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Abstract The gravity of growth overfishing is increasingly recognized. The size-distribu-
tion of fish stocks is often severely truncated, even when the overall biomass is reasonably
well managed. In a first part of this article, I show how the “race to fish” extends to the
dimension of size: Akin to the classical Bertrand competition in prices, each agent has an
incentive to target fish at a smaller size. In fact, for perfect selectivity, competition between
two agents is sufficient to dissipate all rents. In a second part of this article, I explore the
implications of size-differentiated harvesting for ITQ regulation. I show that quotas specified
in terms of numbers are far superior to those specified in terms of weight or value.

Keywords Fisheries management · Gear selectivity · ITQs · Multi-cohort dynamics ·
Non-cooperative game

1 Introduction

Fish stocks could play a significant role in providing food security for the world’s growing
population—if they are properly managed (Smith et al. 2010). Yet, there is probably no other
area of environmental economics where the gap between potential and actual performance
is as large (Heal 2007). Even in fisheries whose aggregate biomass is reasonably well man-
aged, growth overfishing is increasingly seen as a serious problem (Beamish et al. 2006;
Hsieh et al. 2006; Ottersen 2008). Due to the size-selective properties of harvesting gears,
large fish are over-proportionally removed from the stock. Since older and larger fish are
better able to buffer adverse environmental conditions (Ottersen et al. 2006), this truncation
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of the fish stock’s size structure can lead to magnified fluctuations of abundance (Anderson
et al. 2008). Moreover, if harvesting has evolutionary effects (Guttormsen et al. 2008), the
increased variability may be irreversible (Stenseth and Rouyer 2008).

Growth overfishing is also a substantial economic problem. In fact, it could be much
more important than recruitment overfishing.1 Weight and value of an individual fish grows
considerably over time in most commercially harvested species. Moreover, recruitment is
often influenced by random environmental conditions. It is therefore crucial to fully account
for the natural growth potential of fish stocks. For example, Diekert et al. (2010) pointed out
that the resource rent in the Barents Sea cod fishery could be more than doubled simply by
changing the mesh size of trawlers.

However, under non-cooperative exploitation the ability to conditionally harvest on size
does not lead to a situation where the young and growing fish are spared in order to catch
more fish of optimal size. To the contrary: Growth overfishing is the result of a situation
where every agent has an incentive to target fish at a smaller size than his opponent. The race
to fish extends to the dimension of size.

The argument is developed for two stylized forms of gear selectivity that could be thought
of as extreme points of the range of real-world applications: First, perfect selectivity, where
agents can condition their fishing intensity on size and only incur costs when a fish is actu-
ally harvested. Second, knife-edge selectivity, where agents incur costs for the overall fishing
intensity and only choose a first-size-at-capture.

I show that two players playing a non-cooperative game choosing gear with perfect selec-
tivity is sufficient to dissipate all rents in the fishery. While this result is formally similar to
a well known theorem from Clark (1980, 1990), Clark’s result is cast in terms of time and
biomass.2 I moreover show that the same mechanism is at work under knife-edge selectiv-
ity, though in a less pronounced form. Here, some rents can be retained since part of the
externality is internalized due to the imperfect harvesting technology.

Fishing is a process which removes individuals from a population, but it is the value of
these individuals that generates economic profits. Restricting the number of harvestable fish
with an individual transferable quota (ITQ) is therefore superior to an ITQ in terms of bio-
mass. The former will increase in value at the same rate as the individual fish, while the latter
increases in value only at the rate at which a larger fish is able to fetch a higher price per kg
(if this is at all the case). However, as long as it is less costly to harvest fish when they are
more abundant, no indirect regulation will be sufficient to achieve the first best.

The article proceeds as follows: The next section looks at the related literature. The
model is presented in Sect. 3. Subsequently, the optimal harvesting pattern and the feedback
Nash equilibrium are derived for both perfect selectivity (Sect. 4.1) and knife-edge selectivity
(Sect. 4.2). Section 5 then analyzes the implications of growth overfishing for ITQ regulation.
The results are discussed in Sect. 6. Section 7 concludes.

1 Recruitment overfishing is defined as harvesting too many fish before they have matured, so that the replen-
ishing potential is restricted; Growth overfishing can be defined as harvesting fish before they have reached
their socially optimal size. Whereas it is often argued that recruitment overfishing is the less likely but far
more severe form of overfishing, it is important to note that growth overfishing, via the link described above,
could also increase the risk of stock collapse.
2 Clark analyzed an aggregate biomass model whose growth function developed autonomously over time but
not age. As the growth function in my model is non-autonomous and develops over age but not time, his result
does not immediately apply to my case. The essence of the proof is however the same and does not depend
on the growth function.
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2 Related Literature

The problem of growth overfishing is long known to practitioners and scientists. Already in
1893, Petersen discusses growth overfishing as one of the main causes of declining yields
in the Danish flounder fisheries. The importance of accounting for the size-selectivity has
clearly been recognized in the literature of the 1950s and 1960s (Allen 1953; Beverton and
Holt 1957; Turvey 1964; Smith 1969), but it has received surprisingly little attention there-
after. Today, it is mainly treated from a technical perspective (see for example Bethke 2006;
Kronbak et al. 2009; Kvamme and Frøysa 2004). The gear regulations of most fisheries
remain largely ad hoc (Froese et al. 2008).

In general, there is a growing interest in using size-differentiated and stage-based models
in empirical resource economics (Grafton et al. 2007; Massey et al. 2006; Pintassilgo and
Duarte 2002; Smith et al. 2008, 2009). In an early, but largely neglected contribution, Stollery
(1984) has compared optimal and open-access harvesting in a fishery which develops contin-
ually both over age/size and over time. Recently, Tahvonen (2009a,b) has provided a solution
in a discrete setting, in spite of the previous pessimism regarding analytical solutions (Wilen
1985; Clark 1990). In addition, there exists a large mathematical literature on optimal har-
vesting (although with little or no economic content; see e.g. Brokate 1985; Getz and Haight
1989; Murphy and Smith 1990) and a related literature in forestry economics (see Xabadia
and Goetz 2010, and the references therein). Skonhoft et al. (2011) analyze selectivity in a
three-stage model and find that only few straightforward results appear. Quaas et al. (2010)
look at incentives for optimal management of structured fish populations in a model with
two catchable cohorts. I model growth as a continuous process to circumvent some of the
difficulties implied by a discrete analysis, allowing me to present sharp results.

The harvest technology of perfect selectivity was first applied in the seminal analysis of
Clark et al. (1973), who follow a single cohort over time. The present model is mathematically
parallel to theirs, but models the entire size-distribution of the stock in equilibrium. I show
how two players are sufficient to dissipate all rents, akin to the classical Bertrand competition
in prices.3 Perfect selectivity is among others employed by Stollery (1984) and Quaas et al.
(2010). Clark (1990, Chap. 9.3) uses perfect selectivity when discussing the optimal harvest-
ing of a single cohort. For his discussion of ITQ management (in terms of biomass) under
presence of multiple cohorts (Clark 1990, Chap. 9.8) however, he uses knife-edge selectivity.
This description of the harvesting technology is also employed in the classical exposition
from Beverton and Holt (1957) as well as in Tahvonen (2009a,b) and in much of the empirical
literature (e.g. Bjørndal and Brasão 2006; Kulmala et al. 2007; Kjærsgaard and Frost 2008).

There is a long standing debate on the efficiency and effectiveness of ITQ management.
Their inability to restore optimality in face of resource heterogeneity has been discussed
i.a. by Boyce (1992), Townsend (1995), Gavaris (1996), and Costello and Deacon (2007).
I contribute to this literature by pointing to the effect of different quota specifications and
by highlighting the superiority of number-quotas.4 This confirms the finding of Quaas et al.

3 On this note that I use the Bertrand game as a metaphor explaining the mechanism of undercutting the
size-at-first-capture of the respective competitors. A differential game of Bertrand pricing in a fishery has
been analyzed by Beard (2008).
4 Turner (1997) finds that value-quotas are preferable over weight-quotas (number-quotas are not discussed)
with respect to quota induced discarding under imperfect selectivity. In contrast to Turner, I assume that it
is possible to harvest one class of fish without also harvesting something from another class. Therefore, my
model does not yield the potential advantages of value-quotas. For a further discussion of value-quotas under
imperfect selectivity see Singh and Weninger (2009).
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Fig. 1 Development of biomass value in absence of fishing

(2010), but I show that for more general cases no undifferentiated ITQ scheme is sufficient
to prevent growth overfishing.

3 Model

In a fully differentiated fishery model, the dynamics of the fish stock unfold both over size
and time. To describe the mechanisms clearly and to focus on growth overfishing, I abstract
from the time variable (i.e. I look at the situation in equilibrium) and assume that recruitment
is exogenous. Then the development of one cohort over time is the same as the distribution
of cohorts over size (Beverton and Holt 1957). The other necessary features for my model to
work is to describe natural mortality as constant5 and growth as a non-decreasing process.
Finally, I presume precise targeting in the sense that unwanted fish are not harvested.

Let x(s) be the value of the biomass of a fish stock (biovalue for short) as a function of size
s. The biovalue is x(s) = n(s)· v(s), where n(s) is the number of fish of size s and v(s) is
their individual value. The value of a fish is v(s) = p(s)·w(s), where w(s) is its weight in kg
and p(s) is the price per kg. Denote the relative individual gain in value by ϕ(s) = ∂v(s)/∂s

v(s) .
The instantaneous development of the biovalue over size is then given by:

∂x(s)

∂s
= [ϕ(s) − m − f (s)] x(s). (1)

It consists of two parts: First, the relative individual gain in value: ϕ(s) Second, the decline in
the number of individuals due to the instantaneous natural mortality rate m and the instanta-
neous fishing mortality rate f (s): ∂n(s)

∂s = −[m+ f (s)]· n(s). The development of natural bio-
value over size in absence of fishing is exemplified in Fig. 1. For future reference, the biovalue
in absence of fishing is denoted by x0(s) and can be written as x0(s) = v(s)· Re−ms (where
recruitment is exogenous n(0) = R and the solution of ∂n(s)

∂s = −mn(s) is Re−ms). Denote
the size where the unharvested biovalue reaches its maximum by smax . That is, ϕ(smax ) = m.

5 Constant natural mortality is a strong assumption, which—similar to the assumption of exogenous recruit-
ment—enables closed-form solutions when also fishing mortality is constant. It is customary to assume a
constant natural mortality in many stock-assessments (see e.g. ICES 2010). Recent contributions (Aanes et
al. 2007; Brinch et al. 2011) have shown that—for North-East Arctic cod at least—natural mortality is indeed
rather stable across different age-classes.
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The control variable that enters the state equation (1) is the applied fishing mortality f .
From an economic perspective, the cost of fishing are related to a set of inputs—conven-
tionally subsumed as “effort”—which then translates into fishing mortality. Without loss of
generality, it is assumed that one unit of effort equals one unit of fishing mortality,6 but I
distinguish two technologies: One where fishing mortality is perfectly flexible, and one where
it is the same for all targeted size-classes. Let costs be denoted by c( f ) = c · f and at this
highly simplifying level of aggregation, take them to be proportional to the level of f . Note
that even though the cost per unit of effort is constant, the cost per unit of harvest depends
on the abundance of fish, in particular when effort can be conditioned on size.

If, on the one hand, costs are mainly associated with taking fish out of the water and pre-
cise targeting of individual fish is possible, the appropriate formulation of the profit function
would be given by (P), where costs appear within the integral and effort is targeted at each
size. This technology is called perfect selectivity.

π( f (s)) =
∞∫

0

[x(s) − c] f (s) ds (P)

If, on the other hand, a large part of the cost is incurred regardless of whether a fish is
actually caught (e.g. by steaming to and from the fishing grounds), and the fishing process
can be divided into two separate control dimensions, gear selectivity (the first-size-at-capture
s0), and the application of effort (translating into a uniform fishing mortality f ), then the
appropriate formulation of the profit function would be given by (K). This technology is
called knife-edge selectivity.

π(s0, f ) =
∞∫

s0

f · x(s) ds − c( f ) (K)

My aim is to direct attention to the importance of non-cooperative interactions that play out
on the qualitative properties of the stock. While I believe that this approach offers a new and
useful perspective, I am aware that it can be but a first step. In order to isolate the mecha-
nism of growth overfishing and its effect on ITQ regulation, I have stripped the model to its
essentials. This necessitated some simplifications which deserve to be discussed explicitly:

First, assuming that things do not change over time and that recruitment is exogenous
implies that recruitment is constant, whereas in reality stochastic environmental conditions
have a large impact. The assumption further implies that recruitment is continuous. For many
species, spawning is seasonal, so that the size distribution is characterized by several peaks
rather than a uniform distribution. Moreover, maturity is likely to depend strongly on size
and fertility may be growing more than linearly with size. These effects are not taken into
account here.

Second, there is no discounting as the time variable is not present in the model. In so
far as the model is the steady state of an originally time- and size-differentiated problem, I
implicitly assume a zero discount rate. Intuitively, the effect of discounting on the realized
steady state is that it becomes less worthwhile to wait for the fish to grow to a larger size.

Third, I assume growth in value to be non-decreasing. Fish do not shrink, but there might be
cases where the price decreases with size (e.g. due to quality deterioration). Strictly speaking,

6 In the following, the terms effort, fishing mortality, and fishing intensity are used interchangeably.
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(a) Optimal management
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(b) Competitive exploitation

Fig. 2 Equilibrium harvesting patterns under perfect selectivity: the thin line indicates the level of costs c,
the black line shows the development of biovalue over size x(s). Under optimal management with unbounded
f , fishing is an impulse control at smax (dotted line). Under competitive exploitation, harvesting occurs over
an interval (dotted line) which begins when x(s) reaches c at s0 and ends when the biovalue declines below c
even in absence of fishing. For comparison, the grey line indicates the development of biovalue in absence of
fishing

what is needed for my model to work is that the biovalue is a one-peaked concave function.
This is satisfied when value-growth is non-decreasing, but it might also be satisfied when the
value first increases and then decreases. More variable cases with interchanging intervals of
increasing and decreasing prices would need special attention.

4 Optimal and Non-Cooperative Harvesting

4.1 Perfect Selectivity

Perfect selectivity could be a realistic description for a coastal fishery or a (recreational)
fishery with individual handling (such as e.g. lobster fisheries).

4.1.1 Optimal Harvesting Under Perfect Selectivity

The solution to the problem of a sole-owner maximizing sustainable profits given technology
(P) and the fish stock development (1) is parallel to the problem of harvesting a single cohort
over time as it has been described i.a. by Clark (1990, Chaps. 9.3 and 9.4). Intuitively, when
the fishing intensity is unbounded, the sole-owner would only target fish of the highest value
at smax and at that size extract the entire available surplus x0(smax )−c. This harvesting pattern
is illustrated in Fig. 2a. When the maximum fishing intensity is bounded ( fmax < ∞), such
an exploitation path is not feasible. Harvesting would occur over the shortest interval [s∗

0 , S]
symmetric around smax , so that the extracted surplus biovalue is maximized: Fish that are
too small are spared because they would still grow in value in the water, and fish that are
too large are not targeted because there are so few of them that harvesting them becomes
exceedingly costly. When marginal costs are increasing with increasing effort, harvesting
will follow a more gradual path (Wilen 1985), but fishing intensity will still be highest at the
size of maximum biovalue (to get, loosely speaking, most bang per buck).
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4.1.2 Competitive Harvesting Under Perfect Selectivity

How does the harvesting pattern change when we move from the sole-owner solution to the
competitive situation of many agents? Let there be N symmetric agents and denote the fishing
mortality from agent i by f i , where f i ∈ [0, f i

max ]. The development of the biovalue then
reads:

∂x(s)

∂s
= [

ϕ(s) − m − ∑
i f i (s)

]
x(s). (1’)

and profits for player i are:

π( f i (s)) =
∞∫

0

[x(s) − c] f i (s) ds

Proposition 1 (Growth overfishing under perfect selectivity) Provided that
∑

i �= j f i
max ≥

ϕ(s) − m for all j and all s where harvesting is economically viable (i.e. x(s) ≥ c), the
feedback Nash equilibrium of the unregulated game under technology (P) is characterized
by a unique path where x(s) = c (see Fig. 2b). Harvesting starts at s = s0, defined by
x0(s0) = c, and continues until s = smax . The players make zero profits in equilibrium.

Proof To prove Proposition 1 I need to show that the described exploitation path is a Nash
equilibrium (Lemma 1) and that it is unique (Lemma 2). Total rent dissipation follows from
the fact that the value of the harvest equals the cost of harvesting over the entire interval of
harvesting. ��

Define by gi (s) the individual contribution to the aggregate fishing intensity that keeps
the biovalue at the level c. That is

∑
i gi (s) = ϕ(s) − m for all s at which x(s) = c.

Lemma 1 The set of Markov-strategies

f i∗(x(s)) =
⎧⎨
⎩

f i
max if x(s) > c

gi (s) if x(s) = c
0 if x(s) < c

(2)

constitutes a feedback Nash equilibrium.

Proof Suppose all players follow strategy (2), then x(s) will grow until x0(s) = c, and sub-
sequently stay constant at x(s) = c until smax . Since x(s) − c is never positive, no deviation
can yield positive profits. As f i∗ ensures that i gets zero profits, the strategy is an optimal
response to the other players’ strategy, hence it constitutes a Nash equilibrium. ��

The intuition behind this result is analogous to the proverbial statement that there are no
dollar bills laying on the street, for if there were, someone else would have taken them. For
illustration, imagine that [s0, smax ] comprises a number of discrete intervals of length �s.
Any surplus value in an interval will be exploited instantly by choosing f i

max , leading to a
declining biovalue. At the start of the next interval, the biovalue will be below c and induce
no fishing activity. In the interval after the next, the biovalue will be above c again, hence
triggering maximum effort, etc. In the limit as �s → 0, the level of fishing intensity that
keeps the biovalue at x(s) = c from s0 to smax is given by

∑
i gi (s). Note that the individual

gi is not uniquely determined; what matters is that the path of x(s) is unique.
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(b) Competitive exploitation

Fig. 3 Equilibrium harvesting patterns under knife-edge selectivity: the black line shows the development of
biovalue over size x(s), where it is dotted from the first-size-at-capture on. As before, the grey line indicates
the development of biovalue in absence of fishing

Lemma 2 The path described by the feedback Nash equilibrium (2) is unique.

Proof The proof is stated in Appendix A.1. ��
Similar to the classical Bertrand-price-competition for perfect substitutes, the player has

to share the obtainable profits when harvesting at the same size as his opponents, but obtains
the full profits when harvesting at a smaller size. It is this mechanism which is at the heart of
the “race to fish” along the dimension of size.7 The outcome does not depend on the number
of participating players, competition between two agents is enough to dissipate all rents.

4.2 Knife-Edge Selectivity

The harvest technology of the previous section might arguably be a special case. Another
description of the harvest technology which is often found in empirical studies is knife-edge
selectivity. This technology (where all fish above a given first-size-at-capture s0 are subject
to a general level of fishing mortality f ) could be a realistic description of a distant water
trawl fishery.

In general, it is clear that restricting the possibilities by which the fishing intensity can
vary over size means that the different harvesting patterns are less pronounced (compare
Figs. 3 to 2). Unfortunately, it also means that the results are less tractable. Nevertheless,
the main results that optimal harvesting is symmetric around the size of maximum biovalue
while competitive exploitation implies a “race to fish” carry over.

4.2.1 Optimal Management Under Knife-Edge Selectivity

The sole-owner problem to maximize (K) subject to (1) is essentially identical to the classical
yield-per-recruit analysis from Beverton and Holt (1957). Although they do not explicitly
model costs and prices, they do discuss economic aspects (ibid., pp. 378).

7 In contrast to the Bertrand-game of course, the decision is not to pick one price out of an interval, but
there are (infinitely) many sizes on the interval [s0, smax ] at which the players can harvest. As the biovalue in
[s0, smax ] grows again if there is no further fishing, the players will harvest at any point in [s0, smax ]: given
that the other players harvest at every possible size, abstaining from harvesting at some size will not lead to
any improvement in the obtainable biovalue at the other sizes.
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Under the present formulation of knife-edge selectivity, both fishing mortality f and
natural mortality m are independent of size. It is therefore possible to explicitly solve for
x(s) = v(s)n(s) = v(s)Re f s0−(m+ f )s and to reformulate this as the unconstrained problem
to choose s0 ∈ [0,∞); f ∈ [0, fmax ] so that π(s0, f ) is maximized, where:

π(s0, f ) = f

∞∫

s0

v(s)· Re f s0−(m+ f )s ds − c( f ) (3)

with the corresponding first order conditions for an interior solution:

∂π(s0, f )

∂s0
= f

∞∫

s0

f v(s)· Re f s0−(m+ f )sds − f v(s0)· Re−ms0 = 0

⇒ f

∞∫

s0

x(s)ds = x0(s0) (4a)

∂π(s0, f )

∂ f
= f

∞∫

s0

(s0 − s)x(s)ds +
∞∫

s0

x(s)ds − c′( f ) = 0

⇒
∞∫

s0

x(s)ds = c′( f ) + f

∞∫

s0

(s − s0)x(s)ds (4b)

The first-order-condition for s0, Eq. (4a), states that the harvested value, f
∫ ∞

s0
x(s)ds,

should equal the natural biovalue at the first-size-at-capture, x0(s0). That there is a unique
s∗

0 ∈ [0, smax ] which maximizes (3) for a given f can be seen by inspecting the corresponding
second derivative:

∂2π

∂s2
0

= f

[
∂π

∂s0
− ∂x0(s0)

∂s0

]

Since ∂π
∂s0

= 0 at s∗
0 and the natural value function x0(s0) is increasing until smax , the second

derivative is negative at s = s∗
0 . The first derivative is positive for s∗

0 − ε and negative for
s∗

0 + ε (it crosses the zero-line from above). Now suppose there would be another value of s0

before or after s∗
0 for which ∂π

∂s0
= 0. At this point, the first derivative would have to cross the

zero-line from below. However, this is a contradiction since ∂xi (s0)
∂s0

> 0 for s0 ∈ [0, smax ].
The first-order-condition for f , Eq. (4b), states that the marginal revenue from fishing,∫ ∞

s0
x(s)ds, should equal the marginal cost, c′( f ), plus the opportunity costs in terms of a

reduced stock, f
∫ ∞

s0
(s − s0)x(s)ds. To see that there exists an f ∗ that maximizes (3) for a

given s0 ∈ [0, smax ], note that ∂π
∂ f is a continuous function which is larger than zero at f = 0

(if harvesting is at all profitable) and smaller than zero as as f → ∞ (unless c = 0 and
s0 = smax ). Hence, it has to become zero at least once for f > 0.

As discussed by Beverton and Holt (1957), fishing intensity and first-size-at-capture are
substitutes: The same harvest can be obtained by a high f and a large s0 or by a low f and a
small s0 (though there is only one choice that maximizes profits). Consequently, costs have
an indirect effect on the optimal first-size-at-capture: High cost lead to a relatively low f ∗
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and hence a relatively small s∗
0 . Conversely, low costs yield a high f ∗ and hence a large s∗

0 .
If fishing is costless, it is optimal to harvest with unlimited intensity at smax .

When the growth in value can be approximated by a linear function (for simplicity, I
choose v(s) = s), the optimal first-size-at-capture can be expressed as a simple function of
the fishing intensity f . Integrating the harvest function by parts yields:

π(s0, f ) = f

∞∫

s0

s Re f s0−(m+ f )s ds − c( f )

= 1 + (m + f )s0

(m + f )2 f Re−ms0 − c( f )

where the first-order-condition for s0 is given by (5). It shows how the optimal first-size-
at-capture is determined by the size of maximal unharvested biovalue (smax = 1

m when
v(s) = s), weighted by the ratio of fishing mortality f to total mortality m + f . Note that as
f → ∞,

f
m+ f → 1, and s∗

0 → smax .

∂π

∂s0
= 0 ⇒ s∗

0 = 1

m
· f

m + f
. (5)

Similarly, the optimal fishing intensity can be expressed as a function of s0, but the expression
is intricate and yields no insights beyond the intuition discussed above.8 As it is tedious to
work out the specific optimal level of f ∗, I will concentrate on the first-size-at-capture and
continue as if the level of fishing intensity was exogenously given.

4.2.2 Competitive Exploitation Under Knife-Edge Selectivity

How does non-cooperative exploitation compare to the efficient solution under knife-edge
technology? Assume for the moment that there are N identical players with given individual
fishing mortality f i . In order to ensure that each player faces one size at which all his oppo-
nents start fishing, I furthermore restrict my attention to symmetric equilibria. Each agent i
then has to choose whether or not to apply a smaller first-size-at-capture than his opponents.
In doing so, the agent weighs the gain from harvesting smaller fish for himself against the
loss from unduly reducing the stock before it has reached its highest value.9

Denote the first-size-at-capture from agent i’s opponents by ς0 and their fishing intensity
by f j (so that the total fishing intensity is given by f = f i + ∑

j �=i f j ). When agent i

8 For completeness, the first-order-condition yields a cubic function whose positive root can—with help of a
computer—be found to be:

∂π

∂ f
= 0 ⇒ f ∗ = R

3c
3

√
c2

(
27m + 3

√
(3 − 9ms0 + 9m2s2

0 − 3m3s3
0 + 81cm2)/c

)

− 1 − ms0

3

√
c2

(
27m + 3

√
(3 − 9ms0 + 9m2s2

0 − 3m3s3
0 + 81cm2)/c

) − m

9 This game bears resemblance to innovation timing games (Hoppe and Lehmann-Grube 2005), where being
early grants monopoly profits until other firms follow, but being late yields access to better technology. In
contrast to these games, the profit function of a follower in the present game is not decreasing in the decision
variable of the leader (the follower benefits from from a late first-size-at-capture of his opponents as this leaves
a larger stock when he enters).
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chooses to apply a smaller first-size-at-capture than his opponents (s0 < ς0), his profit func-
tion π A includes two integrals, one from s0 to ς0 where agent i is harvesting alone, and one
from ς0 onwards where all agents are harvesting.

π A(s0; ς0) = f i

ς0∫

s0

v(s)Re f i s0−(m+ f i )s ds

+ f i

∞∫

ς0

v(s)Re f i s0+∑
j �=i f j ς0−(m+ f i +∑

j �=i f j )s ds − c( f i ) (A)

In contrast, when agent i chooses s0 ≥ ς0, his profit function π B includes only one integral
(from s0 onwards) where all agents are harvesting:

π B(s0; ς0) = f i

∞∫

s0

v(s)Re
∑

j �=i f j ς0+ f i s0−(m+∑
j �=i f j + f i )s ds − c( f i ) (B)

Proposition 2 (Growth overfishing under knife-edge selectivity) Under knife-edge technol-
ogy, the game with N identical players and given fishing intensities has a unique symmetric
Nash equilibrium first-size-at-capture. When the growth in value is linear, the Nash equilib-
rium first-size-at-capture is:

s N E
0 = 1

m + ∑N
j �=i f j

· f i

m + ∑N
j �=i f j + f i

< s∗
0

Harvesting begins at a smaller size than is socially optimal, which implies a (incomplete)
dissipation of rents.

Proof First note that the structure of problem (B) is identical to the sole-owner problem (3),

only that m̃ = m + ∑
j �=i f j has taken the place of m and R̃ = Re

∑
j �=i f j ς0 has taken the

place of R. Therefore, the fishing mortality of i’s opponents acts as an addition to the natural
mortality. The opponents’ first-size-at-capture has no influence on player i’s optimal choice

of s0: The term R̃ = Re
∑

j �=i f j ς0 can be taken outside the brackets of the first-order-condi-
tion.10 Suppose the unique symmetric Nash equilibrium is the choice of s0 that maximizes
π B , and denote s N E

0 = arg max π B . Adapting the solution for the optimal first-size-at-cap-

ture (5), s N E
0 can in the linear case be written as: 1

m̃ · f i

m̃+ f i = 1
m+∑N

j �=i f j
· f i

m+∑N
j �=i f j + f i

. As

players are identical by assumption, this is equivalent to s N E
0 = 1

m+(N−1) f i · f i

m+N f i .

10 To see this note that

∂π B

∂s0
= f i

⎛
⎝

∞∫

s0

f i v(s)Re
∑

j �=i f j ς0+ f i s0−(m+∑
j �=i f j + f i )s ds − v(s0)Re

∑
j �=i f j ς0−(m+∑

j �=i f j )s0

⎞
⎠ = 0

implies

f i
∞∫

s0

v(s)e f i s0−(m+∑
j �=i f j + f i )s ds − v(s0)e−(m+∑

j �=i f j )s0 = 0
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Next, even if the individual fishing intensity f i were at the efficient level, the non-cooper-

ative first-size-at-capture is less than 1
N th of the optimal one: s N E

0 = 1
m+(N−1) f i · f i

m+N f i <

1
m · f i

m+N f i = 1
N s∗

0 < 1
m · N f i

m+N f i = s∗
0 . Hence, rents are dissipated in the Nash equilibrium,

although complete rent dissipation occurs only in the limit (i.e. as N → ∞, s N E
0 → 0).

Last, the fact that s N E
0 is indeed the unique symmetric Nash equilibrium is shown in

Appendix A.2. ��
The individually optimal first-size-at-capture, s N E

0 , is decreasing in the total level of fish-
ing intensity, whereas the socially optimal first-size-at-capture, s∗

0 , is increasing in fishing
intensity. The intuition is that collectively, it is the more important to spare small fish the
more the number of fish is reduced with the onset of harvesting. But under unregulated com-
petition, the individually rational argument is exactly the opposite: It is the more important
to harvest small fish the more their number is reduced once harvesting from the other agents
sets in.

The result that “the non-cooperative first-size-at-capture is less than 1
N th of the optimal

one” stems from the assumption that the value of a fish is a linear function of size which
starts at the origin. In reality, there will probably be a minimum marketable size for fish
which limits the extent of growth overfishing. Generally, the gravity of growth overfishing
will depend on how much the economic and ecological value of fish increases with size for
the specific fishery under consideration.

The Nash equilibrium first-size-at-capture was stated for given f i and f j , but these
are also choice variables. I derive endogenous Nash equilibria for f numerically. The pro-
cedure and a table of exemplary values is provided in Appendix A.3. There is a stabilizing
effect due to the substitutability between fishing intensity and first-size-at-capture: On the
one hand, competition implies a higher f and hence a smaller first-size-at-capture. But on the
other hand, there is an incentive to substitute a smaller s0 for fishing intensity. As every agent
economizes on the fishing intensity, the equilibrium first-size-at-capture is smaller. Indeed,
higher costs are actually a blessing in this game; it leads to a more beneficial development
of the state variable and in consequence to higher profits in the Nash equilibrium.

In contrast to the perfect selectivity case, fish are not targeted from the very moment it
becomes economically viable. In a sense, the situation is akin to Bertrand competition with
imperfect substitutes (compared to the price competition in perfect substitutes discussed ear-
lier): The players face a trade-off between capturing a greater share of the market (by using
a smaller mesh size) and reducing the size of the market (by diminishing the number of fish
over a longer interval).

5 Regulation

What are the implications of selective harvesting for fisheries management? It is well known
that an ITQ regulation—which is able to restore efficiency in the simple lumped-parameter
model—does not fully eliminate the incentives for cost-increasing behaviour of the agents
when there are unaccounted externalities in the production process or when the fish stock is
heterogeneous (Boyce 1992; Costello and Deacon 2007). In this case, ITQs do not restore
efficiency precisely because they are not able to “effectively separate the individual fishing
decision from the development of the fish stocks” (Arnason 1990, p. 638). No undifferenti-
ated quota system can avoid that the race to fish is played out along the dimension of size.
However, I find that quotas in terms of numbers are superior to quotas in terms of weight or
value.
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5.1 ITQs Under Perfect Selectivity

There are two processes characterizing the development of a size-differentiated fishery. First,
individual fish grow in value, creating an incentive to catch larger fish. Second, the number of
fish is declining with size, which increases harvesting costs and creates an incentive to catch
smaller fish. The introduction of undifferentiated ITQs does not break the second process:
The quota price is independent of size and provides thus no incentive to spare small fish.
However, the type of quota will be of importance. When it is given in terms of value, the
individual agent is indifferent at which size he extracts one unit of quota. The agent is also
indifferent when to use up a unit of quota in terms of weight if the price per kg does not
change with size. In other words, only if the price increases with size will a weight-quota
induce any incentive to postpone harvesting. Finally, the opportunity cost of using up one
unit of number-quota decreases at the same rate as the individual fish gain value.

Let each individual i own a quota Qt
i of type t . Introduce a new state variable y(s) with

∂y/∂s = − f i (s)qt (s), and with y(0) = Qt
i , and lims→∞ y(s) ≥ 0. Denote by Qv

i a quota
in terms of value [i.e. qv(s) = x(s) = p(s)w(s)n(s)], by Qw

i a quota in terms of weight [i.e.
qw(s) = w(s)n(s)], and by Qn

i a quota in terms of numbers [i.e. qn(s) = n(s)]. The general
problem for agent i is then to choose f (s) ∈ [0, fmax ] in order to maximize:

πqt ( f (s)) =
∞∫

0

f i (s)· [x(s) − c] ds

subject to x(0) = Rv(0) , lim
s→∞ x(s) ≥ 0, and

∂x(s)

∂s
= (

ϕ(s) − m − ∑
i f i (s)

)
x(s),

y(0) = Qt , lim
s→∞ y(s) ≥ 0, and

∂y(s)

∂s
= − f i (s)qt (s).

The corresponding Hamiltonian (dropping the size-subscripts) is:

Hqt = [(1 − μ)x − ρt qt − c] f i + μx[ϕ − m − ∑
j �=i f j ]

where ρt (s) and μ(s) are the co-state variables associated with the quota of type t and the
biovalue of the stock, respectively.

Competition implies that any surplus biovalue will be harvested with maximal intensity
(see Proposition 1). This means that the future value of the stock is zero: μ = 0. In contrast
to the classical Bertrand game, where a quantity pre-commitment yields Cournot outcomes
(Kreps and Scheinkman 1983), this is not the case here. The crucial difference is that the
agents can harvest at more than one size (equivalent to naming more than one price), and the
mechanism of undercutting the opponent’s first-size-at-capture is hence not diluted. How-
ever, the agents do take the opportunity cost of depleting their quota into account. From the
linearity of the Hamiltonian and μ = 0, it can be seen that maximum effort is triggered when
[x − ρt qt − c] ≥ 0.

According to the conventional maximum principle, the first-order condition relating to the
co-state ρt would be: ∂ρt

∂s = − ∂Hqt

∂y = 0, implying that ρt does not change over size. In so far
as the maximum principle is—so to speak—a package, it is not guaranteed that the necessary
conditions with respect to the co-state relating to y are valid when the necessary conditions
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with respect to the co-state relating to x are not everywhere differentiable.11 However, the
marginal change in the value function as y(0) increases does not depend on x(0), so that the
non-differentiability of the latter function has no influence on the shadow value of y. To see
this note that V (x(0), y(0)) = ∫ ∞

0 f i∗[x∗(s)−c]ds = ∫ ∞
0 f i∗[x∗(s)−c]ds = ∫ ∞

0 f i∗[(c+
ρt q(s))−c]ds = ∫ ∞

0 −ρt ∂y(s)
∂s ds. For a binding quota-constraint, we have lims→∞ y(s) = 0

and consequently V (x(0), y(0)) = ρt y(0) = ρt Qt and ∂V (x(0),y(0))
∂y(0)

= ρt . In other words,

competition implies x∗(s) = c+ρt q(s) for s ∈ [s0, smax ] and the entire value of participating
in the fishery is derived from the quota.

Although the price that agent i is willing to pay for one additional quota does not depend
on size, the price will depend on the type of quota. The right to harvest n fish is equivalent
to the right to harvest w(s)n kg of fish and v(s)n Dollar of fish. As after smax the increase
in cost of extracting one fish exceeds the relative gain in value, the highest price that any
agent would be willing to pay for the right to harvest n fish is v(smax )n − c. Consequently,
ρn = v(smax )ρ

v and ρw = p(smax )ρ
v .

For illustration, the various quota scenarios (Eqs. 6b–6d) are contrasted with unregulated
competition (6a) and the social optimum (Eq. 6e, where μ∗ is the shadow value of the stock
under optimal management). Maximum effort is triggered when:

x(s) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c non-cooperative game (6a)
c

1 − ρv
quota in terms of value (6b)

c

1 − [ρw/p(s)] quota in terms of weight (6c)

c

1 − [ρn/p(s)w(s)] quota in terms of numbers (6d)

c

1 − [μ∗/p(s)w(s)n(s)] social optimum (6e)

Under unregulated competition, harvesting sets in once the biovalue has reached the level
of marginal costs. Under a regulation with ITQs in terms of value, the condition for the onset
of harvesting is changed to x(s) = c

1−ρv . As c
1−ρv > c (for ρv ∈ (0, 1)) the first-size-at-cap-

ture is larger than under unregulated competition. A value-quota works solely by constraining
the extracted value, which leads to a later onset of harvesting and consequently to a somewhat
more beneficial stock development. It does not provide any incentive to take the value growth
of the fish stock into account. In particular, the quota is worthless (ρv = 0) when it exceeds
the harvested value in the unregulated game. In other words, setting the quota to its optimal
value cannot avoid complete rent dissipation along the dimension of size when the potential
surplus exceeds the harvested value under non-cooperation.

An ITQ regulation in terms of weight implies yet a later first-size-at-capture when the
price is increasing with size, and a number quota yields the largest first-size-at-capture.
Still, no ITQ regulation restores the optimal first-size-at-capture. To see this, note that the
condition for triggering maximum effort in the weight-quota case (6c) can be written as
c/(1− ρw

p(s) ) = c/(1− p(smax )
p(s) ρv) which, since p(smax )

p(s) > 1 for s < smax , is larger than c
1−ρv .

In contrast, when the price does not change with size, a weight-quota identical to a value-
quota, since p(s) = p(smax ) = p implies c/(1 − p

p ρv) = c
1−ρv . The first-size-at-capture in

a number-quota regime is determined by x(s) = c/(1 − ρn

p(s)w(s) ) (Eq. 6d) which is larger

11 I would like to thank an anonymous reviewer for highlighting this aspect and Atle Seierstad for helpful
discussions on this point.
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Fig. 4 Illustration of the quota regulated game

than the corresponding condition (6b) and (6c) since p(smax )w(smax )
p(s)w(s) ρv >

p(smax )
p(s) ρv > ρv for

s < smax and ρv ∈ (0, 1).
Figure 4 is an illustration of the stock development under the different quota regimes.

Whereas unregulated competition would imply that the biovalue (thick black line) grows
until it reaches the level of marginal costs (indicated by the horizontal thin black line), a
value quota postpones the onset of harvesting until the biovalue reaches the level c

1−ρv . Since
the right-hand-side of Eq. (6b) does not depend on size, the exploitation path is characterized
by a straight line as in the unregulated game. The interval of harvesting is indicated by the
dotted lines, it ends when the biovalue falls below the level of marginal costs of fishing plus
the opportunity costs of holding a quota.

A quota in terms of weight yields an identical harvesting path when the price per kg does
not depend on size (and obviously ρw = ρv). Otherwise, a weight-quota induces a falling
harvesting pattern that starts at x(s) = c

1−(ρw/p(s)) and stops when the biovalue falls below
the level of marginal costs of fishing plus the opportunity costs of holding a quota.

For parallel reasons as above, the harvesting pattern under a number quota is still steeper
as under the other quota regimes (see Fig. 4). Such a quota regime is superior to a quota in
terms of weight or value. However, from comparing (6d) to (6e) it is evident that also a num-
ber-quota falls short of the social optimum, precisely because it does not break the process of
unduly forwarding harvest to exploit the lower cost of catching smaller and more abundant
fish. This can be seen from the fact that even if a number-quota would incentivize an onset of
harvesting at the social optimum, it would not lead to a sufficiently steep harvesting pattern.

5.2 ITQs Under Knife-Edge Selectivity

A quota regulation under knife-edge technology works essentially in the same way as under
perfect selectivity since the underlying development of the fish stock is identical. As under
perfect selectivity, denote the shadow price of a quota by ρt . Consider the effect of the
different quota specifications in agent i’s profit function:
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π(s0, f i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f i

∞∫

0

[1 − ρv]p(s)w(s)n(s)ds − c f i value (7a)

f i

∞∫

0

[p(s) − ρw]w(s)n(s)ds − c f i weight (7b)

f i

∞∫

0

[p(s)w(s) − ρn]n(s)ds − c f i numbers (7c)

To see that—for given f i and f j —a value quota does not change the individually optimal
first-size-at-capture, note that (1−ρv) is constant and the pre-multiplication in the biovalue is
the same as changing the arbitrary constant R to some R′, which cancels from the first-order
condition.

Moreover, to see that a weight quota has an effect on the individually optimal first-size-at-
capture only if the price is increasing with size, note that when the price is constant, the same
argument as above applies. Contrarily, when p(s) is not constant, the first-order condition
for s0 can be written as:

[p(s0) − ρw]w(s0)n0(s0) = f i
∫ ∞

s0
[p(s) − ρw]w(s)n(s)ds

Since the price at the first-size-at-capture is smallest when p(s) increases with size, the equal-
ity between the biovalue at s0 and the harvest will be reached at a later size, postponing the
agent’s first-size-at-capture.

A number-quota has the largest impact on the individually optimal first-size-at-capture. A
number-quota picks up the full value growth of the fish stock over size (from weight and from
price), while a weight-quota picks up only the value growth stemming from an increasing
price, and a value-quota picks up neither.

Intuitively, when a fisherman is given a certain value that he can extract, he has no incen-
tive to catch and sell high-priced fish. All the agent cares about is to harvest at lowest possible
cost. If a fisherman is given a certain weight that he is allowed to land, he has some incentive
to fill this quota with high-priced fish, but only if there is any price-differentiation. Finally, if
a fisherman is given a quota in terms of numbers he has an incentive to avoid small fish and
target larger and more valuable fish. Nevertheless, no quota accounts for the stock-depen-
dence of the harvesting costs. In conclusion, no quota regime is able to fully eliminate growth
overfishing, as none of them breaks the “rule of capture” (Boyce 1992).12

6 Discussion

Optimizing along one dimension may be fruitless as long as competition along the other
dimension cannot be curbed. Growth overfishing could lead to a complete rent dissipation
under ITQs in terms of value and weight if the price is constant and the total quota size
is excessive. ITQs in terms of numbers fare better, but are also not sufficient to restore the
social optimum. In general, ITQ regimes are often fraught with problems of discarding and

12 The result from Quaas et al. (2010) that number-quotas are sufficient to restore the first-best, is a special
case when there are only two cohorts with equal mortality. It is implicit in their Corollary 2, that also in the
case of only two harvestable cohorts a single quota instrument is not sufficient in general.
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compliance. Introducing an ITQ regime in terms of numbers raises additional questions:
Which is the appropriate quota size? On the one hand, if one simply converts the currently
harvested biomass to numbers at the current unregulated size-structure, the quota will be
significantly too large. On the other hand, if one sets the quota at the prospective regulated
size-structure, the quota will be so small that it implies significant short-term losses until the
regulated size-structure has established itself.

Other undifferentiated regulations, such as a restriction of the first-size-at-capture or the
maximal fishing intensity, are simpler but similarly unable to restore the first-best. A gear
restriction to not fish any fish smaller than smax eliminates growth overfishing by definition.
The optimum optimorum is reached, but if the number of players were endogenous, agents
would enter the fishery until all rents are dissipated (Turvey 1964).

A regulation of the fishing intensity can retain some rents in the fishery. All agents still
fish maximally as soon as x(s) ≥ c, only now, by adequately limiting f i

max , the condition∑
i �= j f i

max ≥ ϕ(s)− m in Proposition 1 would not be fulfilled for small s. Not all economi-
cally profitable fish could be harvested in the beginning. Hence, the biovalue would initially
rise over the level of costs. For larger fish, also the limited fishing mortality is sufficient to
remove all economically profitable fish. Under knife-edge selectivity, an effort regulation
restricts the effect of non-cooperative exploitation to the dimension of the first-size-at-cap-
ture. Yet, as shown above (Proposition 2), rents are dissipated even when effort is fixed to
its optimal level. All in all, it is not surprising that a two-dimensional problem generally
requires a two-dimensional tool to fix it. An ITQ scheme coupled with an appropriate gear
regulation would restore efficiency in this model. Alternatively, one could complement the
quantity-regulation via ITQs with a price-regulation via landing taxes as proposed by Smith
and Gopalakrishnan (2010).

The present model is a highly simplified account of real-world fisheries, leaving many
questions open for further research. First, the exact trade-offs under knife-edge selectivity
warrant further investigation. For example, suppose that a regulator sets a total quota in terms
of numbers so that—at the socially optimal first-size-at-capture—efficiency is restored. Then,
every individual has an incentive to use a smaller mesh size in order to reduce his fishing
intensity and hence his costs, still catching the same quantity. This would reduce the price
he is willing to pay for an additional quota, and as this holds for all agents the quota price
will not reflect the true shadow price of the resource.

Similarly, the stability of the Nash equilibrium described in section 4.1.2 has the property
that any player would be willing to offer up to the entire surplus for all other players leaving
the fishery, while any player would also accept any positive payment ε to leave the fishery. As
the game is completely symmetric, it is of course stable in the sense that there is no solution
to who would be the player that buys out all the other players. In general, a discussion of this
aspect opens a lot of questions that are “outside the model”: How would a stable number of
participants emerge? How would the obtainable surplus be divided in a bargaining solution?
How could it be enforced?

Moreover, a sharper selection pattern might have unanticipated consequences. For exam-
ple, it is often argued that fecundity in many fish species increases with size and that it is
therefore important to safeguard the so-called “super-spawners” (Smith and Gopalakrishnan
2010). Additionally, concerns about harvest induced evolution and ecosystem effects are
sometimes raised (Zhou et al. 2010). Neither recruitment nor multi-species aspects were
considered in the stylized model presented here. However, it has to be stressed that the num-
ber of large fish increases by a change in the gear selectivity. Since more fish are allowed
to survive for a longer time, they are more abundant at the onset of harvesting and they will
remain more numerous than under current selectivity.

123



566 F. K. Diekert

Finally, the fundamental simplification of this model is to assume equilibrium along the
dimension of time. A series of issues relate to the approach path to an equilibrium. The
problem of how a quota should be specified so that the equilibrium is indeed reached, and the
potential consequences of a drastically modified selection pattern have been discussed above.
In general, the time it would take for a new size structure to establish itself will depend both
on the specific life-histories of the fish stock and on the existing technological characteristics
of the fishery in question. Full generality requires the use of partial differential equations.
Cutting through this and analyzing the problem solely along the dimension of size made it
possible to solve the non-cooperative game. The sole-owner solution is identical for the fully
differentiated case (Brokate 1985), but although it appears intuitive, one can of course not
be certain that the same holds true for the non-cooperative equilibrium. Modeling a dynamic
non-cooperative game in a size- and time differentiated system is then the challenge of future
work.

7 Conclusion

It is a fundamental fact that fish stocks consist of individual fish that each have a life history.
Still, in economics there is a long tradition of describing the state of the fish stock by one
variable. However, it is increasingly becoming clear that “fishing down the size structure”
may have equally adverse effects on the health of fish stocks as “fishing down the food web”
(Pauly et al. 1998) has on marine ecosystems. Moreover, harvesting fish that are inefficiently
small may amount to a considerable socio-economic loss. In this paper, I have shown that
growth overfishing can be seen as a universal feature emerging from competitive harvesting
behavior.

This has crucial implications for fisheries management. In particular, indirect regulation
with individual quotas will no longer be sufficient to restore the first-best. Furthermore, it
makes a difference whether a quota is specified in terms of numbers, weight, or value. The
former is the superior instrument in the setting discussed here. The reason is that fishing is a
process which removes individuals from a population, but it is the value of these individuals
that generates economic profits. Nevertheless, no ITQ regulation will restore efficiency as
long as the agents target smaller sizes in order to reduce harvesting costs. Additional regu-
lation will be necessary. Empirically, some sort of size limitation is probably in place in any
fishery, but the problem is that these are often far away from the bio-economic optimum.
There has been a lot of focus on ITQ management in the literature, and it is now high time
that gear selectivity receives more attention.

A Appendix

A.1 Proof that the Non-Cooperative Exploitation Path is Unique (Lemma 2)

I show that any path different from (2), i.e. f i = gi for x(s) = c and f i = f i
max for x(s) > c,

cannot be a Nash equilibrium. Note that the surplus biovalue x(s) − c is a upper-semi-con-
tinuous function defined on the compact set [s0, smax ] and it therefore has a maximum by
the Extreme Value Theorem. Furthermore note that f i > gi for x(s) = c and f i > 0 for
x(s) < c cannot feature any equilibrium path as it would imply negative profits for player
i .
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First, suppose that f i < gi for x(s) = c and f i = f i
max for some x(s) > c. Let

si = inf{s : sup{s ≤ smax : f i (s) < f i
max }}. That is si is the first of all sizes over which

a switch from non-maximal to maximal fishing intensity occurs. In other words, si is the
first size at which the biovalue is reduced to c after it has passed the size s0. As the interval
[s0, si ] is closed and bounded, the surplus biovalue has a maximum. If this maximum is
in the interior, it would be optimal for i to deviate from the strategy f i < gi and harvest
maximally at this interior point. If the maximum is at si , then it would still be optimal for
player i to deviate and harvest maximally one instant before si : The surplus is shared among
all that participate in harvesting at si , while when harvesting one instant before si , the surplus
accrues to player i alone. In the limit, si → s0, contradicting f i < gi . Hence this kind of
strategy is no candidate for an equilibrium.

Then, suppose that f i = gi for x(s) = c and f i < f i
max for x(s) > c. For strategies

of this kind, the exploitation path would look identical to the one described by (2) as the
development of the natural biovalue is continuous. The value x(s) = c is reached before
x(s) > c and

∑
gi keeps it at this level until smax . Still strategies of this kind cannot be

a feedback equilibrium: Provided all other players follow this strategy, and there was—for
some reason—surplus available over some interval, then player i could deviate profitably
from the strategy f i < f i

max by harvesting maximally when the surplus is largest.
Finally, suppose that f i < gi for x(s) = c and f i < f i

max for x(s) > c. The argument
is the same as above, only here f i < gi ensures that the surplus actually becomes positive.
Again, given the other player’s fishing intensity, there is an size at which the surplus is largest
and player i could gain from deviating and harvesting maximally at this point. This exhausts
the possibilities of different generic non-cooperative exploitation paths and leaves the path
described by (2) as the unique equilibrium outcome.

A.2 Proof that s N E
0 is the Unique Nash Equilibrium in the Game Under Knife-Edge

Selectivity (Proposition 2)

To prove that s N E
0 is indeed the unique symmetric Nash equilibrium, I show that player i

prefers to be the follower (apply a larger mesh size than his opponents) and chooses s N E
0 =

arg max π B when his opponents’ first-size-at-capture is ς0 ≤ s N E
0 , and that he prefers to be

the leader (apply a smaller mesh size than his opponents) and chooses some sL
0 = arg max π A

when the first-size-at-capture of his opponents is ς0 > s N E
0 . That is, player i’s best-reply

function is a continuous mapping from [0,∞) to [0,∞) which crosses the 45-degree line
only once at ς0 = s N E

0 (Fig. 5 is an example for the linear case).
In order to do so, it is helpful to define three profit functions: First, the function π i (Eq. 8),

where only agent i is harvesting; second, the function π N (Eq. 9), where there are N agents
harvesting and all opponents of player i start harvesting at size s = 0; and third, the function
π—Eq. (10), the profit function of interest—where N agents harvest, with player i oppo-
nents applying the first-size-at-capture ς0. Let m̃ denote m + ∑

j �=i f j and—for sake of
the argument—let s0 ∈ [0, smax ] (It cannot be optimal to start harvesting when the value
of the unharvested stock is already declining). In function π , the term e1s0>ς0 [−(m̃−m)(s−ς0)]

(where 1s0>ς0 refers to the indicator function) equals e−( f j )(s−ς0) for s0 > ς0 and equals 1
otherwise, so that π combines π A and π B from the main text. The corresponding biovalues
are xi (s; s0), x N (s; s0), and x(s; s0, ς0).

π i (s0) = f i

∞∫

s0

v(s)Re f i s0−(m+ f i )s ds − c( f )
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Fig. 5 Best reply function for v(s) = s, f i = 0.55, N = 2

= f i

∞∫

s0

xi (s; s0) ds − c( f ) (8)

π N (s0) = f i

∞∫

s0

v(s)Re f i s0−(m̃+ f i )s ds − c( f )

= f i

∞∫

s0

x N (s; s0) ds − c( f ) (9)

π(s0; ς0) = f i

∞∫

s0

v(s)Re f i s0−(m+ f i )se1s0>ς0 [−(m̃−m)(s−ς0)] ds − c( f )

= f i

∞∫

s0

x(s; s0, ς0) ds − c( f ) (10)

The derivatives of these three functions are:

∂π i

∂s0
= f i

⎡
⎣−xi (s0) + f i

∞∫

s0

xi (s; s0) ds

⎤
⎦

∂π N

∂s0
= f i

⎡
⎣−x N (s0) + f i

∞∫

s0

x N (s; s0) ds

⎤
⎦

∂π

∂s0
= f i

⎡
⎣−x(s0, ς0) + f i

∞∫

s0

x(s; s0, ς0) ds

⎤
⎦
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First note that π and its derivative are in between π i and π N and their respective deriv-
atives as x N (s0) ≤ x(s0) ≤ xi (s0). In fact, π i (s0) can be written as π(s0,∞) and π N (s0)

could be written as π(s0, 0). When player i applies a smaller first-size-at-capture than his
opponents s0 < ς0, the stock has not been depleted by their mortality yet, so that xi (s0) =
x(s0, ς0). However, the fishing mortality of i’s opponents does kick in at a later size, so that∫ ∞

s0
xi (s; s0)ds >

∫ ∞
s0

x(s; s0, ς0)ds. A larger ς0 implies a lighter harvesting pressure on the

stock, so that
∫ ∞

s0
x(s; s0, ς0)ds is increasing in ς0.

The function π i is the sole-owner profit function, which has a unique maximum at s∗
0 (see

the discussion of Eq. 4a in the main text). The structure of π N is identical to π i (only that m
is replaced by m̃ and the property of the biovalue to have a unique peak does not depend on
the level of natural mortality), so that there is also a unique value of s0 that maximizes π N .
Denote this value s N E

0 .
Now, if s0 > ς0, it follows that x(s0, ς0) = x N (s0)e(m̃−m)ς0 for all s ≥ ς0. Hence

∂π

∂s0
= ∂π N

∂s0
e(m̃−m)ς0 .

The profit function π and π N are proportional if s0 > ς0. Provided the maximum is achieved
for s0 > ς0, it is the same:

∂π N (s0)

∂s0
= 0 for s0 > ς0 ⇒ ∂π(s0)

∂s0
= 0

Thus the best-reply to ς0 ≤ s N E
0 is s0 = s N E

0 .
Conversely, if ς0 > s N E

0 , it follows that for s0 > ς0

∂π N (ς0)

∂s0
e(m̃−m)ς0 = ∂π(ς0)

∂s0
< 0.

As the function π N has no second maximum, π is not maximized by any choice of s0 > ς0.
However, π attains a maximum at some sL

0 < ς0:
Recall that π is continuously differentiable and in between π N and π i . At s0 = s N E

0 , the
derivative of π N is zero and the derivative of π i is positive, so that also the derivative of π

is non-negative. At s0 = ς0 the derivative of π is negative. By continuity, it must be zero
somewhere in [s N E

0 , ς0).
In conclusion, player i prefers to apply a smaller first-size-at-capture than his opponents

if they choose ς0 > s N E
0 . This completes the proof.

A.3 Nash Equilibria in Knife-Edge Selectivity Game

Table 1 gives the results from the simulations of the linear knife-edge game (with R =
1, m = 0.2) for several players. N = 1 is the sole-owner reference case. The pseudocode
of the algorithm is presented below. When the number of players exceeds 4 (5 when costs
c = 0.03), the fishery becomes economically inviable for the given parameter values and the
algorithm does not converge.

ς0, f j ⇐ random initial values
Do Until |σ − ς0| & |e − f j | ≤ ε

max π A(ς0, f j ) by choosing s0 < ς0, f A

max π B(ς0, f j ) by choosing s0 ≥ ς0, f B
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Table 1 Simulations of knife-edge game

Cost = 0.03 N = 1 N = 2 N = 3 N = 4 N = 5

s∗
0 4.29 0.22 0.10 0.06 0.05

Total f = ∑
i f i∗ 1.21 3.88 4.53 4.80 4.95

f i∗ 1.94 1.51 1.20 0.99
Profit 1.78 0.15 0.05 0.02 0.01

Cost = 0.3 N = 1 N = 2 N = 3 N = 4

s∗
0 3.55 0.56 0.27 0.18

Total f = ∑
i f i∗ 0.49 1.11 1.29 1.40

f i∗ 0.55 0.43 0.35

Profit 1.60 0.33 0.13 0.07

Cost = 3 N = 1 N = 2 N = 3 N = 4

s∗
0 2.15 0.85 0.50 0.35

Total f = ∑
i f i∗ 0.15 0.26 0.30 0.32

f i∗ 0.13 0.10 0.08

Profit 0.95 0.34 0.16 0.09

If π A > π B

Then ς0 ⇐ s0
f j ⇐ f A

Else ς0 ⇐ s0

f j ⇐ f B

EndIf
σ, e ⇐ ς0, f j

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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