defines a common referential description of the deformation of a material body used in
continuum mechanics. It is assumed to be bijective and continuously differentiable with
respect to the time parameter t as many times as needed. The tangent map is the linear
transformation F := Gradϕ : TXP0 → TxP .

Parametrisation It is henceforth assumed that a locally bijective and smooth parametriza-
tion ξA(X) around X ∈ P0 is given, or that a material curve can be reconstructed from a
given distinct unit tangent field M̂(X) in P0, called a preferred direction in the phenomeno-
logic theory of anisotropic solids, see Spencer [16], Boehler [17] and Zhang and Rych-
lewski [18]. A convective local parameterization ξa(x) around x ∈ P is chosen, cf. Green
and Zerna [15]. Then the natural tangent base vectors {GA} and {ga} on TXP0 and TxP are
defined in a standard fashion by,

GA := ∂X(ξ)

∂ξA
and ga := ∂x(ξ)

∂ξa
. (2.1)

At least one of these base vectors will correspond to a preferred direction, M̂ in the presence
of an anisotropic constraint. Transverse isotropy caused by a simple inextensibility involves
a single preferred direction. The local convected triad is completed by constructing two
perpendicular base vectors in the isotropic plane. Local orthotropy, caused by two simple
inextensibilities, involves two distinct, in general oblique, preferred directions. The third
base vector is constructed using the vector cross product. For isotropy the preferred local
triad is constructed to be orthogonal. An initially isotropic solid may in principle develop
inextensibility under load. Arterial soft tissue is known to develop Fung-like exponential
stiffening.
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The co-vector bases on the dual spaces T ∗
XP0 and T ∗

x P are denoted {G∼ A} and {g∼
a}

respectively. They are determined with the aid of the duality pairing as follows,

〈
G∼

A,GB

〉
TXP0

= δA
B and

〈
g∼

a,gb

〉
TxP

= δa
b , (2.2)

where δA
B and δa

b are Kronecker delta symbols. The metric tensors on the referential and
actual tangent spaces are defined by,

⎧
⎪⎨
⎪⎩

G := GABG∼
A ⊗ G∼

B,

G∗ = G,

G := det[GAB] > 0,

and

⎧
⎪⎨
⎪⎩

g := gabg∼
a ⊗ g∼

b,

g∗ = g,

g := det[gab] > 0.

(2.3)

They are linear maps that are assumed to be symmetric and positive definite5 by definition,
i.e., G ∈ Sym+(T ∗

XP0 ⊗ T ∗
XP0) and g ∈ Sym+(T ∗

ϕ(X)P ⊗ T ∗
ϕ(X)P), respectively. Using the

convected parametrisation the deformation gradient becomes, F = δa
·A ga ⊗ G∼

A. Summing

up, the deformation gradient F, its adjoint F∗ and their inverses F−1 and F−∗ take the forms:

F = δa
·A ga ⊗ G∼

A, F−1 = δA
·a GA ⊗ g∼

a,

F∗ = δa
·A G∼

A ⊗ ga, F−∗ = δA
·a g∼

a ⊗ GA.

⎫
⎪⎬
⎪⎭

(2.4a-d)

The basis vectors GA and ga henceforth represent tangents to material curves at X ∈ P0 and
at ϕ(X, t) ∈ P . In case of anisotropy one or more of these represent convected preferred
directions.

In view of (2.4a), the tangent mapping F : GA �→ ga is written;

ĝa = λ−1
a FGA, ‖ĝa‖ = 1 and λa :=√〈gFGA, FGA〉 =

√〈
F∗gFGA,GA

〉
, (2.5)

where the so-called convected metric tensor g = g(ϕ) has the explicit form:

g =
⎡
⎣

λ2
1 α12λ1λ2 α13λ1λ3

• λ2
2 α23λ2λ3

• • λ2
3

⎤
⎦

ab

g∼
a ⊗ g∼

b, g(ϕ)|ϕ=X = G(X), (2.6)

where λ2
a := ‖ga‖2 are stretches and αab := λ−1

a λ−1
b ga · gb are the direction cosines, i.e.,

the shears, between the material line elements ga and gb for a, b = 1,2,3 with b > a, in
Tϕ(X)P , respectively. Further, is noted that the referential value of convected metric ten-
sor (2.6)2 has to be provided. It is constructed exploiting any given preferred direction as
outlined in the paragraph Parametrisation above.

Take for example strong transverse isotropy, caused by an inextensibility constraint, one
of the stretches in (2.6) measures the length ratio in the associated preferred direction. Like-
wise, a direction cosine will measure the actual angle between two provided preferred direc-
tions. The parametrisation by local convected triads provides the maximum possible insight
into the local mechanics relying on a phenomenologic theory. See also the full feathered
examples in [31].

5With this assumption g satisfies the material impenetrability postulate, see (2.8).
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The last identity in (2.5) follows from the definition of duality and gives rise to
the introduction of the symmetric and positive definite right Cauchy–Green tensor C ∈
Sym+(T ∗

XP0 ⊗ T ∗
XP0);

C := F∗gF : TXP0 → T ∗
XP0, C(ϕ)|ϕ=X = G(X). (2.7)

Finally, it is noted that the right Cauchy–Green tensor is the pull-back of the convected
metric tensor g(ϕ) to the reference configuration. Moreover, the possibility of using it as
a Lagrangian metric at X ∈ TXP0 is noted. The postulate of material impenetrability takes
the following form in convected frames,

J (ϕ) :=
√

det
[
G−1C(ϕ)

]=
√

G−1g(ϕ) > 0, (2.8)

where J is the volume ratio. Further, the stretch λF of a material line element in the material

direction GF ∈ TXP0 is expressed in terms of C as λF(C) =
√

‖GF‖2
C, where the right hand-

side is an example of using C as the Lagrangian metric, cf. (2.5). Following Spencer [16],
Boehler [17] and Zhang and Rychlewski [18], a stress-like Lagrangian structural tensor,

A := M̂ ⊗ M̂ ∈ Sym(TXP0 ⊗ TXP0), (2.9)

is determined by a given preferred direction M̂ . Here, it will be employed as a basis vector in
the local triad, i.e., M̂ ∈ {GA}, by construction. A structural tensor is idempotent, A2

F = AF,
which follows from the normalisation, ‖GF‖ = 1.

Further, the standard set of admissible transplacements ϕ(X, t) is defined by,

C := {
ϕ(X, t) : P0 → P |J (ϕ) > 0 in P0, and ϕ = ϕ̄ on ∂P0D

}
, (2.10)

where ∂P0D denotes the part of the boundary where the transplacement is prescribed.
Moreover, the tangent set to C is introduced as the standard set of admissible material

velocities, ϕ̇(X, t);

TϕC := {
ϕ̇(X, t) : P0 → P

∣∣ 〈Ċ, J 2C−1〉> 0 in P0, and ϕ̇ = 0 on ∂P0D

}
.

(2.11)
It is also known as the standard set of admissible variations due to the connections
δϕ ∼= �ϕ = ϕ̇�t , see Simo and Hughes [24, Sect. 7.2.1]. Thus, a material velocity (in-
crement or variation) must respect homogeneous Dirichlet boundary conditions in order to
be identified with a test function or variation in the standard Bubnov-Galerkin sense. This
requirement becomes clear linearising a weak formulation.6 The rate form (or first variation)
of the condition of impenetrability J̇ (ϕ) > 0, which here is expressed in terms of the strain
rate Ċ = DC(ϕ)[ϕ̇] at ϕ ∈ C . Finally, we may note that C is a submanifold of the Euclidean
point manifold E and that TϕC is a submanifold of the associated translation space U .

3 Simple Kinematic Internal Constraints

In this section the kinematic aspects of subsidiary kinematic conditions are considered. Con-
sequences on the work conjugate stresses are derived from the constraint rates.

6A prescribed transplacement ϕ̄ ∈ ∂P0D is imposed computing its corresponding reaction. Thus, ϕ̄(X, t) /∈
TϕC is a given vector field which may vary with time.
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3.1 Constraint Manifold Theory

This subsection is essentially an adaption of the constraint manifold theory following Podio-
Guidugli and associates [4–6]. Some observations are added. The constraint manifold is
embedded into the set of admissible transplacements (2.10) and its tangent is embedded into
the set of admissible variations (2.11). It provides a bridge to computational mechanics. The
embedding couples the restrictions imposed by a kinematic constraint on the strain C(ϕ) and
its rate or first variation, to the transplacement ϕ and its rate ϕ̇ or variation δϕ, respectively.

Many materials vigorously resist certain transplacements to such an extent that it is
a perfect approximation to exclude them from the standard set of admissible transplace-
ments (2.10) C (ϕ). Classic examples concern, pure dilatation J 1/3(C) and uniaxial stretch
λF(C; AF) in a material direction given by AF. An exclusion of a class of transplacements
from C may provide considerable simplification in solving boundary-value problems ana-
lytically, while the same restriction may call for a special formulation solving them numer-
ically. Incompressibility is the leading example with vast literature in both branches. The
kind of additional subsidiary kinematic conditions considered here, appended to the set of
admissible transplacements C , are called internal constraints, since they act in the domain
occupied by the body, and in addition require a modification of the material description.
Here we consider the restriction of the purely mechanical theory of a non-aging, i.e., time
invariant, so-called simple material in the sense of Noll [19, 20], to the subclass of hypere-
lasticity. Basically, for hyperelasticity, there are three material stretches and three direction
cosines in the actual placement that may be constrained point-wise, see the convected metric
tensor g(ϕ) (2.6). That is, we need to consider the actual value of its Eulerian form g(ϕ),
or equivalently, its Lagrangian form in the reference placement, C(ϕ), at ϕ(X, τ ) for τ = t .
In order to determine the work-less and the work performing stresses the strain rate Ċ is
needed. Simple internal constraints in conjunction with thermoelasticity and in general ther-
modynamics for simple materials are out of the scope for this contribution. Extensions are
dealt with by, Gurtin and Podio-Guidugli [5], Negahban [10] and by Bertram and Glüge [8],
respectively.

The dimension of symmetric tensors is six. Consequently, there can be at most six in-
dependent internal constraints simultaneously. A fully constrained material is rigid. The
convected metric tensor for a rigid material coincides with the referential metric tensor G
for t ≥ 0. An isotropic internal constraint can be expressed in terms of the principal invari-
ants of the Lagrangian metric tensor C alone, while an anisotropic internal constraint, in
the sense of Spencer [16], involves the joint invariants of C and a set of structural tensors
defining the anisotropy, of the type (2.9).

Definition 3.1 (Simple internal constraint as a constraint manifold) Following Podio-
Guidugli and associates [4–6], a simple, time invariant, internal constraint, may be con-
sidered in terms of a differentiable manifold,

Mφ

(
ϕ, φ0,S

) := {
C(ϕ) ∈ Sym+

(
T ∗

XP0 ⊗ T ∗
XP0

) ∣∣ φ(C;S ) = φ0, ϕ ∈ C
}
, (3.1)

where ϕ ∈ C is an admissible transplacement, and where the constrained quantity, φ, takes
on the given constant value φ0 := φ(G(X);S ) ∈ R it has in the referential placement, see
(2.7). Further, S is a non-empty set, containing the given referential metric tensor G−1 and
possibly a given referential structural tensor field, e.g., in the form (2.9). See [16–18] for
the use of structural tensors for anisotropic solids. Finally, the function φ is supposed to be
continuously differentiable sufficiently many times with respect to C.
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The following basic two families of constrained quantities φi(C(ϕ)) ∈ Fi , i = 1 or i = 2
are used:

F1 := {λ1, λ2, λ3, α12, α13, α23} or F2 := {J, λ̄1, λ̄2, λ̄3, α12, α13, α23}, (3.2)

where λ̄a := J−1/3λa , a = 1,2,3 are the so-called volume–preserving stretches. These two
families separate the classes of compressible and incompressible materials, see [29]. The
second family is subject to the normalisation condition det[J−1/3F] ≡ 1. A collection of
1 < n ≤ 6 compatible simple internal constraints is denoted the constraint manifold,

M :=
n⋂

i=1

Mφi

(
ϕ, φ0,Si

)
, (3.3)

see also Steigmann [11]. In passing it is noted that C is frame invariant and that the presence
of the referential metric tensor G−1 implies that the identity mapping I ∈ M .

Finally, a simple minded view suggests to consider a kinematic constraint φ(C;S ) =
φ0 as a level set in R

6. The recent contribution by Vianello [6] discourages from such a
departure, however.

Just as a function F : E →R of the form F(X) = 0 embedded in the standard Euclidean
point space E defines a surface Y := {X ∈ E |F(X) = 0}, i.e., a set of points in three
space, R3. Like-wise, equation (3.1) defines a hyper-surface, Mφ : C(ϕ) ∈ Sym+(T ∗

XP0 ⊗
T ∗

XP0) →R of admissible strains in R
6, suggesting restrictions of C , (2.10). From a simple

minded geometric point of view, a constraint may be seen as an iso-surface in R
6. There are

however cases where this analogy breaks down, see [6].

Definition 3.2 (Augmented set of admissible transplacements) A constraint manifold (3.3)
M , is here added to the standard set of admissible transplacements (2.10), C , forming the
augmented set of admissible transplacements,

Ca := {
ϕ(X, t) ∈ C

∣∣ C(ϕ) ∈ M
}
. (3.4)

The requirements of linear independence of multiple constraints from Carlson et al. [7]
and Negahban [10] are recalled. Reinforcement with inextensible fibre families, requires
that their preferred directions are distinct.

Definition 3.3 (Linear independent constraints) A number of constraints φi(C) = φ0
i are in-

dependent if and only if their gradients ∂Cφi , i = 1,2, . . . , n ≤ 6 define a linear independent
set of tensors. That is, if their linear combination is the zero tensor, if and only if all scalar
multipliers are zero;

n∑
i=1

αi∂Cφi = 0 ⇔ ∀αi = 0. (3.5)

In analogy with the gradient ∂XF(X) to a surface F(X) = 0 at X in R
3, the tensor

gradient ∂Cφ(C) to the constraint φ(C) = φ0 at C in R
6, may be conceived as a normal,

respectively.
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Definition 3.4 (The set of normals, NCM ) For an independent set of tensor gradients,

∂Cφi(C) ∈ Sym(TXP0 ⊗ TXP0), i = 1,2, . . . , n ≤ 6,

the set of normals to the constraint manifold M evaluated for a ϕ ∈ Ca at C(ϕ), (3.4), is
recalled, cf. [7, Eqs. (2.4)]:

NCM := Span
{
∂Cφi

(
C(ϕ)

) ∈ Sym(TXP0 ⊗ TXP0) i = 1,2, . . . , n ≤ 6, ϕ ∈ Ca

}
.

(3.6)
Note that for a simple inextensibility in the preferred direction M̂(X), the normal to the
inextensibility constraint is A(X) see (2.9).

Further, the time rate of a constraint is essential for the development. It is computed by
the chain rule of differential calculus as,

φ̇ =
〈
DC(ϕ)[ϕ̇], ∂φ(C)

∂C

〉
= 0 at ϕ ∈ Ca. (3.7)

Here DC(ϕ)[ϕ̇] is the first variation of the right Cauchy–Green stretch tensor at ϕ in the
direction of the material velocity ϕ̇. It provides a constraint on ϕ̇(X, t) or equivalently on
the strain rate at ϕ, Ċ(ϕ) = DC(ϕ)[ϕ̇]. The collection of the constraints on the strain rate is
added to the standard set of admissible material velocities (2.11).

Definition 3.5 (The tangent sets TCM and TϕCa) First, the tangent set, corresponding to
the normal set NCM , is recalled, cf. [7, Eqs. (2.4) and (2.5)],

TCM := {
Ċ ∈ Sym

(
T ∗

XP0 ⊗T ∗
XP0

) | 〈Ċ, ∂Cφi〉 = 0, ∀∂Cφi ∈ NCM , i = 1,2, . . . , n ≤ 6,
}
,

(3.8)
where the strain rate Ċ(ϕ) = DC(ϕ)[ϕ̇] is computed at ϕ ∈ Ca. Then, the augmented set of
admissible material velocities which may be called the augmented set of admissible varia-
tions is formed as,

TϕCa := {
ϕ̇(X, t) ∈ TϕC

∣∣ DC(ϕ)[ϕ̇] ∈ TCM
}
. (3.9)

The definition of a stress tensor which is workless in all admissible transplacements
ϕ(X, t) ∈ Ca with admissible material velocity ϕ̇(X, t) ∈ TϕCa at X ∈ P0 corresponding
locally to a stretch rate DC(ϕ)[ϕ̇] ∈ TCM is also needed. The phenomenologic descrip-
tion of kinematics in the presence of simple internal constraints is completed. The workless
stress, in other words the stress reaction, is neither an element of the kinematics nor of the
constitutive part of the stress response. It is energy conjugate to the kinematically inadmis-
sible modes of deformation, akin to reactions in rigid-body mechanics.

Definition 3.6 (Workless stress tensor) For any admissible material velocity ϕ̇(X, t) ∈ TϕCa

corresponding to an admissible strain rate Ċ ∈ TCM (Definition 3.5), and a tensor
SR ∈ NCM (Definition 3.4), the vanishing of the scalar product,

0 = 〈Ċ, SR〉 : TCM × NCM → R,

defines an energy conjugate workless stress tensor which, for a set of (Lagrange) multipliers
�i ∈R, i = 1,2, . . . , n ≤ 6, has the representation,

SR =
n∑

i=1

2�i∂Cφi. (3.10)
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For n = 6 any material is rigid. There is no stretch or shear C = G. The stress response
is in the form (3.10). For n < 6, the difference between the total stress7 and the workless
stress, S − SR =: SE may be non-trivial, for non-trivial C ∈ M . According to the princi-
ple of determinism for simple materials subject to internal constraints [1, Sect. 30, p. 70]
the so-called extra stress SE can be computed from the history of the right Cauchy-Green
stretch tensor Ct (s) ∈ M for objective simple materials in the sense of Noll [20], see also
Day [19]. For hyperelasticity we only need that C(t) ∈ M at the current instant t and that
Ċ(t) ∈ TCM . The proposed additive decomposition of the total stress [1, 3, 7] follows from
the projection theorem in linear algebra Bowen and Wang [21, Th. 17.3] (provided in Ap-
pendix D) applied to the set of symmetric tensors S ∈ Sym(TXP0 ⊗ TXP0), as the direct
sum Sym = SymR ⊕ SymE. The classic theory [1] is coherent with the constraint manifold
theory [3, 7]. The latter goes one step further. It removes a possible scalar valued indeter-
minacy in the extra stress SE

8 by normalisation. The so-called active stress SA := S − SR is
introduced. There, by postulate, SA is constructed orthogonal to SR in the sense of the La-
grangian inner product (SR , SA)(TXP0,C) = 0, see Appendix B. Imposing this scalar valued
subsidiary condition makes the stress decomposition unique.

3.2 Construction of a Constrained Cauchy–Green/Lagrangian-Metric Tensor

In this subsection the procedure to construct a constrained Cauchy–Green tensor denoted
Ĉ ∈ M by modifying a given actual Cauchy–Green tensor C is presented, i.e., item C1 in
the Introduction, the first of the main contributions of this work. The resulting constructed
tensor Ĉ = Ĉ(C) induces a unique direct sum decomposition of the total stress into workless
and work performing parts of SR and SA corresponding to the actual constraint manifold. Us-
ing the constrained Cauchy–tensor bypasses the need to assume a normalisation condition,
e.g. (SR , SA)C = 0 as in [3, 7]. In view of the definition (2.7), the constrained Cauchy–Green
tensor Ĉ may be interpreted as a constrained convected Lagrangian metric tensor. The con-
strained convected Eulerian metric tensor denoted ĝ is obtained simultaneously.

Definition 3.7 (Constrained Cauchy–Green tensor) For a given arbitrary Cauchy–Green
tensor C, a constrained Cauchy–Green tensor Ĉ = Ĉ(C) is constructed such that,

Ĉ(C) = Ĉ ∈ M , ∀C ∈ Sym
(
T ∗

XP0 ⊗ T ∗
XP0

)
. (3.11)

Remark: In view of the Definition (3.1) the constructed Cauchy-Green tensor satisfies each
constraint as an identity; i.e., φi(Ĉ(C);S ) ≡ φ0

i for i = 1,2, . . . , n. Further, Ĉ has the
following two properties,

Ĉ(C) = C, for given C ∈ M

∂Ĉ
∂φi

= 0, i = 1,2, . . . , n

⎫
⎪⎬
⎪⎭

(3.12)

(3.12)1 implies that no modification is performed if given C ∈ M , and where (3.12)2 implies
that the constrained convected metric Ĉ ∈ M does not depend on any of the constrained
quantities.

7In the sense of the second Cauchy stress principle [1, Eq. (16.5)].
8E.g. the trace of SE in incompressibility.
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Let fi (φi) : Tϕ(X)P → Tϕ(X)P be a bijective linear transformation on the actual place-
ment depending on the single constrained quantity φi ∈ F1 or φi ∈ F2, of the type defined
by Definition 3.1. The composition of n ≤ 6 such mappings is introduced:

f :=
n∏

i=1

fi (φi) ∈ Lin+(Tϕ(X)P ⊗ T ∗
ϕ(X)P

)
. (3.13)

Proposition 3.1 (Construction of a constrained Lagrangian convected metric) Given the
constraint manifold in the sense of Vianello [6] M , the mapping f (3.13), the actual tangent
map F and the background convected metric tensor g(ϕ); the following composition defines
the admissible tangent map:

f−1F =: F̂ such that F̂
∗
g(ϕ)F̂ ∈ M , (3.14)

where the associated constrained Eulerian and Lagrangian convected metric tensors are
identified;

Ĉ := F∗ĝ(ϕ)F where ĝ(ϕ) := f−∗g(ϕ)f−1. (3.15)

Proof In Appendix C it is shown by calculation that Ĉ ∈ M for the three basic cases incom-
pressibility, inextensibility and preservation of angle. �

The constrained Lagrangian convected metric/Cauchy–Green tensor Ĉ ∈ M provides the
proper referential objective strain measure for the internally constrained situation.

Example 1 (Incompressibility) See Appendix C.1. The normalisation by J
− 2/3 > 0, C̄ :=

F∗J − 2/3gF, evidently introduces the volume preserving stretches λ̄a := J−1/3λa , a = 1,2,3,
producing the isochoric spatial metric ḡ := J

− 2/3g, confer (2.6). The constrained Lagrangian
metric tensor is the unimodular right Cauchy–Green stretch tensor, Ĉ = [φ0]2/3C̄ = C̄, where
the referential value φ0 = det[G−1C]C=G = 1.

Example 2 (Two oblique plain extensibility constraints) See Appendix C.2. For two oblique
plain extensibility constraints, φi(C; G−1, Ai) = φ0

i , φi = λi and φ0
i = 1 for i = 1,2, the

constrained Lagrangian metric tensor becomes;

Ĉ := F∗ĝF = C +
2∑

F=1

([
φ0

F

]2 − λ2
F

)(
G∼

F ⊗ G∼
F
)

+ α12

(
φ0

1φ
0
2 − λ1λ2

)
2sym

{
G∼

1 ⊗ G∼
2
}

+ α13

(
φ0

1 − λ1

)
λ3 2sym

{
G∼

1 ⊗ G∼
3
}

+ α23

(
φ0

2 − λ2

)
λ3 2sym

{
G∼

2 ⊗ G∼
3
}

=
⎡
⎢⎣

[φ0
1 ]2 α12φ

0
1φ

0
2 α13φ

0
1λ3

• [φ0
2 ]2 α23φ

0
2λ3

• • λ2
3

⎤
⎥⎦

ab

δa
Aδa

BG∼
A ⊗ G∼

B. (3.16)
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Example 3 (Angle preservation/unshearability) See Appendix C.3. The constraint fixing
the referential direction cosine φ0 = α0

ab between two material line elements Ga and Gb in
TXP0 is;

φ
(
C; G−1,Ga ⊗ Gb

) := αab = α0
ab. (3.17)

Note that Ga and Gb are employed as referential basis vectors and that the second parametric
argument is a structural tensor in the sense of Spencer [16]. The annihilation mapping for
this case f(γab;ga,g∼

b) : Tϕ(X)P → Tϕ(X)P and its inverse is formed in terms of the spatial

natural convected basis vectors:9

f
(
γab;ga,g∼

b
)

:= 1 + γab ga ⊗ g∼
b, det f = 1,

f−1
(
γab;ga,g∼

b
)

:= 1 − γab ga ⊗ g∼
b.

⎫
⎪⎪⎬
⎪⎪⎭

(3.18)

The expression for γab is;

γab = (
αab − α0

ab

)λb

λa

. (3.19)

For a = 1 and b = 2 the resulting constrained Lagrangian metric tensor is obtained as:

Ĉ = F∗ĝF, ĝ = f−∗gf−1,

ĝ
(3.17)=

⎡
⎣

λ2
1 α0

12λ1λ2 α13λ1λ3

• λ2
2 α23λ2λ3

• • λ2
3

⎤
⎦

ab

g∼
a ⊗ g∼

b.
(3.20)

Further, using the constrained convected metric approach the constraint rates are identi-
cally satisfied, by construction.

Proposition 3.2 (dtĈ ∈ TCM ) The strain rate dtĈ computed from the constructed con-
strained convected metric tensor Ĉ ∈ M is an element in the tangent set, i.e.,

dtĈ ∈ TCM . (3.21)

Proof Time differentiating the defining identity of Ĉ (3.11), φi(Ĉ) ≡ φ0
i , yields,

dtφi(Ĉ) = 〈dtĈ, ∂Ĉφi〉 ≡ 0. (3.22)

Since, Ĉ ∈ M , we have that ∂Ĉφi ∈ NCM and in view of (3.22) the strain rate dtĈ is iden-
tically perpendicular to the constraint normal ∂Ĉφi . Thus, dtĈ ∈ TCM . �

On account of, Proposition 3.2 expanding the left hand-side of (3.22) and using (3.11)
we have,

dtĈ
(
C(ϕ)

)= P̂
∗Ċ(ϕ) ∈ TCM , where P̂

∗ := ∂CĈ, (3.23)

9Without normalisation.



On Purely Mechanical Simple Kinematic Internal Constraints 135

for any admissible strain rate Ċ(ϕ) = DC(ϕ)[ϕ̇] ∈ Sym(T ∗
XP0 ⊗ T ∗

XP0), ϕ ∈ C and ϕ̇ ∈
TϕC . Inserting (3.23)1 in (3.22) by duality we obtain,

〈
P̂

∗Ċ(ϕ), ∂Ĉφi

〉= 〈
Ċ(ϕ), P̂∂Ĉφi

〉≡ 0 ⇒ P̂∂Ĉφi = 0, (3.24)

for any constraint normal ∂Ĉφi ∈ NCM ⊂⊂ Sym(TXP0 ⊗ TXP0), i = 1,2, . . . , n and any
admissible strain rate Ċ(ϕ) ∈ Sym(T ∗

XP0 ⊗ T ∗
XP0). The implication of (3.24) is that the

kernel of the fourth order tensor operator P̂ can be identified with the normal set, Ker(P̂) =
NCM since Ĉ ∈ M . Further, time differentiating both sides of the identity (3.12)1 and using
(3.23)1 yields,

P̂
∗Ċ = Ċ ∈ TCM . (3.25)

Proposition 3.3 (Strain rate projection) P̂
∗ is idempotent,

[
P̂

∗]2 = P̂
∗. (3.26)

Proof Multiplying both sides of (3.25) by P̂
∗ and simplifying proves the proposition for

strain rates Ċ ∈ TCM :
([
P̂

∗]2 − P̂
∗)Ċ ≡ 0 ⇒ [

P̂
∗]2 = P̂

∗. (3.27)

It follows that it is a projection on the space of strain rates:

P̂
∗ : Sym

(
T ∗

XP0 ⊗ T ∗
XP0

)→ Sym
(
T ∗

XP0 ⊗ T ∗
XP0

)
�

Further, it follows from the identity P̂
∗∗ = P̂ that P̂ is also idempotent.

Proposition 3.4 (Stress projection) P̂ is a projection on the stress space:

P̂ : Sym(TXP0 ⊗ TXP0) → Sym(TXP0 ⊗ TXP0).

Proof The result follows from inspection of the scalar product,

〈Ċ, P̂∂Cφi〉 : TCM × NCM → R,

where ∂Cφi ∈ Sym(TXP0 ⊗ TXP0) is stress-like.
Further, let subspaces SymR and SymA denote the kernel and the range of P̂ respectively.

The projection theorem in linear algebra, provides the direct sum decomposition,

Sym = SymR ⊕ SymA. (3.28)

�

Assuming the workless stress SR in the form (3.10) the constrained convected metric
approach yields;

P̂SR = 0, (3.29)

for a set of non-trivial scalars �i , i = 1,2, . . . , n.
One of the main results of this note can be stated. Namely, the constrained convected

metric formulation induces a direct sum based decomposition of the stress. The result is
stated by the following proposition;
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Proposition 3.5 (Stress decomposition) For any total stress tensor S ∈ Sym(TXP0 ⊗
TXP0) and projection P̂ := [∂CĈ]∗ by the projection theorem [21, Th. 17.3] in linear al-
gebra we have,

S = SR + SA. (3.30)

Proof SA = P̂S ∈ SymA and SR = (I− P̂)S ∈ SymR respectively.
Here, the workless stress SR is spanned by the normals to the constraint manifold using

(3.10). �

Note, that we have not yet involved any constitutive assumption for the complementary
(working) stress SA.

Next, the projection is constructed explicitly. To that end, both sides of the definition
P̂

∗ := ∂CĈ are multiplied from the right by the tensor ∂φi
C representing the sensitivity of

the Lagrangian metric tensor with respect to the i-th constrained mechanical quantity. Sim-
plifying using (3.12)2 we obtain,

P̂
∗∂φi

C = 0, i = 1,2, . . . , n, (3.31)

which means that ∂φi
C is in the left null-space of P̂.

An essential auxiliary result is derived.

Proposition 3.6 (Induced duality) The tensors ∂φi
C ∈ TCM and ∂Cφi ∈ NCM are dual:

〈∂φi
C, ∂Cφj 〉 = δi

j , i, j = 1,2, . . . , n. (3.32)

Proof The result follows from evaluating the partial derivative, ∂φi
φj .

Its rationale is evident recalling that the constraints in M are required to be linearly
independent. �

The explicit form of the constrained convected metric induced stress projection P̂ can
now be stated.

Proposition 3.7 (Explicit projection representation) The explicit form of the stress projec-
tion P̂ is;

P̂ :=
[

∂Ĉ
∂C

]∗
≡ I−

n∑
i=1

∂φi

∂C
⊗ ∂C

∂φi

. (3.33)

Proof It is deduced using the definition of the null-space (3.24) and that of the left null-
space implied by (3.31). Using (3.32) it is readily checked that it is idempotent and has the
right kernel and range. �

Example 1 (Incompressibility) For incompressibility; φ = J (C), C = J
2/3C̄ which yields

∂J C = 2/3J−1C and ∂CJ = 1/2J C−1. Inserting in (3.33) gives,

P̂ = I− 1
3 C−1 ⊗ C, (3.34)

which is recognized as the deviatoric projection, and which renders the working stress SA

traceless.
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Example 2 (Two oblique plain extensibility constraints) For two oblique plain extensibility
constraints the explicit expression for the stress projection P̂ becomes,

P̂ = I−
2∑

F=1

∂λF

∂C
⊗ ∂C

∂λF

, (3.35)

where

∂λF C = 2λFAF + αFHλH 2 sym
{
G∼

F ⊗ G∼
H
}

+ αF3λ3 2 sym
{
G∼

F ⊗ G∼
3
}

∂CλF = 1
2 λ−1

F AF,

⎫
⎬
⎭

where H = 2,1 for F =1,2. Using idempotency and the left null-space property (3.31) the
working stress SA = P̂S becomes complementary to the workless stress (Definition 3.6), see
Proposition 3.5.

Example 3 (Angle preservation/unshearability) For the angle preservation constraint (3.17)
with a = 1 and b = 2 the stress projection P̂ assumes the form,

P̂ = I− ∂α12

∂C
⊗ ∂C

∂α12
, (3.36)

where

∂α12

∂C
= 1

2

[
λ−1

1 λ−1
2 (G1 ⊗ G2 + G2 ⊗ G1) − α12

(
λ−2

1 A1 + λ−2
2 A2

)]
,

∂C
∂α12

= λ1λ2

(
G∼

1 ⊗ G∼
2 + G∼

2 ⊗ G∼
1
)
.

With the explicit form of the stress projection P̂ in hand theory of the constrained con-
vected metric method can be finalized by interpreting the mechanical meaning of the intro-
duced Lagrange multipliers {�i}n

i=1. Further the projection can be characterized as orthogo-
nal or oblique. Remarkably, the interpretation of the multipliers can be established without
assuming any particular constitutive form of the material.

Proposition 3.8 (Determination of the Lagrange multipliers) The Lagrange multipliers are
determined as,

�i = 1
2 〈∂φi

C, S〉, i = 1,2, . . . , n. (3.37)

Proof The relation is obtained using the derived decomposition of the stress (3.30), the rep-
resentation (3.10) for the workless stress and the duality (3.32). This proposition concludes
the unique stress decomposition using the constrained convected metric approach. �

The result deserves a pair of illustrations.

Example 1 (Incompressibility) Inserting the expression ∂J C from Example 1 into (3.37) the
Lagrange multiplier is determined as the mean hydrostatic stress,

� = 1
3J−1〈C, S〉. (3.38)
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Example 2 (Two oblique plain extensibility constraints) Using the expression (3.35)2 the
Lagrange multipliers are determined by;

�F = 1
2 〈∂λF C, S〉, F = 1,2. (3.39)

For oblique constraints shear stresses are involved.

Example 3 (Angle preservation/unshearability) Using the expression (3.36)3 the Lagrange
multiplier for angle preservation in the 12-plane (a = 1 and b = 2) becomes the associated
shear stress;

� = 1
2 〈∂α12 C, S〉 = λ1λ2〈SG1,G2〉. (3.40)

The last task that needs to be investigated is whether the stress projection P̂ is self-adjoint
or not. That is, if P̂ is an orthogonal or oblique projection. The complementary projection to
P̂, Q := I− P̂ will be a sum of component projections Q̂i . The total projection will be self-
adjoint if all the components are self-adjoint. To simplify matters a bit a single component
of the complementary projection is studied,

Q̂
i = ∂φi

∂C
⊗ ∂C

∂φi

. (3.41)

For arbitrary tensors S, T ∈ Sym(TXP0 ⊗ TXP0) self-adjointness follows if, the left and
right hand-sides below are equal, i.e., LHS = RHS where:

LHS:
(
Q̂

iT ,S
)

C
= 〈∂φi

C,T〉〈[∂Cφi]
,S
〉
,

RHS:
(
T , Q̂iS

)
C

= 〈∂φi
C,S〉〈[∂Cφi]
,T

〉
,

(3.42)

where (∗ ,∗)C is the proper Lagrangian inner product (see Notation (N.2) and Appendix B),
and where the definition T
 := CTC and the identity 〈T
, S〉 = 〈S
, T〉 is used.

Proposition 3.9 (Sufficient condition for self-adjointness) A sufficient condition for
Q̂

i = [Q̂i]∗ is,

βi∂φi
C = [∂Cφi]
, (3.43)

where βi > 0. The multiplier βi can be determined taking the scalar product on both sides
with ∂Cφi and using (3.32);

βi = 〈[∂Cφi]
, ∂Cφi

〉
. (3.44)

Proof The result is deduced by inspection of (3.42). �

Example 1 (Incompressibility) For incompressibility, n = 1: β = 3/4J 2,

β∂J

(
J

2/3C̄
)= 1/2J C = [∂CJ ]
. (3.45)

The spherical projection in incompressibility is shown to be self-adjoint. Therefore, the
stress decomposition in incompressibility is governed by an orthogonal projection.
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Example 2 (Two oblique plain extensibility constraints) For two oblique plain extensibility
constraints, n = 2,F =1,2: βF = 1/4λ2

F,

βF∂λF C = 1
2λ3

FG∼
F ⊗ G∼

F + 1
2αFHλ2

FλH sym
{
G∼

F ⊗ G∼
H
}

+ 1
2αF3λ

2
Fλ3 sym

{
G∼

F ⊗ G∼
3
}

[∂CλF]
 = 1
2λ−1

F gJFG∼
J ⊗ gKFG∼

K, (sum J,K)

⎫
⎪⎬
⎪⎭
(3.46)

where H = 2,1 for F = 1,2. The constrained spatial material/convected metric tensor ĝ(ϕ)

will be oblique, in general. The stress decomposition induced by the constrained convected
metric approach will therefore be governed by an oblique projection in case of two oblique
simple extensibility constraints.

Example 3 (Angle preservation/unshearability) The sufficient condition for self-adjointness
Proposition 3.9 for angle preservation in the 12-plane (a = 1 and b = 2) is set up using
expressions (3.36)2,3 yielding β = 1/2(1 − α2

12)
2 and,

β∂α12 C = 1
2

(
1 − α2

12

)2
λ1λ2

(
G∼

1 ⊗ G∼
2 + G∼

2 ⊗ G∼
1
)

[∂Cα12]
 = 1
2

[
λ−1

1 λ−1
2 gJ1gK2

(
G∼

J ⊗ G∼
K + G∼

K ⊗ G∼
J
)

− α12

(
λ−2

1 gJ1gK1 + λ−2
2 gJ2gK2

)
G∼

J ⊗ G∼
K
]
,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.47)

for J,K = 1,2,3. For α12 = 0,

β∂α12 C = λ1 λ2
1
2

(
G∼

1 ⊗ G∼
2 + G∼

2 ⊗ G∼
1
)

[∂Cα12]
 = gJ1gK2 λ−1
1 λ−1

2
1
2

(
G∼

J ⊗ G∼
K + G∼

K ⊗ G∼
J
)
,

⎫
⎪⎬
⎪⎭

(3.48)

for J,K = 1,2,3. The induced stress projection is orthogonal, for an orthogonal spatial
metric. Otherwise it is oblique.

Thus, it can be concluded that the constrained convected metric approach induced de-
composition of the stress may be orthogonal or oblique. The outcome is case dependent.10

4 Working Stress Determination; Hyperelasticity, Clausius-Planck
Procedure

In this section the consequences of the of simple internal constraints on the constitutive as-
pects are considered. The determination of the constitutive expression for the working stress
induced by the constrained convected metric approach is outlined in a purely mechanical
situation, using the Clausius-Planck procedure. For brevity and transparency the procedure
is illustrated assuming a hyperelastic material response.

Proposition 4.1 (Lagrange multiplier/Clausius-Planck procedure) A twice time continu-
ously differentiable strain energy function Ψ (C) ≡ Ψ (Ĉ) with Ĉ ∈ M ⊂⊂ Sym+(T ∗

XP0 ⊗

10As opposed to the constraint manifold approach [7] which prescribes an orthogonal decomposition.
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T ∗
XP0) (Definition 3.2) is assumed. Parametric dependence on structural tensors is sup-

pressed for transparency. The strain energy is stated in the following augmented Lagrange
multiplier form;

Ψ
(
C,

{
�i
}n

i=1

)= Ψ (Ĉ) +
n∑

i=1

�iφ̂i

(
C;φ0

i

)
, for Ĉ(C) ∈ M . (4.1)

Inserting this ansatz into the Lagrangian form of the Clausius-Planck law,

〈
1
2 Ċ, S

〉− Ψ̇ ≥ 0, (4.2)

yields the following expression for the total stress induced by the constrained convected
metric approach;

S = SR + SA,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SR =
n∑

i=1

2�i ∂φ̂i

∂C
, �i = 1

2 〈∂φi
C,S〉,

SA = P̂

[
2
∂Ψ (Ĉ)

∂Ĉ

]
,

(4.3)

where P̂ is the stress projection, see Propositions 3.4 and 3.7.

Proof The result is obtained applying the celebrated Coleman and Noll procedure [2]. It
states that the arguments of Ċ and �̇i must vanish independently. The argument of Ċ yields
(4.3). The latter returns the imposed constraints, φi(C;S ) = φ0

i , for i = 1,2, . . . , n. �

Remark 1 The strain energy function Ψ (Ĉ; . . .) may model an isotropic or anisotropic hy-
perelastic material. The internal constraints will mask certain of its response functions in
view of that Ĉ ∈ M . For example, the third invariant I3(Ĉ) := det [CG−1] ≡ 1 for incom-
pressibility and I4(Ĉ; A1) := 〈C, A1〉 ≡ 1 for a single internal constraint coinciding with the
preferred direction given by A1, are trivial, respectively.

Remark 2 Since P̂
2 = P̂ is idempotent one may write,

SA = P̂

[
2
∂Ψ (C)

∂C

]
, with Ψ (C) ≡ Ψ (Ĉ), Ĉ ≡ C ∈ M , (4.4)

by assumption. The implication of this form is two-fold: first, notably the argument within
brackets is now the unconstrained form of a hyperelastic solid, second, the form underlines
the fact that the constrained convected metric approach separates the kinematic aspect from
the constitutive one. In other words, an unconstrained material may for example be subjected
to a testing programme that keeps the stretch fixed in a given direction. It will respond es-
sentially as if it was subject to an internal extensibility constraint. Recall that the projection
P̂

∗ := ∂Ĉ/∂C is induced by the constructed Ĉ ∈ M . Note that, it is not claimed that the con-
structed constrained Lagrangian convected metric tensor Ĉ is unique. However, in view of
the projection theorem (see Appendix D, and Oden and Demkowicz [32, Prop. 2.7.1, p. 172])
P̂ induces a unique decomposition of the hyperelastic stress response function ∂Ψ (C)/∂C.
Given the constraint manifold it determines the corresponding work performing stress.
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Remark 3 (Uniqueness of F̂) The Flory split [22] of the deformation gradient determines
its unimodular form det F̂ ≡ 1 by isotropic scaling F̂ := (det F)−1/31F using the actual di-
latation α1, α = (det F)−1/3. Hence all components Fk

A are scaled. The unimodular form is
determined uniquely.

Given a referential preferred unit direction M̂1 ∈ P0 the associated stretch α in the
transplacement ϕ is calculated as α2 = M̂1 · CM̂1. Using isotropic scaling by α−1 yields
F̂1 = α−11F, such that, F̂1M̂1 = α−1αm̂1 = m̂1, where ‖m̂1‖ = 1. Thus, F̂1 is an ad-
missible deformation gradient for a simple inextensibility in the preferred direction M̂1.
The presented method in Sect. 3.2 yields a different admissible candidate F̂2 = [1 +
(α−1 − 1)m̂1 ⊗ m̂∼ 1]F such that F̂2M̂1 = m̂1. The two methods modify the volume ratio

as, det F̂1 = α−3J and det F̂2 = α−1J , where the determinant rules det [aT] = a3 det T and
det [b1 + cv ⊗ v] = b2(b + c) are used, respectively. Two comments are in place:

(1) The isotropic scaling changes the volume ratio by the factor α−3, while the advo-
cated method scales the actual volume ratio by the factor α−1. Assume that the ac-
tual deformation gradient is a simple extension without lateral contraction in the
preferred direction M̂1. The presented construction method in Sect. 3.2 properly
yields an identity mapping F̂2 = I and the right volume ratio det [F̂2] = 1, while
the isotropic scaling version yields an admissible but physically not acceptable re-
sult, F̂1 = α−1I + (1 − α−1)m̂1 ⊗ M̂∼ 1 and a wrong, non-trivial, modified volume ratio,

det [F̂1] = α−2[α−1 + (1 − α−1)] = α−2.
(2) Further it is evident that the isotropic scaling method can in general only provide a

candidate admissible deformation gradient for a case with a single constraint.

In conclusion, the presented method in Sect. 3.2 constructs an admissible deformation gradi-
ent which is physically acceptable. It has been demonstrated also for cases with two simul-
taneous constraints, see Example 2 and Remark 7. Here it is shown, that other constructed
candidates may be members of the constraint manifold, but may not necessarily be physi-
cally acceptable.

5 Extension to Nearly-Constrained Materials and Unconstrained
Ones—The Generalised Metric Approach

It would be preferred that an unconstrained material gradually transforms into the corre-
sponding internally constrained material as its response in a certain mode of deformation
declines when penalized by increasing the governing material parameter. The literature is
however filled with separate constitutive postulates for uncoupled nearly-constrained mate-
rials. Again, near incompressibility relying on the celebrated Flory split of the deformation
gradient F = J 1/3F̄ provides a rich spectrum of such contributions. A prominent one is
the pressure, dilatation, unimodular Cauchy–Green tensor, (p,J, F̄

∗
gF̄) three field formu-

lation of the virtual work principle by Simo, Taylor and Pister [14]. This class of consti-
tutive assumptions can be bypassed. It has no explicit part in the relaxation of constraints
presented here. In this section a target component constraint manifold Mφi

is (on–off) re-
laxed. Or, when an additional physical quantity φ(C) becomes involved in a generalised
constraint.
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5.1 The Generalised Metric Approach

In this subsection the procedure to construct a generalised Cauchy–Green/Lagrangian-
metric tensor denoted C̃ by modifying a given constrained Cauchy–Green/Lagrangian-
metric tensor Ĉ is presented, i.e., item C2 in the Introduction, the second main contributions
of this work.

A question is whether the constrained convected metric Ĉ can be relaxed keeping the
same stress decomposition, and simultaneously transforming an associated Lagrange multi-
plier to a material response function. The answer is affirmative and the solution is strikingly
simple, close and rational. The generalising steps are outlined very briefly, omitting techni-
cal details.

Definition 5.1 (Generalised constraint—variable substitution) A generalised constraint is
equivalent with a variable substitution of the constrained quantity φ(C) by an, in the strong
point-wise sense (

.=), equivalent auxiliary scalar independent strain-like variable φ̃, replac-
ing a kinematic quantity in one of the basic families F1 or F2, see Definition 3.1;

φ
(
C(ϕ);S

) .= φ̃(X). (5.1)

The generalised manifold is marked by a tilde sign M̃φ ;

M̃φ := {
C(ϕ) ∈ Sym+

(
T ∗

XP0 ⊗ T ∗
XP0

) ∣∣ φ
(
C(ϕ);S

) .= φ̃(X)
}
. (5.2)

Remark 4 It is noteworthy that the simple internal constraint (3.1) is replaced by a variable
substitution (5.1). Formally, the parametric dependence on a referential value φ0 is replaced
by an independent variable φ̃. However, in the left hand-side ϕ ∈ C while the independent
field in the right hand-side is in an auxiliary scalar point field. The matter is clear considering
a weak formulation, see [31].

Remark 5 In computational mechanics, i.e., in finite precision arithmetic, a relaxed con-
straint manifold is often employed approximating the associated limiting one,

lim
φ̃i→φ0

i
(G)

M̃φi
= Mφi

, i = 1,2, . . . , r.

Not all constraints need to be relaxed, r ≤ n. For transparency and simplicity, however, it is
assumed henceforth that all constraints are relaxed, r = n:

M̃ :=
n⋂

i=1

M̃φi
. (5.3)

Definition 5.2 (Generalised Lagrangian metric) A generalised Lagrangian metric tensor,

C̃ = C̃
(
C, {φ̃i}n

i=1

) ∈ Sym+
(
T ∗

XP0 ⊗ T ∗
XP0

)×R
r ,

satisfies by construction the variable substitutions in the generalised constraint manifold M̃

(5.3) identically:

C̃ ∈ M̃ . (5.4)
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Each variable substitution is satisfied as an identity, point-wise for X ∈ P0;

φi(C̃;S ) ≡ φ̃i ⇒ C̃ ≡ C, (5.5)

in the strong sense, where C̃ should be understood as the value of the tensor function
C̃(C(ϕ), {φ̃i}n

i=1;S ).

A mode of deformation which was extracted/annihilated from the spatial metric (Propo-
sition 3.1) can be reinstated using the same mapping (3.13). The change of variable (5.1)
can be performed. The following reinstatement mapping is introduced to that end;

f̃ :=
r∏

i=1

f(φ̃i) ∈ Lin+(Tϕ(X)P ⊗ T ∗
ϕ(X)P

)×R
r . (5.6)

Proposition 5.1 (Preparation of a generalised Lagrangian metric) Given the actual gener-
alised constraint manifold M̃ , (5.3), the constrained tangent map F̂ and the corresponding
constrained spatial metric ĝ, to be relaxed; the following composition defines the admissible
generalised tangent map:

f̃F̂ =: F̃ such that F̃
∗
ĝF̃ ∈ M̃ , (5.7)

where the associated generalised spatial and Lagrangian metric tensors are identified;

C̃ := F∗g̃F where g̃ := f̃
∗

ĝ f̃. (5.8)

Proof This proposition is proven in exactly the same way as Proposition 3.1, see Ap-
pendix C. The insertion mapping f(φ̃) is used instead of the annihilation mapping f−1(φ). �

Proposition 5.2 (dtC̃ in the tangent set TCM̃ ) The material time rate dtC̃ is in the tangent
set to the generalised manifold, denoted TCM̃ ;

dtC̃ ∈ TCM̃ :=
n⋂

i=1

TCM̃φi
,

TCM̃φi
:= {

Ċ ∈ Sym
(
T ∗

XP0 ⊗ T ∗
XP0

)
, dtφ̃i ∈R

∣∣ 〈Ċ, ∂Cφi(C;S )
〉 .= dtφ̃i

}
.

⎫
⎪⎪⎬
⎪⎪⎭

(5.9)

Proof The generalised convected Lagrangian metric C̃ ∈ M̃ , by (5.5) φi(C̃) ≡ φ̃i for all
variable substitutions i;

dtφi(C̃) − dtφ̃i = 〈
dtC̃, ∂C̃φi(C̃)

〉− dtφ̃i ≡ 0,

for all variable substitutions i. �

The equivalence (5.5) implies the rate equivalence,

dtC̃ ≡ Ċ. (5.10)

From the time rate of (5.1) and (5.9) the following identity it follows that,

∂C̃φ(C̃) = ∂Cφ(C). (5.11)
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Using (5.11) the time rate dtC̃ is expanded as,

dtC̃ =
[
P̃

∗ +
n∑

i=1

∂C̃

∂φ̃i

⊗ ∂φi

∂C

]

︸ ︷︷ ︸
=I

Ċ, P̃
∗ := ∂C̃

∂C
, (5.12)

where the under-braced conclusion is obtained in view of (5.10). Using (5.11) the duality
(3.32) can readily be generalised to,

〈∂φ̃i
C̃, ∂Cφj 〉 = δi

j , i, j = 1,2, . . . , n. (5.13)

Computing the partial derivative ∂φ̃i
φ̂j (C; φ̃j ).

Proposition 5.3 (Generalised strain rate and stress projection) The generalised metric ap-
proach induces a projection of the strain rate;

P̃
∗ := ∂C̃

∂C
≡ I−

n∑
i=1

∂C̃

∂φ̃i

⊗ ∂φi

∂C
. (5.14)

Idempotency [P̃∗]2 = P̃
∗ follows using the generalised duality (5.13). The stress decomposi-

tion is obtained as the dual projection, P̃ = P̃
∗∗:

P̃ :=
[

∂C̃
∂C

]∗
≡ I−

n∑
i=1

∂φi

∂C
⊗ ∂C̃

∂φ̃i

. (5.15)

Proof The identity (5.14)2 follows from (5.12) and (5.10). �

Proposition 5.4 (Constraint relaxation—the generalised metric method)

1. Target constraints φi(Ĉ) = φ0
i , i = 1,2, . . . , r (Definition 3.1) are changed to variable

substitutions using Definition 5.1.
2. The generalised metric C̃ is prepared according to the Proposition 5.1.
3. The Coleman and Noll procedure Proposition 4.1 is recalculated taking into considera-

tion the new r ≤ n auxiliary kinematic variables {φ̃i}r
i=1, i.e., dtφ̃i �= 0.

4. The stress decomposition is determined using the projection (5.15).

The r-relaxed components in SR are no longer reactions but constitutively determinate.

Proof There is nothing really to prove in this procedure. The outcome of Step 3 is stated in
the next Proposition 5.5. Step 4 is given by Proposition 3.5 exchanging P̂ by P̃. �

To each auxiliary kinematic variable φ̃i a work-conjugate material stress response func-
tion, denoted �̃i is associated, which previously was the Lagrange multiplier, �i , see Defini-
tion 3.6. Their determination (Step 3 in Proposition 5.4) assuming hyperelasticity is outlined.

Proposition 5.5 (New stress response functions) In view of (4.3)3 and (4.4) the new stress
response functions are determined as follows,

�̃i =
〈

1
2

∂C
∂φi

,2
∂Ψ (C)

∂C

〉
≡
〈

1
2

∂C̃

∂φ̃i

,2
∂Ψ (C̃)

∂C̃

〉
= ∂Ψ

∂φ̃i

, i = 1,2, . . . , r, (5.16)
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where C̃ ≡ C ∈ M̃ . Here dim C̃ = dim C = 6 − (n − r) where r is the number of relaxed
constraints.

Proof The result relies on the variable substitution (5.1) which implies C̃ ≡ C ∈ M̃ which
in turn implies Ψ (C̃) ≡ Ψ (C). The final result (5.16)3 is understood folding the duality
parings from right to left. �

Example 1 (Incompressibility) Applying (5.16) to relaxed incompressibility and simplify-
ing one then obtains the classic constitutive expression for the volumetric response function:

�̃ = 〈
1
2∂J C,2∂CΨ

〉= ∂J Ψ. (5.17)

Example 2 (Two oblique plain extensibility constraints) Applying (5.16) relaxing two
oblique plain extensibility constraints and simplifying one then obtains the constitutive ex-
pression for the fibre tension response functions:

�̃F = 〈
1
2∂λF C,2∂CΨ

〉= ∂λFΨ, for F = 1,2. (5.18)

Example 3 (Angle preservation/unshearability) Relaxing an angle preservation constraint
in the 12-plane (a = 1 and b = 2) one obtains the constitutive expression for the associated
shear stress,

�̃ = 〈
1
2∂α12 C,2∂CΨ

〉= ∂α12Ψ. (5.19)

Remark 6 In view of the folding property of projections11 the r relaxed responses can be
removed from the decomposition in the strong point-wise sense. Considering a weak formu-
lation it is however an advantage, or even the purpose, to keep the set of auxiliary variables
{φ̃i , �̃

i}r
i=1 separate allowing a mixed formulation. The finite element realisation of a rein-

forcement of a material by two oblique strongly anisotropic fibre families is considered in
the recently published work [31].

6 Discussion

The presented constrained convected metric approach to hyperelastic solids with simple
internal constraints is coherent in essence with the classic theory Truesdell and Noll [1]
and with the constraint manifold approach Podio-Guidugli and associates [4–6] and Carl-
son et al. [7]. From a historical point of view, the idea developed from two observations.
The first was the view that the right Cauchy–Green tensor may be seen to be the referential
Lagrangian convected metric tensor, obtained by pull-back of the spatial metric tensor,12

the second was that its unimodular version F∗ḡF = F̄
∗
gF̄13 satisfies the incompressibility

constraint identically, by construction. The employment of given preferred directions in the

11
P+Q = I.

12Follows on using tensor algebra on manifolds [12, 13], where C : TXP0 → T ∗
XP0, is metric like, while

in classic continuum mechanics [1] it is introduced as FTF : TXP0 → TXP0 with no immediate connection
to the spatial metric tensor.
13See the connection to the celebrated split of the deformation gradient F = J 1/31F̄ due to Flory [22] used
in the Simo, Taylor and Pister [14] three field formulation of the virtual work principle.
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sense of Spencer [16] constructing a special-purpose local-triad based convected parametri-
sation is a key element to handle especially multiple anisotropic constraints with oblique
preferred directions, [31].

The principle of determinism for simple materials subject to internal constraints [1,
Sect. 30, p.70] introduces an additive decomposition of the stress. Without a normalisa-
tion condition it is not unique. In the classic theory the normalisation condition is optional;
it is suggested by example [1, Sect. 30, Eq. (30.17)] see also Spencer [16, p. 184]. It serves
two purposes. First it is used to remove indeterminacies from the work-performing stress.
Having done that, it enables the mechanical interpretation of the Lagrange multiplier(s), e.g.
as the mean hydrostatic stress or as a uniaxial tension.

In the constraint manifold theory Carlson et al. [7] it is assumed that the work-performing
stress is perpendicular to the workless stress. It must be emphasized that this is an assump-
tion. To my best knowledge there is no generally accepted principle that prescribes it. One
of the main results of this contribution is that the relation between the work-performing
stress and the workless stress is determined by the constructed constrained Cauchy–Green
tensor to be an element of the constraint manifold, starting from an arbitrary actual Cauchy–
Green tensor. It is found that these stresses are not always perpendicular. Sometimes they
are oblique. Two examples with possible oblique stress projections (decompositions) are
provided. Inextensibility in two oblique preferred directions and a preservation of the angle
between two oblique preferred directions. The consequences are interesting and reaching
beyond the scope of this work.

Further, it is noted that the direct sum decomposition of the Lagrangian stretch rate is
induced by the fact it is an element of the tangent set to the constraint manifold. The direct
sum decomposition of the total stress follows from duality. Remarkably, it can be completed
formally without any reference to a particular material law, in line with the observation by
Carlson et al. [7]. The determination of the actual work performing stress response evidently
requires a material law. The Clausius-Planck procedure is used herein for that purpose. It
is a restriction to the purely mechanical situation of the celebrated Coleman–Noll approach
based on the Clausius-Duhem law, see Coleman and Noll [2]. The restriction to finite hyper-
elasticity is done purely for transparency.

The classic theory of internal constraints requires the Cauchy–Green tensor to be in the
constraint manifold. Adding this requirement to the the set of admissible transplacements
(Definition 3.2) shows that a trial solution is requested to satisfy each kinematic constraint
point-wise. Further, the classic theory of internal constraints requires the time rate of the
Cauchy–Green stretch to be in the tangent set associated with the constraint manifold, at the
admissible strain. Adding this requirement to the the set of admissible variations (Defini-
tion 3.5) shows that a test function δϕ ∼= �ϕ = ϕ̇�t is requested to satisfy the first variation
of each constraint, point-wise. From the computational point of view, this is very hard to
realise. It is known that it is difficult to construct test functions in three-space which are
exactly solenoidal point-wise. A closer look at equation (3.23) indicates that the use of
the modified Cauchy–Green tensor (Definition 3.7) enables the use of standard test func-
tions.

The generalisation of the method for unconstrained materials is almost trivial. It relies
on the observation that the Lagrange multiplier method can be changed into a variable sub-
stitution. A constraint is transformed into a variable substitution, introducing auxiliary kine-
matic variables. In essence, the transformation yields a Hu-Washizu approach. Relaxing
the constraints turns Lagrange multipliers into material response functions. The number of
constraints is reduced accordingly. Point-wise they may be folded on account of the pro-
jection theorem in linear algebra [21, Th. 17.3]. The relaxed degrees of freedom may be
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kept providing a basis together with the fully constrained ones for a mixed formulation.
This possibility is exercised in the recently published work [31]. It should be noted that the
compositions employed to annihilate and reinstate deformation modes are performed in the
spatial configuration, without the introduction of an intermediate configuration, as opposed
to other celebrated multiplicative splits of the deformation gradient, e.g. the one used for
elasto-plasticity due to Lee [23].

Finally, the presentation of the constrained convected metric method is confined to sim-
ple or composed elementary constraints concerning compressibility, extensibility in a given
preferred direction, or to the change of the angle between a pair of preferred directions. More
general simple internal constraints, like for example the Ericksen constraint, 〈C, G−1〉 = 3,
fall outside the scope of this work.

7 Summary, Conclusion and Outlook

The purely mechanical consequences of imposing simple kinematic internal constraints
are discussed. The constraint manifold restricting the set of admissible transplacements is
formed. A Lagrangian setting using the reduced, objective, form of a constraint in terms
of the right Cauchy–Green stretch tensor is employed. Starting from an arbitrary Cauchy-
Green tensor a modified Cauchy-Green tensor is constructed that satisfies all the subsidiary
conditions in the constraint manifold as identities. It is shown that the time rate of a sub-
sidiary condition written in terms of the modified Cauchy-Green tensor induces a projec-
tion. It defines the admissible Lagrangian strain rate as an element in the tangent set to the
constraint manifold. By duality it defines a corresponding stress decomposition. It defines
a work performing stress. A duality condition defining the complementarity between the
workless part of the stress and the work performing part is identified. It also governs the
determination of the Lagrange multipliers in terms of the total stress. The stress decompo-
sition need not be orthogonal. It may be oblique. The sufficient condition for orthogonality
(self-adjointness) is derived. Examples of oblique decompositions are provided. The deter-
mination of the work performing constitutive stress response function is exemplified using
the Coleman and Noll procedure [2] based on the Clausius-Planck law for hyperelasticity.
The theory and procedure for the modification of an arbitrary Cauchy-Green tensor such
that it satisfies all constraints point-wise for an actual transplacement extends the classic
theory [1] and the constraint manifold theory [7], remaining coherent with the classic foun-
dations.

The theory and procedure for the relaxation of constraints seamlessly extending to un-
constrained materials is shown. It gives rise to the so-called generalised metric method.
A unified theory for a number of verified finite element applications [14, 27–31] is pre-
sented. Possible extensions are indicated, for example, formulation of a preservation of the
angle between two families of material line elements alone or in combination with inex-
tensibility or incompressibility. Extensions to non-isothermal conditions. Consideration of
other not so elementary constraints, for example the Ericksen constraint etc.
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Appendix A: Notation

Vectors are denoted by boldface italic lower and upper case letters, e.g. a,b, c and A,B,C
respectively. Linear forms or co-vectors are denoted with an under-set tilde, e.g. a∼, b∼, c∼
and A∼ ,B∼ ,C∼ respectively. Second order tensors are denoted by boldface Roman or Greek

lower and upper case letters, e.g. τ , a, g and S, A, G. Fourth order tensors are denoted by
blackboard bold lower and upper case letters, e.g. p and P̂ respectively. In particular, I
denotes the fourth order identity mapping, i.e., IT = T for all T. The contraction, duality-
pairing, of co-vectors with vectors on a given vector space V = (F ;R), is denoted as,

〈•,•〉V : V ∗ × V →R,
(
B∼ ,A

)
�→

〈
B∼ ,A

〉
V

∈R, (N.1)

where for vectors F = R
3. The same bracket notation (〈•,•〉V ) is used for the dou-

ble contraction of compatible second order tensors defined on F = R
3 ⊗ R

3 and on
F = sym{R3 ⊗R

3} respectively. Whenever there is no ambiguity to which vector space
the contraction is referred to, the subscript index of 〈•,•〉V will be suppressed. Further, the
space of linear transformations Lin(V ;W ) is identified (∼=) with the tensor space W ⊗ V ∗,
i.e.,

Lin(V ;W ) ∼= W ⊗ V ∗.

Furthermore, the inner product or dot product between a pair of vectors (a,b) on a metric
space (V , g), with metric tensor g : V → V ∗ is defined by,

(· , ·)g : V × V →R, (a,b) �→ (a ,b)g := 〈ga,b〉V , (N.2)

where the metric g maps a vector into its associated linear form in the dual space,
ga =: a∼ ∈ V ∗. In the literature the associated linear form a∼ is sometimes denoted a
. When

the basic metric on V is used, the notation is simplified by dropping the subscript, e.g.
(a ,b)g = (a ,b). When the inner product between a and b is computed using the Euclidean
dot-product the standard notation, a · b, is used. TXP0 and TxP will denote tangent vector
spaces to Euclidean referential and spatial point manifolds P0 and P , respectively. Finally,
material time-differentiation is denoted by an over-dot ( ˙ ). Finally, the norm of a vector a
is denoted ‖a‖ := √

(a ,a).

Appendix B: The Proper Lagrangian Inner Product

The inner product of vectors P ,R ∈ (TXP0, C) using the Lagrangian metric tensor C;
(P ,R)C := 〈CP ,R〉TXP0 provides the proper referential inner product to the standard
spatial inner product of the vectors p = FP ∈ Tϕ(X)P and r = FR ∈ Tϕ(X)P in the defor-
mation, ϕ(X, t). Then, 〈CP ,R〉TXP0 = 〈gp, r〉Tϕ(X)P . The corresponding inner product

(T , S)C between tensors T, S ∈ TXP0 ⊗ TXP0 is used henceforth. Further, P 
 := CP ∈
T ∗

XP0 is the linear form associated with P ∈ TXP0, using the metric C, and T
 := CTC ∈
T ∗

XP0 ⊗ T ∗
XP0 denotes the associated tensor corresponding to T ∈ TXP0 ⊗ TXP0.
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Appendix C: Proof of Proposition 3.1

C.1 Incompressibility

Given the actual spatial metric tensor g, the deformation gradient F, the constraint manifold
Minc = {C = F∗gF | det[CG−1] − 1 = 0} and the spatial bijective mapping,

f(J ) : Tϕ(X)P → Tϕ(X)P,

f(J ) := J 1/31, J = det F,

}
(C.1)

where 1w = w is the identity mapping on Tϕ(X)P . The dilatation in the actual deformation
is annihilated point-wise computing the unimodular deformation gradient, F̂ = f−1(J )F =
(det F)−1/3F, i.e., det F̂ = 1. Compute the unimodular right Cauchy-Green stretch tensor
(Lagrangian metric tensor), Ĉ = F̂

∗
gF̂ = F∗ĝF, where ĝ := f−∗gf−1. By the product rule

det[ABC] = det A det B det C, det Ĉ = J−1J 2J−1 = 1, which proves the required unimodu-
larity of the constrained Lagrangian metric tensor, Ĉ ∈ Minc.

C.2 Inextensibility

The constraint manifold for a simple inextensibility in the referential unit direction D is
defined by,

Miext =
{
C = F∗gF

∣∣ ‖D‖C − 1 = 0
}
. (C.2)

The spatial bijective uniaxial extension mapping for this case is,

f(λ;d) : Tϕ(X)P → Tϕ(X)P,

f(λ;d) := 1 + (λ − 1)d ⊗ d∼, λ = (d ,FD)g,

⎫
⎬
⎭ (C.3)

where FD = λd , ‖d‖ = 1, 〈d∼,d〉 = 1. The stretch λ is annihilated point-wise in the spatial

unit direction d computing the simply inextensible deformation gradient F̂ by the following
composition,

F̂ := f−1F =
[
1 + (

λ−1 − 1
)
d ⊗ d∼

]
F,

F̂D = λd − λd + λ−1λd = 1d.

⎫
⎬
⎭ (C.4)

The simply inextensible right Cauchy-Green stretch tensor (Lagrangian metric tensor) is
computed as, Ĉ = F̂

∗
gF̂. Evaluating the length of the material referential material line el-

ement in terms of the Lagrangian inextensible metric Ĉ, and using the expressions (C.4)
yields,

‖D‖Ĉ = ‖F̂D‖g = ‖d‖g = 1. (C.5)

Inserting (C.5) into (C.2) shows that Ĉ ∈ Miext, which completes the proof.

C.3 Preservation of Angle

The constraint manifold for the preservation of the angle between two referential unit direc-
tions D and E with mutual direction cosine α0

(DE)
:= (E ,D) is,

Minsh = {
C = F∗gF

∣∣ α(DE) − α0
(DE)

= 0
}
, (C.6)
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where α(DE) := λ−1
(D)λ

−1
(E)(E ,D)C is the Lagrangian expression for the corresponding spatial

direction cosine, wherein λ(D) := ‖D‖C and λ(E) := ‖E‖C are the stretches in these direc-
tions. Using spatial unit direction vectors d := λ−1

(D)FD, |d| = 1 and e := λ−1
(E)FE, ‖e‖ = 1,

the spatial bijective simple shear-like mapping for this case is given by,

f(γ ;d, e) : Tϕ(X)P → Tϕ(X)P,

f(γ ;d, e) := 1 + γ d ⊗ e∼, γ := α(DE) − α0
(DE)

,

⎫
⎬
⎭ (C.7)

where 〈d∼,d〉 = 1, 〈e∼, e〉 = 1 and 〈d∼, e〉 = 0. The shear is annihilated point-wise by the

following composition,

F̂ = f−1F =
[
1 − γ d ⊗ e∼

]
F,

F̂D = λ(D)d − γ λ(D)

〈
e∼,d

〉
d = λ(D)d,

F̂E = λ(E)e − γ λ(E)

〈
e∼, e

〉
d = λ(E)(e − γ d).

(C.8)

The right Cauchy-Green stretch tensor (Lagrangian metric tensor) for a simple preservation
of angle is computed as, Ĉ = F̂

∗
gF̂ = F∗ĝF. Evaluating the inner product between E and

D in terms of the Lagrangian inshearable metric Ĉ, and using the expressions (C.8) yields,

(E ,D)Ĉ = 〈ĈE,D〉 = (F̂E , F̂D)g = λ(E)λ(D)

([e − γ d] ,d)
g

= λ(E)λ(D)(α(DE) − γ ) = λ(E)λ(D)α
0
(DE)

(C.9)

Inserting (C.9) in (C.6) shows that Ĉ ∈ Minsh, which completes the proof.

Remark 7 The simultaneous annihilation of a dilatation and a volume preserving stretch in
the referential direction D in the deformation ϕ(X, t) with deformation gradient F = Gradϕ

is performed using a simple uniaxial extension with a lateral contraction, confer (C.3). The
annihilation mapping used is;

f(λ;d, �) : Tϕ(X)P → Tϕ(X)P,

f(λ;d, �) := �λ
(

1 − d ⊗ d∼
)

+ λd ⊗ d∼, det f = �3λ2,

⎫
⎬
⎭ (C.10)

where � = �(λ) > 0. It is noted that for � = λ−1 the linear transformation f is purely uniaxial,
while for � = λ−2/3 it is volume preserving, det f = 1, with an adjustment in the perpendicular
direction 1 − d ⊗ d∼. Fixing � = λ−2/3 it can be decomposed into a pure dilatation and a

unimodular simple extension with lateral contraction,

f(λ̄, J ;d) = δ(J )f̄(λ̄;d),

⎧
⎨
⎩

δ(J ) := J
1/31,

f̄(λ̄;d) := λ̄−1/2

(
1 − d ⊗ d∼

)
+ λ̄d ⊗ d∼, det f̄ ≡ 1,

(C.11)

where J = det F is the actual dilatation, and λ̄ = 〈d∼, F̄D〉 is the actual volume preserving

stretch in the referential direction D defined as λ̄ := J−1/3λ and where F̄ := J
1/3F is the actual

unimodular deformation gradient.
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Appendix D: The Projection Theorem

If linear transformation P : V → V is a projection, then

V = R(P) ⊕ K(P), (D.1)

where R(P) and K(P) denote the range and the kernel of P.

Proof Let v be an arbitrary vector in V . Let,

w = v − Pv. (D.2)

Then on account of P2 = P, Pw = v − P(Pv) = Pv − Pv = 0. Thus, w ∈ K(P). Since Pv ∈
R(P), (D.2) implies that,

V = R(P) + K(P).

To show that R(P)∩K(P) = {0}, let u ∈ R(P)∩K(P). Then, since u ∈ R(P) for some v ∈ V ,
u = Pv. But since, u is also in K(P),

0 = Pu = P(Pv) = Pv = u,

which completes the proof. �
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