J Elast (2011) 105:49-60
DOI 10.1007/s10659-011-9325-6

The Moving Plane Inhomogeneity Boundary
with Transformation Strain

Xanthippi Markenscoff

Received: 1 December 2010 / Published online: 9 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Within the context of linear elastodynamics, the radiated fields (including inertia)
for a plane inhomogeneous inclusion boundary with transformation strain (or eigenstrain),
moving in general motion under applied loading, have been obtained on the basis of Es-
helby’s equivalent inclusion method, by using the strain field of a moving homogeneous
inclusion boundary previously obtained. This dynamic strain field, obtained from the dy-
namic Green’s function (for an isotropic material), is unique, and has as initial condition the
limit of the spherical Eshelby inclusion, as the radius tends to infinity, which is the mini-
mum energy solution for the half-space inclusion. With the equivalent dynamic eigenstrain
(which is dependent on the velocity of the boundary), the radiated fields for the inhomo-
geneous plane inclusion boundary can be obtained, and from them the driving force on the
moving boundary can be computed, consisting of a self-force (which is the rate of mechani-
cal work (including inertia) required to create an incremental region of inhomogeneity with
eigenstrain), and of a Peach-Koehler force associated with the external loading. While for an
expanding plane homogeneous inclusion boundary the Peach-Koehler force is independent
of the boundary velocity, in the case of an inhomogeneous one it is not.

Keywords Moving boundary - Inhomogeneity - Driving force - Transformation strain
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1 Introduction

The analytic solution to the elastodynamic problem of a spherical dynamically expanding
in general subsonic motion Eshelby inclusion with dilatational transformation strain, i.e.,
a spherically expanding boundary of strain discontinuity, in an isotropic material was ob-
tained by Markenscoff and Ni [1] on the basis of a formula given by Willis [2] in terms
of the dynamic Green’s function. This solution is unique and has an initial condition the
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Fig. 1 The moving plane inhomogeneity boundary with transformation strain

static Eshelby [3] solution, which is a minimum energy solution. By a limiting procedure
from the expanding spherical inclusion solution as the radius tends to infinity, the radiated
fields of the plane moving constrained inclusion boundary were obtained. These are unique,
and have as initial condition the limit of the static Eshelby solution, which is the minimum
energy one for a half-space inclusion. The Hadamard jump conditions are satisfied on the
moving surface of discontinuity, and time-dependent tractions are applied on the boundaries
at infinity that are the limiting fields of the spherically expanding inclusion (see Fig. 1).
Based on Willis’ formula [2], the elastodynamic fields of a half-space constrained inclusion
with general eigenstrain plane boundary moving from rest in general subsonic motion have
also been obtained by Markenscoff and Ni [4]. This is also a unique solution with initial
condition the minimum energy one.

Based on these radiated fields, the “driving force”, obtained from the mechanical energy-
release rate which is the self-force on the moving boundary, was calculated by Markenscoff
and Ni [1]. It has two parts: the static one, coinciding with Eshelby [5, 6] and Gavazza [7],
and a dynamic one due to inertia, that depends on the velocity of the boundary. One
may note, that the “driving force” expression of Atkinson and Eshelby [8], Freund [9]
(for moving cracks) and Eshelby [5, 6] coincides for a purely mechanical system in an
isothermal process with the expression for this force obtained by the phase transformation
community (Abeyaratne [10], Truskinovsky [11], Heidug and Lehner [12], Abeyaratne and
Knowles [13]) for a moving boundary of discontinuity. One may note that the “contour inde-
pendent” dynamic J integral (based on Noether’s theorem), in the limit as it shrinks on the
moving defect, is equivalent to the energy-release rate and the “driving force” Freund [14].

With the external loading included in the driving force expression, an additional term
(a,f[”]) [[e},(x, )]] is obtained which is the counterpart of the Peach-Kohler force on dislo-
cations (Markenscoff and Ni [4]). Thus, the driving forces on moving defects, dislocations
(Eshelby [15]) and inclusion boundaries, have exactly the same structure, a self-force due to
inertia, and a Peach-Koehler force associated with the external loading. There is no coupling
term of the applied loading with the inclusion boundary velocity. The self-force constitutes
the mechanical rate of work needed to create an incremental region of eigenstrain by what-
ever source. Moreover, Gupta and Markenscoff [16] showed that the variation of the energy
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functional to be equal to the J integral is a necessary and sufficient condition for equilib-
rium to be preserved in the domain during an incremental translation of the defect. The
“Eshelby principle” (Eshelby [5]) that applying an external stress field (that renders the total
driving force, or, equivalently, the total J integral, equal to zero) can create mechanically an
incremental region of eigenstrain has been demonstrated by Markenscoff [17] by a simple
example.

In this paper, the analysis of Markenscoff and Ni [4] is extended to the plane constrained
inhomogeneous (different elastic constants) inclusion moving boundary by extending the
Eshelby method [3] of equivalent eigenstrain to dynamics. The equivalent eigenstrain is
determined by the point-wise equivalence of the stresses, expressed in terms of strains by
the constitutive relation. While for ellipsoidal inclusions, the total constrained strain is re-
lated to the equivalent eigenstrain by the Eshelby tensor, leading to a system of algebraic
equations, in dynamics, it is related to the equivalent eigenstrain by the solution of Marken-
scoff and Ni [4]. As an example, the equivalent eigenstrain ¢;" is obtained analytically for a
shear eigenstrain moving boundary and isotropic materials. Knowing the equivalent eigen-
strain, the elastodynamic fields of a plane inhomogeneous inclusion moving boundary with
transformation strain can be calculated from the Willis [2] formula, and, with these radiated
fields, the driving forces can be obtained. Since the equivalent eigenstrain depends on the
motion /(¢) of the boundary and the applied stress, the Peach-Koehler type force associated
with the external loading now involves coupled terms of the loading with the motion and
nonlinear terms in the applied stress.

Regarding applications, recently Yang, Escobar and Clifton [18], used a constrained Es-
helby inclusion analysis to model the inducement of martensitic phase transformations from
dynamically applied loading. The present analysis provides the inertia terms necessary for
the modeling of this phenomenon, where, preliminary observations by Professor Rodney
Clifton (of Brown University) confirm the behavior of the applied loading to boundary ve-
locity relation obtained by Markenscoft and Ni [4], and Markenscoff [19], to predict the one
of their experiments (private communication, R.J. Clifton, 2010).

2 Radiated Fields from an Expanding Constrained Half-Space Inclusion
with General Eigenstrain

We present here briefly the formulation and the computed fundamental solution of Marken-
scoff and Ni [4] for an expanding plane constrained homogeneous inclusion boundary with
general transformation strain, or equivalently called eigenstrain. It follows the analysis of
Willis [2] treating constrained inclusions with time dependent eigenstrain, and, more specif-
ically, (26) of Willis [2] for the displacement field u; (X, ¢) due to domain and time dependent
eigenstrain &7

+00 9
u; (X, [):/ df// C_fkgn,szm(x, [)EGi_j(X—X,,Z—[,)dV,, (1)
—00 D k

where D denotes the whole 3-dimensional space, ¢; the eigenstrain and G;; the dynamic
Green’s function for an impulse point force in an infinite medium, which for an isotropic
material is

, , 8 _r
Gijx—x,t—1t)=gij(c:) — gij(c)) + —21_3<l - —), (2)
627‘ C
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‘We will apply (1) to a constrained inclusion occupying the half-space x; < R for <0 and
expanding according to x; = Ry + £(¢), such that £(r) =0 fort <0, i.e.,

where

with

&y (X, 1) = &5, H(Ro + £(1) — x1). (6)

Like with dislocations moving from rest in general motion (Markenscoff [20] we will con-
sider the solution of the problem with eigenstrain given by (3), to be the superposition of
the two following problems, so that for Problem II boundary conditions of zero tractions at
infinity apply:

Problem I Eigenstrain ej‘jH (Roy — x1) for t <0, and corresponding displacement u?(x).

Problem II Eigenstrain 8;; [H(Ro+£(t) — x1) — H(Ro — x1)], and corresponding displace-
ment denoted by u}, and defined by:

ui(x, 1) = u;(x, 1) — ud(x). )

Regarding Problem I, in Markenscoff and Ni [1], the static half-space inclusion solution
was obtained only for dilatational eigenstrain, while in Markenscoff and Ni [4] for gen-
eral eigenstrain, as the limiting fields of the Eshelby static spherical inclusion (Mura [21],
p- 68, (11.21)a), in the limit as the radius tends to infinity. The exterior fields of the half-
space inclusion are either obtained from the Eshelby exterior solution, or from the constant
interior Eshelby one plus the Hill [22] jump conditions for the exterior. Equivalently, the ex-
terior ones can also be obtained by considering the coupled system of equations expressing
the continuity of tractions and compatibility of the deformation at the interface (see, also,
Markenscoff [23]). They constitute the solution of Problem I.

It may be noted that the static solution for a half-plane inclusion was first obtained in
2D by Dundurs and Markenscoff [24] on the basis of a limiting procedure as the radius of
a circular inclusion tends to infinity. This is the minimum energy solution for the half-space
inclusion, since any superposed self-equilibrated and compatible tractions at infinity (called
“rogue states” by Dundurs and Markenscoff [24]) increase the total energy of the system
(e.g., Mura [21], p. 83, (13.8)).

We proceed with the solution of Problem II. Considering the fundamental equation (1),
we have:

+o00 +o0
ui(x,t) = / dt’/ dxdx5dxiCixmey, [H(Ro+ £(t") — x1) — H(Ry — x})]
—00 —00
a / !
X —,G[J(X—X,t_t)
0x;
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o0 +00
= / dt’/ dxdx5dxiCirmey, [§(Ro+ €(t") — x]) — 8(Ry — x})]
0 —00
x Gij(x—x,t—1), ®)
since G;; =0 at x{ =+o00,i=1,2,3,and £(r) =0 for < 0.
Thus, the problem reduces to the evaluation of the integral in (5), namely

o) +o0o
ul(x,t) = / dt’/ dx{Cjiomep,[8(R(t") — x7) — 8(Ry — x7)]
0 —00

+00
X/ drydisGij(ry, 12,735 1). ()]

o0

The evaluation is simplified by noting that the Green’s function G, (¥, 72, 73; f) is an odd
function in 7, and 73 for i # j. Hence, the nonzero contributions to (9) are for i = j only.
For an isotropic material the elastic coefficient tensor is

Cikem = A8 ji8em + 1 (8eSpm + 8 jmbre), (10)
so that
Ciiem€py = Crinie]; + Cringsy, + Cuizseyy = (A +2u)ef, + A3, + €5 = A, (1)

and (9) reduces, fori =1,
9] +00
ui(x,1) = / dt// dx A [8(R() —x}) — 8(Ro — x1)]
0 —00

+o00
X/ diydr3 Gy (71, Fp, T35 1), (12)
where R? =7} 4 73, and according to the computations of Markenscoff and Ni [4],

e +°cd- _ _ _ _ . H@t—=Inl) _ cH(eit = |xp —xq)
rdr3 Gy (¥, 72,735 1) = > = ) (13)
N et 200+ 200

Substituting (9) into (8) we have
A - — R - —R
(X, t):/ dr'“! 1[H<t— b = RE)| )|> —H(t— b1 = Rol °|)], (14)
0 2 Ci €1

A/
A+2u

Moreover, it can be shown that

o — R — R — R
/ dﬂH(z—t’—'xl 0|>:<t_|xl o|>H(t_|x1 0|>’ (16)
0 Cq C1 1

o — Ro—£(¢ —R
/ dt’H(z—ﬂ—'xl o — £( )|>:r1H<t—|xl 0|)7 a7
0 C1 Ci
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where 71,0 < t <t, is the unique solution of the equation
fim)=c1t —7) — |x1 — Ry — £(7)| =0, (18)

because the function f)(t) is monotonic for subsonic motion |é| <cy,and f(0) >0, f(¢) <
0, since it is solved only for ¢, > |x; — Ry|.
From (14), (16) and (17), we have the solution for u7(x, t)

w1y = S [rl = (z _ Rl RO')]H(r _ =Rl RO'). (19)
2 Cy Ci

Similarly, from (1),

o] “+00
ui(x, 1) = / dr’ / dx(dxydx;Ciime}, [8(R() — x]) — 8(Ro — x7)]
0 —00
X Gyj(x—x,t —1)

o0 +o0
- / dﬂ/ dxi2pet, [8(R(') — x}) — 8(Ro — x1)]
0 —00

+00
X / dfzdf3G22(l_';t—l/), (20)

o0

and, according to Markenscoff and Ni [4], (16) reduces to the evaluation of the term

Foo Fo0 8@ —|r H(cof — |7
/ dfzd%Gzz:f drsar, XN/ _ Heest = D on
oo oo c;rdmp 2pco

Substituting (20) into (21), we have

00 2ue* B ¥ — R(t' i _R
uz(x,t):/ dﬂﬂ[f]—(l—M)—H(t—u)}
0 2p¢, ¢ o
A — R B —R
e L N
2 o o

where A, =2¢7},, and 15, 0 < 1, <1, is the unique solution of the equation

fo(t)=ca(t — 1) — |x; — Ry — £(7)| =0 for subsonic motion |é| <. (23)

In view of the symmetry between the x, and x3 coordinates, we have

A — R _ —R
u;‘(x,t)zczz3[-,;2_ (t_%J)]HQ—M)’ (24)
2 2

where A3 = 2¢7;.
Thus (Markenscoff and Ni [4]), the solution for the displacement of the dynamic half-
space constrained expanding inclusion (superposition of Problem I plus Problem II):

ul(x,t):CIZA][TI_([_M>]H(I_M)+M?(X)’ (25)

C1 Ci
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iy, 1) = 022AZ [TZ _ (z _ M)]H(r _ M) +ud(x), (26)

2 (&)

uﬂx,ﬂzzci?3[n——(t—-Bl%f&ﬂ>]li(t—JfLi;Bﬂ)—+u&xL @7)

* )\‘ * * * * *
A1=81]+m(822+833), Ay =¢), + &, =26,

o x gk
Az =gy tey =26

where

(28)

and, where t;, with 0 < 7; <1, is the unique solution for subsonic motion |é| < ¢, of the
equation

¢i(t—1)=|x1 — Ry —£(%;)|, fori=1,2, respectively, (29)

and u?(x), fori =1, 2, 3, are the displacement solutions (modulo rigid body motion) for the
static constrained half-space inclusion 8;;H (Ry — x1).

3 Propagating Plane Inclusion Boundary with Shear Eigenstrain

Based on (25) to (27), we obtain the strain field for the dynamic half-space inclusion, either
for motion with £(¢) > 0, or for motion with £(¢) < 0, including all possible subsonic mo-
tions with velocities of any sign, which would correspond to both expanding and shrinking
motions (negative velocity for £(¢) > 0).

The total dynamic deformation (strain) field is obtained from the dynamic displacement
solution

ou;  duj Bu? our ous
EN=T =7 T En =", €33 = —,
0x1 X X X2 0x3
1/0u, Odu, 1 Bu? ou; 8u(2) 1 ouj 0
e — | —— — —_ - —= R — = — E1ry 30
122Qm+m) Amfﬁm+ml 2ox 2 30)
1 0uj
813:58_): +8(1)3, 823=833,

where 83 fori, j =1,2,3, are the total strains field for the static half-space inclusion with
the eigenstrain sj‘jH (Ry — x1), (Problem II).
If we are interested only in shear eigenstrain &7,, then we have, for ¢t > [x; — Ry,

x|

@4y i 1
2 (&)xl c’’ X1 < RO'

8@_:%@&4-%), X1 > Ro, a1

8x1

II} defining 7, it can be proved (Markenscoff and Ni [4]) that, for the subsonic motion, i.e.,
[€] < ci,x1 < Ro+£(t;) if and only if x; < Ry + £(t), for i =1, 2, respectively, so that (29)
implies as in (Markenscoff and Ni [4])

1
L { e N7 Rt l®, )

ax; X1 < Ro+£(1).

1
{m)+er’
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For instance, the strain &;,, which may be of particular interest, is

I, {mn) {(r)
e =€y — —[ lzié(t;i H(R(t) — x)) — —( )tz_ —H —R(z))]
% H(r _ M) (33)
(&)

The stresses o015, as calculated by Markenscoff and Ni [4], are given below, as it should be
clear that tractions must be applied at infinity to sustain this motion (see Fig. 1). With this
time dependent loading on the boundaries at infinity, the solution constitutes the unique elas-
todynamic solution (with minimum energy initial condition) for the plane moving boundary
of a constrained Eshelby inclusion.

o1 =2uler, — e, H(R(t) — x1)1H (Ry — x1)

_ 1 dug duy *
=23 (5 + ) bR - | .

which, for both for expanding and shrinking motion, i.e., £(¢) > 0 and £(¢) < 0, is evaluated
to be

o =0, — [M 12# (R(1) —x1) — M8|2£(2()—2_)2H(x1 - R(t))}
< H(t _ M) (35)
(&)

4 Radiated Fields and Driving Forces for an Expanding Plane Boundary
of an Inhomogeneity

The radiated fields obtained by Markenscoff and Ni [4], as given by (25) to (27), can be
used in order to obtain the radiated fields from the inhomogeneous (of different elastic con-
stants C *kl) moving boundary. Eshelby’s [3] equivalent inclusion method will be extended
here to dynamlcs for a moving plane boundary of a half-space expanding inhomogeneity
with transformation strain.

In statics, Eshelby [3] solved the inhomogeneity problem by reducing it to an inclusion
problem (same elastic constants) with equivalent eigenstrain. Let the matrix have elastic
constants Cyy; and the inhomogeneity C;;k,, and consider that the inhomogeneity has eigen-

strain ¢/, and is under an applied loading at infinity o;; appl app!

(satlsfymg a = Ciuey ?'), and that the boundary moves according to x; = Ry -+ £(¢) such

that £(t) = O for t <0.
Then the total equivalent eigenstrain & i * is due to the inhomogeneity a*j’”h”’" (equivalent
inclusion) plus the (“plastic”) eigenstrain 8 in the inclusion (i.e., Mura [21], (22.12a))

with corresponding strains &;;

grr — 8*mhom + 8 (36)

ij ij

The Eshelby equation that determines the eigenstrain si*j* of the equivalent inclusion ex-
presses the point-wise equivalence in the stresses (of the problem with the inhomogeneity
and the equivalent to it inclusion), and is (e.g., Mura [21], (22.13a)):

+ O.“PI’I C* appl (37)

Kk —
Cijmngmn Acymngmn(gkl) ijmn Emn >

ljmn Wl”
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with
ACy = Cyj — Ciyy.- (38)

Equation (37), which expresses the equivalence in the stresses between inhomogeneity and
inclusion, is valid for in statics and dynamics, if the total strain in (37) has the dynamic value
that relates it to the eigenstrain. In the static case of the inclusion being an ellipsoid, the total
strain &, in (37) is related to the equivalent eigenstrain by the Eshelby tensor

Hok
Emn = Smnpquq P (39)

and, inserted into (37), gives a system of linear algebraic equations for the equivalent eigen-
strain &',

In the case of an inhomogeneity of general shape €2, the total strain in (37) is obtained by
the fundamental solution of an inclusion occupying the domain €2 in terms of the Green’s
function (e.g., Mura [21], (24.3))

Up (X) = - / Gmk,l(x - x/)CkquSf; (X/)dX/, (40)
Q

so that, in view of (37) and (40), the equivalent eigenstrain in €2 is determined from the
integro-differential equation (e.g., Mura [21], (24.4) with (24.5))

2
07 (%) + ACjjm—— / Gin(x—X )a *(xX)dx = qij(x), (41)
! 8)(,1 a-Xl Q
where
Ul_/ - C’J"’"‘an’ qij = O.“[’I’l C:mn Z{:zpl' (42)

In case of a dynamically expanding inhomogeneity with eigenstrain, in view of (1) and
(37), the integro-differential equation (41) from which the equivalent eigenstrain may be
determined, will now be written in terms of the dynamic Green’s function as:

82 [}
o (x, 1) + ACI-jm,,a—/ dt// Gun(x—X,t — 1)o7 (X, 1)dx = qo(x,1), (43)
X, 0% Q1)

where

appl * appl
Ulj - Cl]m”‘c“mn’ q’] - G Czjmn mn * (44)

In the case of the dynamically expanding plane boundary of an inhomogeneity with eigen-
strain under applied loading, the integrations over the expanding inclusion domain can be
performed for an isotropic material, and one can use the results of Markenscoff and Ni [4]
of (25) to (27).

The point-wise equivalent stresses are given by the same equation

! /-
Cijmng;knn AC!/WLI’l£mn (X t; l(f) gkl - C;mn mn + Gal)p C:;mn anp mn R(t) > X1, (45)
with the total strain being &,,, (X, t; [(7;), &), where 7; is the solution of

ci(t =) —|xi —Ro—Il(z)| =0, i=12, (46)

and is the time when a wavelet emitted by the moving front /(7) has the time to reach the
field point (X, ¢), and to contribute to the strain at that point, now related to the equivalent
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eigenstrain by the solution for the strain of the radiated fields of the moving inclusion plane
boundary (with general eigenstrain), obtained above through (25), (26), (27), as a function
of the eigenstrain and the boundary velocity.

With the total equivalent eigenstrain being determined from (37), the radiated fields for
the moving boundary of an inhomogeneity with eigenstrain can be evaluated from (1):

aG,'J'(X — X,, t— l")

dv’, (47)
8xk

+0o0
u;(x,1) =/ df’/ Ciremepn X, 15 1(1"))
—00 V()

where V (¢) is the half-space inclusion with boundary moving according to x; = Ry + 1(?).

As an example, we consider shear eigenstrain €}, and the inhomogeneity to be also an
isotropic material (of different moduli than the matrix). Then, the strain &,,, (X, t; [(7), &}
is related to the eigenstrain from the radiated fields obtained above, where the eigenstrain
will be now the total eigenstrain &;;". In the case of shear eigenstrain only, the relationship is
given in (33):

1 Z - Ro
e =80 — —&% - (r2) H(r _ '), in R(t) > x1, (48)
2 "l +e 2

and, writing the static strain field in terms of the eigenstrain and the Eshelby tensor (Mura
[21], (11.21)), (48) states

4-5 . 1 i) \ . i — R\ .
= il [ — H r— ’ Rt ’ 49
= Ta e 2<£(r2)+cz>812 s nR@)>x,  (49)

where 7, is the unique (for subsonic motion) solution of
H@)=ct =) — lx1 — R, — £(r2)| = 0. (50
Solving from (45), the equivalent eigenstrain is

1 i(w)

5 = (2 — uHe + 2 el }/{4(u* - M)[S -
12 12 12 1212 21(r2) o

] +2u } (51)
thus, extending the Eshelby equivalent inclusion formula [3, 25] (also, Mura [21] (22.19))
to dynamics, for a plane moving inhomogeneity boundary.

Expression (51) should enter into (47), according to which the radiated fields of an ex-
panding inhomogeneity boundary in general subsonic motion /(¢) can be evaluated, most
probably numerically. For a half-space inhomogeneity moving boundary, the radiated fields
may be obtained, like for the inclusion moving boundary (Markenscoff and Ni [4]), by su-
perposition of the static Problem I, which will be the Eshelby solution for the half-space
inhomogeneity, as the limit of the spherical inhomogeneity as the radius tends to infinity,
plus Problem II with the equivalent eigenstrain.

With those fields, that will depend on the motion /(¢) in a more complex way than in the
case of the inclusion boundary (Markenscoff and Ni [1, 4]), the driving force per unit area of
the inhomogeneity boundary, expressing the mechanical rate of work (per unit area) required
to create an incremental volume of inhomogeneity with eigenstrain, will be computed from
the mechanical energy-release rate (Atkinson and Eshelby [5], Freund [6]) on a contour sur-
rounding the moving boundary and shrinking into it. For a moving discontinuity boundary,
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the energy-release-rate acquires the expression Abeyaratne [10] (also, see, Fried [26])

du;
f“z[{wq]—<oﬁ>[[5f—]], (52)
Xj

where the brackets denote jumps, and where we defined the symbol () by
L. _
<A>=§(A +A7), (53)

and with the strain energy jump being

1 1 ouy
[[W]]= E[[Uijgij]] = EUU(M - 8;:,) (54)
with
Buk .
aij :Cl‘jkm<m _gkm>' (55)

Based on (54) and (55), the driving force expression of (52) reduces to (Markenscoff and
Ni [1])

f=—{owm)lleg, x, D11, (56)

and, in the case of an applied superposed loading at infinity , the total driving force will be
P o e (x,0, (57)

with % computed from the radiated field quantities obtained above through (47), and
comprising the static Eshelby term [8] and the new inertia term.

From the structure of (57), we see that the Peach-Koehler type force term a“”’”e;"j (asso-
ciated with the applied stress field) is not involving the velocity of the boundary in the case
of a homogeneous inclusion moving boundary with constant eigenstrain &;;, but in the case
of the inhomogeneously expanding boundary, since the equivalent eigenstrain ¢;;" in (57) de-
pends, through (45), both on the history of the boundary motion and the applied superposed
stress, there will be coupling terms of the applied loading with the eigenstrain which involve
the history of the motion of the boundary, as well as nonlinear terms in the applied stress.

It may be noted that the solutions for an expanding plane inclusion boundary obtained
by Markenscoff and Ni [4] are valid and have the same expression for both expanding and
shrinking subsonic motions. Moreover, if the boundary conditions on the boundaries x, =
+00, x3 = 00 are traction-free, and not those of the limiting procedure (shown in Fig. 1),
then the opposite loading may be applied to cancel the tractions, but these fields will not
affect the fields in the bulk (see also, Dundurs and Markenscoff [24]), so that the driving
force in the bulk will remain the same. It may be also noted that, while the elastodynamic
solution for the moving plane inclusion boundary has been calculated analytically for an
isotropic material, the solution for some classes of anisotropic materials may possibly be
obtained partially analytically, as in the analysis of a generally moving dislocation in a
cubic/hexagonal crystal by Markenscoff and Ni [27, 28], where the solution was obtained
by Laplace transforms and the analysis of the Riemann surfaces corresponding to the four
roots of the determinantal equation. Thus, the applicability to physical phenomena could be
expanded.
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