Skip to main content
Log in

Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The chronic exposure of benthic organisms to metals in sediments can lead to the development of tolerance mechanisms, thus diminishing their responsiveness. This study aims to evaluate the accumulation profiles of V, Cr, Co, Ni, As, Cd, Pb and Hg and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were collected at the Tagus estuary, in two sites with distinct contamination degrees (ALC, slightly contaminated; BAR, highly contaminated). Accordingly, C. edule accumulated higher concentrations of As, Pb and Hg at BAR compared to ALC. However, antioxidant responses of C. edule were almost unaltered at BAR and no peroxidative damage occurred, suggesting adjustment mechanisms to the presence of metals. In contrast, N. hombergii showed a minor propensity to metal accumulation, only signalising spatial differences for As and Pb and accumulating lower concentrations of metals than C. edule. The differences in metal accumulation observed between species might be due to their distinctive foraging behaviour and/or the ability of N. hombergii to minimise the metal uptake. Despite that, the accumulation of As and Pb was on the basis of the polychaete antioxidant defences inhibition at BAR, including CAT, SOD, GR and GPx. The integrated biomarker response index (IBRv2) confirmed that N. hombergii was more affected by metal exposure than C. edule. In the light of current findings, in field-based studies, the information of C. edule as a bioindicator should be complemented by that provided by another benthic species, since tolerance mechanisms to metals can hinder a correct diagnosis of sediment contamination and of the system’s health. Overall, the present study contributed to improve the lack of fundamental knowledge of two widespread and common estuarine species, providing insights of the metal accumulation profiles under a scenario of chronic contamination. Finally, this work provided useful information that can be applied in the interpretation of future environmental monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agencia de Medio Ambiente de Andalucia, Spain (AMA) (1992) Determining the pesticide content in waters and the metal content in living organisms. AMA, Seville, pp 55–67

    Google Scholar 

  • Ahmad I, Mohmood I, Mieiro CL et al (2011) Lipid peroxidation vs. antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercury—organ specificities and age effect. Aquat Toxicol 103:150–158. doi:10.1016/j.aquatox.2011.02.017

    Article  CAS  Google Scholar 

  • Ahmad I, Mohmood I, Coelho JP et al (2012) Role of non-enzymatic antioxidants on the bivalves’ adaptation to environmental mercury: organ-specificities and age effect in Scrobicularia plana inhabiting a contaminated lagoon. Environ Pollut 163:218–225. doi:10.1016/j.envpol.2011.12.023

    Article  CAS  Google Scholar 

  • Almeida EA, Bainy ACD, Loureiro APM et al (2007) Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: antioxidants, lipid peroxidation and DNA damage. Comp Biochem Physiol 146:588–600. doi:10.1016/j.cbpa.2006.02.040

    Article  Google Scholar 

  • Amiard-Triquet C, Rainbow PS, Romeo M (2011) Tolerance to environmental contaminants. CRC Press, Environ Ecol Risk Assess. doi:10.1201/b10519

    Book  Google Scholar 

  • Athar M, Iqbal M (1998) Ferric nitrilotriacetate promotes N-diethylnitrosamine-induced renal tumorigenesis in the rat: implications for the involvement of oxidative stress. Carcinogenesis 19:1133–1139. doi:10.1093/carcin/19.6.1133

    Article  CAS  Google Scholar 

  • Baker M, Cerniglia G, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365. doi:10.1016/0003-2697(90)90208-Q

    Article  CAS  Google Scholar 

  • Baudrimont M, Schäfer J, Marie V et al (2005) Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Médoc salt marshes (Gironde estuary, France). Sci Total Environ 337:265–280. doi:10.1016/j.scitotenv.2004.07.009

    Article  CAS  Google Scholar 

  • Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322. doi:10.1002/etc.5620210629

    Article  CAS  Google Scholar 

  • Bergayou H, Mouneyrac C, Pellerin J, Moukrim A (2009) Oxidative stress responses in bivalves (Scrobicularia plana, Cerastoderma edule) from the Oued Souss estuary (Morocco). Ecotoxicol Environ Saf 72:765–769. doi:10.1016/j.ecoenv.2008.09.012

    Article  CAS  Google Scholar 

  • Berthet B, Mouneyrac C, Amiard JC et al (2003) Accumulation and soluble binding of cadmium, copper, and zinc in the polychaete Hediste diversicolor from coastal sites with different trace metal bioavailabilities. Arch Environ Contam Toxicol 45:468–478. doi:10.1007/s00244-003-0135-0

    Article  CAS  Google Scholar 

  • Bird R, Draper H (1984) Comparative studies on different methods of malonaldehyde determination. Methods Enzimol 105:299–305. doi:10.1016/S0076-6879(84)05038-2

    Article  CAS  Google Scholar 

  • Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470. doi:10.1023/A:1005995217901

    Article  CAS  Google Scholar 

  • Box A, Sureda A, Galgani F et al (2007) Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol 146:531–539. doi:10.1016/j.cbpc.2007.06.006

    CAS  Google Scholar 

  • Budd G, Hughes J (2005) Nephtys hombergii: a catworm. In: Mar. Biol. Assoc. United Kingdom. http://www.marlin.ac.uk/species/detail/1710. Accessed 10 Jan 2016

  • Caçador I, Costa JL, Duarte B et al (2012) Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): which species perform better? Ecol Indic 19:184–190. doi:10.1016/j.ecolind.2011.09.007

    Article  Google Scholar 

  • Caetano M, Fonseca N, Cesário R, Vale C (2007) Mobility of Pb in salt marshes recorded by total content and stable isotopic signature. Sci Total Environ 380:84–92. doi:10.1016/j.scitotenv.2006.11.026

    Article  CAS  Google Scholar 

  • Canário J, Vale C, Caetano M (2005) Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 50:1142–1145. doi:10.1016/j.marpolbul.2005.06.052

    Article  Google Scholar 

  • Canário J, Vale C, Poissant L et al (2010) Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). J Environ Sci 22:1151–1157. doi:10.1016/S1001-0742(09)60231-X

    Article  Google Scholar 

  • Carvalho S, Pereira P, Pereira F et al (2011) Factors structuring temporal and spatial dynamics of macrobenthic communities in a eutrophic coastal lagoon (Óbidos lagoon, Portugal). Mar Environ Res 71:97–110. doi:10.1016/j.marenvres.2010.11.005

    Article  CAS  Google Scholar 

  • Chainho P, Silva G, Lane MF et al (2010) Long-term trends in intertidal and subtidal benthic communities in response to water quality improvement measures. Estuaries Coasts 33:1314–1326. doi:10.1007/s12237-010-9321-2

    Article  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) Handbook of methods in oxygen radical research. CRC Press Inc, Boca Raton, pp 283–284

    Google Scholar 

  • Costley CT, Mossop KF, Dean JR et al (2000) Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal Chim Acta 405:179–183. doi:10.1016/S0003-2670(99)00742-4

    Article  CAS  Google Scholar 

  • Courtney LA, Clements WH (2002) Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: an experimental approach. Freshw Biol 47:1766–1778. doi:10.1046/j.1365-2427.2002.00896.x

    Article  CAS  Google Scholar 

  • Cribb A, Leeder J, Spielberg S (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196. doi:10.1016/0003-2697(89)90188-7

    Article  CAS  Google Scholar 

  • Dabouineau L, Ponsero A (2009) Synthesis on biology of common European cockle Cerastoderma edule. Université Catholique de l’Ouest, p 23

  • Díaz-Jaramillo M, da Rocha AM, Chiang G et al (2013) Biochemical and behavioral responses in the estuarine polychaete Perinereis gualpensis (Nereididae) after in situ exposure to polluted sediments. Ecotoxicol Environ Saf 89:182–188. doi:10.1016/j.ecoenv.2012.11.026

    Article  Google Scholar 

  • Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73:1056–1063. doi:10.1016/j.chemosphere.2008.07.072

    Article  CAS  Google Scholar 

  • Elliott M, Quintino V (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54:640–645. doi:10.1016/j.marpolbul.2007.02.003

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539. doi:10.2174/1568026013394831

    Article  CAS  Google Scholar 

  • Farag AM, Woodward DF, Goldstein JN et al (1998) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene river basin, Idaho. Arch Environ Con Tox 127:119–127. doi:10.1007/s002449900295

    Article  Google Scholar 

  • Ferreira AM, Cortesão C, Castro OG, Vale C (1990) Accumulation of metals and organochlorines in tissues of the oyster Crassostrea angulata from the Sado Estuary, Portugal. Sci Total Environ 97:627–639. doi:10.1016/0048-9697(90)90266-W

    Article  Google Scholar 

  • França S, Vinagre C, Caçador I, Cabral HN (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Mar Pollut Bull 50:998–1003. doi:10.1016/j.marpolbul.2005.06.040

    Article  Google Scholar 

  • Freitas R, Costa E, Velez C et al (2012) Looking for suitable biomarkers in benthic macroinvertebrates inhabiting coastal areas with low metal contamination: comparison between the bivalve Cerastoderma edule and the polychaete Diopatra neapolitana. Ecotoxicol Environ Saf 75:109–118. doi:10.1016/j.ecoenv.2011.08.019

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Scarcelli V et al (2001) DNA integrity and total oxyradical scavenging capacity in the Mediterranean mussel, Mytilus galloprovincialis: a field study in a highly eutrophicated coastal lagoon. Aquat Toxicol 53:19–32. doi:10.1016/S0166-445X(00)00159-4

    Article  CAS  Google Scholar 

  • Geracitano LA, Bocchetti R, Monserrat JM et al (2004) Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper. Mar Environ Res 58:1–17. doi:10.1016/j.marenvres.2003.09.001

    Article  CAS  Google Scholar 

  • Gomes T, Gonzalez-Rey M, Rodríguez-Romero A et al (2013) Biomarkers in Nereis diversicolor (Polychaeta: Nereididae) as management tools for environmental assessment on the southwest Iberian coast. Sci Mar 77:69–78

    CAS  Google Scholar 

  • Gornall A, Bardawill C, David M (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • King CK, Dowse MC, Simpson SL, Jolley DF (2004) An assessment of five Australian polychaetes and bivalves for use in whole-sediment toxicity tests: toxicity and accumulation of copper and zinc from water and sediment. Arch Environ Contam Toxicol 47:314–323. doi:10.1007/s00244-004-3122-1

    Article  CAS  Google Scholar 

  • Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97. doi:10.1007/BF02472006

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809. doi:10.1126/science.1128035

    Article  CAS  Google Scholar 

  • Maranho LA, DelValls TA, Martín-Díaz ML (2015) Assessing potential risks of wastewater discharges to benthic biota: an integrated approach to biomarker responses in clams (Ruditapes philippinarum) exposed under controlled conditions. Mar Pollut Bull. doi:10.1016/j.marpolbul.2015.01.009

    Google Scholar 

  • Mason A, Jenkins K (1995) Metal detoxication in aquatic organisms. In: Tessier A, Turner D (eds) Metal speciation and bioavailability in aquatic systems. Wiley, New York, pp 479–608

    Google Scholar 

  • Meyer JN, Di Giulio RT (2003) Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecol Appl 13:490–503. doi:10.2307/3099913

    Article  Google Scholar 

  • Mohandas J, Marshall J, Duggin G et al (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807. doi:10.1016/0006-2952(84)90353-8

    Article  CAS  Google Scholar 

  • Muniz J, McCauley L, Scherer J et al (2008) Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol 227:97–107. doi:10.1016/j.taap.2007.10.027

    Article  CAS  Google Scholar 

  • Neto AF, Costa JL, Costa MJ et al (2011) Accumulation of metals in Anguilla anguilla from the Tagus estuary and relationship to environmental contamination. J Appl Ichthyol 27:1265–1271. doi:10.1111/j.1439-0426.2011.01814.x

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals, 4th edn. Academic Press, Amsterdam

    Google Scholar 

  • Nusetti O, Esclapés M, Salazar G et al (2001) Biomarkers of oxidative stress in the polychaete (Amphinomidae) under short term copper exposure. Bull Environ Contam Toxicol 66:576–581. doi:10.1007/s00128-001-0047-5

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  • Pereira P, Carvalho S, Pereira F et al (2012) Environmental quality assessment combining sediment metal levels, biomarkers and macrobenthic communities: application to the Óbidos coastal lagoon (Portugal). Environ Monit Assess 184:7141–7151. doi:10.1007/s10661-011-2486-8

    Article  CAS  Google Scholar 

  • Pérez E, Blasco J, Solé M (2004) Biomarker responses to pollution in two invertebrate species: Scrobicularia plana and Nereis diversicolor from the Cádiz bay (SW Spain). Mar Environ Res 58:275–279. doi:10.1016/j.marenvres.2004.03.071

    Article  Google Scholar 

  • Piló D, Pereira F, Carriço A et al (2015) Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2015.06.018

    Google Scholar 

  • Rainbow PS, Geffard A, Jeantet AY et al (2004) Enhanced food-chain transfer of copper from a diet of copper-tolerant estuarine worms. Mar Ecol Prog Ser 271:183–191. doi:10.3354/meps271183

    Article  CAS  Google Scholar 

  • Regoli F (1998) Trace metals and antioxidant enzymes in gills and digestive gland of the mediterranean mussel Mytilus galloprovincialis. Arch Environ Contam Toxicol 34:48–63. doi:10.1007/s002449900285

    Article  CAS  Google Scholar 

  • Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. doi:10.1016/j.marenvres.2013.07.006

    Article  CAS  Google Scholar 

  • Robinson KA, Baird DJ, Wrona FJ (2003) Surface metal adsorption on zooplankton carapaces: implications for exposure and effects in consumer organisms. Environ Pollut 122:159–167. doi:10.1016/S0269-7491(02)00302-0

    Article  CAS  Google Scholar 

  • Rodrigues AM, Meireles S, Pereira T et al (2006) Spatial patterns of benthic macroinvertebrates in intertidal areas of a Southern European estuary: the Tagus, Portugal. Hydrobiologia 555:99–113. doi:10.1007/s10750-005-1109-1

    Article  Google Scholar 

  • Sanchez W, Burgeot T, Porcher JM (2013) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut Res 20:2721–2725. doi:10.1007/s11356-012-1359-1

    Article  CAS  Google Scholar 

  • Sanchiz C, Garcίa-Carrascosa AM, Pastor A (2001) Relationships between sediment physico-chemical characteristics and heavy metal bioaccumulation in Mediterranean soft-bottom macrophytes. Aquat Bot 69:63–73. doi:10.1016/S0304-3770(00)00120-0

    Article  CAS  Google Scholar 

  • Sandrini JZ, Lima JV, Regoli F et al (2008) Antioxidant responses in the nereidid Laeonereis acuta (Annelida, Polychaeta) after cadmium exposure. Ecotoxicol Environ Saf 70:115–120. doi:10.1016/j.ecoenv.2007.03.004

    Article  CAS  Google Scholar 

  • Silva G, Costa JL, de Almeida PR, Costa MJ (2006) Structure and dynamics of a benthic invertebrate community in an intertidal area of the Tagus estuary, western Portugal: a six year data series. Hydrobiologia 555:115–128. doi:10.1007/s10750-005-1110-8

    Article  Google Scholar 

  • Solé M, Kopecka-Pilarczyk J, Blasco J (2009) Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh ecosystem in SW Spain. Environ Int 35:523–531. doi:10.1016/j.envint.2008.09.013

    Article  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  • Usero J, González-Regalado E, Gracia I (1996) Trace metals in the bivalve mollusc Chamelea gallina from the Atlantic coast of southern Spain. Mar Pollut Bull 32:305–310. doi:10.1016/0025-326X(95)00209-6

    Article  CAS  Google Scholar 

  • Vale C, Canário J, Caetano M et al (2008) Estimation of the anthropogenic fraction of elements in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 56:1364–1367. doi:10.1016/j.marpolbul.2008.04.006

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. doi:10.2174/0929867053764635

    Article  CAS  Google Scholar 

  • Vijver MG, Van Gestel CAM, Lanno RP et al (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712. doi:10.1021/es040354g

    Article  CAS  Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197. doi:10.3354/meps249183

    Article  CAS  Google Scholar 

  • Wang WX (2001) Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environ Toxicol Chem 20:1367–1373. doi:10.1002/etc.5620200628

    Article  CAS  Google Scholar 

  • Wang WX, Rainbow PS (2005) Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicol Environ Saf 61:145–159. doi:10.1016/j.ecoenv.2005.01.008

    Article  CAS  Google Scholar 

  • Wilhelm Filho D, Torres MA, Tribess TB et al (2001a) Influence of season and pollution on the antioxidant defenses of the cichlid fish acará (Geophagus brasiliensis). Brazilian J Med Biol Res 34:719–726. doi:10.1590/S0100-879X2001000600004

    Article  CAS  Google Scholar 

  • Wilhelm Filho D, Tribess T, Gaspari C et al (2001b) Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna). Aquaculture 203:149–158. doi:10.1016/S0044-8486(01)00599-3

    Article  CAS  Google Scholar 

  • Worm B, Barbier EB, Beaumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi:10.1126/science.1132294

    Article  CAS  Google Scholar 

  • Zhang Y, Song J, Yuan H et al (2010) Biomarker responses in the bivalve (Chlamys farreri) to exposure of the environmentally relevant concentrations of lead, mercury, copper. Environ Toxicol Pharmacol 30:19–25. doi:10.1016/j.etap.2010.03.008

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CESAM (UID/AMB/50017) and “Fundação para a Ciência e a Tecnologia” (FCT/MEC; Government of Portugal) through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020, through the Research Project PTDC/AAC-AMB/121037/2010, the Investigation Fellowship (BI/CESAM/PTDC/AAC-AMB/121037/2010; Ana Marques), and the Post-doctoral fellowships SFRH/BPD/69563/2010 (Patrícia Pereira) and SFRH/BPD/88947/2012 (Sofia Guilherme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, A., Piló, D., Araújo, O. et al. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?. Ecotoxicology 25, 664–676 (2016). https://doi.org/10.1007/s10646-016-1625-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1625-y

Keywords

Navigation