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Model decomposition of timed event graphs under
periodic partial synchronization: application to output
reference control
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Abstract
Timed Event Graphs (TEGs) are a graphical model for decision free and time-invariant
Discrete Event Systems (DESs). To express systems with time-variant behaviors, a new
form of synchronization, called partial synchronization (PS), has been introduced for TEGs.
Unlike exact synchronization, where two transitions t1, t2 can only fire if both transitions are
simultaneously enabled, PS of transition t1 by transition t2 means that t1 can fire only when
transition t2 fires, but t1 does not influence the firing of t2. This, for example can describe
the synchronization between a local train and a long distance train. Of course it is reasonable
to synchronize the departure of a local train by the arrival of long distance train in order to
guarantee a smooth connection for passengers. In contrast, the long distance train should not
be delayed due to the late arrival of a local train. Under the assumption that PS is periodic,
we can show that the dynamic behavior of a TEG under PS can be decomposed into a time-
variant and a time-invariant part. It is shown that the time-variant part is invertible and that
the time-invariant part can be modeled by a matrix with entries in the dioidMax

in [[γ, δ]], i.e.
the time-invariant part can be interpreted as a standard TEG. Therefore, the tools introduced
for standard TEGs can be used to analyze and to control the overall system. In particular,
in this paper output reference control for TEGs under PS is addressed. This control strategy
determines the optimal input for a predefined reference output. In this case optimality is in
the sense of the ”just-in-time” criterion, i.e., the input events are chosen as late as possible
under the constraint that the output events do not occur later than required by the reference
output.
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1 Introduction andmotivation

TEGs are a subclass of timed Petri nets where each place has exactly one input and one
output transition and all arcs have weight 1. Timed Event Graphs under Partial Synchro-
nization (TEGsPS) are an extension of TEGs introduced in David-Henriet et al. (2014). A
similar extension was introduced in De Schutter and van den Boom (2003), where TEGs
with hard and soft synchronization are studied. TEGsPS can express some time-variant phe-
nomena which cannot be expressed by standard TEGs. For instance, partial synchronization
(PS) is useful to model systems where particular events can only occur in a specific time
window. E.g., at an intersection, a vehicle can only cross when the traffic light is green.
Clearly this describes a time-variant behavior, since the vehicle is delayed by a time that
depends on its time of arrival at the intersection. If an earliest functioning rule is adopted,
the behavior of a TEG can be modeled by linear equations in a specific algebraic structure
called dioid. Based on such dioids, a general theory has been developed for performance
evaluation and control of TEGs, e.g. Baccelli et al. (1992) and Heidergott et al. (2005). In
particular, the problem of output reference control for TEGs was studied in Baccelli et al.
(1992); Cohen et al. (1989); Menguy et al. (1998, 2000). Recently, in David-Henriet et al.
(2014, 2015, 2016), dioid theory has been applied to TEGsPS and first results have been
obtained for performance evaluation and controller synthesis for TEGsPS. In David-Henriet
et al. (2014) output reference control was introduced for TEGsPS. There, the earliest evo-
lution of a Timed Event Graph under Partial Synchronization (TEGPS) is modeled as a
(max,+)-system with additional constraints. The control problem is then solved for a finite
reference output by solving the backward equation for this (max,+)-system. In Hamaci et al.
(2006) and Trunk et al. (2017b) output reference control was studied for TEGs with positive
integer weights on the arcs. These TEGs exhibit event-variant behavior and can therefore be
seen as the counter-part to TEGsPS.

In this paper we investigate TEGsPS where partial synchronization is periodic. To con-
sider only periodic partial synchronization is not overly restrictive as periodic schedules are
common in many applications. E.g. in transportation networks: many public transportation
system as well as freight railway services work with a periodic schedule. Similarly in manu-
facturing systems: there are many production processes, where a resource is shared between
several machines on the basis of a periodic schedule. We show that for TEGsPS with peri-
odic PS the dynamic behavior can be modeled in a specific dioid called Tper [[γ ]]. A specific
time-variant operator is introduced to take PS into account. Similar to transfer functions
for standard TEGs in the dioid Max

in [[γ, δ]], the transfer behavior of TEGsPS is described
by ultimately cyclic series in the dioid Tper [[γ ]]. These transfer functions are useful, for
instance, for computing the output for a given input of a system, for system composition
and for control synthesis.

This paper is organized as follows: Section 2 summarizes the necessary facts on TEGsPS
and dioid theory. In Section 3, modeling of TEGsPS in the dioid Tper [[γ ]] is introduced.
Section 4 discusses a decomposition method for elements in Tper [[γ ]] and provides tools to
handle operations on ultimately cyclic series in Tper [[γ ]]. In particular, we show that basic
operations on ultimately cyclic series in Tper [[γ ]] can be reduced to operations between
matrices in Max

in [[γ, δ]]. In Section 5, transfer functions for TEGsPS in Tper [[γ ]] are used
to solve the optimal output reference control problem for this system class.

A preliminary version of this work has been reported in Trunk et al. (2018), where the
modeling process of a TEGPS in the dioid Tper [[γ ]] was established and a decomposition
into an invertible time-variant and a time-invariant part was discussed. The purpose of this
paper is to introduce optimal output reference control for TEGsPS based on the model in
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the dioid Tper [[γ ]]. As a prerequisite, results on the residuation of the product in the dioid
Tper [[γ ]] are obtained.

2 Timed event graphs and dioids

2.1 Timed event graphs

In the following, we briefly recall the necessary facts on TEGs. For details, see Baccelli et al.
(1992) and Heidergott et al. (2005). A TEG consists of a set of places P = {p1, · · · , pn},
a set of transitions T = {t1, · · · , tm} and a set of arcs A ⊆ (P × T ) ∪ (T × P), all with
weight 1. Place pi is an upstream place of transition tj (and transition tj is a downstream
transition of place pi), if (pi, tj ) ∈ A. Conversely, pi is a downstream place of transition
tj (and tj is an upstream transition of place pi), if (tj , pi) ∈ A. For TEGs, each place
pi has exactly one upstream transition and exactly one downstream transition. Moreover,
each place pi exhibits an initial marking (M0)i ∈ N0 and a holding time (φ)i ∈ N0. A
transition tj is said to be enabled, if the marking in every upstream place is at least 1. When
tj fires, the marking (M)i in every upstream place pi is reduced by 1 and the marking
(M)o in every downstream place po is increased by 1. The holding time (φ)i is the time a
token must remain in place pi before it contributes to the firing of the downstream transition
of pi . The set T of transitions is partitioned into input transitions, i.e., transitions without
upstream places, output transitions, i.e., transitions without downstream places and internal
transitions, i.e., transitions with both upstream and downstream places. We say that a TEG
is operating under the earliest functioning rule, if all internal and output transitions are fired
as soon as they are enabled.

2.2 Timed event graphs under partial synchronization

TEGsPS provide a suitable model for some time-variant discrete event systems. In the fol-
lowing, we give a brief introduction. For further information the reader is invited to consult
(David-Henriet et al. 2014). Considering the TEG in Fig. 1a, assuming the earliest function-
ing rule, incoming tokens in place p1 are immediately transferred to place p2 by the firing
of transition t2, as the holding time of place p1 is zero. Note that zero holding times are,
by convention, not indicated in visual illustrations of TEGs. In contrast, Fig. 1b illustrates a
TEG with PS of transition t2 by transition ta . This means that t2 can only fire if ta fires, but
the firing of ta does not depend on t2.

Fig. 1 a standard TEG. b PS of t2 by ta , triggered every ω time units. c equivalent PS expressed by a signal
Sω
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In this example, place p3 (equipped with a holding time of ω) and transition ta , together
with the corresponding arcs, constitute an autonomous TEG. Under the earliest functioning
rule, the firings of transition ta generate a periodic signal Sω with a periodω ∈ N. Therefore,
the PS of t2 by ta can also be described by a predefined signal Sω: Z → {0, 1}, enabling the
firing of t2 at times t where Sω(t) = 1. In particular, Sω(t) = 1 if t ∈ {jω with j ∈ Z} and
0 otherwise.

Definition 1 A periodic signal S : Z → {0, 1} is defined by a string 〈n0, n1, · · · , nI 〉, with
ni ∈ N0, 0 ≤ i ≤ I and a period ω ∈ N, such that ∀j ∈ Z

S(t) =
{
1 if t ∈ {n0 + ωj, n1 + ωj, · · · , nI + ωj},
0 otherwise,

where the string 〈n0, n1, · · · , nI 〉 is strictly increasing, i.e., ∀i ∈ {1, · · · , I }, ni−1 < ni ,
and nI < ω.

Example 1 The signal

S1(t) =
{
1 if t ∈ {· · · ,−4, −3, 0, 1, 4, 5, 8, 9, · · · },
0 otherwise,

is a periodic signal with a period ω = 4 and a string 〈0, 1〉. Therefore ∀j ∈ Z,

S1(t) =
{
1 if t ∈ {0 + 4j, 1 + 4j},
0 otherwise.

(1)

Definition 2 A Timed Event Graph under periodic partial synchronization is a TEG where
the firings of some internal and output transitions are synchronized with periodic signals.

Note that the assumption that only internal and output transitions are subject to PS is
not restrictive since we can always add new input transitions and extend the set of internal
transitions by the former input transitions. In David-Henriet et al. (2015), ultimately periodic
signals are considered for PS of transitions. It was shown that the behavior of a TEGPS
with such synchronization signals can be described by recursive equations in state space
form. In this work, we focus on (immediately) periodic signals for PS of transitions. To
consider only periodic PS allows us to define a dioid of operators to describe the behavior
of TEGsPS. In particular, we can show that the transfer behavior of a TEGPS is described
by a rational power series of an ultimately cyclic form. Let us note that focusing on periodic
signals for a PS of a transition is not overly restrictive as periodic schedules are common in
many applications.

Example 2 Let us consider a simple supply chain between two factories. Factory 1 is a
supplier for factory 2. The products of factory 1 are transported via a train connection to
factory 2. This simple supply chain is modelled by the TEG under periodic PS shown in
Fig. 2, with periodic PS of transition t2 by the signal, ∀j ∈ Z

S2(t) =
{
1 if t ∈ {1 + 20j},
0 otherwise.

Transition t1 models the issue of the goods at factory 1 and transition t4 the receipt
of goods at factory 2. Transition t2, t3 and places p2, p3 model the train line between the
factories. The holding time of 10 time units of place p3 models the travel time of trains
between the factories. The 2 initial tokens in place p2 describe the maximal capacity of the
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Fig. 2 Example of a TEGPS

trains. The schedule of the trains is modelled by the signal S2, hence every 20 time units
there is a train leaving from factory 1. We will recall this example again in Section 5 and
demonstrate how ”just-in-time” control for this supply chain can be computed using the
methods developed in this paper.

2.3 Dioids

A dioid D is an algebraic structure with two binary operations, ⊕ (addition) and ⊗ (multi-
plication). Addition is commutative, associative and idempotent (i.e. ∀a ∈ D, a ⊕ a = a).
The neutral element for addition, denoted by ε, is absorbing for multiplication (i.e., ∀a ∈
D, a ⊗ ε = ε ⊗ a = ε). Multiplication is associative, distributive over addition and has a
neutral element denoted by e. The element e (resp, ε) is called unit (resp. zero) element of
the dioid.

Note that, as in conventional algebra, the multiplication symbol ⊗ is often omitted. A
dioidD is said to be complete if it is closed for infinite sums and if multiplication distributes
over infinite sums. A complete dioid is a partially ordered set, with a canonical order �
defined by a ⊕ b = a ⇔ a � b. The infimum operator can then be defined by a, b ∈ D,
a∧b = ⊕{x ∈ D |x⊕a � a, x⊕b � b}. Moreover, in a complete dioid, the Kleene star of
an element a ∈ D, denoted a∗, is defined by a∗ = ⊕∞

i=0 ai with a0 = e and ai+1 = a ⊗ai .
Let C ⊆ D then C is a subdioid of D if e and ε are in C and C is closed for ⊕ and ⊗.

Theorem 1 (Baccelli et al. 1992) In a complete dioid D, x = a∗b is the least solution of
the implicit equation x = ax ⊕ b.

Here, the adjective ”least” refers to the canonical order in the dioid described above.
Both multiplication and addition on a (complete) dioid D can be readily extended to the

matrix case: for matrices A,B ∈ Dm×n, C ∈ Dn×q and a scalar λ ∈ D, matrix addition
and multiplication are defined by

(A ⊕ B)i,j := (A)i,j ⊕ (B)i,j , (λ ⊗ A)i,j := λ ⊗ (A)i,j ,

(A ⊗ C)i,j :=
n⊕

k=1

(
(A)i,k ⊗ (C)k,j

)
.

Moreover, the order relation on matrices of the same dimension is understood elementwise,
i.e. A � B iff (A)i,j � (B)i,j ,∀i, j . The identity matrix, denoted by I , is a square matrix
with elements e on the diagonal and ε otherwise.

609Discrete Event Dynamic Systems (2020) 30:605–634



2.4 Complete dioids and residuation theory

Residuation theory is a formalism to address the problem of approximate mapping inversion
over ordered sets (Baccelli et al. 1992). It applies to complete dioids, since a complete dioid
D is a partially ordered set.

Definition 3 (Baccelli et al. 1992) A mapping f : D → L, withD and L complete dioids,
is residuated if ∀b ∈ L the inequality f (x) � b has a greatest solution inD, denoted f �(b).
The mapping f � : L → D, is called the residual of f .

Theorem 2 (Baccelli et al. 1992) A mapping f : D → L, with D and L complete dioids,
is residuated iff f (ε) = ε and f is lower-semicontinuous, that is

f

(⊕
x∈X

x

)
=

⊕
x∈X

f (x),

for every (finite or infinite) subset X of D.

On a complete dioid the mapping Ra : x �→ xa, (right multiplication by a) resp.
La : x �→ ax (left multiplication by a), is lower-semicontinuous and therefore residuated.
The residual mappings are denoted (right division by a)
and (left division by a). Left and right division can be
extended to the matrix case. For matrices A ∈ Dm×n,B ∈ Dm×q, C ∈ Dn×q

In the following some useful properties of left and right division are summarized, for a
proof see Baccelli et al. (1992) or the recent summary paper (Hardouin et al. 2018). For
a, b, x ∈ D and D a complete dioid,

3 Modeling of TEGs under PS in the Dioid T [[γ ]]
To model TEGsPS, a dater function xi : Z → Zmax := {Z} ∪ {∞} ∪ {−∞} is associated to
each transition ti . The value xi(k) gives the date (time) when transition ti fires the (k + 1)st

time. Naturally, dater functions are nondecreasing functions, i.e., xi(k + 1) ≥ xi(k). The
set of dater functions is denoted by �. On �, addition and multiplication by a constant are
defined as follows:

x, y ∈ �, (x⊕̃y)(k) := max(x(k), y(k)),

λ ∈ Zmax, (λ⊗̃x)(k) := λ + x(k).

The zero element ε̃ on � is defined by ε̃(k) = −∞, ∀k ∈ Z. The ⊕̃ operation induces an
order relation on �, i.e., for x, y ∈ �, x � y ⇔ x⊕̃y = y. In this order, the top element
�̃ is defined by �̃(k) = +∞, ∀k ∈ Z. An operator, i.e., a map, o : � → � is linear if (a)
∀x, y ∈ � : o(x⊕̃y) = o(x)⊕̃o(y) and (b) λ⊗̃o(x) = o(λ⊗̃x). An operator is additive if

610 Discrete Event Dynamic Systems (2020) 30:605–634



(a) is satisfied. Let O denote the set of all operators o : � → �. Moreover, let Oa denote
the subset of all additive operators in O.

Proposition 1 (Cottenceau et al. 2014) The set Oa equipped with addition and multiplica-
tion: x ∈ �,∀o1, o2 ∈ Oa ,

(o1 ⊕ o2)(x) := o1(x)⊕̃o2(x), (o1 ⊗ o2)(x) := o1(o2(x)), (6)

is a noncommutative complete dioid. The identity operator (unit element) is denoted by e :
∀x ∈ �, e(x) = x, the zero operator (zero element) is denoted by ε : ∀x ∈ �, ε(x) = ε̃

and the top operator (top element) is denoted by � : ∀x ∈ �\{ε̃}, �(x) = �̃.

To simplify notation, we write ox instead of o(x) wherever clear from the context.

Definition 4 (Basic operators in O) Dynamic phenomena arising in TEGsPS can be
described by the following basic operators inO:

τ ∈ Z, δτ : ∀x ∈ �, (δτ x)(k) = x(k) + τ, (7)

η ∈ Z, γ η : ∀x ∈ �, (γ ηx)(k) = x(k − η), (8)

ω,� ∈ N, Δω|� : ∀x ∈ �, (Δω|� x)(k) = �x(k)/��ω, (9)

where �a� is the smallest integer greater than or equal to a.

It can be easily checked that all these operators are additive, i.e., δτ , γ η, Δω|� ∈ Oa . The
time- and event-shift operator δ and γ are used to model the dynamic behavior of standard
TEGs, e.g., Baccelli et al. (1992). In addition we introduce the Δω|� operator to consider
phenomena caused by PS.

Proposition 2 (Trunk et al. 2018) The basic operators satisfy the following relations

γ η ⊕ γ η′ = γmin(η,η′), δτ ⊕ δτ ′ = δmax(τ,τ ′), (10)

γ η ⊗ γ η′ = γ η+η′
, δτ ⊗ δτ ′ = δτ+τ ′

, (11)

Δω|� ⊗ δ� = δω ⊗ Δω|� . (12)

Remark 1 Equation 12 implies that for −b < τ ≤ 0, Δω|bδτΔb|� = Δω|� , since,

(Δω|bδτΔb|� x)(k) =
⌈�x(k)/��b + τ

b

⌉
ω =

⌈⌈
x(k)

�

⌉
+ τ

b

⌉
ω

=
⌈

x(k)

�

⌉
ω since − 1 < τ/b ≤ 0,

= (Δω|� x)(k).

3.1 Dioid of time operatorsT

In the following, we introduce a dioid of specific time operators in order to model the
time-variant behavior of periodic PS.
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Definition 5 (Dioid of T-operators T ) We denote by T the dioid of operators obtained by
addition and composition of operators in (ε, e, δς ,Δω|� , �) with ς ∈ Z, and ω, � ∈ N.
The elements of T are called T-operators (T is for time).

For example, δ3Δ4|4δ1Δ3|2 ∈ T . Since a T-operator only describes a time relation in a
system, e.g., a delay, we can associate a function Rv : Zmax → Zmax to a T-operator v.
This function, when evaluated on t , is obtained by replacing x(k) by t in the expression of
v(x)(k). For example, ((Δ3|4δ1 ⊕ δ2Δ3|3)x)(k) = max(�(x(k) + 1)/4�3, 2 + �x(k)/3�3)
and thereforeRΔ3|4δ1⊕δ2Δ3|3(t) = max(�(t + 1)/4�3, 2+�t/3�3). The interpretation ofRv

is as follows. Let x1, respectively x2, be the dater functions associated with transitions t1,
respectively t2. If v maps x1 to x2, thenRv maps the time of the (k+1)st firing of t1 into the
time of the (k + 1)st firing of t2.Rv is therefore called the release-time function associated
to the T-operator v. We denote by R the set of functions Rv generated by all operators
v in T . Clearly, there is an isomorphism between the set of T-operators and the set R.
The order relation over the dioid T corresponds to the order induced by the max operation
on R.

For v1, v2 ∈ T ,

v1 � v2 ⇔ v1 ⊕ v2 = v1 ⇔ v1x⊕̃v2x = v1x, ∀x ∈ �,

⇔ max ((v1x)(k), (v2x)(k)) = (v1x)(k), ∀x ∈ �, ∀k ∈ Z,

⇔ Rv1(t) ≥ Rv2(t), ∀t ∈ Zmax . (13)

Definition 6 (Periodic T-operators) A T-operator v ∈ T is said to be ω-periodic if its
corresponding function Rv is quasi-ω-periodic, i.e., ∃ω ∈ N such that ∀t ∈ Zmax, Rv(t +
ω) = ω + Rv(t). The set of ω-periodic T-operators is denoted by Tω. Moreover the set of
periodic operators is defined by Tper = ⋃

ω∈N Tω.

Tω and Tper are subdioids of T .

Example 3 The operator Δ4|4 is 4-periodic and the operator Δ3|3δ2 is 3-periodic as
RΔ4|4(t) = �t/4�4 and RΔ3|3δ2(t) = �(t + 2)/3�3. Therefore Δ4|4 ∈ T4, Δ3|3δ2 ∈ T3.
Evidently, both operators are also 12-periodic and therefore Δ4|4, Δ3|3δ2 ∈ T12.

Proposition 3 (Trunk et al. 2018) An ω-periodic T-operator v ∈ Tω has an ω-periodic
canonical form given by a finite sum

⊕I
i=1 δτi Δω|ωδτ ′

i , where τi < τi+1 ∀i ∈ {1, · · · , I−1},
I ≤ ω and −ω < τ ′

i ≤ 0,∀i ∈ {1, · · · , I }.

Remark 2 Clearly each ω-periodic operator v ∈ Tper is also nω-periodic with n ≥ 1 and
can be represented as

⊕I
i=1 δτi Δnω|nωδτ ′

i and I ≤ nω.

Proposition 4 The 1-periodic identity operator e = Δ1|1 can be represented in the specific
form,

e =
ω−1⊕
i=0

δ−iΔω|ωδ1+i−ω. (14)
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Proof Recall the isomorphism between T-operators and the set R. Hence it is sufficient to
show thatRe = R⊕ω−1

i=0 δ−iΔω|ωδ1+i−ω . Moreover, since ∀t ∈ Zmax,Re(t) = t , it remains to

show that ∀t ∈ Zmax,R⊕ω−1
i=0 δ−iΔω|ωδ1+i−ω (t) = t .

R⊕ω−1
i=0 δ−iΔω|ωδ1+i−ω (t) = max

(⌈
t + 1 − ω

ω

⌉
ω,

⌈
t + 2 − ω

ω

⌉
ω − 1,

· · ·
⌈

t

ω

⌉
ω − (ω − 1)

)
. (15)

Because R⊕ω−1
i=0 δ−iΔω|ωδ1+i−ω (t) is a quasi ω-periodic function, Definition 6, it is sufficient

to evaluate Eq. 15 for t = {1 − ω, · · · , 0}. This leads to,

R⊕ω−1
i=0 δ−iΔω|ωδ1+i−ω (0) = max

(⌈
1−ω
ω

⌉
ω,

⌈
2−ω
ω

⌉
ω − 1, · · · ,

⌈
0
ω

⌉
ω − (ω − 1)

)
= 0

R⊕ω−1
i=0 δ−iΔω|ωδ1+i−ω (−1) = max

(⌈−ω
ω

⌉
ω,

⌈
1−ω
ω

⌉
ω − 1, · · · ,

⌈−1
ω

⌉
ω − (ω − 1)

)
= −1

· · ·
R⊕ω−1

i=0 δ−iΔω|ωδ1+i−ω (1 − ω) = max
(⌈

2−2ω
ω

⌉
ω,

⌈
3−2ω

ω

⌉
ω − 1, · · · ,

⌈
1−ω
ω

⌉
ω − (ω − 1)

)
= 1 − ω.

Example 4 The identity operator e = Δ1|1 can be represented as e =
Δ3|3δ−2 ⊕ δ−1Δ3|3δ−1 ⊕ δ−2Δ3|3. Figure 3 illustrates that indeed Re(t) =
RΔ3|3δ−2⊕δ−1Δ3|3δ−1⊕δ−2Δ3|3(t) = max(RΔ3|3δ−2(t),Rδ−1Δ3|3δ−1(t),Rδ−2Δ3|3(t)).

The time-variant behavior caused by a periodic PS of a transition can be conveniently
modeled in the dioid T .

Fig. 3 Re(t) = max(RΔ3|3δ−2 (t),Rδ−1Δ3|3δ−1 (t),Rδ−2Δ3|3 (t))
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For this, recall the definition of a periodic signal S (Definition 1). We associate with
a periodic signal S : Z → {0, 1} characterized by 〈n0, · · · nI 〉 and period ω a function
RS : Zmax → Zmax . This functionRS(t) is defined by, ∀j ∈ Z,

RS(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∞ if t = −∞
n0 + ωj if (nI − ω) + ωj < t ≤ n0 + ωj,

n1 + ωj if n0 + ωj < t ≤ n1 + ωj,
...

nI + ωj if nI−1 + ωj < t ≤ nI + ωj,

∞ if t = ∞.

(16)

Example 5 The function RS1(t) (Fig. 4b) associated to the signal S1 (Fig. 4) given in
Example 1 is

RS1(t) =

⎧⎪⎪⎨
⎪⎪⎩

−∞ if t = −∞
0 + 4j if − 3 + 4j < t ≤ 0 + 4j,
1 + 4j if 0 + 4j < t ≤ 1 + 4j,
∞ if t = ∞.

The value ofRS(t) can be interpreted as the next time when the signal S enables the fir-
ing of the corresponding transition. Clearly, an ω-periodic signal S leads to a corresponding
functionRS(t) which satisfies ∀t ∈ Zmax,RS(t + ω) = ω + RS(t).

To prove that a periodic PS of a transition (i.e., the PS is specified by a periodic signal S)
admits an operator representation in the dioid T , we must show the existence of an operator
v ∈ T such thatRv = RS .

Proposition 5 (Trunk et al. 2018) A periodic partial synchronization of a transition by the
signal S in Definition 1 has an operator representation given by

v = δn0Δω|ωδ−nI ⊕ δn1−ωΔω|ωδ−n0 ⊕ · · · ⊕ δnI −ωΔω|ωδ−n(I−1) . (17)

Example 6 Consider the TEGPS shown in Fig. 5, where the signal S1 is given in Eq. 1
(Example 1) and dater function x1(k) (resp. x2(k)) is associated with transition t1 (resp. t2).

Fig. 4 Signal S1 and the associated function RS1
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Fig. 5 Simple TEGPS with a
periodic PS of t2

According to Proposition 5, the behavior of the periodic PS of transition t2 is modeled by
the following operator:

vS1 = δ0Δ4|4δ−1 ⊕ δ−3Δ4|4δ−0 = δ−3Δ4|4 ⊕ Δ4|4δ−1,

where the latter equality holds as δ0 = e.
Since the holding time of place p1 is 0 and there are no initial tokens in the place p1 this

operator describes the firing relation between t1 and t2, i.e., x2 = (δ−3Δ4|4 ⊕ Δ4|4δ−1)x1.
Therefore, x2(k) = max(−3 + �x1(k)/4�4, �(x1(k) − 1)/4�4).

Remark 3 Due to the influence of the PS, this firing relation between t1 and t2 is time-
variant. For instance, if the (k+1)st firing of t1 is at time instant x1(k) = 1, then the (k+1)st

firing of t2 is at x2(k) = 1, i.e., we have no delay. In contrast, if the (k + 1)st firing of t1 is
at time instant x1(k) = 2, then the (k + 1)st firing of t2 is at x2(k) = 4, and the delay is 2.

3.2 DioidT [[γ ]]
Since the γ operator commutes with all T-operators, i.e., ∀v ∈ T , vγ = γ v, we can define
the dioid T [[γ ]] as follows.

Definition 7 (Dioid T [[γ ]]) We denote by T [[γ ]] the quotient dioid in the set of formal
power series in one variable γ with exponents in Z and coefficients in the noncommutative
complete dioid T induced by the equivalence relation, ∀s ∈ T ,

s = s(γ ∗). (18)

Hence we identify two series s1, s2 with the same equivalence class, if s1γ
∗ = s2γ

∗. It
is helpful to think of sγ ∗ as the representative of the equivalence class of s. Note that we can
interpret elements in T [[γ ]] as nondecreasing functions s : Z → T , where s(η) refers to the
coefficient of γ η. Hence, ∀η ∈ Z, s(η) � s(η + 1). For a fundamental mathematical back-
ground on quotient dioids, the reader is invited to consult (Baccelli et al. 1992). Moreover,
in Hardouin et al. (2018) quotient dioids are studied from a didactic point of view.

Definition 8 Let s1, s2 ∈ T [[γ ]], then addition and multiplication are defined by

s1 ⊕ s2 :=
⊕
η∈Z

(s1(η) ⊕ s2(η))γ η,

s1 ⊗ s2 :=
⊕
η∈Z

⎛
⎝ ⊕

n+n′=η

(
s1(n) ⊗ s2(n

′)
)
⎞
⎠ γ η.
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We denote by Tper [[γ ]] the subdioid of T [[γ ]], obtained by restricting the coefficients v

to periodic operators, i.e., v ∈ Tper . As before, ⊕ defines an order on T [[γ ]], i.e., a, b ∈
T [[γ ]] : a ⊕ b = b ⇔ a � b. Hence ∀s1, s2 ∈ T [[γ ]], s1 � s2 ⇔ s1(η) � s2(η), η ∈ Z.
A monomial in T [[γ ]] is defined by vγ η, where v ∈ T and η ∈ Z. The ordering of two
monomials v1γ

η1 , v2γ
η2 ∈ T [[γ ]] can be checked as follows,

v1γ
η1 � v2γ

η2 ⇔
{

v1 � v2,

η1 ≥ η2.
(19)

A polynomial is a finite sum of monomials, i.e.,
⊕I

i=1 viγ
ηi .

Proposition 6 Let p ∈ Tper [[γ ]] be a polynomial, then p has a canonical form p =⊕J
j=1 v′

j γ
η′
j such that ∀j ∈ {1, · · · , J }, the ω-periodic T-operator v′

j is in the canon-
ical form of Proposition 3, and coefficients and exponents are strictly ordered, i.e., for
j ∈ {1, · · · , J − 1}, η′

j < η′
j+1 and v′

j ≺ v′
j+1.

Proof Without loss of generality we can assume that p = ⊕I
i=1 viγ

ηi , with ηi < ηi+1, i =
1, · · · I − 1. In Tper [[γ ]], we identify all elements s with sγ ∗, hence can also identify p and

p′ =
I⊕

i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

i⊕
j=1

vj

︸ ︷︷ ︸
v′
i

⎞
⎟⎟⎟⎟⎟⎟⎠

γ ηi

as pγ ∗ = p′γ ∗. Hence, v′
i � v′

i+1. If v′
i = v′

i+1 we can write v′
iγ

ηi ⊕ v′
i+1γ

ηi+1 =
v′
i (γ

ηi ⊕ γ ηi+1) = v′
iγ

ηi . Therefore, we can write p′ as
⊕J

j=1 v′
j γ

η′
j with vj ≺ vj+1 and

J ≤ I .

Definition 9 (Ultimately Cyclic Series in Tper [[γ ]] ): A series s ∈ Tper [[γ ]] is said to be
ultimately cyclic if it can be written as s = p ⊕ q(γ ηδτ )∗, where η, τ ∈ N and p, q are
polynomials in Tper [[γ ]].

An element s ∈ T [[γ ]] has a three dimensional graphical representation inZmax×Zmax×
Z. Given a series s = ⊕

i viγ
i ∈ T [[γ ]], this graphical representation is obtained by depict-

ing for every i the release-time function Rvi
: Zmax → Zmax of the coefficient vi in the

(input-time × output-time)-plane of i.

Example 7 For the graphical representation of the polynomial p = (δ1Δ4|4δ−1 ⊕
δ−2Δ4|4)γ 0⊕ (δ5Δ4|4δ−1⊕δ2Δ4|4)γ 2⊕ (δ5Δ4|4⊕δ6Δ4|4δ−1)γ 4 ∈ Tper [[γ ]], respectively
its representative

pγ ∗ = (δ1Δ4|4δ−1 ⊕ δ−2Δ4|4)γ 0 ⊕ (δ1Δ4|4δ−1 ⊕ δ−2Δ4|4)γ 1,

(δ5Δ4|4δ−1 ⊕ δ2Δ4|4)γ 2 ⊕ (δ5Δ4|4δ−1 ⊕ δ2Δ4|4)γ 3

⊕(δ5Δ4|4 ⊕ δ6Δ4|4δ−1)γ 4 ⊕ (δ5Δ4|4 ⊕ δ6Δ4|4δ−1)γ 5 ⊕ · · · ,

see Fig. 6. The slices in the (I/O-time)-plane for the event-shift values k = 0, 1 are illustrated
in Fig. 7a. These slices correspond to the release-time function Rδ1Δ4|4δ−1⊕δ−2Δ4|4 of the

coefficient δ1Δ4|4δ−1 ⊕ δ−2Δ4|4 for γ 0 (resp. γ 1) in p. The slices for k = 2, 3 and k ≥ 4
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Fig. 6 3D representation of
polynomial
p = (δ1Δ4|4δ−1 ⊕ δ−2Δ4|4)γ 0 ⊕
(δ5Δ4|4δ−1 ⊕ δ2Δ4|4)γ 2 ⊕
(δ5Δ4|4 ⊕ δ6Δ4|4δ−1)γ 4.

are shown in Fig. 7b and c. To improve readability, the graphical representation for elements
s ∈ T [[γ ]] has been truncated to non-negative values in Figs. 6 and 7.

An important subdioid of T [[γ ]] is the dioid Max
in [[γ, δ]]. This dioid is obtained by

restricting the coefficients v to the set {ε, δτ } of T-operators, i.e., an element inMax
in [[γ, δ]]

is written as
⊕

i δτi γ ni with τi, ni ∈ Z. This dioid has been extensively studied, e.g.
Gaubert and Klimann (1991) and Baccelli et al. (1992). The product of two monomials

Fig. 7 Slices of the coefficients of p in the (I/O-time)-plane. a Rδ1Δ4|4δ−1⊕δ−2Δ4|4 , b Rδ5Δ4|4δ−1⊕δ2Δ4|4 and
c Rδ5Δ4|4⊕δ6Δ4|4δ−1
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γ n1δt1 , γ n2δt2 ∈ Max
in [[γ, δ]] is obtained by, γ n1δt1 ⊗ γ n2δt2 = γ n1+n2δt1+t2 . Moreover,

Eq. 19 is simplified to γ n1δt1 � γ n2δt2 ⇔ (n1 ≥ n2 and t1 ≤ t2), and as a consequence of
Eq. 10,

γ nδt1 ⊕ γ nδt2 = γ nδmax(t1,t2), γ n1δt ⊕ γ n2δt = γmin(n1,n2)δt . (20)

A comprehensive description of calculations with series in Max
in [[γ, δ]] can be found

in Baccelli et al. (1992). It is well known that the input-output behavior of a standard
TEG can be described by a transfer function matrix composed of ultimately cyclic series
in Max

in [[γ, δ]]. Moreover, based on Max
in [[γ, δ]], methods for performance evaluation and

controller synthesis have been introduced for TEGs, e.g. Gaubert and Klimann (1991), Maia
et al. (2003), and Hardouin et al. (2017). In (Hardouin et al. 2009), software tools have been
made available for computations in Max

in [[γ, δ]]. The dioid Max
in [[γ, δ]] plays a key role

in this paper. In particular, in Section 4, we show that all relevant operations on ultimately
cyclic series s ∈ Tper [[γ ]] can be reduced to operations on matrices inMax

in [[γ, δ]]. We can
therefore use the existing tools forMax

in [[γ, δ]] to study TEGs under periodic PS.

3.3 Modeling of TEGsPS inTper [[γ ]]
A TEG under periodic PS operating under the earliest functioning rule admits a representa-
tion in Tper [[γ ]] of the form

x = Ax ⊕ Bu, y = Cx. (21)

This is reminiscent of the state space form in ”classical” systems theory. In the sequel, we
will therefore refer to this representation as a state space model. x (resp. u, y) refers to
the vector of dater functions of internal (resp. input, output) transitions. The matrices A ∈
Tper [[γ ]]n×n, B ∈ Tper [[γ ]]n×g and C ∈ Tper [[γ ]]p×n describe the influence of transitions
on each other, encoded by operators in Tper [[γ ]]. Hence, n refers to the number of internal
transitions of the TEGPS, while p and q are the number of output and input transitions.
Let us consider a path constituted by the arcs (tj , pi) and (pi, to) with a synchronization of
transition to by a periodic signal So. The influence of transition tj on transition to is coded
as an operator

vtoδ
(φ)i γ (M0)i

where vto is the operator representation of the signal So corresponding to the PS of to (see
Example 6), (φ)i is the holding time of place pi and (M0)i is the initial marking of pi .

Example 8 Recall the TEGPS in Fig. 2 with PS of transition t2 by the signal, ∀j ∈ Z

S2(t) =
{
1 if t ∈ {1 + 20j},
0 otherwise.

As ω = 20, I = 0, n0 = 1, according to Proposition 5, vS2 = δ1Δ20|20δ−1. The influence of
t3 on transition t2 via the path (t3, p2)(p2, t2), is coded by the operator vS2δ

0γ 2 = vS2γ
2 =

δ1Δ20|20δ−1γ 2. Moreover, by assigning a dater function u (resp. x1, x2, y) to transition
t1 (resp. t2, t3, t4), the earliest functioning of the TEGPS is described in state space form
x = Ax ⊕ Bu; y = Cx, where

A =
[

ε δ1Δ20|20δ−1γ 2

δ10 ε

]
, B =

[
δ1Δ20|20δ−1

ε

]
, C = [

ε e
]
.

According to Theorem 1, the least solution of equation x = Ax ⊕ Bu is x = A∗Bu.
Therefore, the transfer function matrix H of a TEGPS can be obtained by y = Hu =
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CA∗Bu. In Trunk et al. (2018) it was shown that the entries of the transfer function matrix
are ultimately cyclic series in Tper [[γ ]]. In order to compute this transfer function matrix, to
compute system compositions, and to obtain control, we have to perform addition, multipli-
cation and the Kleene star operation of series in Tper [[γ ]]. In the next section, we show how
these operations between series in Tper [[γ ]] can be reduced to operations between matrices
inMax

in [[γ, δ]].

4 Core representation of a series in Tper[[γ ]]
In this section, we propose a specific decomposition of ultimately cyclic series in Tper [[γ ]].
We show that such series s ∈ Tper [[γ ]] with period ω can always be represented as s =
mωQbω where Q is a square matrix inMax

in [[γ, δ]] of size ω×ω, mω is a row vector defined
as

mω := [
Δω|1 δ−1Δω|1 · · · δ1−ωΔω|1

]
(22)

and bω is a column vector defined as

bω := [
Δ1|ωδ1−ω · · · Δ1|ωδ−1 Δ1|ω

]T
. (23)

This representation is called core representation with core matrix Q. We first demonstrate
how to obtain this form on a small example and then provide a formal proof.

Example 9 Consider the following series in Tper [[γ ]],
s = Δ2|2 ⊕ δ1Δ2|2δ−1 ⊕ δ2Δ2|2γ 2(δ2γ 2)∗.

Because of Δω|� = Δω|bΔb|� (Remark 1) and δωΔω|� = Δω|� δ� , see Eq. 12, and as γ

commutes with all T-operators, this series can be rewritten as

s = Δ2|1 e︸︷︷︸
M1

Δ1|2 ⊕ δ−1Δ2|1 δ1︸︷︷︸
M2

Δ1|2δ−1 ⊕ Δ2|1 δ1γ 2(δ1γ 2)∗︸ ︷︷ ︸
S1

Δ1|2.

Clearly M1, M2 and S1 are elements in Max
in [[γ, δ]]. We now can rewrite s in the core

representation,

s = [
Δ2|1 δ−1Δ2|1

]
︸ ︷︷ ︸

m2

[
ε e ⊕ δ1γ 2(δ1γ 2)∗
δ1 ε

]
︸ ︷︷ ︸

Q

[
Δ1|2δ−1

Δ1|2

]
︸ ︷︷ ︸

b2

,

which is in the required form.

Proposition 7 Let s = ⊕
i viγ

i ∈ Tper [[γ ]] be an ω-periodic series, then s can be written
as s = mωQbω, where Q ∈ Max

in [[γ, δ]]ω×ω and mω, bω have the form Eqs. 22 and 23.

Proof s being an ω-periodic series implies that all coefficients vi of s are ω-periodic T-
operators. Then, due to Proposition 3, all coefficients can be expressed in canonical form

vi = ⊕Ji

j=1 δ
τij Δω|ωδ

τ ′
ij with Ji ≤ ω and −ω < τ ′

ij
≤ 0. Then s can be rewritten as

s =
⊕

i

⎛
⎝ Ji⊕

j=1

δ
τij Δω|ωδ

τ ′
ij

⎞
⎠ γ i .
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By using Δω|ω = Δω|1Δ1|ω (Remark 1), δωΔω|1 = Δω|1δ1 Eq. 12 and vγ = γ v, ∀v ∈ T ,
the series s is written as

s =
⊕

i

⎛
⎝ Ji⊕

j=1

δ
τ̃ij Δω|1δτ̂ij γ iΔ1|ωδ

τ ′
ij

⎞
⎠ ,

where −ω < τ̃ij = τij − �τij /ω�ω ≤ 0 and τ̂ij = �τij /ω�. Observe that −ω < τ̃ij , τ
′
ij

≤ 0
hence we can express s by

s = [
Δω|1 δ−1Δω|1 · · · δ1−ωΔω|1

] (⊕
i

(⊕Ji

j=1 Qij

))
⎡
⎢⎢⎣

Δ1|ωδ1−ω

· · ·
Δ1|ωδ−1

Δ1|ω

⎤
⎥⎥⎦ ,

where the entry (Qij )1−τ̃ij
,ω+τ ′

ij

= δ
τ̂ij γ i and all other entries of Qij are equal to ε. Hence,

s is in the required form s = mωQbω, where Q = ⊕
i

(⊕Ji

j=1 Qij

)
.

Let us note that the core Q of a series s ∈ Tper [[γ ]] is not unique. In other words, we can
express the same series with different cores, i.e., we may have s = mωQbω = mωQ̃bω with
Q, Q̃ ∈ Max

in [[γ, δ]]ω×ω but Q �= Q̃. We illustrate this in the following example.

Example 10 Recall the series s = Δ2|2 ⊕ δ1Δ2|2δ−1 ⊕ δ2γ 2(δ2γ 2)∗Δ2|2 given in Example
9. The series s can be expressed by m2Q̃b2 where,

Q̃ =
[
e e ⊕ δ1γ 2(δ1γ 2)∗
δ1 ε

]
.

Clearly Q̃ �= Q see Example 9. However, Q̃ is a valid core of s since

m2Q̃b2 = m2

[
Δ1|2δ−1 ⊕ Δ1|2 ⊕ δ1γ 2(δ1γ 2)∗Δ1|2
δ1Δ1|2δ−1

]
.

Because of Eq. 10 Δ1|2δ−1 ⊕ Δ1|2 = Δ1|2(δ−1 ⊕ δ0) = Δ1|2, and therefore

m2Q̃b2 = [
Δ2|1 δ−1Δ2|1

] [ Δ1|2 ⊕ δ1γ 2(δ1γ 2)∗Δ1|2
δ1Δ1|2δ−1

]

= Δ2|1Δ1|2 ⊕ Δ2|1δ1γ 2(δ1γ 2)∗Δ1|2 ⊕ δ−1Δ2|1δ1Δ1|2δ−1

= Δ2|2 ⊕ δ1Δ2|2δ−1 ⊕ δ2γ 2(δ2γ 2)∗Δ2|2 = s.

To show how the core form can be used to perform basic operations between ultimately
cyclic series in Tper [[γ ]] we first elaborate some properties of the mω-vector and bω-vector.
The scalar product mωbω of these two vectors is the identity e:

mω ⊗ bω = δ0Δω|1Δ1|ωδ1−ω ⊕ · · · ⊕ δ1−ωΔω|1Δ1|ωδ0

= δ0Δω|ωδ1−ω ⊕ · · · ⊕ δ1−ωΔω|ωδ0 = e, (24)

where the latter equality holds because of Proposition 4. The dyadic product bω ⊗ mω is a
square matrix in Max

in [[γ, δ]] denoted by N. For i, j ∈ {1, · · · , ω}, the entry (bω ⊗ mω)i,j
is given by,

(N)i,j = (bω ⊗ mω)i,j = Δ1|ωδ(i−j)+(1−ω)Δω|1.
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Then, because of Δ1|ωδ−ω = δ−1Δ1|ω and Δ1|ωδnΔω|1 = Δ1|1 = e for −ω < n ≤ 0, see
Remark 1,

(N)i,j =
{
e, j ≤ i,

δ−1, j > i,

i.e.,

N = bω ⊗ mω =

⎡
⎢⎢⎢⎢⎣

e δ−1 · · · δ−1

...
. . .

. . .
...

...
. . . δ−1

e · · · · · · e

⎤
⎥⎥⎥⎥⎦ . (25)

Proposition 8 (Trunk et al. 2018) The following relations hold:

N ⊕ I = N,

N ⊗ N = N,

N ⊗ bω = bω,

mω ⊗ N = mω.

4.1 Greatest core matrix

From Example 10 it is clear that a series s ∈ Tper [[γ ]]may have several core representations.
In the following, we show that a series s ∈ Tper [[γ ]] admits a unique greatest core, denoted
Q̂, i.e, s = mωQ̂bω and Q̂ � Q for all core matrices Q such that s = mωQbω. Note that,
the inequality is in the sense of the dioid Max

in [[γ, δ]]. This decomposition s = mωQ̂bω is
particularly useful to compute residuation of series in Tper [[γ ]].

Proposition 9 For D ∈ T [[γ ]]1×ω and P ∈ T [[γ ]]ω×1 one has:

For O ∈ T [[γ ]]n×ω and G ∈ T [[γ ]]ω×n one has:

Proof By definition, is the greatest solution of inequality

mω ⊗ X � D. (30)

Clearly since mωbω = e, bωD satisfies Eq. 30 with equality. It remains to be shown that
bωD is the greatest solution of Eq. 30. For this, assume that there exists X′ � bωD solving
Eq. 30, i.e., mωX′ � D. Multiplication is order preserving, hence left multiplication by bω

results in
N ⊗ X′ � bωD.

Furthermore, X′ � N ⊗ X′ as N = I ⊕ N. Hence, X′ � bωD and therefore X′ = bωD.
This proves that bωD is indeed the greatest solution of Eq. 30. Similarly, X = P mω solves
Xbω � P with equality. Suppose X′ � P mω is a solution, i.e., X′ ⊗ bω � P . Right
multiplication by mω gives

X′ � X′ ⊗ N � P ⊗ mω.
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Therefore X′ = P ⊗ mω and P ⊗ mω is indeed the greatest solution, and hence
. To prove Eq. 28, note that by Proposition 8 ON ⊗ bω ⊗ mω = ON.

Therefore ON ⊗ bω is a solution of X ⊗ mω � ON. Assume that X′ � ON ⊗ bω is
another solution, i.e., X′mω � ON. Right multiplication by bω results in X′ � ON ⊗ bω.
Hence, ON ⊗ bω is the greatest solution of .
Equation 29 is shown analogously.

Proposition 10 Let mωQbω ∈ Tper [[γ ]] be a decomposition of s ∈ Tper [[γ ]]. The greatest
core matrix is given by Q̂ = NQN.

Proof Consider the inequality mωX̃bω � s. Because of Proposition 9, its greatest solution
is given by

X̃ = bωmωQbωmω = NQN = Q̂.

Moreover, because of (Proposition 8)

mωQ̂bω = mωNQNbω = mωQbω = s.

4.2 Operations between corematrices

To perform addition and multiplication of two ultimately cyclic series s1 =
mω1Q1bω1 , s2 = mω2Q2bω2 ∈ Tper [[γ ]] in core form, it is necessary to express the core
matrices Q1 ∈ Max

in [[γ, δ]]ω1×ω1 and Q2 ∈ Max
in [[γ, δ]]ω2×ω2 with identical dimensions.

This is possible by expressing both series with their least common period ω = lcm(ω1, ω2).

Proposition 11 (Trunk et al. 2018)
A series s = mωQbω ∈ Tper [[γ ]] can be expressed with a multiple period nω by extend-

ing the core matrix Q, i.e., s = mωQbω = mnωQ′bnω, where Q′ ∈ Max
in [[γ, δ]]nω×nω is

given by

Q′ =
⎡
⎢⎣

Δ1|nδ1−nNQNΔn|1 · · · Δ1|nδ1−nNQNδ1−nΔn|1
...

...
Δ1|nNQNΔn|1 · · · Δ1|nNQNδ1−nΔn|1

⎤
⎥⎦ .

Proposition 12 (Sum of series (Trunk et al. 2018)) Let s = mωQbω, s′ = mωQ′bω ∈
Tper [[γ ]]. Then s ⊕ s′ = mωQ′′bω, where Q′′ = Q ⊕ Q′.

Proposition 13 (Product of series (Trunk et al. 2018)) Let s = mωQbω, s′ = mωQ′bω ∈
Tper [[γ ]]. Then s ⊗ s′ = mωQ′′bω, where Q′′ = QNQ′.

Proposition 14 (Kleene star of series (Trunk et al. 2018)) Let s = mωQbω ∈ Tper [[γ ]].
Then,

s∗ = mω(QN)∗bω. (31)

Proposition 15 Let s = mωQ̂bω, s′ = mωQ̂
′
bω be ultimately cyclic series in Tper [[γ ]] with

Q̂, respectively Q̂
′
, their greatest core matrices. Then,
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Proof

The proof of the second part of Proposition 15 is analogous.

Due to Propositions 12, 13, 14 and 15, it is clear that computation of the sum and product,
Kleene star operation and product residuation of ultimately cyclic series in Tper [[γ ]] can be
done based on the core of the series, i.e. in the dioidMax

in [[γ, δ]]. Finally, let us note that this
core form of series s ∈ Tper [[γ ]] is similar to the core form of series s ∈ E[[δ]], see (Trunk
et al. 2017a). More generally the dioid Tper [[γ ]] with periodic time-operators can be seen
as the counter part of the dioid E[[δ]], introduced in Cottenceau et al. (2014), with periodic
event-operators. The dioid E[[δ]] is useful to obtain transfer function matrices for WBTEG.

5 Output reference control

In this section, we address the following control problem for TEGs under periodic PS. A
reference dater function z̄ is given for the output ȳ. We want to determine the greatest input
dater function ū that leads to an output ȳ � z̄. The reference dater specifies that the firings
of the output transition (which in a manufacturing context, may for example correspond to
completion of workpieces) should occur no latter than given instants of time. This has to be
achieved by firing the input transition as late as possible. In a manufacturing context, this
may correspond to feeding rawmaterial as late as possible. This kind of optimal output refer-
ence control is often called ”just-in-time” control. For standard TEGs the problem of output
reference control was studied in Baccelli et al. (1992), Cohen et al. (1989), Menguy et al.
(1998), and Menguy et al. (2000). It is well known for standard TEGs, that the output to an
arbitrary input dater function can simply be computed by using the transfer function model
h ∈ Max

in [[γ, δ]] of the TEG and expressing the input dater as a series u ∈ Max
in [[γ, δ]].

Then y = h ⊗ u. Hence, the optimal control problem for standard TEGs simply amounts
computing , see Baccelli et al. (1992) and Cohen et al. (1989) for a detailed
description. In the following, we show how the earliest response of a TEG under periodic
PS can be computed based on its transfer function h ∈ Tper [[γ ]] and then how the optimal
just-in-time control problem for a TEG under periodic PS can be addressed. For this, we
first need to provide some additional algebraic background.
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5.1 Subdioids ofTper [[γ ]]
Recall that an operator v ∈ T is called ω-periodic if ∃ω ∈ N such that ∀k ∈ Zmax, Rv(k +
ω) = ω +Rv(k) (Definition 6) and that the set of ω-periodic T-operators is denoted by Tω.
Analogously we say s

⊕
i viγ

i ∈ Tper [[γ ]] is an ω-periodic series, iff all coefficients are
ω-periodic T-operators, i.e., ∀i, vi ∈ Tω. The set of ω-periodic series is denoted by Tω[[γ ]].

Proposition 16 The sest of ω-periodic series Tω[[γ ]] with addition and multiplication given
in Definition 8 is a complete subdioid of the dioid Tper [[γ ]].

Proof According to Propositions 12 and 13, Tω[[γ ]] is closed under (infinite) addition and
multiplication.

Remark 4 The subdioid T1[[γ ]] of Tper [[γ ]], i.e. the set of 1-periodic series, is the dioid
Max

in [[γ, δ]]. Moreover, as any 1-periodic series is also ω-periodic (ω ∈ N), Max
in [[γ, δ]] is

subdioid of Tω[[γ ]] for any ω ∈ N.

Due to the subdioid structure of Tper [[γ ]], one can define the canonical injection Inj :
Max

in [[γ, δ]] → Tper [[γ ]], with Inj(x) = x. For a graphical illustration of this canonical
injection see the following example.

Example 11 Let us consider the series s = γ 1δ2 ⊕ (
γ 3δ3 ⊕ γ 5δ4

)
(γ 3δ2)∗ ∈ Max

in [[γ, δ]],
with a graphical representation given in Fig. 8a. The graphical representation of the canon-
ical injection Inj(s) ∈ Tper [[γ ]] is shown in Fig. 8b. The series s ∈ Max

in [[γ, δ]] (Fig. 8a)

Fig. 8 Illustration of the canonical injection Inj : Max
in [[γ, δ]] → Tper [[γ ]] of the series s = γ 1δ2 ⊕(

γ 3δ3 ⊕ γ 5δ4
)
(γ 3δ2)∗ ∈ Max

in [[γ, δ]]
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corresponds to the event-shift/output-time plane for the input-time value 0 of the 3D rep-
resentation of the series Inj(s) ∈ Tper [[γ ]] (Fig. 8b). Moreover, the canonical injection
Inj(s) ∈ Tper [[γ ]] is 1-periodic, this means the coefficients vi of γ i are 1-periodic, i.e.,
Rvi

(t) are quasi 1-periodic. Therefore, the event-shift/output-time plane for the input-time
value 1 corresponds to the series δ1s ∈ Max

in [[γ, δ]] and for the input-time value 2 to the
series δ2s ∈ Max

in [[γ, δ]], etc.

Lemma 1 Let vγ n ∈ Tω[[γ ]] be an ω-periodic monomial. Then the residual Inj�(vγ n) is
given by

Inj�(vγ n) = δ
min

t=0,···ω−1
(Rv(t)−t)

γ n. (32)

Proof By definition, Inj�(vγ n) is the greatest solution x ∈ Max
in [[γ, δ]] of the following

inequality:

vγ n � Inj(x) = Inj
(⊕

i
γ ηi δζi

)
=

⊕
i
γ ηi δζi . (33)

Clearly, the least ηi such that inequality Eq. 33 holds are n and thus,

vγ n �
⊕

i
(γ nδζi ) = γ nδτ . (34)

where the latter equality holds for τ = max
i

(ζi), because of Eq. 20. Since the inequality

vγ n � γ nδτ in Tω[[γ ]] holds iff the inequality v � δτ in Tω holds, it remains to find the
greatest τ such that v � δτ holds. By considering the isomorphism between T-operators and
release-time functions, see Eq. 13, this is equivalent toRv(t) ≥ Rδτ (t), ∀t ∈ Zmax .

By usingRδτ (t) = τ + t , see Eq. 7, one obtains

Rv(t) ≥ τ + t ⇔ τ ≤ Rv(t) − t, ∀t ∈ Zmax . (35)

Since Rv is a quasi ω-periodic function it is sufficient to evaluate the function for ∀t ∈
{0, · · · , ω − 1}. Therefore the greatest τ such that Eq. 35 (resp. Eq. 34) holds is

τ = min
t=0,···ω−1

(Rv(t) − t) .

Lemma 1 can be extended to arbitrary series in Tω[[γ ]]. To do this, note that the canonical
representation in Proposition 6 can be generalized to infinite sums.

Proposition 17 Let s = ⊕
i viγ

ni ∈ Tω[[γ ]] be an ω-periodic series in canonical
representation. Then

Inj�(s) =
⊕

i
δ

min
t=0,···ω−1

(Rvi
(t)−t)

γ ni . (36)

Proof Consider s = ⊕
i viγ

ni in the canonical form, i.e., ni < ni+1 and vi ≺ vi+1 and
let Rvi

be the release-time function associated with vi . Recall that Inj�(s) is the greatest
solution x in Max

in [[γ, δ]] of inequality Inj(x) � s. This is given by
⊕

i δτi γ ni where τi is
the greatest integer such that δτi � vi . Repeating the first step of the proof of Lemma 1, this
is given by τi = min

t=0,···ω−1
(Rvi

(t) − t).
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5.1.1 Zero slice mappingΨω : Tω[[γ ]] → Max
in

[[
γ , δ

]]

Recall that Max
in [[γ, δ]] is a subdioid of Tω[[γ ]], hence we can define a specific projection

from Tω[[γ ]] intoMax
in [[γ, δ]] as follows.

Definition 10 Let s = ⊕
i viγ

ni ∈ Tω[[γ ]] be an ω-periodic series, then

Ψω(s) = Ψω

(⊕
i
visγ

ni

)
=

⊕
i
γ ni δRvi

(0). (37)

This projection Ψω has an intuitive graphical interpretation. For a given s ∈ Tω[[γ ]] the
seriesΨω(s) ∈ Max

in [[γ, δ]] corresponds to the slice in the event/output-time plane of the 3D
representation of s ∈ Tω[[γ ]] at the input-time value 0. Thus, this projection is also called
zero-slice mapping.

Example 12 Consider the polynomial p = (δ1Δ4|4δ−1 ⊕ δ−2Δ4|4)γ 0 ⊕ (δ5Δ4|4δ−1 ⊕
δ2Δ4|4)γ 2 ⊕ (δ5Δ4|4 ⊕ δ6Δ4|4δ−1)γ 4 ∈ Tper [[γ ]] from Example 7 with graphical
representation given in Fig. 6. Then,

Ψ4(p) = δ1γ 0 ⊕ δ5γ 2 ⊕ δ6γ 4.

The series Ψ4(p) corresponds to the slice in the (event-shift/output-time)-plane for the
input-time value t = 0 in the 3D representation of p, see Fig. 9a and b.

The projection Ψω is by definition lower-semicontinuous, therefore Ψω is residuated.

Fig. 9 Illustration of Projection Ψ4(p)
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Proposition 18 Let s = ⊕
i γ ni δτi ∈ Max

in [[γ, δ]]. The residual Ψ �
ω(s) ∈ Tω[[γ ]] of s is

Ψ �
ω (s) =

⊕
i
γ ni δτi Δω|ω = sΔω|ω. (38)

Proof By definition of the residuated mapping, Ψ �
ω(s) ∈ Tω[[γ ]] is the greatest solution of

inequality
s =

⊕
i
γ ni δτi � Ψω(x). (39)

We first show that Eq. 38 satisfies Eq. 39 with equality.

Ψω

(⊕
i

γ ni δτi Δω|ω

)
=

⊕
i

γ ni δ
Rδτi Δω|ω (0) =

⊕
i

γ ni δτi ,

since Rδτi Δω|ω (0) = τi + �0/ω�ω = τi , see Eqs. 7 and 9. Taking into account that Ψω is
isotone, it remains to show that

⊕
i γ ni δτi Δω|ω is the greatest solution of

s =
⊕

i

γ ni δτi = Ψω(x) (40)

For this, let x = ⊕
j vj γ

nj be an arbitrary series in Tω[[γ ]]. Then Ψω(x) = ⊕
j γ nj δ

Rvj
(0).

Clearly, to achieve equality we need ηj = ni andRvj
(0) = τi . Furthermore, we are looking

for the greatest vj ∈ Tω, such that τi = Rvj
(0). Due to the canonical form (Proposition

3) we can write an ω-periodic T-operator vj as
⊕ω

i=1 δζi Δω|ωγ ζ ′
i with −ω < ζ ′

i ≤ 0. This
operator corresponds to the release-time function

Rvj
(t) = max

i=1,···ω

(
ζi +

⌈
ζ ′
i + t

ω

⌉
ω

)
.

Now we examineRvj
(t) for t = 0, thus

Rvj
(0) = max

i=1,···ω

(
ζi +

⌈
ζ ′
i

ω

⌉
ω

)
.

Recall that −ω < ζ ′
i ≤ 0, hence Rvj

(t) = τi + �(0 + t)/ω�ω is the greatest quasi ω-
periodic release-time function such thatRvj

(0) = τi . The corresponding greatest T-operator
is accordingly δτi Δω|ω.

5.1.2 Dater functions and series inMax
in

[[
γ , δ

]]

A convenient way to compute the output of a TEG under periodic PS is to express its input
and output dater functions as series in Max

in [[γ, δ]]. The following proposition gives a link
between dater functions and series inMax

in [[γ, δ]].

Proposition 19 (Baccelli et al. 1992) A dater function d̄ : Z → Zmax can be expressed as
a series d ∈ Max

in [[γ, δ]], such that,

d =
⎛
⎝ ⊕

{k∈Z|−∞<d̄<+∞}
γ kδd̄

⎞
⎠ ⊕

⎛
⎝ ⊕

{k∈Z|d̄=+∞}
γ kδ∗

⎞
⎠ . (41)

For a more detailed description of the link between dater functions and the associated
series inMax

in [[γ, δ]], see e.g. Baccelli et al. (1992) and Cohen et al. (1991). The impulse is
a specific dater function, namely I(k) = −∞ if k < 0 and 0 otherwise. Hence, an impulse
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as the input of a TEG corresponds to an infinity of firings of its input transition at time 0.
The Max

in [[γ, δ]] series corresponding to an impulse is the unit element e ∈ Max
in [[γ, δ]],

see Baccelli et al. (1992) and Cohen et al. (1991).
Moreover, a dater function d̄ and its series representation d ∈ Max

in [[γ, δ]] are related by

d̄(k) = (dI) (k)

The impulse response of a TEG can be readily expressed via the TEG transfer function
h ∈ Max

in [[γ, δ]]. The dater function ȳI is the impulse response is characterized by

ȳI(k) = (hI) (k)

while the corresponding series is obtained by

yI = h ⊗ e = h.

Similarly, the response to an arbitrary input series u (with dater function ū) is

y = h ⊗ u,

respectively
ȳ(k) = (hū) (k) = (h (uI)) (k).

In contrast, the transfer function h ∈ Tper [[γ ]] of a TEG under periodic PS is not entirely
characterized by the impulse response. As the impulse corresponds to an infinity of firings
at time 0, the impulse response of a TEG under periodic PS is characterized by the slice
in the (event-shift/output-time)-plane at the input-time value 0 of the 3D representation of
its transfer function h ∈ Tper [[γ ]], see e.g., Example 12. Hence, for a TEG under periodic
PS with transfer function h, the impulse response y = (hI) corresponds to the series y =
Ψω(h) ∈ Max

in [[γ, δ]], see Definition 10 and Example 12. It should be clear that in contrast
to standard TEGs, the impulse response of a TEG under periodic PS only provides partial
information of its transfer function. For TEGs under periodic PS, the above duality between
representing the output as dater function and series in Max

in [[γ, δ]] reads as follows. Let
h ∈ Tper [[γ ]] be the transfer function of the TEG under periodic PS and u ∈ �, respectively
u ∈ Max

in [[γ, δ]], be the input. Then we obtain the output dater function y ∈ � by

y(k) = (hu)(k),

and the corresponding output series y ∈ Max
in [[γ, δ]] by

y = Ψω (h ⊗ Inj(u)) . (42)

Example 13 Recall the simple supply chain in Example 2 with the TEGPS model shown in
Fig. 2. The transfer function is h = δ11(γ 2δ20)∗Δ20|20δ−1. This transfer function was com-
puted with the ETVO toolbox (Cottenceau et al. 2019) available online at: http://perso-laris.
univ-angers.fr/∼cottenceau/etvo.html, this toolbox implements the algorithms given in this
section. Moreover, consider the following input dater function:

ū(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ for k < 0;
0 for k = 0;
5 for k = 1, 2;
35 for k = 3, 4, 5, 6;
∞ for k ≥ 7.

(43)

This dater function is interpreted as follows: the first product available for transport from
factory 1 to factory 2 is ready at time instant 0. The second and third at time instant 5. The
4th, 5th, 6th and 7th at time instant 35. According to Eq. 41, the series u ∈ Max

in [[γ, δ]]
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corresponding to this dater function is u = γ 0δ0 ⊕ γ 1δ5 ⊕ γ 3δ35 ⊕ γ 7δ∗. The output
y ∈ Max

in [[γ, δ]] of the system is computed as

y = Ψω (h ⊗ Inj(u))

= Ψω

(
δ11(γ 2δ20)∗Δ20|20δ−1 ⊗ (γ 0δ0 ⊕ γ 1δ5 ⊕ γ 3δ35 ⊕ γ 7δ∗)

)

= Ψω

(
δ11Δ20|20δ−1(γ 2δ20)∗ ⊗ (γ 0δ0 ⊕ γ 1δ5 ⊕ γ 3δ35 ⊕ γ 7δ∗)

)

= Ψω

(
(δ11Δ20|20δ−1 ⊕ δ31Δ20|20δ−16γ 1 ⊕ δ51Δ20|20δ−6γ 3)(γ 2δ20)∗

⊕δ11Δ20|20δ−1γ 7(γ 2δ2)∗δ∗)

= Ψω

(
(δ11Δ20|20δ−1 ⊕ δ31Δ20|20δ−16γ 1 ⊕ δ51Δ20|20δ−6γ 3)(γ 2δ20)∗

⊕δ11Δ20|20δ−1γ 7δ∗)

= (δ11 ⊕ δ31γ 1 ⊕ δ51γ 3)(γ 2δ20)∗ ⊕ δ11δ∗γ 7

= (δ11 ⊕ δ31γ 1 ⊕ δ51γ 3 ⊕ δ71γ 5 ⊕ δ91γ 7 ⊕ · · · ) ⊕ δ11δ∗γ 7

= δ11 ⊕ δ31γ 1 ⊕ δ51γ 3 ⊕ δ71γ 5 ⊕ δ∗γ 7,

with associated dater function y

ȳ(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∞ for k < 0;
11 for k = 0;
31 for k = 1, 2;
51 for k = 3, 4;
71 for k = 5, 6;
∞ for k ≥ 7.

Hence, this implies that the first product is available at factory 2 at time instant 11, the
second and third at time instant 31, the 4th and 5th at time instant 51, and the 6th and 7th at
time instant 71.

5.2 Optimal Output Reference Control

The optimal output reference control problem for a TEG under periodic PS with a transfer
function h ∈ Tper [[γ ]] is to find the greatest input dater u such that, ∀k ∈ Z

z̄(k) � (hu) (k), (44)

where z̄ is a given reference dater.
If, instead, we represent the unknown input and the reference as series in Max

in [[γ, δ]],
Eq. 44 is rephrased as

z � Ψω(h ⊗ Inj(u)), (45)

where the series z, u ∈ Max
in [[γ, δ]] correspond to the dater functions z̄ and u.

Theorem 3 Let h ∈ Tper [[γ ]] be the transfer function of a single-input single-output (SISO)
TEG under periodic PS and z ∈ Max

in [[γ, δ]] a given output reference for the system, then
the optimal input uopt , i.e., the greatest solution of Eq. 45, is

(46)
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Proof As Ψω is a residuated mapping (see Proposition 18), Eq. 46 is equivalent to h ⊗
Inj(u) � Ψ

�
ω(z). This, in turn, is equivalent to as left multiplication in

Tper [[γ ]] is residuated. Finally as Inj is residuated (Proposition 17), the greatest solution of
the latter inequality is Eq. 46.

Equation 46 is often referred to as the just-in-time solution. Note that the notation of
greatest is in the sense of the order � in the dioidMax

in [[γ, δ]].

Example 14 Recall the supply chain of Example 2, which is modelled by the TEG under
periodic PS given in Fig. 2 and has transfer function

h = δ11Δ20|20δ−1(γ 2δ20)∗ ∈ Tper [[γ ]].
Let us consider the following dater function (see Fig. 10), which describes at which instants
of time goods from factory 1 need to be available at factory 2 at the latest.

z̄(k) =
⎧⎨
⎩

−∞ for k < 0,
25 for k = 0, 1,
45 + 15j for k = 2 + j with j ∈ N0.

The control problem is now, to compute ū, i.e. the maximal time when goods from fac-
tory 1 are ready to be shipped to factory 2, such that Eq. 44 respectively Eq. 45, holds. To
apply Eq. 46, the dater function z̄ is expressed by the series z = δ25 ⊕ γ 2δ45(γ 1δ15)∗ ∈
Max

in [[γ, δ]]. Then according to Proposition 18, Ψ
�
20(z) = zΔ20|20 = δ25Δ20|20 ⊕

(γ 1δ15)∗(γ 2δ45Δ20|20) and

where the latter equality has been computed using ETVO toolbox (Cottenceau et al. 2019).
The response y of the TEGPS to the optimal input uopt is

y = Ψ2(h ⊗ Inj(uopt )) = (δ11 ⊕ γ 2δ31 ⊕ γ 3δ51)(γ 4δ60)∗.

This series corresponds to the dater function,

ȳ(k) =

⎧⎪⎪⎨
⎪⎪⎩

−∞ for k < 0,
11 + 60j for k = 4j and k = 1 + 4j with j ∈ N0.
31 + 60j for k = 2 + 4j with j ∈ N0.
51 + 60j for k = 3 + 4j with j ∈ N0.

Figure 10 illustrates the output reference z̄ and ȳ resulting from the optimal input ūopt .
Clearly, as required, z̄ � ȳ. This means, the goods are shipped from factory 1 as late as
possible, but arrive in factory 2 in time to meet the production deadlines there.

Remark 5 Output reference control can be readily extended to multiple-input multiple-
output (MIMO) TEGs under periodic PS. In this case the earliest behaviour of a TEG under
periodic PS is modeled by a transfer function matrix H ∈ Tper [[γ ]]p×g . Then the optimal
output reference control problem is, for all j = 1, · · ·p,

zj � Ψω

(
g⊕

i=1

(H )j,iInj(ui)

)
, (47)
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Fig. 10 Output reference z̄ and
system response ȳ to optimal
input ūopt

where zj ∈ Max
in [[γ, δ]] represents the reference for the j th output and ui ∈ Max

in [[γ, δ]] is
ith input of the system. As Ψω is a lower semi-continuous mapping we can write Eq. 47 as,
for j = 1, · · ·p,

zj �
g⊕

i=1

Ψω

(
(H )j,iInj(ui)

)
, (48)

The latter set of p inequalities, can be written as a set of p ∗ q simpler inequalities, i.e.,
∀j ∈ {1, · · ·p} and ∀i ∈ {1, · · · g},

zj � Ψω

(
(H )j,iInj(ui)

)
. (49)

Observe that each of these inequalities has the form of Eq. 45. Hence, the optimal ith input
ui,opt ∈ Max

in [[γ, δ]], i.e., the greatest ui that satisfies Eq. 49 for j = 1, · · · p, is

Hence, the only difference to the SISO case is an additional infimum operation between
series inMax

in [[γ, δ]].

6 Conclusion

In this paper, we have introduced algebraic tools to obtain transfer function matrices for
a subclass of Timed Event Graphs under Partial Synchronization, namely the case where
partial synchronization of transitions is characterized by periodic signals. We have intro-
duced the dioid Tper [[γ ]], which is a quotient dioid of formal power series in γ with
coefficients that are periodic time-operators. We have shown that all relevant operations on
ultimately cyclic series s in this dioid can be reduced to operations on matrices in the sub-
dioidMax

in [[γ, δ]]. An advantage of this approach is that existing software tools for standard
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TEGs in the dioid Max
in [[γ, δ]], e.g. Hardouin et al. (2009) can be applied to the more gen-

eral class of TEGsPS with periodic PS. The more recent toolbox (Cottenceau et al. 2019),
based also on Hardouin et al. (2009), implements the ”translation process” from Tper [[γ ]] to
Max

in [[γ, δ]]. Moreover, based on transfer functions for this class of TEGsPS we have solved
the corresponding optimal output reference control problem. In particular, the proposed
control method provides the optimal control input under the ”just-in-time” criterion. One
possible extension of this work is to modify the control strategy such that online updates of
the reference trajectory can be considered. This would allow the system to react to a change
in customer demands, and will be considered in future work.
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