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Abstract A constitutive format for the third-order gradient elasticity is suggested. It in-
cludes both isotropic and anisotropic non-linear behavior under finite deformations. Appro-
priate invariant stress and strain variables are introduced, which allow for reduced forms
of the elastic energy law that identically fulfill the objectivity requirement. After working
out the transformation behavior under a change of the reference placement, the symmetry
transformations for third-order materials can be introduced. After the mechanical third-order
theory, an extension to thermoelasticity is given, and necessary and sufficient conditions are
derived from the Clausius-Duhem inequality.
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1 Introduction

After the seminal papers of Toupin [37] and Mindlin [28] on gradient materials, such exten-
sions of the classical simple materials have become the subject of steadily growing research
interest. Mostly surface effects are addressed as in [12, 13, 28, 34, 39], dislocation phenom-
ena as in [16, 25, 26], or length scale effects as in shear banding [1, 40] or torsion [20]
or indenter tests [27]. The majority of these publications consider only the inclusion of the
second deformation gradient. However, Mindlin has already shown half a century ago, that
third gradient material models, i.e., frameworks that incorporate the first, second, and the
third deformation gradient, can also play an interesting role in continuum mechanics. In
fact, they can model surface effects as discussed in [13, 28, 34], allow a body with edges
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and corners to sustain line and point forces as explained in [24, 28, 33, 35], and have strong
regularization properties as indicated in [25, 26].

The majority of these publications consider only the case of small deformations and ei-
ther model elasticity or plasticity. Especially the fundamental work [28] introduces a an
elaborate concept for third-order models but is restrained to small deformations in elastic-
ity. Therein not only the boundary conditions but applications such as the aforementioned
surface effects are presented.

Therefore a unifying thermodynamically consistent framework for elasticity and after-
ward also for elastoplasticity of large deformations that can accommodate all these models
would be desirable. In the case of second-order models this aim has been pursued in [4, 5,
21, 36], see also [6] on developments in this field. A corresponding third-order framework
does not yet exist. Therefore the aim of the present work lies in setting up such a framework
for elasticity as a first step. This is done by generalizing the concepts in [5].

With the introduction of a third gradient in the elastic energy, however, many questions
arise and have to be answered in a constitutive framework. First of all, one has to intro-
duce appropriate material (i.e., invariant) strain and stress measures, which is by no means
straightforward in the context of finite deformations. Naturally, there are many equivalent
choices, which are altogether mathematically equivalent. So one can choose those variables
under a practical point of view, namely to render the constitutive framework as simple as
possible. After having made such a choice, one can introduce reduced forms for the elastic
energy function that identically fulfill the objectivity requirement. This step has not been
done in [24].

Since such reduced forms live in the reference placement, a change of this placement
has to be considered. After having established the transformations of all variables under
change of reference placement, we are able to introduce the concept of material symmetry
for such models. The symmetry transformations become much more complicated than in
the case of simple or first-order materials, but still show the algebraic group property, which
allows us to classify such models after their symmetry group. In particular, we can define
centro-symmetric and isotropic behavior.

If we linearize such elastic laws, we obtain extensions of the classical St. Venant-
Kirchhoff law for third-order materials, i.e., physically (objective) linear laws, but geomet-
rically still non-linear. In the general (anisotropic) case this leads to a total number of 1,485
independent elastic constants. Again, by restricting our concern to the centro-symmetric
isotropic case, this number can be drastically reduced to only 17 constants, including the
two Lamé constants from classical linear elasticity as has already been found by Mindlin
[28].

If one wants to assure thermodynamic consistency of such models, one has to imbed
the mechanical theory into a complete thermodynamical setting. In doing so we follow the
lines of [8]. One would be tempted to not only include higher deformation gradients into
the list of independent variables in the constitutive equations, but also higher temperature
gradients. However, it has already by shown by [32] that such dependencies are ruled out
by the second law of thermodynamics. In the present setting, only the mechanical variables
have been extended to non-classical ones, while the thermodynamics remain classical. We
exploit the Clausius-Duhem inequality and find necessary and sufficient conditions for it to
hold. In particular, we find the potential relations of the free energy for the stress tensors
and the entropy, as one would expect. Finally, the concept of symmetry transformation is
extended to the whole set of the thermoelastic constitutive laws. An introduction of internal
constraints to gradient materials has been done in [9], see also [6]. Although such a concept
if extended to the kinematics of gradients opens interesting applications, we will here limit
our concern exclusively to unconstrained materials.
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2 Notation

It is well-known that a compact direct notation is extremely helpful when dealing with com-
plicated tensor equations. When working with gradient materials, we have to handle tensors
of different orders and their algebraic compositions. Here, the standard notations from con-
tinuum mechanics are no longer sufficient. We will therefore extend it in the sequel. Vectors
are denoted by small bold print letters, e.g., v. Tensors are denoted by bold capital letters

with an indicator of the order of the tensor as a superscript, e.g.,
〈3〉
A. Exceptions will be made

only in a few cases where the superscript is suppressed such as for the right Cauchy-Green
tensor C where a standard notation has been established and the definition and order of the

tensor are well known. Tensor contractions are denoted by ·, :, ... or :: where the number
of dots indicates the multiplicity of the contraction. For tensors A = Ai1...inei1 ⊗ · · · ⊗ ein ,
B = Bj1...jmej1 ⊗ · · · ⊗ ejm , each of sufficiently high order n and m, respectively, this means

A · B := Ai1...in−1aBaj2...jmei1 ⊗ · · · ⊗ ein−1 ⊗ ej2 ⊗ · · · ⊗ ejm, (1)

A : B := Ai1...in−2abBabj3...jmei1 ⊗ · · · ⊗ ein−2 ⊗ ej2 ⊗ · · · ⊗ ejm, (2)

A
...B := Ai1...in−3abcBabcj4...jmei1 ⊗ · · · ⊗ ein−3 ⊗ ej2 ⊗ · · · ⊗ ejm, (3)

A :: B := Ai1...in−4abcdBabcdj5...jmei1 ⊗ · · · ⊗ ein−4 ⊗ ej2 ⊗ · · · ⊗ ejm, (4)

A ·. . . ·
︸︷︷︸

p times

B := Ai1...in−pk1...kpBk1...kpjp+1...jmei1 ⊗ · · · ⊗ ein−p ⊗ ejp+1 ⊗ · · · ⊗ ejm, (5)

where {e1, e2, e3} refers to an ONB of R3.

For a tensor
〈n〉
A of order n with i < j ≤ n one defines

〈n〉
A

[i,j ]
as the transposed of

〈n〉
A with

respect to the i th and j th index, i.e.,

〈n〉
A

[i,j ]
k1...ki ...kj ...kn

= 〈n〉
Ak1...kj ...ki ...kn (6)

with respect to an orthonormal basis (ONB). Symmetrization of a tensor of order n > 2 will
be abbreviated as follows.

[i,j ]
2sym

[〈n〉
A

] :=
〈n〉
A +

〈n〉
A

[i,j ]
, (7)

[i,j ][k,l]
3sym

[〈n〉
A

] :=
〈n〉
A +

〈n〉
A

[i,j ]
+

〈n〉
A

[k,l]
. (8)

If
〈n〉
A =

〈2〉
A is a second-order tensor one obtains the classic definition of the symmetric part

of a tensor.

The second-order and fourth-order identity tensors are denoted by
〈2〉
I and

〈4〉
I , respectively.

The zero tensor of any order is denoted by
〈n〉
0 . The determinant of a second-order tensor

〈2〉
A

is denoted by J〈2〉
A

.
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Gradients are denoted as follows.

Grad(·) denotes the first material gradient, (9)

GradII(·) denotes the second material gradient, (10)

GradIII(·) denotes the third material gradient. (11)

A higher-order gradient of undetermined order n is denoted by Gradn. Similarly, repeated
application of the spatial divergence operator to a tensor field of order n (with n being
sufficiently high) is denoted by

divII
(〈n〉

T
) := div

(

div
(〈n〉

T
))

or divIII
(〈n〉

T
) := div

(

div
(

div
(〈n〉

T
)))

, (12)

where the Roman numbers prevent confusion with an exponent. One defines the following
useful abbreviations, which will be frequently used in what follows.

〈3〉
K〈2〉

A
:=

〈2〉
A

−1

· Grad
(〈2〉
A

)

, (13)

〈4〉
K〈2〉

A
:=

〈2〉
A

−1

· GradII
(〈2〉
A

)

, (14)

for an invertible second-order tensor field
〈2〉
A. If

〈2〉
A is the Jacobian matrix of a sufficiently

smooth mapping, then Schwartz’ theorem implies that
〈3〉
K〈2〉

A
is symmetric with respect to its

last two indices and
〈4〉
K〈2〉

A
with respect to the last three indices. In the context of the present

work these quantities are understood to have these symmetries. The following sets will be
used throughout the present work.

Inv denotes the group of all invertible second-order tensors.

Sym denotes the space of all symmetric, second-order tensors.

Sym+ denotes the set of all symmetric, positive definite second-order tensors.

Orth
+

denotes the group of all orthogonal second-order tensors with positive
determinant.

Unim denotes the unimodular group, i.e., the group of all second-order
tensors with determinant of absolute value one.

SubSym3 := {〈3〉
P , triadic | ∀u,v ∈ R

3
(〈3〉

P ·u) ·v = (〈3〉
P ·v) ·u

}

.

SubSym4 := {〈4〉
P , tetradic | ∀u,v,w ∈R

3
((〈4〉

P ·u) ·v
) ·w = ((〈4〉

P ·v) ·u
) ·w

= ((〈4〉
P ·w) ·v

) ·u = ((〈4〉
P ·u) ·w

) ·v
}

.

SubSym := Sym× SubSym3 ×SubSym4.

Config := Sym+ ×SubSym3 ×SubSym4 denotes the space of generalized

configurations.
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The Rayleigh product between a second-order tensor and a tensor of arbitrary order is

denoted by “∗”. For a second-order tensor
〈2〉
F its action on a tensor basis element ei1 ⊗ · · · ⊗

ein with respect to a basis {e1, e2, e3} is defined as

〈2〉
F ∗(ei1 ⊗ ei2 ⊗ · · · ⊗ ein ) := (〈2〉

F · ei1

) ⊗ (〈2〉
F · ei2

) ⊗ · · · ⊗ (〈2〉
F · ein

)

. (15)

If
〈2〉
F is the differential of a diffeomorphism, the Rayleigh product can be interpreted as the

pushforward of a contravariant n-th-order tensor.
By “◦” another product will be denoted, which is very similar to the Rayleigh product.

Its action on ei1 ⊗ · · · ⊗ ein with respect to an ONB {e1, e2, e3} is defined as

〈2〉
F ◦(ei1 ⊗ · · · ⊗ ein ) :=

(〈2〉
F

−T

· ei1

)

⊗ (〈2〉
F · ei2

) ⊗ · · · ⊗ (〈2〉
F · ein

)

. (16)

Let
〈2〉
P be a smooth tensor field of order two that is invertible everywhere. One interprets

〈2〉
P

as the Jacobian of a change of the reference placement that maps one reference placement
B onto another one denoted by B . Then the following relations hold for all differentiable

tensor fields
〈2〉
P that are invertible at each point.

Grad

(〈2〉
P

−1)

= −
〈2〉
P

−1

·
(

(

Grad
(〈2〉

P
))[2,3]·

〈2〉
P

−1)[2,3]
, (17)

〈4〉
K〈2〉

P
−1 =

〈2〉
P

−T

◦
(

−
〈4〉
K〈2〉

P
+ [2,3][2,4]

3sym
[〈3〉
K〈2〉

P
·

〈3〉
K〈2〉

P

]

)

. (18)

Relation (17) is obtained by applying the product rule to the identity.

〈2〉
I =

〈2〉
P

−1

·
〈2〉
P (19)

⇒
〈2〉
0 = Grad

(〈2〉
P

−1

·
〈2〉
P

)

(20)

⇒
〈2〉
0 =

[

Grad

(〈2〉
P

−1)[2,3]
·

〈2〉
P

][2,3]
+

〈2〉
P

−1

· Grad
(〈2〉

P
)

(21)

⇔
[

Grad

(〈2〉
P

−1)[2,3]
·

〈2〉
P

][2,3]
= −

〈2〉
P

−1

· Grad
(〈2〉

P
)

(22)

⇔ Grad

(〈2〉
P

−1)

= −
〈2〉
P

−1

·
[

Grad
(〈2〉

P
)[2,3]·

〈2〉
P

−1][2,3]
. (23)

The proof of (18) will be given by computing components with respect to an ONB {e1, e2, e3}
for B and an ONB {e1, e2, e3} for B . In index notation coordinates for B are denoted by
underlined capital letters while coordinates for B are denoted by lower case letters. Further-
more one will make use of the fact that (17) can be rewritten as

Grad

(〈2〉
P

−1)

= −
[(〈3〉

KP ·
〈2〉
P

−1)[2,3]
·

〈2〉
P

−1][2,3]
. (24)
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Using (24) one can write

〈4〉
K〈2〉

P
−1 =

〈2〉
P ·Grad

(

Grad

(〈2〉
P

−1))

(25)

= −
〈2〉
P ·Grad

([(〈3〉
KP ·

〈2〉
P

−1)[2,3]
·

〈2〉
P

−1][2,3])
. (26)

In index notation the components of
〈4〉
K〈2〉

P
−1 can thus be written as

(〈4〉
K〈2〉

P
−1

)

abcd

= − 〈2〉
P

A

a

[〈3〉
K

BC

〈2〉
P A

〈2〉
P

−1 c

C

〈2〉
P

−1 b

B

] d

,

(27)

= − 〈2〉
P

A

a

{[〈4〉
K

BCD

〈2〉
P A

− 〈3〉
K

DE

〈2〉
P A

〈3〉
K

CB

〈2〉
P E

] 〈2〉
P

−1 d

D

〈2〉
P

−1 b

B

〈2〉
P

−1 c

C (28)

− 〈3〉
K

BC

〈2〉
P A

〈3〉
K

DE

〈2〉
P B

〈2〉
P

−1 b

D

〈2〉
P

−1 d

E

〈2〉
P

−1 c

C

− 〈3〉
K

BC

〈2〉
P A

〈3〉
K

DE

〈2〉
P B

〈2〉
P

−1 c

C

〈2〉
P

−1 b

D

〈2〉
P

−1 d

E

}

,

where the components of
〈2〉
P

−1

are denoted by
〈2〉
P

−1 j

i . This yields in direct notation

〈4〉
K〈2〉

P
−1 =

〈2〉
P

−T

◦
(

−
〈4〉
K〈2〉

P
+ [2,3][2,4]

3sym
[〈3〉
K〈2〉

P
·

〈3〉
K〈2〉

P

]

)

. (29)

3 Stress Power and Material Variables

The region occupied by a body in the reference placement is denoted by B0 and its boundary
by ∂B0. As usual the motion of a body is denoted by χ and the deformation gradient by

F := Grad(χ). (30)

In this context Grad() denotes the gradient with respect to material coordinates while grad()

denotes the spatial gradient. The right Cauchy-Green tensor is then defined as C := FT ·F.
Following [7], the stress power of a body at time t within a third-order theory is

P =
∫

Bt

p dv, (31)

with the stress power density

p :=
〈2〉
T : grad(v)+

〈3〉
T : gradII(v)+

〈4〉
T : gradIII(v). (32)

Since the first three gradients of the velocity occur in (32), one refers the presented model

as a third-order material. The tensors
〈2〉
T ,

〈3〉
T ,

〈4〉
T are generalized spatial stress tensors. The
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first one is the Cauchy stress tensor from the classical theory. Following the approach in [7],
based on the principle of virtual power, one deduces that for a third-order material Cauchy’s
equations have the form

(

div
(〈2〉
T

) − divII
(〈3〉
T

) + divIII
(〈4〉
T

)) + ρb = ρä, (33)

〈2〉
T =

〈2〉
T

T

, (34)

with the specific body force b, the acceleration a, and the mass density ρ. The boundary
conditions are shown in [24, 28] or [6]. The following equations are the foundation of the
present work. Equation (35) is well-known and can easily be verified. Equation (36) is more
difficult. It has been shown in detail in [4] and [6]. The derivation of Eq. (37) is rather
lengthy and is therefore omitted here. It is given in detail in [6].

grad(v) = F−T ∗
(

1

2
C·

)

, (35)

gradII(v) = F−T ◦
〈3〉
K

·
F, (36)

gradIII(v) = F−T ◦
(〈4〉

K
·
F − [2,3][2,4]

3sym

[〈3〉
K

·
F ·

〈3〉
KF

])

, (37)

where the dot denotes the derivative with respect to time. The tensor triple {C,
〈3〉
KF,

〈4〉
KF} ∈

Config describes the configuration of a third-order material point and is considered to be an
element of the generalized configuration space for a third-order material.

It is invariant under both changes of observer (Euclidean transformations) and superim-
posed rigid body modifications of the motion. With this we can express the stress power in
different forms.

P =
∫

Bt

1

ρ

(〈2〉
T : grad(v) +

〈3〉
T

...gradII(v) +
〈4〉
T :: gradIII(v)

)

dm (38)

=
∫

Bt

1

ρ

(

1

2

[

F−1∗
〈2〉
T

] : C· + [

F−1◦
〈3〉
T

]...
〈3〉
K

·
F (39)

+ [

F−1◦
〈4〉
T

] :: [FT ◦ gradIII(v)
]

)

dm

=
∫

B0

1

ρ0

(

1

2

〈2〉
S : C· +

〈3〉
S

...
〈3〉
K

·
F +

〈4〉
S ::

{〈4〉
K

·
F − [2,3][2,4]

3sym

[〈3〉
K

·
F ·

〈3〉
KF

]})

dm (40)

=
∫

B0

1

ρ0

(

1

2

〈2〉
S : C· +

(〈3〉
S − 3

〈4〉
S :

〈3〉
K

[1,3]
F

)

...
〈3〉
K

·
F +

〈4〉
S ::

〈4〉
K

·
F

)

dm (41)

=
∫

B0

1

ρ0

(

1

2

〈2〉
S : C· +

〈3〉
̂S

...
〈3〉
K

·
F +

〈4〉
S ::

〈4〉
K

·
F

)

dm, (42)
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with

stress measures strain measures

〈2〉
S := F−1 ∗ (

JF

〈2〉
T

)

, C := FT ·F, (43)

〈3〉
S := F−1 ◦ (

JF

〈3〉
T

)

,
〈3〉
KF := F−1 · Grad(F), (44)

〈4〉
S := F−1 ◦ (

JF

〈4〉
T

)

,
〈4〉
KF := F−1 · GradII(F), (45)

〈3〉
̂S :=

(〈3〉
S − 3

〈4〉
S :

〈3〉
K

[1,3]
F

)

. (46)

While
〈3〉
S is a stress tensor in the second-order framework, in the third-order theory it plays

only the role of a partial stress.
〈3〉
̂S is the material third-order stress tensor. An interesting

aspect of the third-order theory in the present work is the fact that both,
〈3〉
S and

〈4〉
S , contribute

to
〈3〉
̂S . This is due to the fact that gradIII(v) disperses into

〈3〉
K

·
F and

〈4〉
K

·
F when pulled back to

the reference placement as can be seen in (37). It has been proven in [6] that this dispersion
cannot be avoided by choosing other variables.

From (38) it is clear that
〈2〉
T and

〈3〉
T can be submitted to the same symmetries as gradII(v)

and gradIII(v), respectively. In addition to that,
〈2〉
T is symmetric due to the same arguments

as in classical continuum mechanics namely, the balance of moment of momentum, which

does not impose any restrictions on
〈3〉
T and

〈4〉
T . Each of the three material stress tensors can

be assumed to have the same symmetries as the corresponding Cauchy like stress tensor.

In the case of
〈2〉
S and

〈2〉
T the pullback preserves the well known symmetry of

〈2〉
T . The same

argument leads to
〈4〉
S having the same symmetries as

〈4〉
T .

〈3〉
̂S can be assumed to have the same

symmetries as
〈3〉
KF because only the symmetric parts enter in (42).

4 Third-order Elasticity

Definition 1 (Third-order elastic material) A material is called a third-order elastic material
if the stress tensors are functions of the motion χ , of Grad(χ), GradII(χ) and GradIII(χ),
thus

〈2〉
T =

〈2〉
f

(

χ,Grad(χ),GradII(χ),GradIII(χ)
)

, (47)

〈3〉
̂T =

〈3〉
̂f

(

χ,Grad(χ),GradII(χ),GradIII(χ)
)

, (48)

〈4〉
T =

〈4〉
f

(

χ,Grad(χ),GradII(χ),GradIII(χ)
)

, (49)

where all variables are evaluated at the same material point at the same instant of time. These
constitutive equations can be reduced by taking into account the principle of objectivity or



3rd-order Elasticity and Thermoelasticity 231

invariance under rigid body motions (see [11, 38]). This yields reduced forms, which are
chosen in the present case as

〈2〉
S =

〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF

)

,

〈3〉
̂S =

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF

)

,
〈4〉
S =

〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

)

. (50)

All involved strain and stress variables in these constitutive laws are invariant under both
changes of observer and superimposed rigid body motions. In the context of the present

work one does not introduce a constitutive equation for
〈3〉
S because it is not a stress mea-

sure. It is a partial stress that also helps making a comparison to the second-order theory
from [5] and facilitates the understanding of transformation rules. The reduced forms that
have been chosen in the present form are not the only option. One could as well choose E :=
1
2 (C−

〈2〉
I ) instead of C, and Grad(

〈3〉
KF) instead of

〈4〉
KF. There are, as it is already in the classi-

cal theory the case, infinitely many choices, which are mathematically altogether equivalent.
Our choice here is only motivated by practical considerations, namely to render the resulting
equations as simple as possible.

Definition 2 (Third-order hyperelasticity) A material is called hyperelastic if there exists a
specific elastic energy

w :Config �→R,

such that the time-derivative of this energy equals the stress power

p = w
(

C,
〈3〉
KF,

〈4〉
KF

)·
. (51)

The chain rule gives then

p = ∂w(C,
〈3〉
KF,

〈4〉
KF)

∂C
: C· + ∂w(C,

〈3〉
KF,

〈4〉
KF)

∂
〈3〉
KF

...
〈3〉
K

·
F + ∂w(C,

〈3〉
KF,

〈4〉
KF)

∂
〈4〉
KF

::
〈4〉
K

·
F . (52)

A comparison with the components in (42) then reveals for all (C,
〈3〉
KF,

〈4〉
KF) ∈Config the

potentials

〈2〉
S =

〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) = 2ρ0
∂w(C,

〈3〉
KF,

〈4〉
KF)

∂C
, (53)

〈3〉
̂S =

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF

) = ρ0
∂w(C,

〈3〉
KF,

〈4〉
KF)

∂
〈3〉
KF

, (54)

〈4〉
S =

〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) = ρ0
∂w(C,

〈3〉
KF,

〈4〉
KF)

∂
〈4〉
KF

. (55)

In the rest of the paper we will not anymore distinguish between elasticity and hypere-
lasticity.
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5 Changes of the Reference Placement

While the spatial stress tensors
〈2〉
T ,

〈3〉
T ,

〈4〉
T do not depend on the reference placement, material

variables do depend on the choice of the reference placement. Therefore it is important to
understand the transformation behavior of the stress and strain measure under changes of
the reference placement.

Theorem 1 (Transformation of stress and strain measures under changes of the reference
placement) Let κ and κ be two reference placements. The composition κ(κ−1) is referred to
as the change of the reference placement. Its gradient is denoted by A := Grad(κ(κ−1)), the

pullback of its gradient is denoted by
〈3〉
KA := A−1 ·Grad(A), the pullback of its second gra-

dient is denoted by
〈4〉
KA := A−1 · GradII(A), and one defines the determinant JA := det(A).

Furthermore one defines

γ̂ :SubSym3 ×SubSym4 ×Inv×SubSym3 ×SubSym3 �→SubSym3, (56)

γ̂

(〈3〉
̂S ,

〈4〉
S ,A,

〈3〉
KA,

〈3〉
KF

)

= A−1 ◦
[

JA

(〈3〉
̂S +3

〈4〉
S :

〈3〉
K

[1,3]
F

)]

− (

A−1 ◦ (

JA

〈4〉
S

)) : [AT ◦
〈3〉
KF +

〈3〉
KA

][1,3]
. (57)

Then the stress and strain variables transform under changes of the reference placement
as

C = AT ∗ C,
〈2〉
S = A−1 ∗ JA

〈2〉
S , (58)

〈3〉
KF = AT ◦

〈3〉
KF +

〈3〉
KA,

〈3〉
̂S = γ̂

(〈3〉
̂S ,

〈4〉
S ,A,

〈3〉
KA,

〈3〉
KF

)

, (59)

〈4〉
KF = AT ◦

〈4〉
KF +

〈4〉
KA,

〈4〉
S = A−1 ◦ JA

〈4〉
S . (60)

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

) ·
〈3〉
KA

]

,

Proof The transformation behavior of
〈2〉
S , C and

〈3〉
KF is derived in [5] and [6]. Therefore the

proof starts with the transformation of the fourth-order stress tensor.

〈4〉
S = F−1 ◦ (

JF

〈4〉
T

) = (

A−1 ·F−1) ◦ (

JFJA

〈4〉
T

) = A−1 ◦ (

JA

〈4〉
S

)

. (61)

Next the transformation behavior of
〈4〉
KF is derived.

〈4〉
KF = (

F−1 ·GradII(F)
)

(62)

= (

A−1 ·F−1 · Grad
(

Grad(F ·A) ·A
) ·A

)

. (63)
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Thus, with respect to an orthonormal basis {e1, e2, e3} one can write the components of
〈4〉
KF

as

A−1 A
A F−1 b

A

[(

F C
b A

B

C

),D
A

C

D

],E
A

D

E

= A−1 A
A F−1 b

A

[

F
C,D

b A
B

C A
C

D + F C
b A

B,D

C A
C

D

],E
A

D

E (64)

= A−1 A
A F−1 b

A

[

F
C,DE

b A
B

C A
C

D + F
C,D

b A
B,E

C A
C

D + F
C,D

b A
B

C A
C,E

D

+ F
C,E

b A
B,D

C A
C

D + F C
b A

B,DE

C A
C

D + F C
b A

B,D

C A
C,E

D

]

A
D

E (65)

= A−1 A
A F−1 b

A

[

F
C,DE

b A
B

C A
C

D A
D

E

+ F
C,D

b A
B,F

C A−1 E
F A

C

D A
D

E

+ F
C,D

b A
B

C A
C,F

D A−1 E
F A

D

E

+ F
C,E

b A
B,F

C A−1 D
F A

C

D A
D

E + F C
b A

B,DE
C A

C

D A
D

E

+ F C
b A

B,G
C A−1 D

G A
C,F

D A−1 E
F A

D

E

]

(66)

= A−1 A
A F−1 b

A

[

F
C,DE

b A
B

C A
C

D A
D

E + F
C,D

b A
B,D

C A
C

D

+ F
D,C

b A
B

C A
C,D

D + F
C,E

b A
B,C

C A
D

E

+ F C
b A

B,DE
C A

C

D A
D

E + F C
b A

B,G
C A−1 D

G A
C,D

D

]

, (67)

where a comma as a sub- or superscript denotes the derivative with respect to the coordinates
represented by the index to follow. In the next step one makes use of the transformation

A
B,DE

C = A
B,GF

C A−1 D
G A−1 E

F − A
B,G

C A−1 X
G A

F,Y

X A−1 D
Y A−1 E

F , (68)

which can be easily verified by applying the same approach as used for the proof of (17).
One therefore continues equation (67)

= A−1 A
A F−1 b

A

[

F
C,DE

b A
B

C A
C

D A
D

E + F
C,D

b A
B,D

C A
C

D

+ F
D,C

b A
B

C A
C,D

D + F
C,E

b A
B,C

C A
D

E

+ F C
b

[

A
B,GF

C A−1 D
G A−1 E

F − A
B,G

C A−1 X
G A

F,Y

X

]

A−1 D
Y A−1 E

F A
C

D A
D

E

+ F C
b A

B,G
C A−1 D

G A
C,D

D

]

(69)

= A−1 A
A F−1 b

A F
C,DE

b A
B

C A
C

D A
D

E + A−1 A
A F−1 b

A F
C,D

b A
B,D

C A
C

D

+ A−1 A
A F−1 b

A F
D,C

b A
B

C A
C,D

D + A−1 A
A F−1 b

A F
C,E

b A
B,C

C A
D

E

+ A−1 A
A A

B,CD

A . (70)

In direct notation this gives
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〈4〉
KF = AT ◦

〈4〉
KF +

〈4〉
KA + [2,4][2,3]

3sym
[

A−1 · (
〈3〉
KF ·A)[2,3] ·Grad(A)

]

(71)

= AT ◦
〈4〉
KF +

〈4〉
KA + [2,4][2,3]

3sym
[

AT ◦
〈3〉
KF ·

〈3〉
KA

]

. (72)

The transformation of the third-order stress tensor is proved in a similar manner.

〈3〉
̂S =

〈3〉
S −

〈4〉
S :

〈3〉
K

[1,3]
F (73)

= A−1 ◦ (

JA

〈3〉
S

) − (

A−1 ◦ (

JA

〈4〉
S

)) : [AT ◦
〈3〉
KF +

〈3〉
KA

][1,3]
(74)

= A−1 ◦
[

JA

(〈3〉
̂S +3

〈4〉
S :

〈3〉
K

[1,3]
F

)]

− (

A−1 ◦ (

JA

〈4〉
S

)) : [AT ◦
〈3〉
KF +

〈3〉
KA

][1,3]
. (75)

�

Equation (59) as well as (70) and (72) show that in comparison the direct notation is
more compact. In direct notation (59) takes the form

〈3〉
̂S = γ̂

(〈3〉
̂S ,

〈4〉
S ,A,

〈3〉
KA,

〈3〉
KF

)

= A−1 ◦
[

JA

(〈3〉
̂S +3

〈4〉
S :

〈3〉
K

[1,3]
F

)]

− (

A−1 ◦ (

JA

〈4〉
S

)) : [AT ◦
〈3〉
KF +

〈3〉
KA

][1,3]
, (76)

while in Ricci notation it has the form

〈3〉
̂S

A

BC = AT A

X

[

J〈2〉
A

〈3〉
̂S

X

YZ + 3
〈4〉
S

X

YMN

〈3〉
K

NM

FZ

]

A−T Y

BA−T Z

C

− AT A

MJA

〈4〉
S

M

NOP A−T N

BA−T O

XA−T P

Y

(

A−1 D

C

〈3〉
K

EF

FD
A

Y

E A
X

F + 〈3〉
K

YX

AC

)

.

(77)

One also needs to state how the elastic energy changes under changes of the reference place-
ment. The value of the energy should be independent of reference placement up to a constant.
This leads to the following theorem.

Theorem 2 (Transformation of elastic energies and elastic laws under a change of reference
placement) For two reference placements κ and κ there exists a constant w0 ∈ R such that
the elastic energies transform as

w
(〈2〉
C,

〈3〉
KF,

〈4〉
KF

) = w
(

AT ∗ C,AT ◦
〈3〉
KF +

〈3〉
KA,AT ◦

〈4〉
KF +

〈4〉
KA

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

)·
〈3〉
KA

]) + w0. (78)

Theorem 2 is a direct consequence of Theorem 1 and does therefore not require a proof. The
elastic laws are obtained from the elastic energy by taking its derivative with respect to the
strain variables. Therefore Theorem 2 implies for the elastic laws how they transform under
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a change of the reference placement, which is prescribed by
〈2〉
A,

〈3〉
A and

〈4〉
A. One obtains

equations that allow to calculate the elastic laws in a new reference placement (where all
quantities are underlined) from the elastic laws in the old reference placement.

〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) = A ∗ J−1
A

〈2〉
f

(

AT ∗ C,AT ◦
〈3〉
KF +

〈3〉
KA,AT ◦

〈4〉
KF +

〈4〉
KA

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

)·
〈3〉
KA

])

, (79)

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF

) = γ̂

(〈3〉
̂f
(

AT ∗ C,AT ◦
〈3〉
KF +

〈3〉
KA,AT ◦

〈4〉
KF +

〈4〉
KA

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

)·
〈3〉
KA

])

,
〈4〉
f

(

AT ∗ C,AT ◦
〈3〉
KF +

〈3〉
KA,AT ◦

〈4〉
KF +

〈4〉
KA

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

)·
〈3〉
KA

])

,A−1,
〈3〉
KA−1 ,AT ◦

〈3〉
KF +

〈3〉
KA

)

, (80)

〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) = A ◦ J−1
A

〈4〉
f
(

AT ∗ C,AT ◦
〈3〉
KF +

〈3〉
KA,AT ◦

〈4〉
KF +

〈4〉
KA

+ [2,4][2,3]
3sym

[(

AT ◦
〈3〉
KF

)·
〈3〉
KA

]

)

, (81)

with γ̂ as defined in (57) allowing for the transformations from (58)–(60).

6 Elastic Isomorphy

The concept of elastic isomorphy has been introduced in [38] in Sect. 27. It plays an im-
portant role in elasticity and elastoplasticity (see [2, 3] and [5]). It defines what it means
that two points have the same elastic behavior. It has been generalized for second-order
materials in [5]. In the same spirit it is generalized for third-order materials in the following
Definition 3 and makes use of the transformation rules for the strain measures in Theorem 1.
For the elastic laws it implies that two material points are elastically isomorphic if one can
find reference placements for the two material points such that their elastic laws for both
placements are identical.

Definition 3 (Elastic isomorphy) Two elastic material points X and Y are called elastically
isomorphic if one can find reference placements κX for X and κY for Y such that

1. in κX and κY the mass densities are identical

ρ0X = ρ0Y , (82)

2. with respect to κX and κY the elastic energies wX and wY are identical up to a constant w0

wx(κX, ·) = wx(κX, ·) + w0. (83)

In practice, this definition is not easy to handle. In the following theorem, the change of
the reference placement is substituted by some tensorial variables and, thus, facilitated.
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Theorem 3 (Criterion for elastic isomorphy) Let X and Y be two elastic material points
with arbitrary reference placements κX and κY and elastic energies wX and wY . Then these
two points are elastically isomorphic if and only if there exist tensors

〈2〉
P∈Inv,

〈3〉
P∈SubSym3,

〈4〉
P∈SubSym4, (84)

such that the following equations hold for all (CX,
〈3〉
KFX

,
〈4〉
KFX

) ∈Config.

ρ0Y = det
(〈2〉

P
)

ρ0X and (85)

wX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

) = w0 + wY

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,PT ◦

〈4〉
KF +

〈4〉
KP

+ [2,4][2,3]
3sym

[(

PT ◦
〈3〉
KF

)·
〈3〉
KP

]

)

. (86)

Proof The proof follows directly from the transformation laws in Theorem 1. The isomor-
phy criteria for the elastic laws are then obtained directly by taking partial derivatives of the
elastic energies with respect to the corresponding strain variables in each reference place-
ment. �

The tensor
〈2〉
A in Theorem 3 can be interpreted as the gradient of a change of the reference

placement, the tensor
〈3〉
A as

〈3〉
K〈2〉

A
and the tensor

〈4〉
A as

〈4〉
KA. As long as two isolated material

points are considered, these tensors can be regarded as mutually independent, which means
that they do not have to fulfill any integrability condition.

Let

{ 〈2〉
f

X
,

〈3〉
̂f

X
,

〈4〉
f

X

}

and

{ 〈2〉
f

Y
,

〈3〉
̂f

Y
,

〈4〉
f

Y

}

(87)

be the respective sets of elastic laws corresponding to wX and wY from Theorem 3. Just as
in the case of (79)–(81) this theorem implies the equations, which the elastic laws of two
points X and Y have to fulfill for these points to be elastically isomorphic.

〈2〉
f

X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

) =
〈2〉
P ∗det−1

(〈2〉
P

) 〈2〉
f Y

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
K〈2〉

F X

+
〈3〉
P ,PT ◦

〈4〉
KFX

+
〈4〉
KP

+ [2,4][2,3]
3sym

[(

PT ◦
〈3〉
KFX

)·
〈3〉
KP

]

)

, (88)

〈3〉
̂f

X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

) = γ̂

(〈3〉
̂f

Y

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,PT ◦

〈4〉
KFX

+
〈4〉
KP

+ [2,4][2,3]
3sym

[(

PT ◦
〈3〉
KFX

)·
〈3〉
KP

]

)

,

〈4〉
f

Y

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,PT ◦

〈4〉
KFX

+
〈4〉
KP



3rd-order Elasticity and Thermoelasticity 237

+ [2,4][2,3]
3sym

[(

PT ◦
〈3〉
KFX

)·
〈3〉
KP

]

)

,

〈2〉
P

−1

,−
〈2〉
P

−T

◦
〈3〉
P ,

〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P

)

, (89)

〈4〉
f

X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

) =
〈2〉
P ◦det−1

(〈2〉
P

) 〈4〉
f Y

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,PT ◦

〈4〉
KFX

+
〈4〉
KP

+ [2,4][2,3]
3sym

[(

PT ◦
〈3〉
KFX

)·
〈3〉
KP

]

)

, (90)

with γ̂ as defined in (57).

7 Material Symmetry

A priori knowledge on the symmetry properties of a specific material is highly useful to fur-
ther specify the constitutive equations. For this purpose we will next introduce the concept
of a symmetry group of a gradient material. Such introductions have already been made for
other non-classical cases, like in [14, 15, 17–19, 29–31] and others.

Applying the concept of elastic isomorphy to only one point, i.e., by setting X ≡ Y

in Definition 3, defines elastic symmetry. In this case one can drop the notation for the
reference point. As explained in Theorem 1, a change of reference placement defines three

tensors A ∈Inv,
〈3〉
KA ∈SubSym3 and

〈4〉
KA ∈SubSym4. So in this case the isomorphism

A becomes an automorphism since it maps the tangent space at a point onto itself. One can
set

〈2〉
A = A,

〈3〉
A =

〈3〉
KA,

〈4〉
A =

〈4〉
KA . (91)

The tensors
〈2〉
A,

〈3〉
A,

〈4〉
A can then be regarded as independent from each other because they are

only considered at one point. The behavior around this point (necessary for derivatives) is
not of interest here.

In the following definition of symmetry the idea is to express the fact that certain changes
of the reference placement at a point do not change the elastic law at this point.

Definition 4 (Symmetry Transformation) For a third-order elastic material a symmetry
transformation is a triple

〈2〉
A ∈Unim,

〈3〉
A ∈SubSym3,

〈4〉
A ∈SubSym4, (92)

such that

〈2〉
I :

〈3〉
A = 0,

〈2〉
I :

〈4〉
A =

〈2〉
I : [

〈3〉
A ·

〈3〉
A

][2,4]
(93)

and
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w
(

C,
〈3〉
KF,

〈4〉
KF

) = w

(〈2〉
A

T

∗C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,PT ◦

〈4〉
KF +

〈4〉
KP + [2,4][2,3]

3sym
[(

PT ◦
〈3〉
KF

)·
〈3〉
KP

]

)

(94)

for all (C,
〈3〉
KF,

〈4〉
KF) ∈Config with γ̂ as defined in (57).

The set of all symmetry transformations forms the symmetry group of the material.
Definition 4 could also be set up without condition (93) as in [5]. Condition (93) comes

from the following reasoning. If one assumes that

〈2〉
A = Grad

(

κ
(

κ−1
))

(95)

is the Jacobian of a change of the reference placement with

det
(〈2〉
A

) = 1 (96)

everywhere in the body, then

Grad
(

det
(〈2〉
A

)) = 0 (97)

must hold everywhere. Since det is a differentiable matrix function one can write

0 = Grad
(

det
(〈2〉
A

)) = d(det)

d
〈2〉
A

: Grad
(〈2〉
A

)

. (98)

Applying Jacobi’s formula to the term d(det)

d
〈2〉
A

with the adjungate of
〈2〉
A being equal to J〈2〉

A

〈2〉
A

−1

yields

0 =
〈2〉
I :

[

J〈2〉
A

〈2〉
A

−T

·Grad
(〈2〉
A

)

]

=
〈2〉
I :

〈3〉
KA =

〈2〉
I :

〈3〉
A . (99)

Furthermore, since (97) holds everywhere in the body one obtains

0 = Grad
(〈2〉

I :
〈3〉
KA

) =
〈2〉
I : Grad

(〈3〉
KA

) =
〈2〉
I :

〈4〉
A (100)

=
〈2〉
I : (

〈4〉
K〈2〉

A
−[〈3〉

K〈2〉
A

·
〈3〉
K〈2〉

A

][2,4])
(101)

⇒
〈2〉
I :

〈4〉
K〈2〉

A
=

〈2〉
I : [

〈3〉
K〈2〉

A
·

〈3〉
K〈2〉

A

][2,4] ⇔
〈2〉
I :

〈4〉
A =

〈2〉
I : [

〈3〉
A ·

〈3〉
A

][2,4]
. (102)

The set of all symmetry transformations is the symmetry group of a material. In fact the
symmetry group is an algebraic group under composition.

The composition is defined as

(〈2〉
B,

〈3〉
B,

〈4〉
B

)(〈2〉
A,

〈3〉
A,

〈4〉
A

) :=
(〈2〉

B ·
〈2〉
A,

〈2〉
A

T

◦
〈3〉
B +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
B +

〈4〉
A + [2,3][2,4]

3sym
[(〈2〉

A
T

◦
〈3〉
B

)·
〈3〉
A

]

)

.

(103)
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The neutral element is

(〈2〉
I ,

〈3〉
0 ,

〈4〉
0

)

. (104)

The inverse element is

(〈2〉
A,

〈3〉
A,

〈4〉
A

)−1 :=
(〈2〉

A
−1

,−
〈2〉
A

−T

◦
〈3〉
A,

(〈2〉
A

−T

◦(−
〈4〉
A + [2,4][2,3]

3sym
[〈3〉
A ·

〈3〉
A

]))

)

. (105)

The group definitions are routed in the idea that the group elements stem from the gradi-
ents of symmetry transformations, e.g., the entries of the inverse element are calculated by
assuming that

(〈2〉
A,

〈3〉
A,

〈4〉
A

)−1 = (

A,
〈3〉
KA,

〈4〉
KA

)−1 = (

A−1,
〈3〉
KA−1 ,

〈4〉
KA−1

)

(106)

and then using (17)–(18).
The group operation as well as the definition of the neutral and inverse elements follow

from the definition of the strain variables.

Definition 5 (Isotropic material) An elastic material is called isotropic if there exists a ref-
erence placement such that the symmetry group contains the proper orthogonal group in the
first entry:

{(〈2〉
Q,

〈3〉
0 ,

〈4〉
0

) ∈Config |
〈2〉
Q ∈Orth+}

. (107)

It is clear from Theorem 3 and Definition 4 that for an isotropic material the elastic laws

〈2〉
f and

〈4〉
f (108)

are isotropic tensor functions: One applies the fact that for isotropic materials
〈2〉
A is orthogo-

nal. This yields J〈2〉
A

= 1 and in this case the product “◦” can be replaced by the product “∗”:

〈2〉
A

T

∗
〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) =
〈2〉
f

(〈2〉
A

T

∗ C,
〈2〉
A

T

∗
〈3〉
KF,

〈2〉
A

T

∗
〈4〉
KF

)

, (109)

〈2〉
A

T

∗
〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) =
〈4〉
f

(〈2〉
A

T

∗ C,
〈2〉
A

T

∗
〈3〉
KF,

〈2〉
A

T

∗
〈4〉
KF

)

. (110)

The elastic law
〈3〉
̂f is not an isotropic tensor function. The reason for this is the fact that

〈3〉
̂f

transforms with the function γ̂ as defined in (57) and not as a pullback like the other elastic
laws. In the case of an isotropic third-order material Theorem 3 implies

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF

) = A−1 ∗
[(〈3〉

̂f
(

C,
〈3〉
KF,

〈4〉
KF

) + 3
〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

) :
〈3〉
K

[1,3]
F

)]

− (

A−1 ∗ [ 〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF

)]) : [A−1∗
〈3〉
KF

][1,3]
. (111)
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Definition 6 (Centro-symmetric materials) A gradient material is centro-symmetric if

(−
〈2〉
I ,

〈3〉
0 ,

〈4〉
0 ) is an element of the symmetry group. A simple material is always centro-

symmetric since

(

−
〈2〉
A

T )

∗
〈2〉
C=

(〈2〉
A

T )

∗
〈2〉
C (112)

implies for a symmetry transformation
〈2〉
A∈Inv

w

((

−
〈2〉
A

T )

∗ C
)

= w

(〈2〉
A

T

∗ C
)

= w(C). (113)

For even-order tensors the minus sign in the symmetry transformation cancels out. There-
fore the even-order stress variables cannot depend on odd-order configuration variables in
the case of centro-symmetry and in a second gradient of the strain framework one has to
distinguish between symmetric and centro-symmetric materials. In a similar way one could
also define solid materials as those for which a reference placement exists such that the or-
thogonal group from Eq. (107) contains the symmetry group. However, such a definition
does not include the other two higher-order tensors in the symmetry transformation. Their
role needs further investigations.

8 Linear Third-order Theory

In many cases the elastic deformations are small enough to justify the linearization of the
hyperelastic laws. Naturally, an elastic law is mainly of interest for solid materials, although
such a restriction is not compulsory in the present context. In the physically linear third-
order elasticity theory the elastic energy is assumed to be a symmetric square form of the
configuration in analogy to the St. Venant-Kirchhoff model. The reference placement is
chosen to be stress free. In this linear case it is common to use Green’s strain tensor instead
of C:

EG := 1

2

(

C−
〈2〉
I
) ∈Sym. (114)

One assumes that the higher-order terms
〈3〉
KF and

〈4〉
KF are small which means that

∥

∥EG
∥

∥ � 1, L
∥

∥

〈3〉
KF

∥

∥ � 1, L2
∥

∥

〈4〉
KF

∥

∥ � 1, (115)

with a scaling parameter L that has the dimension of a length. In tensor notation the
quadratic elastic energy can be written as

ρ0w
(

EG,
〈3〉
KF,

〈4〉
KF

) = 1

2
EG :

〈4〉
E: EG + 1

2

〈3〉
KF

...

〈6〉
E ...

〈3〉
KF + 1

2

〈4〉
KF::

〈8〉
E::

〈4〉
KF

EG :
〈5〉
E ...

〈3〉
KF + EG :

〈6〉
E::

〈4〉
KF +

〈3〉
KF

...

〈7〉
E::

〈4〉
KF, (116)
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with higher-order elasticity tensors

〈4〉
E,

〈5〉
E,

〈6〉
E,

〈6〉
E,

〈7〉
E,

〈8〉
E, (117)

which inherit the corresponding subsymmetries from EG,
〈3〉
KF and

〈4〉
KF according to (116).

Furthermore they have the following symmetries because of the integrability conditions

〈4〉
Eab cd =

〈4〉
Ecd ab,

〈6〉
Eabc def =

〈6〉
Edef abc,

〈8〉
Eabcd efgh =

〈8〉
Eefgh abcd . (118)

Thus
〈4〉
E has 21 independent constants,

〈5〉
E has 180,

〈6〉
E has 171,

〈6〉
E has 180,

〈7〉
E has 540, and

〈8〉
E has 465. In total these are 1485 independent constants. In the general anisotropic case the
elastic energy is a potential for the stresses and one obtains

〈2〉
f

(

EG,
〈3〉
KF,

〈4〉
KF

) =
〈4〉
E: EG +

〈5〉
E ...

〈3〉
KF +

〈6〉
E::

〈4〉
KF, (119)

〈3〉
f

(

EG,
〈3〉
KF,

〈4〉
KF

) =
〈6〉
E ...

〈3〉
KF + EG :

〈5〉
E +

〈7〉
E::

〈4〉
KF

+ (

EG :
〈6〉
E +

〈3〉
KF

...

〈7〉
E +

〈8〉
E::

〈4〉
KF

) :
〈3〉
K

[1,3]
F (120)

≈
〈6〉
E ...

〈3〉
KF + EG :

〈5〉
E +

〈7〉
E::

〈4〉
KF, (121)

〈4〉
f

(

EG,
〈3〉
KF,

〈4〉
KF

) =
〈8〉
E::

〈4〉
KF + EG :

〈6〉
E +

〈3〉
KF

...

〈7〉
E, (122)

where (121) is a linearization. These elastic laws are a generalization of the St.-Venant-
Kirchhoff law to gradient elasticity. They are geometrically nonlinear but physically linear.

In [28] the case of linear elasticity for a centrosymmetric and isotropic third-order mate-
rial is presented. The corresponding elastic energy is given therein and requires 17 material
constants including the usual Lamé constants. The elastic energy is characterized by 18
constants and takes the form

ρ0w = a1

(

EG :
〈2〉
I
)2 + a2EG : EG + b1

(〈3〉
KF:

〈2〉
I
) · (

〈3〉
KF:

〈2〉
I
)

+ b2

〈2〉
I :

〈3〉
KF ·

〈3〉
KF:

〈2〉
I + b3

(〈2〉
I :

〈3〉
KF

) · (
〈2〉
I :

〈3〉
KF

) + b4

〈3〉
KF

...
〈3〉
KF

+ b5

〈3〉
KF

...
〈3〉
K

[1,2]
F + c1

(

I :
〈4〉
KF: I

)2 + c2

(〈2〉
I :

〈4〉
KF

) : (
〈2〉
I :

〈4〉
KF

)

+ c3

(〈2〉
I :

〈4〉
KF

) : (
〈4〉
KF:

〈2〉
I
) + c4

(〈4〉
KF:

〈2〉
I
) : (

〈4〉
KF:

〈2〉
I
)

+ c5

(〈4〉
KF:

〈2〉
I
) : (

〈4〉
K

[1,2]
F :

〈2〉
I
) + c6

〈4〉
KF::

〈4〉
KF + c7

〈4〉
KF::

〈4〉
K

[1,2]
F

+ d1
(

EG :
〈2〉
I
)(〈2〉

I :
〈4〉
KF:

〈2〉
I
) + d2EG :

〈4〉
KF:

〈2〉
I + d3

〈2〉
I :

〈4〉
KF: EG. (123)
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The linear relationship between (C,
〈3〉
KF, Grad(

〈3〉
KF)) and (

〈2〉
S ,

〈3〉
˜S ,

〈4〉
S ) yields for a centro-

symmetric gradient material that
〈2〉
S can only depend on C as well as that

〈3〉
˜S ,

〈4〉
S can only

depend on
〈3〉
KF and Grad(

〈3〉
KF).

The form (123) of the energy with its 17 constants is obtained by using the following
facts. The only isotropic third-order tensors are multiples of the Levi-Civita permutation
tensor, which is ruled out by the centrosymmetry. Bilinear terms of odd and even-order
tensors cancel out due to centrosymmetry.

In [28] another term c0(
〈2〉
I :

〈4〉
KF:

〈2〉
I ) is added to (123). It is linear in

〈4〉
KF and therefore pro-

duces a constant fourth-order stress. In the present setting a stress free reference placement
is assumed and thus c0 must vanish. In [12, 28] or [13] it is explained how c0 can be used to
model surface tensions. The stresses, here presented for the case c0 = 0, are shown to be

〈2〉
S = 2a1

(

EG :
〈2〉
I
) 〈2〉

I + 2a2EG + d1

(〈2〉
I :

〈4〉
KF:

〈2〉
I
) 〈2〉

I + d2 sym
(〈4〉
KF:

〈2〉
I
) + d3

〈2〉
I :

〈4〉
KF, (124)

〈3〉
̂S = sym[2,3]

(

2b1

〈3〉
KF:

〈2〉
I ⊗

〈2〉
I + b2

[〈2〉
I ⊗

〈3〉
KF:

〈2〉
I +

〈2〉
I :

〈3〉
KF ⊗

〈2〉
I
]

+ 2b3

〈2〉
I ⊗

〈2〉
I :

〈3〉
KF +2b5

〈3〉
K

[1,2]
F

)

+ 2b4

〈4〉
KF, (125)

〈4〉
S = sym[2,3][2,4]

[

2c1
(〈2〉

I :
〈4〉
KF:

〈2〉
I
) 〈2〉

I ⊗
〈2〉
I + 2c2

〈2〉
I ⊗

〈2〉
I :

〈4〉
KF

+ c3

〈2〉
I ⊗

〈4〉
KF:

〈2〉
I + c3

〈2〉
I :

〈4〉
KF ⊗

〈2〉
I + 2c4

〈4〉
KF:

〈2〉
I ⊗

〈2〉
I

+ 2c5

〈4〉
K

[1,2]
F :

〈2〉
I ⊗

〈2〉
I + 2c6

〈4〉
KF + 2c7

〈4〉
K

[1,2]
F

+ d1

(

EG :
〈2〉
I
) 〈2〉

I ⊗
〈2〉
I + d2EG⊗

〈2〉
I + d3

〈2〉
I ⊗EG

]

. (126)

In [35] a linear third-order elasticity model has been implemented in a finite element soft-
ware package. It is shown how point and line forces or displacements on corners and edges
of a tetrahedron and a cube can be sustained by a third-order elastic material.

The physical interpretation of the stress tensors in the third-order theory as well as of the
elasticity tensors is not well understood so far and requires further research. Some explana-
tions on how to interpret higher-order stress tensors have already been given in [28] or [33].
The first steps towards understanding the role of the components of elasticity tensors in the
linear second-order theory have been taken in [22].

9 Thermodynamical Variables and Basic Concepts

In this section and the following ones it will be shown that the third-order elasticity for-
mat can be embedded in a thermodynamics setting and the thermodynamic restrictions are
derived. In the thermodynamical setting we need additional variables such as
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ε, the specific internal energy, (127)

Q, the heat supply per unit mass and time by (128)
irradiation and conduction,

qE, the spatial heat flux per unit area and unit (129)
time in the current placement,

q := JFF−1 ·qE, the material heat flux per unit area and unit (130)
time in the reference placement,

θ, the absolute temperature, (131)

g := Grad(θ), the material temperature gradient, (132)

η, the specific entropy, and (133)

ψ := ε − θη, the Helmholtz free energy. (134)

Again, some of these quantities depend on the choice of the reference placement. The mate-
rial temperature gradient and the material heat flux are such quantities. Their transformations
under a change of the reference placement are

g := AT ·g, (135)

q := JAA−1 ·q, (136)

where quantities in a new reference placement are denoted by underlining them.
The first law of thermodynamics is assumed in the usual form, where we have already

eliminated the kinetic energy by the mechanical balance of work:

Q = ε· − p. (137)

The concept of the kinematical process is extended to a thermo-kinematical process, de-
scribed by the set of variables

{

χ(τ),F(τ ),Grad(F),GradII(F), θ(τ ),grad(θ)(τ )
}

, (138)

with τ ∈ [0, t]. One assumes that this process determines the caloro-dynamical state at the
end of the process, defined by the set

{〈2〉
T (t),

〈3〉
T (t),

〈4〉
T (t),qE(t), ε(t), η(t)

}

. (139)

One could include higher gradients of the temperature as independent variables. However,
it has already by shown by Perzyna in 1971 [32] that such dependencies are ruled out by
the second law of thermodynamics. The argument for this is rather standard. If one assumes
that the free energy depends on the temperature gradient, then there is no counterpart in
the Clausius-Duhem inequality, so that such a dependence is ruled out. Exactly the same
happens with the dependence on higher temperature gradients.
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10 Third-order Thermoelasticity

The concept of third-order elasticity has to be extended in such a way that the current caloro-
dynamical state is determined by only the current thermo-kinematical state. This means that
the past process does not directly influence the current material behavior.

Definition 7 (Third-order thermoelasticity) A material is called a third-order thermoelas-

tic material if the calorodynamic state {
〈2〉
T (t),

〈3〉
T (t),

〈4〉
T (t), qE(t), ε(t), η(t)} is a func-

tion of the current thermo-kinematical state {χ(t), F(t), Grad(F)(t), GradII(F)(t), θ(t),
grad(θ)(t)}.

Here one takes all variables at the same material point and instant of time. Following the
line of argumentation in Sect. 4 allows the introduction of reduced forms. The constitutive
equations can be reduced to the set of equations

〈2〉
S =

〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

, (140)

〈3〉
̂S =

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

, (141)

〈4〉
S =

〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

, (142)

q = q
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

, (143)

ε = ε
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

, (144)

η = η
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

. (145)

After (134) the free energy is also a function of C,
〈3〉
KF,

〈4〉
KF, θ and g:

ψ
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

) = ε
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

) − θη
(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

. (146)

The second law of thermodynamics is assumed in the form of the Clausius-Duhem in-
equality, which is a local and momentary restriction to all admissible thermodynamical
processes:

p − ψ · − θ ·η − 1

ρ0θ
g ·q ≥ 0. (147)

In this inequality the last term is the thermal dissipation and the first three terms are the
mechanical dissipation. The Clausius-Duhem inequality is assumed to hold at all states and
all thermo-kinematical continuations.

Theorem 4 For a third-order thermoelastic material the Clausius-Duhem inequality (147)
is fulfilled for every thermo-kinematical process if and only if

1. The free energy does not depend on the temperature gradient.
2. The free energy acts as a potential for the generalized stresses and for the entropy.
3. The heat conduction inequality holds: q ·g ≥ 0.
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This shows that the thermoelastic behavior of a third-order material is completely deter-

mined by the two functions ψ(C,
〈3〉
KF,

〈4〉
KF, θ) and q(C,

〈3〉
KF,

〈4〉
KF, θ,g).

Proof Partial derivatives are abbreviated, e.g., ∂Cψ denotes the partial derivative of ψ with
respect to C. Combining (146) with (147)

0 ≥ − 1

ρ0

(

1

2

〈2〉
S : C·+

〈3〉
̂S

...
〈3〉
K

·
F +

〈4〉
S ::

〈4〉
K

·
F

)

+ ∂Cψ : C· + ∂〈3〉
K F

ψ
...

〈3〉
K

·
F

+ ∂〈4〉
K F

ψ ::
〈4〉
K

·
F + ∂θψθ · + ∂gψ ·g· + θ ·η + 1

ρ0θ
g ·q (148)

=
(

∂Cψ − 1

2ρ0

〈2〉
S

)

: C· +
(

∂〈3〉
K F

ψ − 1

ρ0

〈3〉
̂S

)

...
〈3〉
K

·
F

+
(

∂〈4〉
K F

ψ − 1

ρ0

〈4〉
S

)

::
〈4〉
K

·
F + (∂θψ + η)θ · + ∂gψ ·g· + 1

ρ0θ
g ·q. (149)

Using (140)–(145) one obtains by standard arguments the following thermoelastic relations.

∂gψ =
〈1〉
0 , (150)

〈2〉
S = 2ρ0∂Cψ, (151)

〈3〉
̂S = ρ0∂〈3〉

K F

ψ, (152)

〈4〉
S = ρ0∂〈4〉

K F

ψ, (153)

η = −∂θψ, (154)

0 ≥ g ·q. (155)

Equation (150) means that the free energy is independent of the temperature gradient. Fur-
thermore (151)–(153) show that the free energy is a potential for the generalized stresses,
and (154) that it is a potential for the elastic part of the entropy. Finally (155) is the heat
conduction inequality. �

These conditions are similar to those which we know from simple materials. The ex-
tension to the higher potentials appears to be straight forward and natural. So our gradient
ansatz does not conflict with the second law of thermodynamics, in contrast to the findings
of [23].

11 Material Isomorphy

The concept of elastic isomorphy can be extended for the case of thermoelasticity. One
considers two thermoelastic points as isomorphic if their measurable thermoelastic behavior
does not show any differences during arbitrary thermo-kinematical processes. Measurable
quantities are the generalized stresses, the heat flux and the rate of the internal energy as they
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appear in balances. The entropy and free energy are not considered as (directly) measurable
quantities.

Definition 8 (Thermoelastic isomorphy) Two thermoelastic points X and Y are thermoe-
lastically isomorphic if two reference placements κX and κY and two constants ηc , εc ∈ R

exist such that

ρ0X = ρ0Y , (156)

ψX

(

C,
〈3〉
KF,

〈4〉
KF, θ

) = ψY

(

C,
〈3〉
KF,

〈4〉
KF, θ

) − ηcθ + εc, (157)

qX

(

C,
〈3〉
KF,

〈4〉
KF, θ,g

) = qY

(

C,
〈3〉
KF,

〈4〉
KF, θ,g

)

(158)

hold for all (C,
〈3〉
KF,

〈4〉
KF) ∈Config, θ ∈R, g ∈R

3.

Definition 8 implies with the relations from Theorem 4 the following relations for the
other thermoelastic equations

〈2〉
f X

(

C,
〈3〉
KF,

〈4〉
KF, θ

) =
〈2〉
f Y

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

, (159)

〈3〉
̂f X

(

C,
〈3〉
KF,

〈4〉
KF, θ

) =
〈3〉
̂f Y

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

, (160)

〈4〉
f X

(

C,
〈3〉
KF,

〈4〉
KF, θ

) =
〈4〉
f Y

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

, (161)

εX

(

C,
〈3〉
KF,

〈4〉
KF, θ

) = εY

(

C,
〈3〉
KF,

〈4〉
KF, θ

) + εc, (162)

ηX

(

C,
〈3〉
KF,

〈4〉
KF, θ

) = ηY

(

C,
〈3〉
KF,

〈4〉
KF, θ

) + ηc. (163)

Definition 8 is derived from the following reasoning, see [10]. For third-order thermoelastic
materials the mechanical dissipation is zero. By use of (134) and (137)

0 = p − ψ · − θ ·η (164)

= p − ε· + θη· (165)

= −Q + θη·. (166)

If the heat supply and the temperature are measurable, then so is the rate of the entropy. In
conclusion the entropy of two isomorphic points of a thermoelastic material can only differ
by a constant ηc (which cannot be measured).

ηX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θX

) = ηY

(

CY ,
〈3〉
KFY

,
〈4〉
KFY

, θY

) + ηc. (167)

Integration with respect to the temperature then yields

ψX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θX

) = ψY

(

CY ,
〈3〉
KFY

,
〈4〉
KFY

, θY

) − ηcθ + εc, (168)
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where εc is another constant. Finally one can use these relations together with (134) to obtain

εX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θX

)

= ψX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θX

) + θηX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θX

)

(169)

= ψY

(

CY ,
〈3〉
KFY

,
〈4〉
KFY

, θY

) + θηY

(

CY ,
〈3〉
KFY

,
〈4〉
KFY

, θY

) + εc (170)

= εY

(

CY ,
〈3〉
KFY

,
〈4〉
KFY

, θY

) + εc, (171)

which motivates Definition 8. From here it is clear that the criterion for elastic isomorphy
can be generalized in the same manner.

Theorem 5 (Criterion for thermoelastic isomorphy) Let X and Y be two thermoelastic ma-
terial points with arbitrary reference placements κX and κY . Let ψX , qX and ψY , qY be the
corresponding thermoelastic laws. Then these two points are thermoelastically isomorphic

if and only if there exist three tensors
〈2〉
P∈Inv,

〈3〉
P∈SubSym3,

〈4〉
P∈SubSym4 and two

real constants εc , ηc such that the following three conditions hold.

ρ0Y = det
(〈2〉

P
)

ρ0X (172)

and

ψX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
) = ψY

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

− ηcθ + εc (173)

and

det
(〈2〉

P
)

qX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ,gX

) =
〈2〉
P ∗qY

(〈2〉
P

T

∗CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ,
〈2〉
P

T

∗gX

)

(174)

for all (CX,
〈3〉
KFX

,
〈4〉
KFX

) ∈Config, θ ∈R
+, g ∈R

3.

Theorem 5 implies that the tensors
〈2〉
P∈Inv,

〈3〉
P∈SubSym3,

〈4〉
P∈SubSym4 and two real

constants εc , ηc determine the isomorphy transformation of the other constitutive laws as a
consequence of (151)–(154).

For (CX,
〈3〉
KFX

,
〈4〉
KFX

) ∈Config, θ ∈R
+ two points X and Y are thermoelastically isomor-

phic if the following equations hold.
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〈2〉
f X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
) =

〈2〉
P ∗det−1

(〈2〉
P

) 〈2〉
f Y

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P + [2,4][2,3]

3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

(175)

and

〈3〉
̂f X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
)

= γ̂

(〈3〉
̂f Y

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

,
〈4〉
f Y

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

,
〈2〉
P

−1

,−
〈2〉
P

−T

◦
〈3〉
P ,

〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P

)

(176)

and

〈4〉
f X

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
)

=
〈2〉
P ◦ det−1

(〈2〉
P

) 〈4〉
f Y

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P + [2,4][2,3]

3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

(177)

and

εX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
)

= εY

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

+ εc (178)

and

ηX

(

CX,
〈3〉
KFX

,
〈4〉
KFX

, θ
)

= ηY

(〈2〉
P

T

∗ CX,
〈2〉
P

T

◦
〈3〉
KFX

+
〈3〉
P ,

〈2〉
P

T

◦
〈4〉
KFX

+
〈4〉
P

+ [2,4][2,3]
3sym

[(〈2〉
P

T

◦
〈3〉
KFX

)

·
〈3〉
P

]

, θ

)

+ ηc, (179)

where γ̂ is defined in (57).
With these results the concept of symmetry transformations can be extended to thermoe-

lastic materials in a straightforward manner.
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12 Material Symmetry (Thermoelastic)

Definition 9 (Thermoelastic symmetry transformations) For a third-order thermoelastic

material with material laws ψ and q a symmetry transformation is a triple (
〈2〉
A,

〈3〉
A,

〈4〉
A) ∈

Unim×SubSym3 ×SubSym4 that fulfills

〈2〉
I :

〈3〉
A = 0 and

〈2〉
I :

〈4〉
A =

〈2〉
I : [

〈3〉
A ·

〈3〉
A

][2,4]
(180)

such that for all (C,
〈3〉
KF,

〈4〉
KF) ∈Config, θ ∈R

+, g ∈R
3 the following equations hold.

ψ
(

C,
〈3〉
KF,

〈4〉
KF, θ

)

= ψ

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

(181)

and

q
(

C,
〈3〉
KF,

〈4〉
KF, θ

)

=
〈2〉
A ∗ q

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

. (182)

Definition 9 implies symmetry transformations for the thermoelastic laws.

For all (C,
〈3〉
KF,

〈4〉
KF) ∈Config, θ ∈R, g ∈ R

3

〈2〉
f

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

=
〈2〉
A ∗ J−1

〈2〉
A

〈2〉
f

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

(183)

and

〈3〉
̂f

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

= γ̂

(〈3〉
̂f

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

) 〈4〉
f

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A
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+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

,
〈2〉
A

−1

,−
〈2〉
A

−T

◦
〈3〉
A,

〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A

)

(184)

and

〈4〉
f

(

C,
〈3〉
KF,

〈4〉
KF, θ

)

=
〈2〉
A ◦J−1

〈2〉
A

〈4〉
f

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

(185)

and

ε
(

C,
〈3〉
KF,

〈4〉
KF, θ

)

= ε

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

(186)

and

η
(

C,
〈3〉
KF,

〈4〉
KF, θ

)

= η

(〈2〉
A

T

∗ C,
〈2〉
A

T

◦
〈3〉
KF +

〈3〉
A,

〈2〉
A

T

◦
〈4〉
KF +

〈4〉
A

+ [2,4][2,3]
3sym

[(〈2〉
A

T

◦
〈3〉
KF

)

·
〈3〉
A

]

, θ

)

, (187)

where γ̂ is defined in (57). The definitions of a symmetry groups, of isotropy, etc. also apply
to the thermoelastic case.

13 Conclusion and Outlook

A constitutive format for third-order elasticity for finite deformations is presented. The ba-
sic assumption is the existence of an objective expression of the stress power due to the
Principle of Euclidean Invariance or Objectivity. In elasticity, we assume the existence of a
potential for the stress power, which is also submitted to this invariance principle. With the
derived variables a third-order framework for elasticity in the spirit of [5] can be set up. For
each stress and strain variable the transformation behavior under changes of the reference
placements is derived. In this context it is a remarkable result that the power of the second
velocity gradient disperses to both, a third- and fourth-order stress tensor. In the second-
order framework from [5] such mixed dependencies could be avoided. It has been shown [6]
that this dispersion in the third-order theory cannot be avoided, in principle.

The concepts of elastic isomorphy and material symmetry are extended to the third-order
case. The algebraic group structure is worked out in a natural way.
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These results allow to set up a thermodynamic format. The Helmholtz free energy is in-
troduced and is shown not to depend on the gradient of the temperature. It acts as a potential
for the generalized stresses and for the entropy. The heat conduction inequality is shown to
hold as well. The concepts of elasticity such as isomorphy and symmetry are extended for
the thermoelastic case. This proves that the ansatz with higher gradients does not conflict
with thermodynamics if properly introduced.

This paper presents a rather general framework for third-order finite elasticity models.
It offers the opportunity for consistent material modelling within such interesting class of
materials.
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