Skip to main content

Advertisement

Log in

Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Lovastatin is a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor. Its inhibitory action on HMG-CoA reductase leads to depletion of isoprenoids, which inhibits post-translational modification of RAS. In this study, we investigated the effect of combining lovastatin with gefitinib on gefitinib-resistant human non-small cell lung cancer (NSCLC) cell lines with K-Ras mutations. Antitumor effects were measured by growth inhibition and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Effects on apoptosis were determined by flow cytometry, DNA fragmentation, and immunoblots. Protein levels of RAS, AKT/pAKT, and RAF/ERK1/2 in cancer cells were analyzed by immunoblot. Compared with gefitinib alone, a combination of gefitinib with lovastatin showed significantly enhanced cell growth inhibition and cytotoxicity in gefitinib-resistant A549 and NCI-H460 human NSCLC cells. In addition, lovastatin combination treatment significantly increased gefitinib-related apoptosis, as determined by fluorescence microscopy and flow cytometric analysis. These effects correlated with up-regulation of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and Bax and down-regulation of Bcl-2. The combination of lovastatin and gefitinib effectively down-regulated RAS protein and suppressed the phosphorylation of RAF, ERK1/2, AKT, and EGFR in both cell lines. Taken together, these results suggest lovastatin can overcome gefitinib resistance, in NSCLC cells with K-Ras mutations, by down regulation of RAS protein, which leads to inhibition of both RAF/ERK and AKT pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 21:2237–46. doi:10.1200/JCO.2003.10.038

    Article  CAS  Google Scholar 

  2. Lee DH, Han JY, Kim HT, Lee JS (2006) Gefitinib is of more benefit in chemotherapy-naive patients with good performance status and adenocarcinoma histology: retrospective analysis of 575 Korean patients. Lung Cancer 53:339–45. doi:10.1016/j.lungcan.2006.05.015

    Article  Google Scholar 

  3. Janne PA, Johnson BE (2006) Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 12:4416s–20s. doi:10.1158/1078-0432.CCR-06-0555

    Article  Google Scholar 

  4. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–9. doi:10.1200/JCO.2005.02.857

    Article  CAS  Google Scholar 

  5. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–6. doi:10.1242/jcs.01660

    Article  CAS  Google Scholar 

  6. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–4. doi:10.1126/science.1059344

    Article  CAS  Google Scholar 

  7. Mantha AJ, Hanson JE, Goss G, Lagarde AE, Lorimer IA, Dimitroulakos J (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11:2398–407. doi:10.1158/1078-0432.CCR-04-1951

    Article  CAS  Google Scholar 

  8. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5:930–42. doi:10.1038/nrc1751

    Article  CAS  Google Scholar 

  9. Chou TC, Motzer RJ, Tong Y, Bosl GJ (1994) Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 86:1517–24

    Article  CAS  Google Scholar 

  10. Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C et al (2005) ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci U S A 102:3788–93. doi:10.1073/pnas.0409773102

    Article  CAS  Google Scholar 

  11. Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118:209–14. doi:10.1002/ijc.21290

    Article  CAS  Google Scholar 

  12. Aggarwal BB, Takada Y (2005) Pro-apototic and anti-apoptotic effects of tumor necrosis factor in tumor cells. Role of nuclear transcription factor NF-kappaB. Cancer Treat Res 126:103–27

    Article  Google Scholar 

  13. Engelman JA, Janne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14:2895–9. doi:10.1158/1078-0432.CCR-07-2248

    Article  Google Scholar 

  14. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17:1395–413. doi:10.1038/sj.onc.1202174

    Article  CAS  Google Scholar 

  15. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–37. doi:10.1038/35052073

    Article  CAS  Google Scholar 

  16. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–32. doi:10.1038/370527a0

    Article  CAS  Google Scholar 

  17. Okudela K, Hayashi H, Ito T, Yazawa T, Suzuki T, Nakane Y et al (2004) K-ras gene mutation enhances motility of immortalized airway cells and lung adenocarcinoma cells via Akt activation: possible contribution to non-invasive expansion of lung adenocarcinoma. Am J Pathol 164:91–100

    CAS  Google Scholar 

  18. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2:e17. doi:10.1371/journal.pmed.0020017

    Article  Google Scholar 

  19. Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD et al (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 13:2890–6. doi:10.1158/1078-0432.CCR-06-3043

    Article  CAS  Google Scholar 

  20. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9:962–72. doi:10.1016/S1470-2045(08)70206-7

    Article  CAS  Google Scholar 

  21. Reuter CW, Morgan MA, Bergmann L (2000) Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96:1655–69

    CAS  Google Scholar 

  22. Cemeus C, Zhao TT, Barrett GM, Lorimer IA, Dimitroulakos J (2008) Lovastatin enhances gefitinib activity in glioblastoma cells irrespective of EGFRvIII and PTEN status. J Neurooncol 90:9–17. doi:10.1007/s11060-008-9627-0

    Article  CAS  Google Scholar 

  23. Laezza C, Fiorentino L, Pisanti S, Gazzerro P, Caraglia M, Portella G et al (2008) Lovastatin induces apoptosis of k-ras-transformed thyroid cells via inhibition of ras farnesylation and by modulating redox state. J Mol Med 86:1341–51. doi:10.1007/s00109-008-0396-1

    Article  CAS  Google Scholar 

  24. Ogunwobi OO, Beales IL (2008) Statins inhibit proliferation and induce apoptosis in Barrett’s esophageal adenocarcinoma cells. Am J Gastroenterol 103:825–37. doi:10.1111/j.1572-0241.2007.01773.x

    Article  CAS  Google Scholar 

  25. Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–19. doi:10.1038/sj.leu.2402476

    Article  CAS  Google Scholar 

  26. Chan KK, Oza AM, Siu LL (2003) The statins as anticancer agents. Clin Cancer Res 9:10–9

    CAS  Google Scholar 

  27. Kawata S, Yamasaki E, Nagase T, Inui Y, Ito N, Matsuda Y et al (2001) Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br J Cancer 84:886–91. doi:10.1054/bjoc.2000.1716

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the National Cancer Center 0810130-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Youn Han.

Additional information

In Hae Park and Jae In Jung have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I.H., Kim, J.Y., Jung, J.I. et al. Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations. Invest New Drugs 28, 791–799 (2010). https://doi.org/10.1007/s10637-009-9319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9319-4

Keywords

Navigation