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Abstract It is widely known that water temperature
affects the swimming capacity of fish. But the effect
of the rearing temperature on the swimming ability of
the fish at later stages, has not had similar attention.
In this study, four populations of zebrafish, were
reared in different water temperatures (22, 25, 28 and
31°C) and after being acclimatized in a common
temperature (26.5°C) for over a month, they were
subjected to swimming trials in order to evaluate the
maximum relative critical velocity (RUcrit) in each
case. Fish that were reared in 22°C showed statistically
significant lower performance than the ones reared in
31°C (7.72±0.17 vs. 8.79±0.28, means ± S.E.).
Possible explanations for the observed differentiation
could be the effect of early life temperature on fish
muscle ontogeny or on body shape.
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Introduction

Swimming performance is a biological characteris-
tic that has a very important role on fish survival

(Jones et al. 1974), as it can strongly affect food
capture, mating success and the avoidance of
unfavourable situations (Drücker 1996). Moreover,
it has been stated that the ability of locomotion is a
main trait that defines to a great extent the Darwinian
fitness (Reidy et al. 2000). Most of the environmen-
tal factors that affect swimming capacity have
already been studied thoroughly and in a wide range
of species. Among them, temperature (Fuiman and
Batty 1997; Beamish 1978; Wieser and Kaufmann
1998; Ojanguren and Brana 2000; Dickson et al.
2002; Koumoundouros et al. 2002a, b; Wilson et al.
2002; Franklin et al. 2003), oxygen (Beamish 1978;
Hammer 1995; Korsmeyer et al. 1996; Steffensen
and Farrell 1998) and carbon dioxide concentration
(Dahlberg et al. 1968; Beamish 1978), pollutants
(Howard 1975; Beamish 1978; Beaumont et al.
2000; Randall and Tsui 2002; Wicks et al. 2002),
salinity (Beamish 1978), light and photoperiod
(Beamish 1978; Hammer 1995; Young et al. 2004)
seem to play a particularly important role.

Temperature itself seems to be the most impor-
tant environmental factor that affects the life of
fish. Besides swimming performance, it has been
shown to affect growth, metabolism, time of
hatching (Herzig and Winkler 1986), development
(Herzig and Winkler 1986; Fukuhara 1990; Polo et
al. 1991; Gibson and Johnston 1995; Lein et al.
1997), yolk absorption (Fukuhara 1990), muscle
ontogeny and development (Johnston 1981, 1993,
2006; Wilkes et al. 2001; Johnston et al. 2009),
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ontogeny of internal organs (Fukuhara 1990; Gibson
and Johnston 1995), external morphology (Lindsey
1988; Wimberger 1992; Tudela 1999; Koumoundouros
et al. 2001a; Pakkasmaa and Piironen 2001; Cabral et
al. 2003; Silva 2003; Turan 2004), meristic characters
(Turan 2004), appearance of skeletal deformities (Polo
et al. 1991; Koumoundouros et al. 2001b), sex
determination (Baroiller et al. 1999; Pavlidis et al.
2000; Koumoundouros et al. 2002a) and the overall
survival (Fukuhara 1990; Lein et al. 1997) and lifespan
of fish (Malek et al. 2004). Although the effect of
swimming temperature on the performance of fish has
been studied thoroughly and in a wide range of
species, there are only a few studies focusing on the
impact of rearing temperature on the swimming
performance of adult fish (i.e. Koumoundouros et al.
2009).

Zebrafish is a small, colourful, tropical fish inhabit-
ing small ponds and slow moving streams in Southeast
Asia (Talwar and Jhingran 1991). For the past few
decades, it has been a very important model-organism
in research fields such as Genetics, Neurophysiology,
Developmental Biology and Biomedicine (Amsterdam
and Hopkins 2006). Numerous laboratories worldwide
are using zebrafish for fundamental or applied research
and there is an increasing interest for its use in new
research fields (Gerlai 2003). In spite of its popularity
as a research tool, only recently did some integrated
studies about its biological and ecological character-
istics emerge (Engeszer et al. 2007; Spence et al.
2008).

Concerning the temperature range in which
zebrafish live and reproduce in the environment,
more than one suggestion exists. Froese and Pauly
(2010) argue that zebrafish’s natural habitat temper-
ature ranges from 18°C to 24°C, whereas Engeszer et
al. (2007) report that the observed temperature range
for zebrafish in the wild lies between 24.6°C and
38.6°C. Spence et al. (2008) on the other hand,
mention that temperature in D. rerio’s habitats
ranges from 6°C in the winter to 38°C in the
summer. Our personal observations throughout many
rearing trials showed that the rearing temperatures of
22°C and 31°C are the lower and upper limit values
for successful rearing in the laboratory. At lower or
higher – respectively – temperatures, the risk of
unsuccessful hatching, mass larvae mortality and
severe skeletal malformations throughout the pop-
ulations, is extremely high.

The purpose of this article is to study the effect
of four different rearing temperatures (ranging from
22°C to 31°C) on the swimming performance of
adult zebrafish.

Materials and methods

A single batch of eggs of D. rerio was obtained from
wild type broodstock (ZF WT2 F5, Wageningen
Agricultural University, The Netherlands) that was
kept in a 30 l tank at 28±0.5°C and fed three times
per day with industrial dry food in flakes (Sera Vipan,
Germany) and three times per week with Artemia sp.
nauplii (Instar I). The eggs were collected approxi-
mately 2 h after fertilization, examined under the
stereoscope (Olympus, SZX9), selected in terms of
quality and submerged for 12–15 min in hydrogen
peroxide (3 ml l−1) for antifungal protection. After-
wards (approximately 3 h after fertilization), batches
of 200 eggs were transferred into hatching devices
that were placed in four rearing tanks of 130 l of
different water temperatures (22, 25, 28 and 31°C).
The regulation of temperature was achieved with
the use of electrical thermostat heaters (Aquarium
Systems, Visi-Therm, 100–150 W) and coolant
device, when needed. The rearing was performed
in duplicate (A and B).

Hatching occurred at 2 (28 and 31°C), 3 (25°C), or
6 days (22°C) after spawning. Larvae were fed four
times per day, initially (at 2 days post hatching, dph)
with Paramecium sp. (Blades Biological CO, UK)
and later (at 33 dph) with newly hatched Artemia sp.
nauplii (Instar I) (Westerfield 1995). Approximately at
73 dph, industrial dry food in flakes was introduced,
which consisted the main diet of the fish throughout
the acclimation and experimental periods. With every
food-type change, a transitional period of three days
was applied, at which both food types were provided.
At approximately 143 dph, the acclimation – to the
common temperature of 26.5°C – period started and
lasted 1.5 month, until the start of the swimming
exercises.

Swimming performance trials were carried out in
an apparatus described by Koumoundouros et al.
(2002b). Water velocity was calibrated by means of
an electromagnetic flow-meter (Valeport, Model 801).
Fish forward escape was prevented using a mesh
screen located at the upstream end of the swimming
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channel. A homogenous current velocity throughout
the whole depth and length of the channel was
verified by means of dye injected into the swimming
channel. Temperature was maintained constant at
26.5°C using a thermostat heater, while the oxygen
saturation was >99%.

For the critical velocity (Ucrit) measurements to be
valid, the speed tests should be conducted based on the
Total Length (TL) of the specimens used (Brett 1964).
Therefore, the swimming performance trials were
carried out not in one but at 3 different swimming
speeds in order to accurately cover different fish sizes.
The swimming speeds (and the velocity increments)
used to test the fish were - according to their size - the
following: 30, 32.5 and 35 mm sec−1. The TL of the
fish was assessed visually before the trial to avoid
excess stress from the unnecessary fish handling
(Ramsay et al. 2009). If the actual TL (as measured
at the end of the experiments on the digital photo-
graphs of the anaesthetized fish) differed from the
estimated one and therefore from the applied speed and
the velocity increment more than 1.25 mm, then the
data concerning that fish were discarded. Only male
fish were used for the trials, so as to avoid possible
sex-dependent differences (Williams and Brett 1987).
Fish were starved for 24 h prior to the swimming trials.
Fish were also macroscopically examined prior to the
trials for any visible morpho-anatomical malforma-
tions. Before the trial, fish were acclimated for 15 min
to the holding tank’s conditions and then one fish was
placed in the swimming tunnel for 10 min at a water
velocity of 2 TL sec−1. Water velocity increased every
10 min at a rate of 1 TL sec−1 until the fish fatigued.
Fatigue was reached when a fish was carried away by
the current, without been able to hold its position in the
swimming tunnel or react to visual and acoustic
stimuli.

Since body mass can affect metabolism (Hochachka
1987) and body length can affect swimming power
output, we assessed both in all groups after treatments
(McClelland et al. 2006). To do so, fish were
anaesthetized (ethylenglycol-monophenylether, Merck,
0.2–0.3 ml l−1), individually photographed using a
digital camera (Olympus, Camedia C3030 Zoom) and
weighed (M, 0.001 g), while the maximum body width
(BW) was measured under a stereoscope (0.01 mm).
Landmarks were also placed to the obtained pictures
using an image processing software (tpsDig2, Rohlf,
version 5.0.3.32), for the accurate measurement of the

TL, maximum body depth (BDmax), body depth at the
anus (BD) and caudal peduncle depth (CpD). More-
over, selective double staining of cartilage and bone
tissue was performed on the specimens after the trials
and the stained samples were examined under a
stereoscope for skeletal deformities (Divanach et al.
1997; Koumoundouros et al. 1997a, b, 2001b). The
abnormal fish were discarded from the analysis.

Critical swimming speed was calculated using the
equation introduced by Brett (1964):

Ucrit ¼ Ui þ Uii
Ti
Tii

� �

where Ui is the highest velocity maintained for the
whole 10 min (mm sec−1), Uii is the velocity
increment (30, 32.5 and 35 mm sec−1), Ti is the time
elapsed at fatigue velocity and Tii is the time between
velocity increments (10 min).

To compare the swimming performance of many
individuals that varied in length, the Ucrit had to be
transformed to a new value that would be independent
of the factor TL. So, after calculating the Ucrit, the
relative critical swimming speed (RUcrit) for every
fish was calculated using this equation:

RUcrit ¼ Ucrit

TL
(Beamish 1978)

As the assumption of homogeneity of variances
was not fulfilled, the Mann-Whitney U-test was used
for the comparison of swimming performance be-
tween the four different temperatures and the 2
replicates, after the appropriate correction for tied
measurements (Sokal and Rohlf 1995). The non
parametric Kruskal-Wallis was used to test the effect
of temperature on RUcrit (Sokal and Rohlf 1995).

All experimental procedures were in accordance
with the European Communities Council directive
(86⁄609⁄EEC) for the care and use of laboratory
animals and approved by the University of Crete
research committee.

Results

The relative critical velocities measured for the
individuals of each duplicate of the four temperature
groups are presented in Table 1. Statistical analysis
showed a significant influence of the factor, rearing
temperature, on the swimming performance of the
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juveniles (p<0.05, Kruskal-Wallis). At all temperature
regimes, by means of Mann-Whitney U-test, no
significant differences were revealed between the
two duplicates.

Fish raised at 31°C have achieved the higher
swimming performances in terms of RUcrit, while the
ones reared in 22°C had the worst performance (p<
0.05, Mann-Whitney). Fish cultured in 25 and 28°C
achieved intermediate critical swimming speeds al-
though not significantly different from the others
(Table 1).

The measurements of the morphometric characters
performed after the swimming trials as well as the
ones that derived from the morphometric analysis of
the landmarks placed on the specimen photographs
are presented in Table 2.

For those characters, the performed Mann-Whitney
U-tests revealed no statistical significant differences
between the fish raised at the different temperature
regimes (p>0.05).

Discussion

Fish are known to react to their environment’s
fluctuations in all possible ways and it is an
evolutionary imperative to try and adjust to these
changes. Zebrafish, although considered to be a

tropical fish, inhabits ecosystems with “monsoon
climate”, that present an extraordinary seasonal
variation of temperatures that can range from as low
as 6°C in winter to over 38°C in summer (Spence et
al. 2008). With the phenomenon of global warming
being more and more imminent, the effects that such a
wide range of temperatures can have on many
important processes and aspects of the fish life are
certainly worth of extensive study.

Developmental temperature plays an important role
on the subsequent life of fish. On the present study
the role of early rearing temperature on the swimming
capacity of zebrafish juveniles was examined. The
results showed that fish reared at 31°C have a higher
swimming ability (8.79 TL sec−1) than fish reared at
22°C (7.72 TL sec−1). Fish raised at the two
intermediate temperatures (25 and 28°C), although
not statistically different from either one of the
extreme temperatures, they seem to perform better
than the fish of 22°C and worse than the fish of 31°C
(8.13 and 8.36 TL sec−1 respectively).

Swimming ability of zebrafish has been studied
before in the case of larval (i.e. Budick and O’Malley
2000; Levin et al. 2004) and adult specimens (Plaut
and Gordon 1994; Plaut 2000; McClelland et al.
2006; Widmer et al. 2006) but never in respect to
developmental temperature. Plaut (2000) studied the
effect of the fin size on the swimming performance of

Temperature Dup. RUcrit (TL sec−1) SE N Average RUcrit SE p

22°C Α 7.68 0.17 10 7.72 0.17 a

B 7.76 0.30 11

25°C A 8.05 0.42 8 8.13 0.27 –
B 8.20 0.36 9

28°C A 8.23 0.33 9 8.36 0.28 –
B 8.46 0.44 11

31°C A 8.69 0.37 10 8.79 0.28 a

B 8.89 0.44 10

Table 1 RUcrit (SE,
standard error) for each
duplicate (A and B) and for
each temperature group
(22, 25, 28 and 31°C)

a p<0.05 (Mann-Whitney
U-test)

Table 2 Morphometric characters (SD standard deviation). TL total length, W weight, BW body width, BDmax maximum body depth,
BD body depth (at anus), CpD caudal peduncle depth

Temp. TL (mm) SD W (g) SD BW (mm) SD BDmax (mm) SD BD (mm) SD Cpd (mm) SD

22°C 32.66 1.60 0.349 0.04 4.773 0.32 6.736 0.36 5.695 0.37 3.011 0.19

25°C 32.29 2.51 0.335 0.07 4.744 0.43 6.493 0.57 5.554 0.58 3.004 0.30

28°C 32.71 1.82 0.347 0.05 4.882 0.24 6.770 0.45 5.789 0.44 2.961 0.23

31°C 33.11 2.06 0.357 0.07 4.816 0.48 6.663 0.54 5.666 0.47 2.933 0.24
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zebrafish, Widmer et al. (2006) studied the effect of
hypoxia versus normoxia and Plaut and Gordon
(1994) compared wild-type and cloned zebrafish. In
the present study, the maximum relative critical
swimming speed was estimated from 7.7 to 8.8 TL
sec−1 which is in agreement with the results of
Widmer et al. (2006), who reported it between 8.5
and 9.5 SL sec−1, as this value is lowered if converted
to TL sec−1. Plaut (2000) measured RUcrit values
around 12.6 TL sec−1 (after the appropriate adjust-
ment from SL to TL), and Plaut and Gordon (1994)
were unable to exhaust their wild-type specimens, but
conclude that they swam more than 13 SL sec−1.
Similar results were described also by McClelland
et al. (2006). The presented differences in RUcrit

values between these studies and also the present
one, can be explained by either the different
measuring techniques and apparatus used, or the
higher swimming temperature maintained by the
authors during the trials (28°C).

There have been of course other studies on the
effect of rearing temperature on swimming perfor-
mance of other – mostly farmed marine – species. For
example, Koumoundouros et al. (2009) studied the
effect of two rearing temperatures on the swimming
performance of European sea bass juveniles. In this
study, the authors argued that fish raised in lower
temperature (15°C) performed better than the fish
raised in higher temperature (20°C). This is in
contrast with our present results (where fish raised
in higher temperature ultimately performed better than
the others) but both studies suggest that the rearing
temperature had a profound effect on the swimming
capacity of fish at later stages.

There are two possible explanations for the
observed effect. The influence of developmental
temperature on the muscle ontogeny of the fish which
has long been established (Johnston 1981, 1993,
2006; Johnston et al. 2009; Koumoundouros et al.
2009) appears to have a substantial effect on
swimming performance. Different temperatures lead
to variation in body muscle mass (in terms of size and
number of muscle fibres) that directly affect swim-
ming ability. Koumoundouros et al. (2009), showed
that in the case of European sea bass, the best
swimmers had relatively higher red muscle to white
muscle ratio and more red muscle fibres than the
others. In the case of zebrafish, Johnston et al. (2009)
showed that the optimal embryonic temperature for

fast muscle fibre recruitment (hyperplasia) is 26°C, as
in that temperature there were 18.8% more fast fibers
than at 22°C and 13.7% more fibers than at 31°C.
After this phase, myotube formation stops and a new
phase begins (hypertrophy) that consists of nuclear
accretion and increase in fibre length and diameter
(Johnston et al. 2004). Even though higher develop-
mental temperature does not lead to increased number
of fast muscle fibres, it is still possible that it affects
the second phase of muscle formation, resulting in
longer and thicker muscle fibres.

The second is that temperature in early life affects
body shape (Georgakopoulou et al. 2007; personal
unpublished results) and meristic count (Blaxter 1991;
Georgakopoulou et al. 2007; personal unpublished
results). Georgakopoulou et al. (2007), concluded that
European sea bass juveniles reared in 15°C had more
slender bodies than the ones reared in 20°C, a fact that
could explain the higher swimming performance of the
former as observed by Koumoundouros et al. (2009).

In the present study, we tried to investigate whether
there is a direct correlation between a single morpho-
metric character and RUcrit. The fact that the examined
morphometric characters do not significantly vary
among the four temperature groups leads us to
conclude that there is no such correlation between
these size-related values and the observed differentia-
tion of swimming performance. On the other hand,
unpublished results of our team indicate that zebrafish
grown in different temperatures tend to differ in both
body shape and meristic character count, which is in
agreement with the results of Georgakopoulou et al.
(2007). It is logical to assume therefore that it is a
combination of those characters (body shape in
general) and it’s variation among the different temper-
ature regimes rather than the effect of a single one that
eventually influences the swimming ability of a fish.

Acknowledgements The authors thank Maria Kampitaki for
her valuable assistance during the experimental fish rearing and
swimming trials. The present study was financed by the
European Social Fund and National Resources (EPEAEK II–
PYTHAGORAS I) to M.K.

References

Amsterdam A, Hopkins N (2006) Mutagenesis strategies in
zebrafish for identifying genes involved in development
and disease. Trends Genet 22:473–478

Environ Biol Fish (2011) 90:421–427 425



Baroiller JF, Guiguen Y, Fostier A (1999) Endocrine and
environmental aspects of sex differentiation in fish. Cell
Mol Life Sci 55:910–931

Beamish FWH (1978) Swimming capacity. In: Hoar WS,
Randall DJ (eds) Fish physiology, vol 7. Academic, New
York, pp 101–187

Beaumont MW, Butler PJ, Taylor EW (2000) Exposure of
brown trout, Salmo trutta, to a sub-lethal concentration of
copper in soft acidic water: Effects upon muscle metabo-
lism and membrane potential. Aquat Toxicol 51(2):259–
272

Blaxter JHS (1991) The effect of temperature on larval fishes.
Neth J Zool 42:336–357

Brett JR (1964) The respiratory metabolism and swimming
performance of young sockeye salmon. J Fish Res Board
Can 21:1183–1226

Budick SA, O’Malley DM (2000) Locomotor repertoire of the
larval zebrafish: swimming, turning and prey capture. J
Exp Biol 203:2565

Cabral HN, Marques JF, Rego AL, Catarino AI, Figueiredo J,
Garcia J (2003) Genetic and morphological variation of
Synaptura lusitanica Capello, 1868, along the portuguese
coast. J Sea Res 50:167–175

Dahlberg ML, Shumway DL, Doudoroff P (1968) Influence of
dissolved oxygen and carbon dioxide on swimming
performance of largemouth bass and Coho salmon. J Fish
Res Board Can 25:49–70

Dickson KA, Donley JM, Sepulveda C, Bhoopat L (2002)
Effects of temperature on sustained swimming perfor-
mance and swimming kinematics of the chub mackerel
Scomber japonicus. J Exp Biol 205:969

Divanach P, Papandroulakis N, Anastasiadis P, Koumoundouros
G, Kentouri M (1997) Effect of water currents on the
development of skeletal deformities in sea bass (Dicen-
trarchus labrax L.) with functional swimbladder during
postlarval and nursery phase. Aquaculture 156:145–155

Drücker EG (1996) The use of gait transition speed in
comparative studies of fish locomotion. Integr Comp Biol
36:555

Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007)
Zebrafish in the wild: a review of natural history and new
notes from the field. Zebrafish 4:21–40

Franklin CE, Wilson RS, Davison W (2003) Locomotion at -1.01
c: Burst swimming performance of five species of antarctic
fish. J Therm Biol 28:59–65

Froese R, Pauly D (eds) (2010) FishBase: World Wide Web
electronic publication. http://fishbase.org/Summary/Species
Summary.php?ID=4653. Accessed at 16 June 2010

Fuiman L, Batty R (1997) What a drag it is getting cold:
partitioning the physical and physiological effects of
temperature on fish swimming. J Exp Biol 200:1745

Fukuhara O (1990) Effects of temperature on yolk utilization,
initial growth, and behaviour of unfed marine fish-larvae.
Mar Biol 106:169–174

Georgakopoulou E, Sfakianakis DG, Kouttouki S, Divanach P,
Kentouri M, Koumoundouros G (2007) The influence of
temperature during early life on phenotypic expression at
later ontogenetic stages in sea bass. J Fish Biol 70:278–
291

Gerlai R (2003) Zebra fish: an uncharted behavior genetic
model. Behav Genet 33:461–468

Gibson S, Johnston IA (1995) Temperature and development in
larvae of the turbot Scophthalmus maximus. Mar Biol
124:17–25

Hammer C (1995) Fatigue and exercise tests with fish. Comp
Biochem Physiol A 112:1–20

Herzig A, Winkler H (1986) The influence of temperature on
the embryonic development of three cyprinid fishes,
Abramis brama, Chalcalburnus chalcoides mento and
Vimba vimba. J Fish Biol 28:171–181

Hochachka PW (1987) Limits: how fast and how slow muscle
metabolism can go. Adv Myochem 1:3–12

Howard TE (1975) Swimming performance of juvenile Coho
salmon (Oncorhynchus kisutch) exposed to bleached kraft
pulpmill effluent. J Fish Res Board Can 32:789–793

Johnston IA (1981) Structure and function of fish muscles.
Symp Zool Soc Lond 48:71–113

Johnston IA (1993) Temperature influences muscle differenti-
ation and the relative timing of organogenesis in herring
(Clupea harengus) larvae. Mar Biol 116:363–379

Johnston IA (2006) Environment and plasticity of myogenesis
in teleost fish. J Exp Biol 209:2249

Johnston I, Abercromby M, Vieira V, Sigursteindottir R,
Kristjansson B, Sibthorpe D, Skulason S (2004) Rapid
evolution of muscle fibre number in post-glacial popula-
tions of arctic charr Salvelinus alpinus. J Exp Biol
207:4343

Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima
C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic
temperature affects muscle fibre recruitment in adult zebra-
fish: Genome-wide changes in gene and microRNA expres-
sion associated with the transition from hyperplastic to
hypertrophic growth phenotypes. J Exp Biol 212:1781

Jones DR, Kiceniuk JW, Bamford OS (1974) Evaluation of the
swimming performance of several fish species from the
Mackenzie river. J Fish Res Board Can 31:1641–1647

Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) Tuna
aerobic swimming performance: physiological and envi-
ronmental limits based on oxygen supply and demand.
Comp Biochem Physiol B 113:45–56

Koumoundouros G, Gagliardi F, Divanach P, Boglione C,
Cataudella S, Kentouri M (1997a) Normal and abnormal
osteological development of caudal fin in Sparus aurata
L. fry. Aquaculture 149:215–226

Koumoundouros G, Oran G, Divanach P, Stefanakis S,
Kentouri M (1997b) The opercular complex deformity in
intensive gilthead sea bream (Sparus aurata l.) larvicul-
ture. Moment of apparition and description. Aquaculture
156:165–177

Koumoundouros G, Divanach P, Anezaki L, Kentouri M
(2001a) Temperature-induced ontogenetic plasticity in
sea bass (Dicentrarchus labrax). Mar Biol 139:817–830

Koumoundouros G, Divanach P, Kentouri M (2001b) The
effect of rearing conditions on development of saddleback
syndrome and caudal fin deformities in Dentex dentex (L.).
Aquaculture 200:285–304

Koumoundouros G, Pavlidis M, Anezaki L, Kokkari C, Sterioti
A, Divanach P, Kentouri M (2002a) Temperature sex
determination in the European sea bass, Dicentrarchus
labrax (L., 1758) (Teleostei, Perciformes, Moronidae):
critical sensitive ontogenetic phase. J Exp Zool 292:573–
579

426 Environ Biol Fish (2011) 90:421–427

http://fishbase.org/Summary/SpeciesSummary.php?ID=4653
http://fishbase.org/Summary/SpeciesSummary.php?ID=4653


Koumoundouros G, Sfakianakis D, Divanach P, Kentouri M
(2002b) Effect of temperature on swimming performance
of sea bass juveniles. J Fish Biol 60:923–932

Koumoundouros G, Ashton C, Sfakianakis D, Divanach P,
Kentouri M, Anthwal N, Stickland N (2009) Thermally
induced phenotypic plasticity of swimming performance
in European sea bass Dicentrarchus labrax juveniles. J
Fish Biol 74:1309–1322

Lein I, Holmefjord I, Rye M (1997) Effects of temperature on
yolk sac larvae of Atlantic halibut (Hippoglossus hippo-
glossus L.). Aquaculture 157:123–135

Levin ED, Swain HA, Donerly S, Linney E (2004) Develop-
mental chlorpyrifos effects on hatchling zebrafish swim-
ming behavior. Neurotoxicol Teratol 26:719–723

Lindsey CC (1988) Factors controlling meristic variation. In:
Hoar WS, Randall DJ (eds) Fish physiology, vol 11.
Academic, New York, pp 197–274

Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS
(2004) The effects of temperature reduction on gene
expression and oxidative stress in skeletal muscle from
adult zebrafish. Comp Biochem Physiol C 138:363–373

McClelland GB, Craig PM, Dhekney K, Dipardo S (2006)
Temperature- and exercise-induced gene expression and
metabolic enzyme changes in skeletal muscle of adult
zebrafish (Danio rerio). J Phys 577:739

Ojanguren AF, Brana F (2000) Thermal dependence of
swimming endurance in juvenile brown trout. J Fish Biol
56:1342–1347

Pakkasmaa S, Piironen J (2001) Morphological differentiation
among local trout (Salmo trutta) populations. Biol J Linn
Soc 72:231–239

Pavlidis M, Koumoundouros G, Sterioti A, Somarakis S,
Divanach P, Kentouri M (2000) Evidence of temperature-
dependent sex determination in the European sea bass
(Dicentrarchus labrax L.). J Exp Zool 287:225–232

Plaut I (2000) Effects of fin size on swimming performance,
swimming behaviour and routine activity of zebrafish
Danio rerio. J Exp Biol 203:813

Plaut I, Gordon M (1994) Swimming metabolism of wild-type
and cloned zebrafish Brachydanio rerio. J Exp Biol
194:209

Polo A, Yufera M, Pascual E (1991) Effects of temperature on
egg and larval development of Sparus aurata L. Aquacul-
ture 92:367–375

Ramsay J, Feist G, Varga Z, Westerfield M, Kent M, Schreck C
(2009) Whole-body cortisol response of zebrafish to acute
net handling stress. Aquaculture 297:157–162

Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar
Pollut Bull 45:17–23

Reidy SP, Kerr SR, Nelson JA (2000) Aerobic and anaerobic
swimming performance of individual Atlantic cod. J Exp
Biol 203:347–357

Silva A (2003) Morphometric variation among sardine (Sardina
pilchardus) populations from the northeastern Atlantic and
the western Mediterranean. ICES J Mar Sci 60:1352

Sokal RS, Rohlf FJ (1995) Biometry: the principles and
practice of statistics in biological research. WH Freeman
and Co., New York

Spence R, Gerlach G, Lawrence C, Smith C (2008) The
behaviour and ecology of the zebrafish, Danio rerio. Biol
Rev Camb Philos Soc 83(1):13–34

Steffensen J, Farrell AP (1998) Swimming performance,
venous oxygen tension and cardiac performance of
coronary-ligated rainbow trout, Oncorhynchus mykiss,
exposed to progressive hypoxia. Comp Biochem Physiol
A 119:585–592

Talwar PK, Jhingran AG (1991) Inland fishes of India and
adjacent countries, vol 1. Oxford & IBH Pub. Co.,
Rotterdam

Tudela S (1999) Morphological variability in a Mediterranean,
genetically homogeneous population of the European
anchovy, Engraulis encrasicolus. Fish Res 42:229–243

Turan C (2004) Stock identification of Mediterranean horse
mackerel (Trachurus mediterraneus) using morphometric
and meristic characters. ICES J Mar Sci 61:774

Westerfield M (1995) The zebrafish book: a guide for the
laboratory use of zebrafish (Danio rerio). University of
Oregon Press, Eugene

Wicks BJ, Joensen R, Tang Q, Randall DJ (2002) Swimming
and ammonia toxicity in salmonids: The effect of sub
lethal ammonia exposure on the swimming performance of
Coho salmon and the acute toxicity of ammonia in
swimming and resting rainbow trout. Aquat Toxicol
59:55–69

Widmer S, Moore FBG, Bagatto B (2006) The effects of
chronic developmental hypoxia on swimming perfor-
mance in zebrafish. J Fish Biol 69:1885–1891

Wieser W, Kaufmann R (1998) A note on interactions between
temperature, viscosity, body size and swimming energetics
in fish larvae. J Exp Biol 201:1369

Wilkes D, Xie SQ, Stickland NC, Alami-Durante H, Kentouri M,
Sterioti A, Koumoundouros G, Fauconneau B, Goldspink G
(2001) Temperature and myogenic factor transcript levels
during early development determines muscle growth poten-
tial in rainbow trout (Oncorhynchus mykiss) and sea bass
(Dicentrarchus labrax). J Exp Biol 204:2763–2771

Williams IV, Brett JR (1987) Critical swimming speed of Fraser
and Thompson river pink salmon (Oncorhynchus gorbu-
scha). Can J Fish Aquat Sci 44:348–356

Wilson RS, Kuchel LJ, Franklin CE, Davison W (2002)
Turning up the heat on subzero fish: thermal dependence
of sustained swimming in an Antarctic notothenioid. J
Therm Biol 27:381–386

Wimberger PH (1992) Plasticity of fish body shape. The effects of
diet, development, family and age in two species of
Geophagus (Pisces; Cichlidae). Biol J Linn Soc 45:197–218

Young PS, Swanson C, Cech JJ Jr (2004) Photophase and
illumination effects on the swimming performance and
behavior of five California estuarine fishes. Copeia
2004:479–487

Environ Biol Fish (2011) 90:421–427 427


	Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juveniles
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


