Skip to main content

Advertisement

Log in

Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background This phase I/II study determined the maximal tolerable dose, dose limiting toxicities, antitumor activity, the pharmacokinetics and pharmacodynamics of ruthenium compound NAMI-A in combination with gemcitabine in Non-Small Cell Lung Cancer patients after first line treatment. Methods Initial dose escalation of NAMI-A was performed in a 28 day cycle: NAMI-A as a 3 h infusion through a port-a-cath at a starting dose of 300 mg/m2 at day 1, 8 and 15, in combination with gemcitabine 1,000 mg/m2 at days 2, 9 and 16. Subsequently, dose escalation of NAMI-A in a 21 day schedule was explored. At the maximal tolerable dose level of this schedule an expansion group was enrolled of which 15 patients were evaluable for response. Results Due to frequent neutropenic dose interruptions in the third week, the 28 day schedule was amended into a 21 day schedule. The maximal tolerable dose was 300 and 450 mg/m2 of NAMI-A (21 day schedule). Main adverse events consisted of neutropenia, anemia, elevated liver enzymes, transient creatinine elevation, nausea, vomiting, constipation, diarrhea, fatigue, and renal toxicity. Conclusion NAMI-A administered in combination with gemcitabine is only moderately tolerated and less active in NSCLC patients after first line treatment than gemcitabine alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brabec V, Kasparkova J (2005) Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 8:131–146

    Article  CAS  PubMed  Google Scholar 

  2. Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094

    Article  CAS  PubMed  Google Scholar 

  3. Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285–295

    Article  CAS  PubMed  Google Scholar 

  4. Reedijk J (1999) Medicinal applications of heavy-metal compounds. Curr Opin Chem Biol 3:236–240

    Article  CAS  PubMed  Google Scholar 

  5. Weiss RB, Christian MC (1993) New cisplatin analogues in development. Rev Drugs 46:360–377

    CAS  Google Scholar 

  6. Bratsos I, Gianferrara T, Alessio E, Hartinger MA, Jakupec B, Keppler BK (2011) Ruthenium and other non-platinum anti-cancer compounds; in bioinorganic medicinal chemistry., pp 151-174

  7. Giraldi T, Sava G (1981) Selective antimetastatic drugs (review). Anticancer Res 1:163–174

    CAS  PubMed  Google Scholar 

  8. Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm (Weinheim) 340:117–126

    Article  CAS  Google Scholar 

  9. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium anticancer drugs. Met Ions Biol Syst 42:323–351

    CAS  PubMed  Google Scholar 

  10. Sava G, Pacor S, Mestroni G, Alessio E (1992) Na[trans-RuCl4(DMSO)Im], a metal complex of ruthenium with antimetastatic properties. Clin Exp Metastasis 10:273–280

    Article  CAS  PubMed  Google Scholar 

  11. Sava G, Bergamo A (1999) Drug control of solid tumour metastases: a critical view. Anticancer Res 19:1117–1124

    CAS  PubMed  Google Scholar 

  12. Frasca D, Ciampa J, Emerson J, Umans RS, Clarke MJ (1996) Effects of hypoxia and transferrin on toxicity and DNA binding of ruthenium antitumor agents in hela cells. Metal-Based Drugs 3:197–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Clarke MJ (2002) Ruthenium metallopharmaceuticals. Coord Chem Rev 232:69–93

    Article  CAS  Google Scholar 

  14. Messori L, Vilchez FG, Vilaplana R, Piccioli F, Alessio E, Keppler B (2000) Binding of antitumor ruthenium(III) complexes to plasma proteins. Metal-Based Drugs 7:335–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Messori L, Orioli P, Vullo D, Alessio E, Iengo E (2000) A spectroscopic study of the reaction of NAMI, a novel ruthenium(III)anti-neoplastic complex, with bovine serum albumin. Eur J Biochem 267:1206–1213

    Article  CAS  PubMed  Google Scholar 

  16. Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45:62–69

    CAS  Google Scholar 

  17. Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2534

    Article  CAS  PubMed  Google Scholar 

  18. Clarke MJ, Bitler S, Rennert D, Buchbinder M, Kelman AD (1980) Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components. J Inorg Biochem 12:79–87

    Article  CAS  PubMed  Google Scholar 

  19. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bloemink MJ, Reedijk J (1996) Cisplatin and derived anticancer drugs: mechanism and current status of DNA binding. Met Ions Biol Syst 32:641–685

    CAS  PubMed  Google Scholar 

  21. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci U S A 100:3611–3616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bergamo A, Sava G (2011) Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans 40:7817–7823

    Article  CAS  PubMed  Google Scholar 

  23. Bergamo A, Gaiddon C, Schellens JH, Beijnen JH, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106:90–99

    Article  CAS  PubMed  Google Scholar 

  24. Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13:1085–1107

    Article  CAS  PubMed  Google Scholar 

  25. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727

    Article  CAS  PubMed  Google Scholar 

  26. Frausin F, Scarcia V, Cocchietto M, Furlani A, Serli B, Alessio E, Sava G (2005) Free exchange across cells, and echistatin-sensitive membrane target for the metastasis inhibitor NAMI-A (imidazolium trans-imidazole dimethyl sulfoxide tetrachlororuthenate) on KB tumor cells. J Pharmacol Exp Ther 313:227–233

    Article  CAS  PubMed  Google Scholar 

  27. Sava G, Frausin F, Cocchietto M, Vita F, Podda E, Spessotto P, Furlani A, Scarcia V, Zabucchi G (2004) Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A. Eur J Cancer 40:1383–1396

    Article  CAS  PubMed  Google Scholar 

  28. Bergamo A, Sava G (2007) Ruthenium complexes can target determinants of tumour malignancy. Dalton Trans; 1267-1272.

  29. Gava B, Zorzet S, Spessotto P, Cocchietto M, Sava G (2006) Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther 317:284–291

    Article  CAS  PubMed  Google Scholar 

  30. Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B, Alessio E, Iengo E, Sava G (2000) Lack of In vitro cytotoxicity, associated to increased G(2)-M cell fraction and inhibition of matrigel invasion, may predict In vivo-selective antimetastasis activity of ruthenium complexes. J Pharmacol Exp Ther 295:927–933

    CAS  PubMed  Google Scholar 

  31. Debidda M, Sanna B, Cossu A, Posadino AM, Tadolini B, Ventura C, Pintus G (2003) NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: involvement of PKC/Raf/Mek/ERK signalling pathway. Int J Oncol 23:477–482

    CAS  PubMed  Google Scholar 

  32. Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S (2003) Dual Action of NAMI-A in inhibition of solid tumor metastasis: selective targeting of metastatic cells and binding to collagen. Clin Cancer Res 9:1898–1905

    CAS  PubMed  Google Scholar 

  33. Casarsa C, Mischis MT, Sava G (2004) TGFbeta1 regulation and collagen-release-independent connective tissue re-modelling by the ruthenium complex NAMI-A in solid tumours. J Inorg Biochem 98:1648–1654

    Article  CAS  PubMed  Google Scholar 

  34. Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, Garbisa S, Sartor L, Sava G (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86:993–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P, Sava G, Ziche M (2003) Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Br J Cancer 88:1484–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther 289:559–564

    CAS  PubMed  Google Scholar 

  37. Bergamo A, Zorzet S, Gava B, Sorc A, Alessio E, Iengo E, Sava G (2000) Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells. Anticancer Drugs 11:665–672

    Article  CAS  PubMed  Google Scholar 

  38. Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMI-A down regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269:5861–5870

    Article  CAS  PubMed  Google Scholar 

  39. Sanna B, Debidda M, Pintus G, Tadolini B, Posadino AM, Bennardini F, Sava G, Ventura C (2002) The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Arch Biochem Biophys 403:209–218

    Article  CAS  PubMed  Google Scholar 

  40. Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cytotoxicity of the organic ruthenium anticancer drug Nami-A is correlated with DNA binding in four different human tumor cell lines. Cancer Chemother Pharmacol 54:71–78

    Article  CAS  PubMed  Google Scholar 

  41. Barca A, Pani B, Tamaro M, Russo E (1999) Molecular interactions of ruthenium complexes in isolated mammalian nuclei and cytotoxicity on V79 cells in culture. Mutat Res 423:171–181

    Article  CAS  PubMed  Google Scholar 

  42. Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9:111–122

    Article  CAS  PubMed  Google Scholar 

  43. Sava G, Pacor S, Mestroni G, Alessio E (1992) Effects of the Ru(III) complexes [mer-RuCl3(DMSO)2Im]degrees and Na[trans-RuCl4(DMSO)Im] on solid mouse tumors. Anticancer Drugs 3:25–31

    Article  CAS  PubMed  Google Scholar 

  44. Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E, Mestroni G (1998) Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin Exp Metastasis 16:371–379

    Article  CAS  PubMed  Google Scholar 

  45. Sava G, Clerici K, Capozzi I, Cocchietto M, Gagliardi R, Alessio E, Mestroni G, Perbellini A (1999) Reduction of lung metastasis by ImH[trans-RuCl4(DMSO)Im]: mechanism of the selective action investigated on mouse tumors. Anticancer Drugs 10:129–138

    Article  CAS  PubMed  Google Scholar 

  46. Sava G, Gagliardi R, Bergamo A, Alessio E, Mestroni G (1999) Treatment of metastases of solid mouse tumours by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine. Anticancer Res 19:969–972

    CAS  PubMed  Google Scholar 

  47. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  48. Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937

    Article  CAS  PubMed  Google Scholar 

  49. Cancer therapy evaluation program nci common terminology criteria version 3.0 (NCI-CTCv.3.0) March 31, 2003 Publish Date 09 August 2006 http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. 9-8-2006.Ref Type: internet communication

  50. Crul M, van den Bongard HJ, Tibben MM, van Tellingen O, Sava G, Schellens JH, Beijnen JH (2001) Validated method for the determination of the novel organo-ruthenium anticancer drug NAMI-A in human biological fluids by Zeeman atomic absorption spectrometry. Fresenius J Anal Chem 369:442–445

    Article  CAS  PubMed  Google Scholar 

  51. Vainchtein LD, Rosing H, Thijssen B, Schellens JH, Beijnen JH (2007) Validated assay for the simultaneous determination of the anti-cancer agent gemcitabine and its metabolite 2′,2′-difluorodeoxyuridine in human plasma by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2312–2322

    Article  CAS  PubMed  Google Scholar 

  52. Veltkamp SA, Hillebrand MJ, Rosing H, Jansen RS, Wickremsinhe ER, Perkins EJ, Schellens JH, Beijnen JH (2006) Quantitative analysis of gemcitabine triphosphate in human peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J Mass Spectrom 41:1633–1642

    Article  CAS  PubMed  Google Scholar 

  53. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  54. Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10:1–10

    Article  CAS  PubMed  Google Scholar 

  55. Dickson, N. R., Jones, S. F., Burris, R. K., and et.al (2011) A phase I dose-escalation study of NKP-1339 in patients with advanced solid tumors refractory to treatment. J Clin Oncol (29 suppl; abstr 2607). Ref Type: Abstract

  56. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  57. Cocchietto M, Sava G (2000) Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice. Pharmacol Toxicol 87:193–197

    Article  CAS  PubMed  Google Scholar 

  58. Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G, Alessio E (1995) Effects of ruthenium complexes on experimental tumors: irrelevance of cytotoxicity for metastasis inhibition. Chem Biol Interact 95:109–126

    Article  CAS  PubMed  Google Scholar 

  59. Sava G, Cocchietto M (2000) Blood levels of ruthenium following repeated treatments with the antimetastatic compound NAMI-A in healthy beagle dogs. In Vivo 14:741–744

    CAS  PubMed  Google Scholar 

  60. Bouma M, Nuijen B, Jansen MT, Sava G, Bult A, Beijnen JH (2002) Photostability profiles of the experimental antimetastatic ruthenium complex NAMI-A. J Pharm Biomed Anal 30:1287–1296

    Article  CAS  PubMed  Google Scholar 

  61. Bouma M, Nuijen B, Jansen MT, Sava G, Flaibani A, Bult A, Beijnen JH (2002) A kinetic study of the chemical stability of the antimetastatic ruthenium complex NAMI-A. Int J Pharm 248:239–246

    Article  CAS  PubMed  Google Scholar 

  62. Bouma M, Nuijen B, Sava G, Perbellini A, Flaibani A, van Steenbergen MJ, Talsma H, den Bosch JJ K-v, Bult A, Beijnen JH (2002) Pharmaceutical development of a parenteral lyophilized formulation of the antimetastatic ruthenium complex NAMI-A. Int J Pharm 248:247–259

    Article  CAS  PubMed  Google Scholar 

  63. Bouma M, Nuijen B, Jansen MT, Sava G, Picotti F, Flaibani A, Bult A, Beijnen JH (2003) Development of a LC method for pharmaceutical quality control of the antimetastatic ruthenium complex NAMI-A. J Pharm Biomed Anal 31:215–228

    Article  CAS  PubMed  Google Scholar 

  64. Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Influence of chemical stability on the activity of the antimetastasis ruthenium compound NAMI-A. Eur J Cancer 38:427–435

    Article  CAS  PubMed  Google Scholar 

  65. Magnarin M, Bergamo A, Carotenuto ME, Zorzet S, Sava G (2000) Increase of tumour infiltrating lymphocytes in mice treated with antimetastatic doses of NAMI-A. Anticancer Res 20:2939–2944

    CAS  PubMed  Google Scholar 

  66. Pacor S, Zorzet S, Cocchietto M, Bacac M, Vadori M, Turrin C, Gava B, Castellarin A, Sava G (2004) Intratumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and tumor infiltrating lymphocyte recruitment. J Pharmacol Exp Ther 310:737–744

    Article  CAS  PubMed  Google Scholar 

  67. Vadori M, Pacor S, Vita F, Zorzet S, Cocchietto M, Sava G (2012) Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice. J Inorg Biochem 118C:21–27

    Google Scholar 

Download references

Acknowledgments

We would like to thank Fondazione CRTrieste and Commissariato del Governo – Fondo Trieste for providing financial support. We are greatly indebted to Ms Lidwina Wever and Dr. O. Dalesio of the trial office of The Netherlands Cancer Institute. Finally, we are thankful for the support of G. Dastoli MD, Eudax SrL, Pavia Italy and R. Bianchi, Aquisitio S.p.A., Milan Italy.

Conflict of interest

Suzanne Leijen no conflict of interest

SjaakA. Burgers, no conflict of interest

Paul Baas, no conflict of interest

Dick Pluim, no conflict of interest

Matthijs Tibben, no conflict of interest

Erik van Werkhoven no conflict of interest

Enzo Alessio, no conflict of interest

Gianni Sava, researcher involved in discovery of NAMI-A

Jos H. Beijnen, no conflict of interest

Jan H.M. Schellens no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. M. Schellens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leijen, S., Burgers, S.A., Baas, P. et al. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest New Drugs 33, 201–214 (2015). https://doi.org/10.1007/s10637-014-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0179-1

Keywords

Navigation