
https://doi.org/10.1007/s10626-019-00299-5

On the relation between reactive synthesis
and supervisory control of non-terminating processes

Anne-Kathrin Schmuck1 ·Thomas Moor2 ·Rupak Majumdar1

Received: 8 December 2018 / Accepted: 7 November 2019
© The Author(s) 2019

Abstract
Reactive synthesis and supervisory control theory both provide a design methodology for
the automatic and algorithmic design of digital systems from declarative specifications. The
reactive synthesis approach originates in computer science, and seeks to synthesise a system
that interacts with its environment over time and that, doing so, satisfies a prescribed spec-
ification. Here, the distinguishing feature when compared to other synthesis problems in
computer science is that the interaction is temporal in that it explicitly refers to a sequence
of computation cycles. Supervisory control originates in control theory and seeks to syn-
thesise a controller that – in closed-loop configuration with a plant – enforces a prescribed
specification over time. The distinguishing feature compared to other branches of control
is that all dynamics are driven by discrete events as opposed to continuous signals. While
both methods apparently are closely related, the technical details differ significantly. We
provide a formal comparison which allows us to identify conditions under which one can
solve one synthesis problem using methods from the other one; we also discuss how the
resulting solutions compare. To facilitate this comparison, we give a unified introduction
to reactive synthesis and supervisory control and derive formal problem statements and a
characterisation of their solutions in terms of ω-languages. Recent contributions to the two
fields address different aspects of the respective problem, and we expect the formal rela-
tionship identified in this paper to be useful in that it allows the application of algorithmic
techniques from one field in the other.

Keywords Supervisory control · Reactive synthesis · ω-languages ·
Non-falsifiable assumptions

This article belongs to the Topical Collection: Topical Collection on Theory-2020
Guest Editors: Francesco Basile, Jan Komenda, and Christoforos Hadjicostis

� Anne-Kathrin Schmuck
akschmuck@mpi-sws.org

Extended author information available on the last page of the article.

Discrete Event Dynamic Systems (2020) 30:81–124

/Published online: 28 2019December

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-019-00299-5&domain=pdf
http://orcid.org/0000-0003-2801-639X
mailto: akschmuck@mpi-sws.org

1 Introduction

Reactive synthesis (RS) addresses the systematic design of digital systems that dynamically
interact with their environment by alternating input readings from discrete variables and
output assignments to discrete variables. The progress of time is modelled by successive
computation cycles and the current output assignment is considered to depend on all past
input readings. Thus, the digital system imposes a causal feedback on the environment and
it is therefore referred to as a reactive module.

The synthesis problem here is to construct a reactive module realised by a finite automa-
ton that exhibits a behaviour that satisfies some prescribed specification. The problem
of reactive synthesis was first proposed by Church (1957) with solutions by Büchi and
Landweber (1969), and Rabin (1972). It is since then an active field of research, addressing
temporal logic specifications (e.g. Pnueli and Rosner 1989; Emerson and Jutla 1991; Maler
et al. 1995; Thomas 1995), partial observation (e.g. Kupferman and Vardi 2000), stochas-
ticity (e.g. de Alfaro and Henzinger 2000, 2007; Chatterjee and Henzinger 2012), and, most
relevant for this paper, environment assumptions (see Bloem et al. 2014; Brenguier et al.
2017 for an overview). For a comprehensive introduction to the field see e.g. Thomas (1995)
and Finkbeiner (2016).

Supervisory Control Theory (SCT) is a branch of control theory that also addresses the
systematic design of digital systems. It models systems as discrete-event systems — dynam-
ical systems in which relevant variables are of finite range and in which changes of their
respective values are referred to as events. The synthesis problem is to construct a controller
that provides causal feedback to a given plant such that the closed-loop system satisfies a
prescribed specification. For supervisory control, the plant is a discrete-event system and
the causal feedback, referred to as the supervisor, maps the past event sequence to a control
pattern in order to restrict the plant behaviour. Supervisory control theory was originally
proposed by Ramadge and Wonham (1987) and now is an established field of research. Top-
ics addressed include partial observation (e.g. Lin and Wonham 1988; Cieslak et al. 1988;
Cai et al. 2015; Yin and Lafortune 2016, 2017), robustness (e.g. Cury and Krogh 1999;
Bourdon et al. 2005), modularity (e.g. Ramadge and Wonham 1989b; Rudie and Wonham
1992; de Querioz and Cury 2000), hierarchical control architectures (e.g. Zhong and Won-
ham 1990; Wong and Wonham 1996; Schmidt et al. 2008), fault-tolerance (e.g. Wen et al.
2008; Paoli et al. 2011; Moor 2016), and, most relevant for this report, behaviours over
an infinite time-axis (e.g. Ramadge 1989a; Thistle and Wonham 1994a, 2009; Moor et al.
2011; Baier and Moor 2015; Zhang and Cai 2018).

Both design methodologies seek to synthesise a causal feedback map that operates on a
finite alphabet and satisfies a formal specification. When used on particular instances of a
given synthesis problem, both techniques appear to be closely related. However, the tech-
nical details differ significantly. In this paper we provide a formal comparison, allowing us
to identify conditions under which one can solve one synthesis problem via the respective
other one and we discuss how the resulting solutions compare. To facilitate this compari-
son, we give a concise introduction to RS and SCT and derive formal problem statements
and a characterisation of their solutions uniformly in terms of ω-languages. Recent contri-
butions to the two fields focus attention on different aspects of the respective problem, and
we expect the formal relationship identified in this paper to be useful in that it allows the
application of algorithmic techniques from one field to the other.

Scope Regarding reactive synthesis, our study considers a variant that explicitly addresses
assumptions on the environment behaviour, as these assumptions correspond to the

Discrete Event Dynamic Systems (2020) 30:81–12482

prescribed plant behaviour in supervisory control. For ease of comparison, we consider
both the assumption and the specification to be given abstractly as ω-languages —formal
languages of infinite words— and for algorithmic effectiveness, as ω-regular languages
which allow automata-based representations. For ease of illustration, we restrict attention to
specifications given as deterministic Büchi automata. While deterministic Büchi automata
capture only a strict subset of ω-regular languages, it allows us to keep the notation and
algorithms reasonably simple; our comparisons can be extended to the full class of all ω-
regular specifications. While many papers on RS use specifications given in linear temporal
logic (LTL) (see Pnueli 1977), it is well understood how such formulae can be translated
into ω-automata (see Vardi and Wolper 1986; Safra 1988).

Regarding supervisory control, most of the literature, including the seminal work by
Ramadge and Wonham (1987), refers to ∗-languages as their base model, i.e., formal
languages of finite words. In this setting, synthesis can enforce safety properties while
maintaining liveness properties present in the plant behaviour. This contrasts the design of
reactive modules where the synthesis of liveness properties is conceived a relevant chal-
lenge. We therefore conduct our study for a branch of supervisory control that addresses
the synthesis problem for ω-languages; (see Ramadge 1989a; Thistle and Wonham 1994a,
1995), where the authors explicitly relate their work to Church’s problem. For a com-
prehensive introduction to SCT for ω-languages see also the technical report by Moor
(2017).

Contribution Within this perspective of our choice, our contribution is threefold:

(I) We show that one can solve the considered RS problem using SCT and provide
an algorithm over deterministic Büchi-automata realisations which ensures that the
resulting reactive module will not falsify the assumptions on the environment.

(II) We show that one can solve the considered synthesis problem from SCT using RS
for restricted subclasses of plant (resp. environment) behaviours.

(III) We establish equivalence of the two synthesis problems regarding solvability for the
subclasses considered in (II).

The considered RS problem is formalised by an implication style logic formula, i.e., the
specification is such that if the assumptions are satisfied, then a guarantee shall be provided.
Hence, a valid solution to the synthesis problem might falsify the assumption. SCT seeks
to avoid this issue by requiring that valid solutions to the synthesis problem need to be
non-conflicting, i.e., at any point both the plant and the supervisor can fulfil their liveness
properties eventually. Due to this additional property of solutions, our transformation in (I)
achieves reactive modules which do not falsify the assumption. The reverse transformation
in (II), however, only holds if the computed reactive module returns solutions which are non-
conflicting. We identify three sufficient conditions for the latter to hold: (a) topologically
closed, (b) topologically closed input/output, and (c) strongly non-anticipating input/output
plant (resp. environment) behaviours.

When establishing result (II)(c), we identify a close relationship between strongly non-
anticipating input/output plant behaviours (see Moor et al. 2011) and non-falsifiable envi-
ronment assumptions (see e.g. Brenguier et al. (2017)1) which ensure an almost identical
form of non-conflictingness and which were derived independently in both communities.

1 In Brenguier et al. (2017), Sec. 3, this well known phenomenon in reactive synthesis is called Win-under-
Hype.

Discrete Event Dynamic Systems (2020) 30:81–124 83

Both synthesis algorithms are formalised as fixed-points in the μ-calculus. The RS
algorithm uses a three-nested fixed-point while SCT synthesis amounts to a four-nested
fixed-point. Result (I) clarifies that this additional fixed-point iteration indeed generates
an additional property on the solution. Notably, this property cannot be encoded as an ω-
regular property and hence, the SCT fixed-point cannot result from a translation of an LTL
synthesis problem into a μ-calculus formula. Regarding result (II), we may expect some
computational benefits as a trade-off when imposing conditions (a)-(c) on a synthesis prob-
lem in SCT. Moreover, we show that for topologically closed plant (resp. environment)
behaviours with alternating inputs and outputs both fixed-points collapse to the same two-
nested one. Using result (III)(b), the latter establishes equivalence of both algorithms in this
case.

Related work The problem of correctly handling assumptions in synthesis has recently
gained attention in the reactive synthesis community. As our solution via SCT synthesis and
result (I) does not assume precise knowledge about the environment strategy (or the ability
to impose an environment strategy), it is distinct from assume-guarantee approaches (Chat-
terjee and Henzinger 2007) or rational synthesis (Fisman et al. 2010). It is closest related
to obliging games (Chatterjee et al. 2010), cooperative reactive synthesis as in Bloem et al.
(2015) and assume-admissible synthesis (Brenguier et al. 2017). Chatterjee et al. (2010)
incorporate a similar notion of non-conflictingness as SCT, but in contrast to SCT does not
utilise liveness properties of the environment assumptions to enforce the system guaran-
tees. Bloem et al. (2015) synthesise a reactive module which assumes as little cooperation
(w.r.t. to a given hierarchy of cooperation levels) as possible by the environment. Con-
trary, our approach via result (I) always assumes the same form of cooperation coinciding
with just one cooperation level. Applying assume-admissible synthesis, the system and its
environment results in two individual synthesis problems. Given that both have a solution,
only implementing the solution for the system ensures that the specification is fulfilled if
the environment only takes admissible moves. This is comparable to the view taken in this
paper, however, the hypothesis that the environment behaves admissible is stronger than
the hypothesis used for SCT, namely that the environment attains its liveness properties if
not prevented from doing so. Moreover, our approach only requires to solve one synthesis
problem, instead of two.

Our study complements the recent comparison between RS and SCT by Ehlers et al.
(2017). There, the authors focus attention on SCT over ∗-languages and discuss maxi-
mal permissiveness of a solution to the synthesis problem. This contrasts our choice of
ω-languages, where a maximally permissive solution fails to exist in general and, taking a
perspective common in RS, we resort to computing some solution provided that one exists.
Moreover, Ehlers et al. (2017) encode the requirement of a non-conflicting closed-loop, as
it is commonly discussed in the context of SCT, by a specific CTL formula and solve the
synthesis problem by a specialised variant of RS. In contrast, to obtain our result (II), we
address a non-conflicting closed loop by structural assumptions on the problem parameters
which imply that for the corresponding RS problem the assumptions are non-falsifiable by
any reactive module.

Further, our work is in line with previous work establishing connections between super-
visory control and other types of program synthesis, such as behavior composition (Barati
and St-Denis 2015; Felli et al. 2017) or planning by model checking (Barveau et al. 1998).
These works also discovered a strong connection between both fields which is used to apply
established tools from one field to a problem statement of the other.

Discrete Event Dynamic Systems (2020) 30:81–12484

Outline This paper is organised as follows. After recalling necessary notation and basic
facts in Section 2, we give a concise but self-contained introduction to reactive synthesis and
supervisory control in Sections 3 and 4, respectively. Here, synthesis problems are stated to
respect the conventions used in the respective literature, with an additional uniform charac-
terisation of solutions in terms of ω-languages to facilitate the comparison in Section 5, in
which we develop our main results (I)–(III) as outlined above. Technical propositions and
proofs are organised in the Appendices A–D. A preliminary version of this work appeared as
Schmuck et al. (2018), focusing on input-output behaviours. The current paper extends this
by establishing a solution of a synthesis problem from SCT via RS for arbitrary topologi-
cally closed behaviours in Section 5.2. Additionally, we provide more in-depth explanations,
examples and proofs for the results already presented by Schmuck et al. (2018).

2 Preliminaries

We provide common terminology and recall some elementary facts regarding formal lan-
guages, automata, two-player games and fixpoint calculus. A general introduction to these
topics can be found in e.g. Hopcroft and Ullman (1979), Thomas (1990), Grädel et al.
(2002), and Bradfield and Stirling (2006).

Formal languages Let � be a finite alphabet. Then we write �∗, �+, and �ω for the sets
of finite sequences, non-empty finite sequences, and infinite sequences over �, respectively.
We define �∞ = �∗ ∪ �ω. The subsets L ⊆ �∗ and L ⊆ �ω are called the ∗- and ω-
languages over �, respectively. For � ⊆ �, the natural projection of w ∈ �∗ on �∗ is
denoted by p�w. As with all other operators on words used in this paper, we take point-
wise images for an extension to languages over �, i.e., we write p�L for { p�s | s ∈ L }
with L ⊆ �∗. For two words s ∈ �∗ and t ∈ �∞ we write st ∈ �∞ for the concatenation.
We write s ≤ t and s < t if s is a prefix of t or a strict prefix of t , respectively. The set of
all prefixes of a word t ∈ �∞ is denoted pfxt ⊆ �∗. For L ⊆ �∗, we have L ⊆ pfxL,
and, if equality holds, we say that L is prefix closed. The limit limL of L ⊆ �∗ contains all
words α ∈ �ω which have infinitely many prefixes in L and we define cloL := limpfx L
as the topological closure of L ⊆ �ω. L is said to be topologically closed if L = cloL,
and relatively topologically closed w.r.t. M ⊆ �ω, if L = (cloL) ∩ M. This notion of
closedness defines a topology, i.e., ∅ and �ω are closed, finite unions of closed ω-languages
are closed, and arbitrary intersections of closed ω-languages are closed.

Automata An automaton over the alphabet � is a tuple M = (Q, �, δ, Qo) with the
state set Q, the transition relation δ ⊆ Q × � × Q and the set of initial states Qo ⊆ Q.
M is called finite if Q and δ are finite. We identify δ with its respective set-valued map
δ : Q×��Q where δ(q, σ) := { q ′ | (q, σ, q ′) ∈ δ } ⊆ Q, and with the common inductive
extension to a word-valued second argument s ∈ �∗. For P ⊆ Q and N ⊆ �∗, we denote
δ(P, N) := ∪{ δ(q, s) | q ∈ P, s ∈ N } ⊆ Q the image of P × N under δ. If |Qo| ≤ 1 and
|δ(q, s)| ≤ 1 for all q ∈ Q, s ∈ �∗, then M is said to be deterministic. For deterministic
automata, we interpret δ as partial function and write δ(q, s) = q ′ and δ(q, s)! as short
forms for δ(q, s) = {q ′} and δ(q, s) �= ∅, respectively. We define L = L∗(M) := { s ∈
�∗ | δ(Qo, s) �= ∅ } and L = Lω(M) := {α ∈ �ω | pfx α ⊆ L∗(M) } as the ∗- and ω-
languages generated by M , respectively, which are prefix closed and topologically closed,
respectively.

Discrete Event Dynamic Systems (2020) 30:81–124 85

Accepted languages Given a set of final states F ⊆ Q and the extended automaton
tuple M = (Q, �, δ, Qo, F), its accepted ∗-language is defined by L∗

m(M) := { s ∈
�∗ | δ(Qo, s) ∩ F �= ∅ }. Regular ∗-languages are those that are accepted by some finite
automaton.

For ω-languages, we refer to an acceptance condition F and the extended automaton
tuple M = (Q, �, δ, Qo, F). A run π of M is an infinite sequence of states q1q2q3 · · · ∈
Qω and corresponds to the ω-word α = σ1σ2σ3 · · · ∈ �ω if q1 ∈ Qo and (qi, σi, qi+1) ∈ δ

for all i ∈ N. The set of states that occur infinitely often in π is denoted Infπ . We use
Büchi, generalized Büchi and Parity acceptance conditions. The Büchi acceptance condition
is given by a set F ⊆ Q and a run π over M is accepted if (Infπ) ∩ F �= ∅. Similarly,
the generalized Büchi acceptance condition is given by a set F = {F1, F2, . . . , Fk} s.t.
Fi ⊆ Q, and a run π is accepted if (Infπ) ∩ Fi �= ∅ for all i ∈ {1, . . . , k}. Finally, the
parity acceptance condition is given by a set of colors F = {C1, C2, . . . , Ck} which is
defined by a coloring function c : Q→{1, ..., k}, s.t. Ck = {q ∈ Q}c(q) = k, and a run π is
accepted if the highest color visited infinitely often is even, i.e., if max Infc(π) is even. An
automaton M with Büchi, generalized Büchi or Parity acceptance condition is referred to
as a Büchi, generalized Büchi or Parity automaton, respectively. The accepted ω-language
Lω

m(M) consists of all words α ∈ �ω for which there exists a corresponding accepted
run over M . For deterministic automata, we have Lω

m(M) = lim L∗
m(M). Referring to an

acceptance condition, we say that the automaton M is trim if for every state q there exists an
accepted run that passes q at least once. The class of ω-languages that is accepted by some
finite Büchi, generalized Büchi or parity automaton is referred to as the ω-regular languages.
The class of ω-languages that is accepted by some deterministic finite Büchi automaton is a
strict subset of the ω-regular languages while any ω-regular language is accepted by some
deterministic parity automaton.

Two-player games Let � = �0 ∪ �1 be a disjoint composition of symbols and let M =
(Q0∪Q1, �0∪�1, {q0}, δ0∪δ1, F) be a deterministic automaton s.t. q0 ∈ Q0, δ0 ⊆ Q0×
�0 × Q1 and δ1 ⊆ Q1 × �1 × Q0. Then the tuple H = (Q0, Q1, �0, �1, δ0, δ1) defines
the turn-based two player game graph induced by M , where Ql , �l and δl with l ∈ {0, 1}
are interpreted as the player l state set, alphabet and transition set, respectively. Any run π

of M is called a play over H . Given a game graph H , a strategy for player 0 is a function
f 0 : (Q0Q1)∗Q0 → �0. A play π is compliant with f 0 if for all k ∈ N with π(k) ∈ Q0 it
holds that π(k + 1) = δ0(π(k), f 0(π |[1,k])), where π |[1,k] = π(1)π(2) . . . π(k). Strategies
for player 1 are defined likewise, i.e., as functions f 1 : (Q0Q1)+ → �1 and with a play π

being compliant with f 1 if π(k + 1) = δ1(π(k), f 1(π |[1,k])) for all k ∈ N with π(k) ∈ Q1.
A strategy f l , l ∈ {0, 1}, is memoryless if f l(νq) = f l(q) for all ν ∈ (Q0 ∪Q1)∗ such that
νq is in the domain of f l . Throughout this paper, we discuss games from the perspective of
exclusively one of the two players and interpret the Büchi (reps. parity) acceptance condition
F for this player. The tuple (H,F) if it is an accepted run in M . A strategy f l , l ∈ {0, 1},
is a winning strategy for player l if all plays compliant with f l are winning.

Fixpoint calculus We utilize the following notational conventions from the μ-calculus.
Let f denote a monotone operator on a finite set Q, i.e., f (P ′) ⊆ f (P ′′) ⊆ Q for all
P ′ ⊆ P ′′ ⊆ Q. Then the least and the greatest fixed point exist uniquely and are denoted
μP .f (P) and νP .f (P), respectively. They can be computed by the iterations P1 := ∅,
Pi+1 := Pi ∪ f (Pi), with μP .f (P) = ∪{ Pi | i ∈ N }, and P1 := Q, Pi+1 := Pi ∩ f (Pi),
with νP .f (P) = ∩{ Pi | i ∈ N }. If f is given as an expression in terms of multiple set-
valued parameters with range Q, and if this expression is monotone in each parameter, so

Discrete Event Dynamic Systems (2020) 30:81–12486

are the respective fixed points. For such monotone expressions f , fixed-point formulae can
be nested.

3 Reactive synthesis

This section gives a concise introduction to reactive synthesis with environment assump-
tions, derives a formal problem statement, and a characterisation of its solutions in terms
of ω-languages. For illustration purposes, we recall an algorithmic solution of the synthesis
problem for the specific case where all relevant ω-languages are provided as deterministic
Büchi automata.

3.1 Reactive modules

A reactive module is a device that reads the values of input variables in order to assign
values to output variables, and that, over time, does so once in every computation cycle. A
reactive module is commonly represented as a function r that maps the sequence of past
input readings s ∈ U+, to the current output assignment y ∈ Y , i.e,

r : U+→Y . (1)

Considering infinitely many computation cycles, the interaction of a reactive module with
its environment generates an infinite sequence α ∈ (UY)ω of alternating input readings and
output assignments. Therefore, the behaviour of a reactive module r : U+→Y is defined as
the ω-language L of all sequences α that comply with r over all computation cycles :

L := { α ∈ (UY)ω | ∀ s ∈ (U ∪ Y)∗, y ∈ Y . sy < α → y = r(pUs) } . (2)

If, in addition, r is implemented as a finite automaton, then L is ω-regular.2 From the infinite
time behaviour L we recover the local behaviour by taking the prefix pfx L and obtain a
representation on a per-computation-cycle basis. Since the behaviour of a reactive module
is exclusively characterised by individual computation cycles, we have L = lim pfx L =:
cloL and, hence, L is topologically closed; see also Lemma 1.

For our subsequent discussion we will eliminate the explicit reference to the reactive
module r : U+→Y by utilising a direct characterisation of those languages L that qualify
for a representation by Eq. 2. Referring to behavioural systems theory by J. C. Willems
(1991), we adapt the notion of input-output systems to the notation used in the present
paper.3

Definition 1 Given an ω-language L ⊆ (UY)ω or L ⊆ (YU)ω of alternating inputs and
outputs, with U, Y �= ∅ and U ∩ Y = ∅, we say that

(i) U is a locally free input for L if
∀s ∈ pfx L . ∀u′, u′′ ∈ U . su′ ∈ pfx L → su′′ ∈ pfx L ;

(ii) the output locally processes the input if
∀s ∈ pfx L . ∀ y′, y′′ ∈ Y . sy′ ∈ pfx L ∧ sy′′ ∈ pfx L → y′ = y′′ .

2Typical means of implementation considered in the literature are finite Mealy automata with input alphabet
U and output alphabet Y .
3As Willems (1991) addresses the time axis R and Z, there is no exact technical correspondence. Still, for
topologically closed languages the intention of a locally free input matches Def. VIII.1 and VIII.4 and the
intention of an output to locally process the input matches Definition VIII.3 in Willems (1991).

Discrete Event Dynamic Systems (2020) 30:81–124 87

The above notion of inputs and outputs enables the following characterisation of
behaviours associated with some reactive module.

Lemma 1 Let U, Y �= ∅, U ∩ Y = ∅ and r : U+→Y . Then the associated behaviour
L ⊆ (UY)ω of r defined by Eq. 2 is non-empty and it holds that:

(RM1) L is topologically closed,
(RM2) U is a locally free input for L, and
(RM3) the output locally processes the input.

Vice versa, if a non-empty language L ⊆ (UY)ω satisfies conditions (RM1) – (RM3), then
there exists a reactive module r : U+→Y with associated behaviour L s.t. r(v) is the
unique element of the singleton set

{ y ∈ Y | ∃ s ∈ (UY)∗U . pUs = v ∧ sy ∈ pfx L} (3)

for v ∈ U+.

3.2 Problem statement (RS)

The problem commonly referred to as reactive synthesis is about the systematic design of
a reactive module, henceforth also referred to as the system, that provides a formal guar-
antee G ⊆ (UY)ω. In the basic setting of reactive synthesis, it is assumed that any input
symbol may be generated by the environment at any time and that, in turn, the environment
accepts any output symbol generated by the system. Then, properties (RM2) and (RM3)
of L ensure that the interaction of the system with its environment can be continued for
infinitely many computation cycles, i.e., the two components do not deadlock. Thus, we
end up with an ω-word α ∈ L. In turn, the system to provide the guarantee G amounts to
the language inclusion specification L ⊆ G. The crucial point here is that G may express
liveness properties which can not be characterised on a per-computation-cycle basis. Hence,
we do not necessarily have equality in G ⊆ lim pfx G; i.e., G, in contrast to L, may not be
topologically closed.

In many applications, an arbitrary behaviour of the environment is considered unre-
alistic, and one explicitly accounts for formal assumptions imposed on the environment.
For the purpose of our discussion, we parameterise such assumptions by an ω-language
A ⊆ (UY)ω to express that over infinitely many computation cycles the environment will
produce input symbols such that we end up with an ω-word α ∈ A. The intention here is to
synthesise the system according to the inclusion L ⊆ A → G := ((U ∪Y)ω −A) ∪ G and
to then conclude α ∈ G for any α ∈ A. A consequence of this concept of an environment
assumption is that over finitely many computation cycles the environment must comply to
the local behaviour pfx A. This in turn restricts the output symbols that the reactive module
may generate in each individual computation cycle in order be operational over infinitely
many cycles. Technically, we require that the system and the environment do not deadlock,
i.e.,

∀s ∈ (pfx A) ∩ (pfx L) · ∃ σ ∈ U ∪ Y . sσ ∈ (pfx A) ∩ (pfx L) . (4)

This amounts to the following problem statement for the synthesis of a reactive module.

Problem 1 (Reactive Synthesis under Environment Assumptions) Given two non-empty
finite sets of input symbols U and output symbols Y , U ∩Y = ∅, an environment assumption
A ⊆ (UY)ω and a guarantee G ⊆ (UY)ω, the reactive synthesis problem RS[U, Y, A, G]

Discrete Event Dynamic Systems (2020) 30:81–12488

asks to either construct a system such that the associated behaviour L does not deadlock
with A, see Eq. 4, and such that

∅ �= L ⊆ A → G , (5)

or, to verify that no such system exists.4

Note that A → (G ∩ A) = A → G, and, hence, we can restrict our discussion without
loss of generality to the case where ∅ �= G ⊆ A ⊆ (UY)ω. Furthermore, we can choose
A = (UY)ω to recover the basic setting without assumptions from our formal problem
statement, i.e., in this case, Eq. 4 is trivially satisfied and the system to provide the guarantee
collapses to the simple inclusion L ⊆ G.

With Lemma 1, the problem of reactive synthesis amounts to the construction of a non-
empty subset L ⊆ A → G that satisfies (RM1) – (RM3) and that does not deadlock, Eq. 4,
or to the verification that no such subset exists. Henceforth, we may refer to a qualifying
behaviour L as a solution of the synthesis problem.

Remark 1 The problem of reactive synthesis is more commonly formalised by using speci-
fications given in linear temporal logic (LTL) over a set of atomic propositions U ∪ Y (see,
e.g., Pnueli and Rosner 1989). Such an LTL formula ϕ over U ∪ Y can be translated into
a specification language G ⊆ (UY)ω with U = 2U and Y = 2Y by constructing a Büchi
automaton from ϕ, and then, for algorithmic reasons, determinising this automaton to obtain
a deterministic Rabin or Parity automaton.

This transformation is well understood (Vardi and Wolper 1986; Safra 1988); see e.g.
Finkbeiner (2016) for a comprehensive discussion.

Remark 2 In the reactive synthesis literature, environment assumptions are usually specified
by a separate LTL formula which is then translated to an automaton as outlined in Remark 1,
or they are directly given as an automaton model. In either case, the automaton may exhibit
reachable states from which on the acceptance condition can not be satisfied, i.e., we may
have that the generated language Aloc ⊆ (UY)∗ is a strict super-set of the prefix pfx A of the
accepted language A. The requirement of the system and the environment not to deadlock,
Eq. 4, is then substituted by

∀s ∈ Aloc ∩ (pfx L) · ∃ σ ∈ U ∪ Y . sσ ∈ Aloc ∩ (pfx L) . (6)

However, if we synthesise a system with behaviour L in which there indeed exist words
s ∈ Aloc ∩ (pfx L) with s �∈ pfx A, any extension α ∈ (UY)ω, s < α, of such a word is
not in A. Hence, L falsifies the assumption and we may after infinitely many computation
cycles end up with an ω-word α �∈ G. This is undesirable and we will identify further
more subtle variations of this issue in due course of our study. To this end, we restrict the
discussion to the case of Aloc = pfx A, i.e., we parameterise the assumption as a single
ω-language A and we refer to its prefix pfx A as the associated local behaviour.

3.3 Algorithmic solution

The interaction of the system and its environment outlined above can be viewed as a turn-
based two player game: in every round the environment player selects an input u ∈ U and

4For A = ∅ the upper bound A → G degenerates and the specification becomes L ⊆ (UY)ω . Whenever
convenient, we therefore assume A �= ∅ and, likewise, G �= (UY)ω .

Discrete Event Dynamic Systems (2020) 30:81–124 89

the system selects the output y ∈ Y . It was shown by Gurevich and Harrington (1982) and
Pnueli and Rosner (1989) that for ω-regular specifications there exists a winning strategy
for the system player in this game if and only if the reactive synthesis problem has an
ω-regular solution L. Based on this result, a solution can be obtained by constructing a
deterministic game, finding a winning strategy for the system player and translating this
strategy into a finite automaton representing the reactive module. For a concise presentation
of this construction, we consider the special case in which both G and A are realisable as
deterministic Büchi automata. While this does not imply that A → G can be realised by a
deterministic Büchi automaton, there still exists a direct and simple solution procedure for
this case, which we briefly recall.

We refer to the previous section and restrict, without loss of generality, the discussion to
the case of ∅ �= G ⊆ A. Given this setting, we consider a generalised Büchi automaton M

with acceptance condition F = {T 0, T 1} s.t. A = Lω
m(MA), G = Lω

m(MG) and pfx(A) =
L∗(M), where MA and MG refer to the simple Büchi automaton obtained from M by using
the single winning state set T 0 and T 1, respectively. Additionally, we assume that M does
not deadlock5. We refer to G ⊆ A ⊆ (UY)ω to observe that the alternation of input readings
and output assignments induces a disjoint union decomposition of the state set and the
transition relation, i.e., M can be defined by the tuple

M = (Q0 ∪ Q1, U ∪ Y, {q0}, δ0 ∪ δ1, {T 0, T 1}) (7)

s.t. q0 ∈ Q0, δ0 ⊆ Q0 × U × Q1, δ1 ⊆ Q1 × Y × Q0 and T 0, T 1 ⊆ Q = Q0 ∪ Q1.
The generalised Büchi automaton M defines the turn-based deterministic game graph

H = (Q0,Q1, U, Y, δ0, δ1). In the context of the reactive synthesis problem, player 0 and
player 1 are the environment and system player, respectively, and a system player winning
strategy must ensure that all plays on H that visit T 0 infinitely often, must also visit T 1

infinitely often. This can be expressed by the four-colour parity game (H, C) with C =
{∅, \QT 0, T 0, T 1}, where C2 = \QT 0 and C4 = T 1 are the sets with even colour. Hence, a
play π according to α on H is winning for (H, C) if either T 0 is not visited infinitely often,
i.e. α /∈ A or, else, if T 0 is visited infinitely often, then T 1 is also visited infinitely often,
i.e., α ∈ A∩G. Both cases together amount to α ∈ A → G. Note also that, by construction,
we have α ∈ cloA for any play α on H .

It was shown in Emerson and Jutla (1991) that the winning states for the system player
in the 4-colour parity game can be computed by the fixed-point

Win1 = νX4.μX3.νX2.μX1.
⋃4

k=1(Ck ∩ Pre1(Xk)), (8)

where Pre1 : 2Q→2Q is the player 1 controllable prefix, defined for a set A ⊆ Q by

Pre1(A) = { q0 ∈ Q0 | ∀ u ∈ U . δ0(q0, u) ∈ A} ∪ { q1 ∈ Q1∃ y ∈ Y . δ1(q1, y) ∈ A}.
(9)

However, as C1 is empty, Eq. 8 simplifies to the three-nested fixed point

Win1 = νX4 . μX3 . νX2 . (T 1 ∩ Pre1(X4)) ∪ Pre1(X3) ∪ ((Q \ T 0) ∩ Pre1(X2)). (10)

If q0 ∈ Win1, the synthesis problem has a solution and a memoryless winning strategy
for the system player can be derived from the iterations in Eq. 10 as follows.

5 Given a trim deterministic Büchi automaton M1 that accepts G, we extend the state set by a not-accepting
dump-state to obtain a full transition function. We then use the common product composition with a deter-
ministic Büchi automaton M0 that accepts A to obtain M , where the acceptance condition F = {T 0, T 1} is
defined by the respective state component to be an accepted state in the automaton M0 or M1, respectively.

Discrete Event Dynamic Systems (2020) 30:81–12490

Consider the last iteration of the fixed-point in Eq. 10 resulting in the set X∞
4 = Win1 ⊆

Q and assume that we have to iterate over X3 k-times before this fixed-point is reached. If
Xi

3 is the set obtained after the i-th iteration, we have that X∞
4 = ⋃k

i=0 Xi
3 with Xi

3 ⊆ Xi+1
3 ,

X0
3 = ∅ and Xk

3 = X∞
3 . This defines a ranking for every state q ∈ X∞

4 s.t.

rank(q) = i iff q ∈ Xi
3 \ Xi−1

3 for 1 ≤ i ≤ k. (11)

Then f 1 : Q1 ∩ X∞
4 → Y is a winning strategy for the system player in the Parity game

(H, C) if y = f 1 implies rank(δ1(q, y)) < rank(q) if rank(q) > 1 and δ1(q, y) ∈ X∞
4

otherwise. It should be observed that f 1 defines r in Eq. 1 in the obvious way s.t. r(pUs) =
f 1(q) iff δ(q0, s) = q. A finite automaton realising r (and therefore L) is obtained by
pruning M from all states q /∈ X∞

4 and all transitions (q, y, q ′) s.t. y � f 1(q). A proof that
this winning strategy indeed defines a reactive module solving Problem 1 can be obtained
as a special case of the construction presented in Bloem et al. (2012).

Remark 3 Referring back to Remark 2, the outlined synthesis algorithm generalises to the
case where G is not necessarily a subset of A and pfx A � Aloc. By following the same
construction as in footnote 5, we obtain an automaton M which accepts A = Lω

m(MA) and
G ∩ (limAloc) = Lω

m(MG) and which generates Aloc = L∗(M).

Remark 4 In the special case where A is topologically closed, we can assume without loss
of generality that T 0 = Q and, hence, C2 = ∅ and C3 = Q. Then, the synthesis formula in
Eq. 10 simplifies to

Win1 = νX4 . μX3 . Pre1(X3) ∪ (T 1 ∩ Pre1(X4)) . (12)

This observation can be equally motivated by noting that for T 0 = Q, the Parity game
(H, C) reduces to (H, {Q \ T 1, T 1}) which is equivalent to the Büchi game (H, T 1). It
is well known that Büchi games (H, T 1) are solvable by the fixed-point in Eq. 12; see
e.g. Maler et al. (1995) and Zielonka (1998). In this context, the basic version of reactive
synthesis without environment assumptions results in computing a system winning strategy
in the Büchi game (H ′, F 1) where H ′ is the game graph obtained from M1 (given that G is
realisable by the deterministic Büchi automaton M1). In other words, adding a topologically
closed environment assumption A, algorithmically amounts to solving the basic reactive
synthesis problem via Eq. 12 over M in Eq. 7 instead of M1.

Example 1 Consider a topologically closed assumption A as discussed in Remark 4 s.t.
pfx A is the language generated by M depicted in Fig. 1 and G is accepted by M with final

q0 q1 q2 q3

q4

q5

q6

Fig. 1 Transition structure of the automaton M in Eq. 7 discussed in Example 1-2. Environment and system
states Q0 and Q1 are indicated by circles and squares, respectively. The final states T 0 = {q4} and T 1 = {q5}
are indicated in blue and red, respectively

Discrete Event Dynamic Systems (2020) 30:81–124 91

state set T 1 = {q5}. Using Eq. 12 to solve this synthesis problem results in the winning state
set Win1 = {q3, q4, q5, q6} (indicated by the dashed square in Fig. 1).

As q0 /∈ Win1(F 1), Problem 1 has no solution in this example. If q3 would be an initial
state, it should be noted that the resulting system strategy would transition from q3 in q4 as
rank(q3) = 3, rank(q4) = 2 and rank(q6) = 4.

Example 2 Consider the assumption A given by the language accepted by M in Fig. 1 with
accepting state set T 0 = {q4}. In this case, we evaluate (10) and obtain Win1 = Q. Using
Eq. 11, all states in Q \ T 0 have rank 1 while q4 has rank 2. This implies that the resulting
system strategy will transition from q3 to q6.

The problem discussed in Example 1 fails to have a solution, as the environment can
prevent the system from reaching q3 from the initial state. Interestingly, adding liveness to
the environment using the restricted final state set T 0 = {q4} in Example 2 does not directly
resolve this problem. The implication-style specification used in the formal statement of
Problem 1 rather adds more sequences to the set of winning plays if A is not topologically
closed; every sequence which does not conform with G (i.e., does not reach q5 infinitely
often) is still winning as long as it does not conform with the assumptions A (i.e., does
not visit q4 infinitely often) either. As this is true for the sequence iterating between q1
and q2 and preventing the system to reach q3, the synthesis problem now has a solution.
Furthermore, choosing to transition to q4 or q6 from q3 is now equally good. While always
choosing the former ensures to win by visiting both q4 and q5 infinitely often, the latter
ensures to win by visiting neither q4 nor q5 at all. Example 2 shows that the constructed
strategy actually favours a transition from q3 to q6, and by this falsifies the assumption.

4 Supervisory control

The purpose of this section is to give a concise introduction to supervisory control and to do
so from a perspective and in a notation most convenient for a comparison to reactive synthe-
sis. Technically, we refer to a branch of supervisory control theory proposed by Ramadge
(1989a) and Thistle and Wonham (1994a) which explicitly accounts for non-terminating
processes and therefore utilises ω-languages as the base model. For illustration purposes,
we again give an algorithmic solution of the synthesis problem for the specific case of
deterministic Büchi automata realisations of the involved ω-languages.

4.1 Supervisors

A supervisory controller is a device that takes as input a finite sequence of events from an
alphabet � generated by a process which is commonly referred to as the plant and, in turn,
outputs a control pattern γ ⊆ �. Formally, the supervisor is defined as a map

f : �∗ → � , with � := { γ ⊆ � | �uc ⊆ γ } , (13)

where �uc ⊆ � are so called uncontrollable events. On start-up, the supervisor applies the
control pattern γ = f (ε) and thereby restricts the plant to generate an event σ ∈ γ . After
the plant has generated its event, the control pattern is updated accordingly, and so forth. In
this process, the role of the uncontrollable events �uc is that, by the definition of �, their
occurrence cannot be prevented by the supervisor.

Discrete Event Dynamic Systems (2020) 30:81–12492

For the subsequent discussion, the following representation of a supervisor as an ω-
language turns out convenient: 6

L := {α ∈ �ω | ∀ s ∈ �∗ . ∀ σ ∈ � . sσ < α → σ ∈ f (s) } . (14)

The language defined by Eq. 14 is referred to as the behaviour associated with the super-
visor f . The following lemma characterises languages that match the behaviour of some
supervisor.

Lemma 2 Let � and ∅ �= �uc ⊆ �. Then the behaviour L ⊆ �ω in Eq. 14 associated with
f : �∗ → � is non-empty and exhibits the following properties:

(SC1) L is topologically closed, and
(SC2) L is universally controllable, i.e., (pfx L)�uc ⊆ pfx L.

Vice versa, if ∅ �= L ⊆ �ω satisfies (SC1) and (SC2), then f ′ : �∗ → � defined by

f ′(s) := { σ ∈ � | sσ ∈ pfx L } ∪ �uc (15)

for any s ∈ �∗ is a supervisor with associated behaviour L.

4.2 Problem statement (SCT)

The problem commonly referred to as supervisory controller synthesis is about the sys-
tematic design of a supervisor for a given plant, such that the resulting closed-loop system
– established by the feedback composition of this supervisor with the plant – satisfies a
given specification. When the supervisor and plant behaviours are given as the ω-languages
L ⊆ �ω and A ⊆ �ω, respectively, their closed-loop configuration evolves on words that
comply with both component behaviours. Technically, we distinguish the local closed-loop
behaviour Kloc := (pfx L) ∩ (pfx A) and the accepted closed-loop behaviour K := L∩A
and require that the latter meets an upper-bound specification K ⊆ G.

Regarding liveness of the closed-loop configuration, supervisory control commonly
addresses not only deadlocks but also livelocks. The latter are characterised by finite
sequences s ∈ Kloc from the local closed-loop behaviour that can be continued indefinitely
within Kloc but any such infinite extension fails to satisfy the plant acceptance condition.
To rule out such sequences, the synthesis problem asks for a non-blocking supervisor, i.e.,
it is required that L and A are non-conflicting:

(pfx L) ∩ (pfx A) = pfx(L ∩ A) . (16)

As the local behaviour Kloc of a non-conflicting closed loop can be recovered by Kloc =
pfx K, one refers to K concisely as the closed-loop behaviour.

In the absence of an acceptance condition of the plant, i.e., when A is topologically
closed, livelocks are not an issue and, hence, non-conflictingness, Eq. 16, is equivalent to
the absence of deadlocks, Eq. 4.

The interpretation of the case when A is not topologically closed is more involved. Here,
Eq. 16 guarantees that at any instance of time, the plant under supervision can achieve its
acceptance condition on at least one infinite extension of the string generated so far. Thus,
at some stage the plant must actually choose a path that not only attains a marked state

6The proposed representation of a supervisor f by the ω-language L does not account for supervisors which
deadlock by themselves, i.e., supervisors that output an empty control pattern. However, assuming a non-
empty �uc is not restrictive and technically rules out the degenerated case of empty control patterns.

Discrete Event Dynamic Systems (2020) 30:81–124 93

but also complies with the restrictions subsequently imposed by the supervisor. In general,
this should be interpreted as a form of cooperation. We will come back to this point in
Section 5.3.

We summarize the above discussion in the following formal statement of the supervisor
synthesis problem for non-terminating processes.

Problem 2 (Supervisory Controller Synthesis) Given an alphabet � with uncontrollable
event set ∅ �= �uc ⊆ �, a plant A ⊆ �ω and an upper-bound specification G ⊆ �ω, the
supervisory control problem SCT[�, �uc,A, G] asks to either construct a non-blocking
supervisor with associated behaviour L ⊆ �ω, see Eq. 16, such that

∅ �= A ∩ L ⊆ G , (17)

or, to verify that no such supervisor exists7.

Referring to the behavioural characterisation of supervisors, Lemma 2, we identify a
qualifying associated behaviour L as a solution to the supervisory control problem. As in
the setting of reactive synthesis, Section 3.2, we can, without loss of generality, restrict our
discussion to the case of ∅ �= G ⊆ A.

Remark 5 As with reactive synthesis, we may alternatively represent the plant behaviour by
two distinct languages Aloc ⊆ �∗ and A ⊆ �ω, where Aloc is prefix-closed and represents
the local behaviour. In this regard, Ramadge (1989a) and Thistle and Wonham (1994a)
specifically address the case pfx A � Aloc of a blocking plant and the supervisors task is to
avoid livelocks and deadlocks in the closed loop. Since non-conflictingness is addressed by
our formal problem statement, we can introduce a distinguished uncontrollable event † �∈ �

to make plant conflicts explicit; i.e., we substitute Aloc by Aloc ∪ ((Aloc −pfx A)†∗) and A
by A ∪ ((Aloc − pfx A)†ω), to formally obtain Aloc = pfx A. Using the original guarantee
G, the supervisor then must circumvent conflicts by implicitly avoiding the generation of the
uncontrollable event † �∈ �. Using this pre-processing stage, our formal problem statement
with Aloc = pfx A is not restrictive.

4.3 Algorithmic solution

Given a plant, the common approach to solve Problem 2 is via a characterisation of all
closed-loop behaviours that can be achieved by non-blocking supervisory control8.

The following proposition from Ramadge (1989a) characterises this set.

Proposition 1 Given an alphabet � with uncontrollable events �uc ⊆ �, consider two
languages A and K with ∅ �= K ⊆ A ⊆ �ω. Then there exists a non-blocking supervisor
f : �∗ → � for the plant A with closed-loop behaviour K if and only if

7For A = ∅ the problem trivially has no solution and for �uc = � we have L = �ω for the only quali-
fying supervisor; i.e., in this case the synthesis problem collapses to the verification of A ⊆ G. Whenever
convenient we therefore assume A �= ∅ and �uc �= �.
8The style of argument is similar to the Youla-Kučera parameterization of all stabilising controllers for a
linear time invariant system, which is conceived a milestone in control theory; see e.g., Kučera (2011) for a
recent presentation. For the situation here, a convenient characterisation of supervisors with the qualitative
property not to block at the first stage, allows to care about the quantitative upper bound specification at an
largely independent second stage.

Discrete Event Dynamic Systems (2020) 30:81–12494

(i) K is relatively topologically closed w.r.t. A, i.e., K = clo(K) ∩ A, and
(ii) K is ∗-controllable w.r.t. A, i.e., ((pfx K)�uc) ∩ (pfx A) ⊆ (pfx K) .

Given a closed-loop behaviour K that satisfies conditions (i) and (ii), a corresponding
supervisor f can be extracted by

f (s) := { σ ∈ � | sσ ∈ pfx K } ∪ �uc (18)

for all s ∈ �∗.

Proposition 1 reduces Problem 2 to the synthesis of a closed-loop behaviour ∅ �= K ⊆
A ∩ G satisfying (i) and (ii). Such a closed-loop behaviour exists, if and only if

K↑ := ∪{K ⊆ A ∩ G |K satisfies (i) and (ii) from Proposition 1 } (19)

is non-empty. Moreover, if K↑ itself exhibits conditions (i) and (ii) then K↑ is referred to
as the supremal closed-loop behaviour and the so called maximally permissive supervisor
to solve the synthesis problem can be extracted from K↑ via (18). However, the union in
Eq. 19 in general fails to preserve topological closedness and hence, a maximally permissive
solution does not exist in general. This contrasts SCT for ∗-languages but conforms with
the situation for reactive synthesis, where maximally permissive strategies do not exist in
general.

Remark 6 Condition (i) in Proposition 1 is specific for the supervision of ω-languages,
whereas condition (ii) is literally identical to the original notion of controllability introduced
by Ramadge and Wonham (1987) for the more common setting where both A and G are ∗-
languages. In that setting, all relevant closed-loop properties are preserved under arbitrary
union and a supremal closed-loop behaviour uniquely exists. For ω-languages, it is only
under the additional assumption that A ∩ G itself is relatively topologically closed w.r.t.
A, that K↑ qualifies for an achievable closed-loop behaviour; see Ramadge (1989a). In
this case, K↑ can be computed by the common synthesis algorithm for ∗-languages from
Ramadge and Wonham (1987) with appropriately chosen parameters A ⊆ �∗ and G ⊆ �∗
and with a minor variation to address deadlocks; see also the appendix of Moor et al. (2012).
The relation between supervisory control of ∗-languages and reactive synthesis is discussed
in detail by Ehlers et al. (2017), focusing on the supremal closed-loop behaviour and a
corresponding maximally permissive supervisor.

To compute some K ⊆ A ∩ G which solves Problem 2, Thistle and Wonham (1994a)
introduce the following notion of the controllability prefix, which characterises the set of
states from which the synthesis problem has a solution.

Definition 2 Given an alphabet � with uncontrollable events �uc ⊆ � and a plant A ⊆
�ω, consider the upper bound specification G ⊆ �ω. The controllability prefix of G w.r.t.
A is denoted9 cfxAG and defined as the set of strings s ∈ pfx G, for which there exists
∅ �= V ⊆ A ∩ G ∩ (s�ω) such that V is

(i) rel. topologically closed w.r.t. A ∩ (s�ω), i.e., V = clo(V) ∩ (A ∩ (s�ω)), and
(ii) ∗-controllable w.r.t. A ∩ (s�ω), i.e., ((pfx V)�uc) ∩ (pfx A) ∩ (s�∗) ⊆ pfx V .

9When the role of uncontrollable events is not clear from the context, we write cfxA, �ucG.

Discrete Event Dynamic Systems (2020) 30:81–124 95

Comparing (i) and (ii) in Definition 2 with their analogue in Proposition 1, we see that
V is a closed-loop behaviour that can be enforced by a non-blocking supervisor that “takes
over to control the plant” after the string s in the controllability prefix fxAG was generated
by the plant. As V ⊆ G, this supervisor is able to enforce the guarantee G.

It is shown in Thistle and Wonham (1994a) that ε ∈ cfxAG if and only if K↑ �= ∅, i.e.,
if and only if Problem 2 has a solution.

For ω-regular parameters, the controllability prefix can be represented in terms of a fixed-
point over an automaton representation of the involved languages; see Thistle and Wonham
(1994a). For a concise representation of this construction, we assume again that both G
and A are realisable as deterministic Büchi automata. We further assume without loss of
generality that ∅ �= G ⊆ A. Given this setting, we consider a generalised Büchi automaton
10

M = (Q,�, {q0}, δ, {FA, FG}) (20)

s.t. A = Lω
m(MA), G = Lω

m(MG) and pfx(A) = L∗(M) where MA and MG refer to the
deterministic Büchi automata obtained from M by using the single accepted state set FA
and FG , respectively. We call M a representation of A and G.

Given the generalised deterministic Büchi automaton M , a string s ∈ cfxAG corresponds
to the state q = δ(q0, s) reachable by s from q0 in M , and hence q is called a winning state.
Following Thistle and Wonham (1994b) and Moor (2017), the set of all winning states can
be computed by the four-nested fix-point

Win(M) := νZ . μY . νX . μW . Pre((W \ FA) ∪ Y ∪ (FG ∩ Z),X \ FA) , (21)

where

Pre(T , D) := { q ∈ Q | δ(q,�) ∩ T �= ∅ and δ(q,�uc) ⊆ T ∪ D } , (22)

denotes the inverse dynamics operator; i.e., Pre(T , D) denotes the set of predecessor states
q ∈ Q of the target set T ⊆ Q which can be controlled such that the successor state violates
the domain constraint D ⊆ Q only in favour of attaining the target set.

Recall that a solution to Problem 2 exists if and only if ε ∈ cfxAG, which amounts to
q0 ∈ Win(M). If this is true, a non-blocking supervisor solving Problem 2 can be derived
from iterations of the fixed-point in Eq. 21 as follows. Consider the last iteration of the
fixed-point in Eq. 21 resulting in the set Z∞ = Win(M) ⊆ Q of states and assume that
the fixed point over Y is reached after k iterations. If Y i is the set obtained after the i-
th iteration, we have that Z∞ = ⋃k

i=0 Y i with Y i ⊆ Y i+1, Y 0 = ∅ and Y k = Z∞.
Furthermore, let Xi = Y i denote the fixed-point of the iteration over X resulting in Y i and
denote by Wi

j the set obtained in the j th iteration over W performed while computing Xi .

Then we have for all 0 ≤ i ≤ k that Y i = Xi = ⋃l
j=0 Wi

j with Wi
j ⊆ Wi

j+1, Wi
0 = ∅ and

Wi
l = Y i .
Using these sets, we define a ranking for every state q ∈ Z∞ s.t.

rank(q) =
{

(i, j)q ∈ (Y i \ Y i−1) ∩ (Wi
j \ Wi

j−1), i, j > 0
(0, 0)q ∈ Z∞ ∩ FG

(23)

10If A and G are represented by trim deterministic Büchi automata M0 and M1, M can be constructed in the
same way as outlined in the context of reactive synthesis; see Footnote 5.

Discrete Event Dynamic Systems (2020) 30:81–12496

initialised with Y 0 := Z∞ ∩FG and Wi
0 = ∅ for all 0 < i ≤ k. We order ranks lexicograph-

ically. Based on this ranking function we define a state feedback map g : Z∞ → � s.t. for
all q ∈ Z∞

g(q) :=
{

�uc ∪ { σ ∈ �c | δ(q, σ)! and rank(δ(q, σ)) < rank(q) } if rank(q) > (0, 0)

�uc ∪ { σ ∈ �c | δ(q, σ) ∈ Z∞ } otherwise.
(24)

The state feedback map g defines a supervisor f : �∗ → � in the obvious way, i.e.
f (s) = g(q) if δ(q0, s) = q ∈ Z∞ and f (s) = � ∈ �, otherwise. The behaviour L
associated with f is defined via (14). The proof that L solves Problem 2 can be obtained as
a special case of the construction presented by Thistle and Wonham (1992, 1994b).

Remark 7 The state feedback g, as defined in Eq. 24, will only enable controllable events for
transitions that decrease the rank and, hence, achieve progress in terms of attaining a marked
state. Regarding the acceptance condition, however, it is sufficient to attain markings even-
tually. A more permissive feedback is obtained by initially controlling the local closed-loop
Kloc to be a subset of fxAG and only eventually to activate the supervisor constructed above.
The original literature (Thistle and Wonham 1994a) addresses permissiveness by explicitly
considering a lower-bound specification E , ∅ �= E ⊆ G. Under the condition that E is rela-
tively topologically-closed w.r.t. A and that E ⊆ K↑, a supervisor can be constructed such
that the closed-loop behaviour K satisfies E ⊆ K ⊆ G. Thus, the additional problem param-
eter E can be used to tune permissiveness of the supervisor. As mentioned in Remark 6, if
G ∩A is relatively topologically-closed w.r.t. A then so is K↑. In this case, one can choose
E = K↑ and the supervisor constructed by Thistle and Wonham (1994a) essentially matches
the one that can be obtained by synthesis procedures from ∗-languages.

Remark 8 Following the discussion in Remark 4, we consider the case where A is topologi-
cally closed. Again, this implies that we can assume without loss of generality that FA = Q

in M . In this case the fixed-point in Eq. 21 collapses to

Win(M) = νZ . μY . Pre(Y ∪ (FG ∩ Z)),

= νZ . μY . Pre(Y) ∪ (FG ∩ Pre(Z)), (25)

where we use the short form Pre(T) := Pre(T , ∅).
We see that Eqs. 12 and 25 are describing the same fixed-point, and this suggests a

strong connection between reactive synthesis and supervisory control for the special case of
a topologically closed language A, which is verified in Section 5.

Example 3 Consider the automaton M depicted in Fig. 2 and two sets of problem parame-
ters: (A) FA = FG = {s}, �uc = � \ {b}, and (B) FA = {r, s}, FG = {s}, �uc = � \ {b}.
In both cases the computation of Eq. 21 yields Win(M) = Q and rank(s) = (0, 0),

Fig. 2 Transition structure of
automaton M in Eq. 20
representing A and G for the
instance of Problem 2 which is
solved in Example 3 p q

r

s
a

bc
d

e

Discrete Event Dynamic Systems (2020) 30:81–124 97

rank(q) = (1, 1), and rank(r) = rank(p) = (1, 2). Hence, the resulting supervisor disables
b in q. However, given the corresponding problem instance we see, that in case (B) dis-
abling b in q is strictly necessary, while this is not true for (A). In fact, as G and A coincide
for case (A) there exists a maximally permissive supervisor (see the discussion in Remark
6) which enables both b and d in s. This also constitutes a solution to the given supervi-
sory control problem, as we assume that the plant only generates runs which correspond to
words in A. By this we know that it will always eventually transition from q to s, implying
that the resulting closed loop behaviour fulfils the guarantee.

Considering a third case (C) with problem parameters FA = {r, s}, FG = {s}, �uc = �

the fixed-point computation amounts to Win(M) = ∅, hence, the corresponding supervisory
control problem has no solution. This is due to the fact that the controller cannot prevent
the plant from alternating between r and q (as b ∈ �uc) and by this generating an accepting
run on MA which is not in G.

5 Comparison

This section provides a comparison between the reactive synthesis problem, Problem 1, as
introduced in Section 3, and the supervisory control problem, Problem 2, as introduced in
Section 4. For both problems, the system that one seeks to synthesise can be interpreted as a
causal feedback which is meant to be operated in interaction with its respective environment.
However, the problems differ in the interpretation of how the system and the environment
interact. For reactive synthesis, the system operates in computation cycles with reading
inputs and assigning outputs once per cycle. Thus, the system is driven by some mechanism
that triggers the cycle and the input readings. In turn, the system drives its environment by
output assignments. This contrasts the common interpretation in supervisory control, where
the system passively observes past events to apply a control pattern, while the environment
is responsible for the actual execution of transitions. However, these interpretations of the
interaction do not show up explicitly either in the formal problem statement or in the syn-
thesis algorithms. Thus, we may very well consider a reactive system where computation
cycles are triggered by the environment and we may also consider supervisors that effec-
tively apply singleton control patterns to actively execute plant transitions. Thus, regarding
causality, the different interpretations of system interaction are irrelevant at this stage. Using
this insight, we demonstrate how one can formally transform the two synthesis problems
and their solutions into each other.

In Section 5.1, we transform the parameters of a reactive synthesis problem such that they
constitute a supervisory control problem and we show how any solution of the latter prob-
lem can be transformed back to obtain a solution to the initial reactive synthesis problem.
Furthermore, this solution results in a reactive module whose associated behaviour does not
conflict with A, i.e., the computed module does not falsify the assumptions. While this is
formalised on the language level, we show though examples how this practically results in
the algorithmic solution of a reactive synthesis problem via the four-nested fixed-point from
supervisory control, s.t. the latter property is ensured.

The converse transformation, i.e., to solve a supervisory control problem by reactive
synthesis, requires additional assumptions to ensure that the resulting supervisor is non-
conflicting. Section 5.2 first discusses a general transformation which ensures the latter
property if the plant behaviour A is topologically closed. This transformation is then simpli-
fied for the special case of plant behaviours with alternating controllable and uncontrollable
events. Section 5.3 finally shows, that for the latter problem class a weaker condition,

Discrete Event Dynamic Systems (2020) 30:81–12498

namely strongly non-anticipation, exists, which ensures that the suggested transformation
results in a supervisor which is non-conflicting. Again, all transformations are formalised
on the language level and we show the resulting algorithmic solution procedures through
examples.

5.1 Reactive synthesis via supervisory control

In this section, we show how a reactive synthesis problem can be solved using supervisory
controller synthesis.

This is done in two steps. Given a particular instance of the reactive synthesis problem
we (i) derive a corresponding supervisory control problem which we solve as outlined in
Section 4.3, and (ii) convert the solution to a reactive module that solves the original reactive
synthesis problem.

Step (i) Given the reactive synthesis problem RS[U, Y,A, G], we are provided the non-
empty and disjoint finite sets U and Y and two ω-languages A, G ⊆ (UY)ω. To construct a
corresponding supervisory control problem, a natural choice is to associate the assumption
A with the plant and the guarantee G with the specification. This implies � = U ∪̇ Y and
our remaining choice is that of �uc. We let �uc = U and, hence, Y = � − �uc, which will
be justified below. Having set all parameters, we obtain the supervisory control problem
SCT[�, �uc,A, G]. To this end, we assume that SCT[�, �uc,A, G] exhibits a solution
f : �∗ → � with associated behaviour L.

Step (ii) As our first observation, we recall from Lemma 2 that the behaviour L is topo-
logically closed (SC1) and universally controllable (SC2). In contrast, reactive modules are
characterised by (RM1) – (RM3) in Lemma 1, where topological closedness (RM1) matches
(SC1) and the locally free input (RM2) is implied by universal controllability (SC2) and
Y = � − �uc. Thus, to transform L to qualify as the behaviour of a reactive module, we
are left to address that the output locally processes the input (RM3).

At a first stage, we trim f to only enable those controllable events that can actually occur,
i.e., we consider h : �∗ → � with

h(s) := �uc ∪ { σ ∈ f (s) | sσ ∈ pfx A } (26)

for all s ∈ �∗. This is not expected to affect the closed-loop behaviour and, indeed, the
supervisor f constructed in Section 4.3 already possesses this property. At a second stage,
we ensure that at any instance of time exactly one controllable event is enabled, i.e., we
consider f ′ : �∗ → � that satisfies

f ′(s) = �uc ∪̇ {σ } , whereσ ∈ � − �uc and, if h(s) �= �uc, then σ ∈ h(s) , (27)

for all s ∈ �∗.
As an example, f ′ can be constructed as a composition f ′ = h′ ◦ h where h′ : � → � is

a static filter such that

h′(γ) = �uc ∪̇ {σ } , where σ ∈ � − �uc and, if γ �= �uc, then σ ∈ γ , (28)

for all γ ∈ �.
Although this second post-processing stage at instances enables an arbitrarily chosen

additional controllable event, it does so only when the plant at hand will not accept any
controllable event at all. Thus, the second post-processing stage is expected to restrict the
closed-loop behaviour. Technically, f ′ is a supervisor and, by Lemma 2, the associated

Discrete Event Dynamic Systems (2020) 30:81–124 99

behaviour L′ is non-empty and exhibits (SC1) and (SC2). Referring to the second post-
processing stage, we obtain the following additional properties:

∀ s ∈ preL′ . ∃ σ ∈ � − �uc . sσ ∈ preL′ , (29)

∀ s ∈ preL′ . ∀ σ ′, σ ′′ ∈ � − �uc . sσ ′ ∈ preL′ ∧ sσ ′′ ∈ preL′ → σ ′ = σ ′′ , (30)

in support of (RM3).
In a third post-processing step, we intersect L′ with (UY)ω in order to enforce alternating

inputs and outputs, i.e.,
L′′ := L′ ∩ (UY)ω . (31)

Although the latter construct will formally invalidate (SC2), it retains (RM2) and it does not
affect the closed-loop configuration A ∩ L′ since we have A ⊆ (UY)ω.

Result We can now state our first main result, i.e., L′′ indeed solves the reactive synthesis
problem RS[U, Y,A, G]. A proof is given in Appendix B.

Theorem 1 Given non-empty alphabets U , Y , U ∩ Y = ∅, the assumption A ⊆ (UY)ω,
and the guarantee G ⊆ (UY)ω, consider the reactive synthesis problem RS[U, Y,A, G].
Let � := U ∪̇ Y and �uc := U . If a supervisor f : �∗ → � with associated behaviour L
solves the supervisory control problem SCT[�, �uc,A, G], then L′′, as defined by Eqs. 26,
27 and 31, solves RS[U, Y,A, G]. If L is ω-regular, then f ′ can be chosen to be realisable
by a finite automaton, and, in turn, L′′ is ω-regular.

By Theorem 1, for any reactive synthesis problem for which the corresponding super-
visory control problem exhibits a solution, we can use this solution to construct a reactive
module that solves the original reactive synthesis problem. For practical purposes, we there-
fore achieve the solution of an RS problem via SCT by using the synthesis algorithm from
supervisory control, Section 4.3, and the additional post-processing given by Eqs. 26-31, as
demonstrated by Example 4. However, since the requirement of non-conflictingness in the
context of SCT is stronger than the requirement of the absence of deadlocks in the context of
RS, we may encounter the situation of a solvable RS problem, for which the corresponding
SCT problem exhibits no solution at all; see the following remark for more detail.

Remark 9 Although A and L in Theorem 1 are non-conflicting by hypothesis, this property
is in general not preserved by the proposed transformation, i.e., A and L′′ may fail to be
non-conflicting. However, if all problem parameters are ω-regular and if a realisation of L
is obtained by the synthesis algorithm presented in Section 4.3, the situation becomes more
favourable. Here, the transformations in Eqs. 26–31 effectively restrict the state feedback
g : Q → � given in Eq. 24 to enable exactly one controllable event in each state q ∈ Q in
which the plant can execute a controllable event at all. This restriction preserves the fact that
controllable events are only enabled if the respective transition decreases the state rank or
if the state rank in the current state is (0,0). Non-conflictingness of A and L′′ then follows
exactly by the same arguments as for A and L provided by the original literature (Thistle
and Wonham 1992, 1994b). In particular, the resulting reactive module does not falsify
the assumptions; see also Example 4. This insight is also used by Majumdar et al. (2019)
where a non-conflicting reactive module is directly constructed by a four-nested fixed-point
algorithm over a two-player game graph which is inspired by the one in Eq. 21. Majumdar
et al. (2019) further give a self-contained proof of the desired non-conflictingness result
in the framework of two-player games which is slightly different from the language-based
setting of Theorem 1.

Discrete Event Dynamic Systems (2020) 30:81–124100

Example 4 Consider the reactive synthesis problem RS[U, Y,A, G] discussed in Exam-
ple 2, which is solved using the automaton M depicted in Fig. 1. To solve the corresponding
supervisory control problem SCT[�, �uc,A, G] instead, an automaton M̌ conforming with
Eq. 20 which corresponds to SCT[�, �uc,A, G] is needed. The only structural difference
between M and M̌ is that the former distinguishes environment and system states, while
the latter distinguishes controllable (ticked) and uncontrollable transitions. However, due to
the alternation of �uc = U and �c = Y in A and G, these changes are only cosmetic. For
convenience, we depicted M̌ corresponding to SCT[�, �uc,A, G] in Fig. 3.

Using Eq. 21 to solve SCT[�, �uc,A, G] over M̌ results in Win(M̌) = Q with
rank(q3) = (1, 2), rank(q4) = (1, 1), rank(q6) = (2, 2). Defining a supervisor based on
this ranking and extracting a reactive module via Eqs. 26-31 results in a system strategy
which always transitions from q3 to q4. Comparing this solution to the one obtained in
Example 2, we see that the four-nested fixed point in Eq. 21 allows to distinguish between
transitioning from q3 to q4 or to q6 and, as a consequence, chooses the former to not falsify
the assumptions. This clearly constitutes a more desirable solution to problem RS[U, Y,

A, G].
Interestingly, G is relatively topologically closed w.r.t A, and we can therefore also com-

pute a maximally permissive supervisor (see Remark 6). This supervisor enables every
available transition in every state and therefore leaves the choice to the plant whether it tran-
sitions to q4 or q6 in q3. As we assume that the plant only generates runs which correspond
to words in A, it will always eventually transition from q3 to q4, implying that the resulting
closed loop fulfils the guarantee.

5.2 Supervisory control via reactive synthesis

We now consider a supervisory control problem and aim for a solution via reactive synthesis.
Within this section, we discuss two different possible transformations and show that in both
cases the resulting supervisor is non-conflicting if the plant behaviour A is topologically
closed.

5.2.1 Control-patterns as system outputs

In this section, we match the ranges of the respective feedback maps without imposing any
a-priori assumptions on the problem parameters. In this sense, our approach here is rather
general. However, to obtain a qualifying supervisor, we will need to impose relevant restric-
tions in retrospect. Similar to Section 5.1, our approach is organised in two steps. Given
a supervisory control problem, we (i) derive a corresponding reactive synthesis problem

q0 q1 q2 q3

q4

q5

q6

Fig. 3 Automaton M̌ representing SCT[�, �uc,A, G] in Example 4 which corresponds to RS[U, Y,A, G]
represented by M in Fig. 1. Final states are FA = {q4} (blue) and FG = {q5} (red) and transitions labelled
by controllable events � − �uc are indicated by a tick

Discrete Event Dynamic Systems (2020) 30:81–124 101

which we solve as outlined in Section 3.3, and (ii) convert the solution to a supervisor that
solves the original supervisory control problem.

Step (i) Given a supervisory control problem SCT[�, �uc,A, G], we are provided an
alphabet �, a set of uncontrollable events �uc ⊆ �, a plant behaviour A ⊆ �ω and an
upper-bound specification G ⊆ �ω on the closed-loop behaviour. As before, we associate
the supervisory controller with the reactive module, i.e., the system to be designed. In order
to define the input range U and the output range Y , recall from Section 4.1 that a supervisor
is a map f : �∗ → � that applies a control pattern γ = f (s) after the system has gener-
ated the sequence s ∈ �∗. The system in turn generates the next event σ ∈ �, and so forth.
Therefore, a nearby choice of U and Y is given by � and �, respectively.

The interaction of the supervisor and the plant always starts with the former applying a
control pattern γ = f (ε), i.e., the system to be designed has the first move. In contrast, in
our description of reactive synthesis, any run begins with a move by the environment. We
therefore introduce a distinguished dummy event 0 �∈ � which will pass on the first move
to the system to be designed; i.e.,

�′ := � ∪ {0}, �′
uc := �uc ∪ {0}, �′ := {γ ⊆ �′ | �′

uc ⊆ γ } (32)

and define U := �′ and Y := �′.
With this choice, a reactive synthesis problem refers to ω-languages that are subsets

of (UY)ω = (�′�′)ω and we need to transform our problem parameters A, G ⊆ �ω

accordingly. We begin with the specification G by pre-pending the distinguished event 0 ∈
�′ and by interleaving any control-patterns between each two events from � to obtain

G ′ := {α ∈ (�′�′)ω | p�′α ∈ 0G} . (33)

The plant A is transformed similarly, while ensuring that once a control pattern γ ∈ �′ has
been applied, the next event σ ∈ � will be within γ . We obtain

A′ := { α ∈ (�′�′)ω | p�′α ∈ 0A and

∀ s ∈ pfxα . ∀ γ ∈ �′ . ∀ σ ∈ �′ . sγ σ ∈ pfxα → σ ∈ γ } .(34)

This results in the reactive synthesis problem RS[U, Y,A′, G ′]. To this end, we assume that
RS[U, Y,A′, G ′] exhibits a solution r : U+ → Y with associated behaviour L′.

Step (ii) Given L′ from Step (i), we construct

L := { β ∈ �ω | ∃ α ∈ L′ with 0β = p�′α and

∀ s ∈ pfxα . ∀ γ ∈ �′ . ∀ σ ∈ �′ . sγ σ ∈ pfxα → σ ∈ γ } . (35)

as a candidate to solve SCT[�, �uc,A, G]. It is shown in Appendix C, Proposition 4,
that L indeed satisfies (SC1), (SC2) and we have that L ⊆ A → G, as consequences of
(RM1) and (RM2) holding for L′ and of L′ ⊆ A′ → G ′. In particular, L is the behaviour
associated with a supervisor that enforces the upper bound specification K = A ∩ L ⊆ G.
Furthermore, it is shown in Appendix C, Proposition 5 that pfx L and pfx A do not deadlock.

Referring back to Problem 2, we are left to verify that K is non-empty and that A and L
are non-conflicting, or to give conditions under which this holds.

Result Whenever A is topologically closed, we know that the absence of deadlocks in
the closed loop, Eq. 4, implies non-conflictingness of A and L, Eq. 16. Hence we can
use topologically closedness as a sufficient condition to conclude that the supervisor with
associated behaviour L given in Eq. 35 solves SCT[�, �uc,A, G].

Discrete Event Dynamic Systems (2020) 30:81–124102

Theorem 2 Given a finite alphabet � with the non-empty set of uncontrollable events
�uc ⊆ �, a plant A ⊆ �ω and a specification G ⊆ �ω, consider the supervisory con-
trol problem SCT[�, �uc,A, G]. Pre-process the parameters according to Eqs. 32-34 to
obtain U = �′, Y = �′ and A′, G ′ ⊆ (UY)ω. Let L′ denote a solution to the reactive
synthesis problem RS[UYA′G ′].

If the plant A is topologically closed, then L defined by Eq. 35 solves SCT[�, �uc,

A, G]. If L′ is ω-regular, then so is L.

By the above theorem we have the following result. Given an instance of the supervisory
control problem with topologically closed plant and assuming that the corresponding reac-
tive synthesis problem has a solution, this solution can be transformed into a non-blocking
supervisor solving the initial control problem. Technically, the overall procedure amounts
to pre-processing the problem instance by Eqs. 32-34, using the reactive synthesis proce-
dure discussed in Section 3.3 to compute a reactive module, and post-processing the latter
by Eq. 35. This is illustrated by the following example.

Example 5 Consider the supervisory control problem SCT[�, �uc,A, G] discussed in
Example 3, s.t. M depicted in Fig. 2 represents G and A with FG = {s} and FA = {s, r}.
As M cannot generate infinite strings which do not visit either r or s infinitely often, it
follows that A is topologically closed. To obtain the corresponding reactive synthesis prob-
lem RS[UYA′G ′] (as defined in Eqs. 32-34), we manipulate M in Fig. 2 s.t. the resulting
automaton M̌ conforms with Eq. 7 and represents A′ and G ′.

This results in splitting every state q ∈ Q of M into a system state q1 and k environment
states q0

k with k ∈ {1, . . . , K} and K being the number of possible control patters avail-
able in q. Then the transition from q1 to q0

k is labelled with the respective control pattern
γk ⊆ �. Outgoing transitions of q0

k mimic outgoing transitions of q in M , i.e., a transition
(q, σ, q ′) ∈ δ of M is copied to all (q0

k , σ, q ′1) ∈ δ̌ of M for which σ ∈ γk . Finally, we
add a dummy initial state d whose outgoing transition is labelled by the dummy event 0 and
which leads to the system part p1 of M’s initial state p.

The resulting automaton M̌ is depicted in Fig. 4, where all γ -labels are trimmed to the
events actually available at its source state. The sets of final states are translated in the
obvious way, resulting in T 0 = {r0, s0} (blue) and T 1 = {s1} (red). Depending on the
controllability status of event b we get one or two possible control patterns in state q. I.e., if
b ∈ �uc we obtain the automaton without q0

2 , while b ∈ �\�uc results in the full automaton
containing both q0

1 and q0
2 .

d p1 p0 q1 q02

q01

r1

r0

s1 s0
0 {a} a {d}

{b, d}

b

d

d

{c}

c

{e}

e

Fig. 4 Automaton M̌ representing RS[U, Y, A′, G′] in Example 5, which corresponds to
SCT[�, �uc, A, G] represented by M in Fig. 2 with �uc = � \ {b} (including q0

2) and �uc = � (excluding
q0

2). The final state sets are T 0 = {r0, s0} (blue) and T 1 = {s1} (red)

Discrete Event Dynamic Systems (2020) 30:81–124 103

We now use M̌ as the input to the reactive synthesis algorithm in Section 3.3. If �uc =
� the system has no choice in any of the system states. Therefore, it cannot prevent the
environment to always take transition b in q0. Hence, the set of winning states is empty
which coincides with the solution of case (C) in Example 3. If �uc = � \ {b}, the system
has a choice in q1 and can apply the control pattern {d}, effectively disabling b in q of M in
Fig. 2. This coincides with the solution obtained of case (B) in Example 3.

Equivalence of problem statements Given the results in Theorems 1 and 2, we have estab-
lished that for topologically closed plants both synthesis problems can be solved via the
respective other one. However, our construction assumes that the respective target problem
exhibits a solution. Since Theorem 2 uses a non-trivial transformation of the problem param-
eters A and G, the two theorems alone do not establish equivalence of the two problems
regarding solvability. For this purpose, we show in Appendix C, Proposition 6,

that our transformation of SCT[�, �uc,A, G] to RS[U, Y,A′, G ′] retains solvability.
Additionally referring to Theorem 2, this gives the following corollary.

Corollary 1 Let � be a finite alphabet with the non-empty set of uncontrollable events
�uc ⊆ �, A ⊆ �ω be a plant, G ⊆ �ω be a upper bound specification and U = �′,
Y = �′, A′ and G ′ be defined by Eqs. 32-34.

If the plant A is topologically closed, then SCT[�, �uc,A, G] has a (ω-regular)
solution if and only if RS[U, Y,A′, G ′] has a (ω-regular) solution.

The above corollary relates to the observation in Remark 4 and Remark 8 that the algo-
rithmic solution of both problem statements reduce to the computation of the same 2-nested
fixed point if A is topologically closed. However, it should be noted, that the input automata
to both algorithms differ (compare Figs. 2 and 4 for an example).

5.2.2 Input-output behaviours

The transformation proposed in Section 5.2.1 turned out technically involved because it
needed to encode a mechanism to interleave plant symbols with control patterns in a single
language. Therefore, we expect considerable simplifications when we restrict the discussion
to plant behaviours in which controllable and uncontrollable events alternate. Technically,
we now consider a supervisory control problem with parameters �uc � � and A, G ⊆
(�uc(�−�uc))

ω. As we will match inputs and outputs with uncontrollable and controllable
events, respectively, we refer to this class of behaviours as input-output behaviours. We
again derive a solution of the given supervisory control problem via reactive synthesis in
two steps.

Step (i) Given a supervisory control problem SCT[�, �uc,A, G] with input-output
behaviours, we can choose the correspondence U := �uc and Y := � − �uc and obtain
G, A ⊆ (UY)ω; i.e., our choice constitutes qualifying parameters for the reactive synthesis
problem RS[U, Y,A, G]. Let L denote a solution of RS[U, Y, A, G].

Step (ii) L satisfies (RM1)–(RM3) and we need to derive a behaviour that satisfies (SC1)
and (SC2). Topological closedness (SC1) is immediate by (RM1). Regarding (SC2), we
propose the following transformation:

L′ := L ∪ ((pfx L)(�ω
uc)) . (36)

Discrete Event Dynamic Systems (2020) 30:81–124104

It is shown in Appendix D, Proposition 7, that the above construct L′ indeed satisfies (SC1)
and (SC2) and, moreover, retains the absence of deadlocks, i.e., pfx L′ and pfx A do not
deadlock.

For L′ to solve the control problem, we are left to establish that its corresponding super-
visor is non-blocking and that it enforces the language inclusion specification; technically,
A and L′ must be non-conflicting with ∅ �= A ∩ L′ ⊆ G.

Result Using the same reasoning as in Section 5.2.1, we see that non-conflictingness of
A and L′ is implied by the absence of deadlocks provided that A is topologically closed.
Using this sufficient condition, we get the following result on the synthesis of supervisors
for input-output behaviours via reactive synthesis.

Theorem 3 Given a finite alphabet � with the non-empty set of uncontrollable events
�uc ⊆ �, an input-output plant behaviour A ⊆ �ω and an input-output specification
behaviour G ⊆ �ω, consider the supervisory control problem SCT[�, �uc,A, G]. Let
L denote a solution to the reactive synthesis problem RS[U, Y,A, G], where U = �uc,
Y = � − �uc.

If the plant A is topologically closed, then L′ defined by Eq. 36 solves SCT[�, �uc,

A, G]. If L is ω-regular, then so is L′.

Given the results in Theorem 1 and Theorem 3, we have established that both synthesis
problems can be solved via the respective other one under the assumption of a topologically
closed plant. By additionally requiring that A and G are input-output behaviours, neither of
the proposed transformations affects the problem parameters A and G. Hence, both prob-
lem statements are equivalent w.r.t. solvability, as summarised in the following corollary,
complementing Corollary 1.

Corollary 2 Given an alphabet � with the non-empty set of uncontrollable events �uc �

�, let U = �uc and Y = � − �uc. For any non-empty topologically closed behaviour
A ⊆ (UY)ω and any upper bound G ⊆ (UY)ω, the supervisory control problem
SCT[�, �uc,A, G] has a (ω-regular) solution if and only if the reactive synthesis problem
RS[U, Y,A, G] has a (ω-regular) solution.

Theorem 1 and Theorem 3 show that in the special case of input-output behaviours a
sound transformation is obtained by simply choosing U = �uc and Y = � − �uc and
keeping A and G unchanged otherwise.

In this setting, the automaton M defined for reactive synthesis and for supervisory
control in Eqs. 7 and 20, respectively, coincide; compare Figs. 1 and 3 for an example.
Technically, states with outgoing transitions from U = �uc (resp. Y = � − �uc) corre-
spond to environment states (resp. system states). Likewise, outgoing transitions from an
environment state (resp. system state) are considered uncontrollable (resp. controllable).
Therefore, the unconditioned version Pre(T) = Pre(T , ∅) of the pre-operator defined
in Eq. 22 coincides with the controllable pre-operator Pre1 defined in Eq. 9. Following
up Remarks 4 and 8 for topologically closed ω-languages A, both synthesis algorithms
compute the same 2-nested fixed-point, see Eqs. 12 and 25. Hence, for topologically
closed input-output behaviours both solution techniques also coincide on the automaton
level.

Discrete Event Dynamic Systems (2020) 30:81–124 105

5.3 Non-falsifiable assumptions and strong non-anticipation

By our comparison so far the reactive synthesis problem can be solved via supervisory
control. However, the converse transformation in general fails as a non-blocking supervi-
sor by definition requires that L and A are non-conflicting and this requirement cannot
be expressed by an upper-bound specification in the reactive synthesis problem under con-
sideration. We have seen in Section 5.2 that topological closeness of A can be used as a
sufficient condition to ensure that the solution L obtained via reactive synthesis is such that
L does not conflict with A.

In this section, we present two alternative weaker conditions for a non-conflicting closed
loop which were independently developed in either field, and we discuss how they relate.
Technically, both conditions address the situation of input-output behaviours and, in this
regard, follow up our discussion in Section 5.2.2.

Non-falsifiable assumptions in reactive synthesis Consider a reactive synthesis problem
RS[U, Y,A, G] with solution L, which implies that L and A do not deadlock. Hence, the
closed-loop configuration can continue for infinitely many computation cycles to generate
an ω-word α ∈ (cloA) ∩ (cloL). Since L is closed, we also have α ∈ L. However, one may
fail on α ∈ A, and, by the specification L ⊆ A → G, risk that α �∈ G (see e.g. Example 2).
Technically, the problem statement of reactive synthesis does not prevent the construction
of a reactive module such that there exists s ∈ (pfx A) ∩ (pfx L) but s �∈ pfx(A ∩ L).

This implies for all extensions β ∈ (U ∪ Y)ω with sβ ∈ L that sβ �∈ A. For parameters
G ⊆ A we obtain sβ �∈ G, i.e., after the finitely many computation cycles represented by s

it is known that the guarantee will not be satisfied.
This issue can be avoided if the given assumption A is non-falsifiable11 in the following

sense. Given the two player game interpretation used in the algorithmic synthesis of reactive
modules (see Section 3.3), an assumption is called non-falsifiable, if the environment player
has a winning strategy in the Büchi game (H, T 0) over the game graph H . In this case,
there exists a causal map by which the environment can organise its moves, which ensures
that for any infinite play some final environment state q ∈ T 0 is visited infinitely often,
regardless of the moves chosen by the reactive module. In this sense, both players win and
we have α ∈ A ∩ L for any ω-word generated in the closed-loop configuration.

Strongnon-anticipation in supervisory control A closely related issue has been identified
in the context of supervisory control by Moor et al. (2011). Consider a supervisory control
problem SCT[�, �uc,A, G] with plant A ⊆ �ω and specification G ⊆ A, and let L ⊆ �ω

denote a solution. As we ask for a non-blocking supervisor, we know that at no specific
instance of time the supervisor can prevent the plant to attain its acceptance condition, i.e.,
for all s ∈ Kloc we have s ∈ pfx(A ∩ L) and there exists β ∈ �ω such that sβ ∈ A ∩ L.
However, this does not rule out supervisors which require the plant to eventually take certain
transitions that depend on future control patterns, i.e., the plant may need to anticipate the
moves of the supervisor.

We illustrate this subtle issue by the following example adapted from Moor et al. (2011).

Example 6 Consider the automaton given in Figure 5 and assume that FA = {AA,BB} and
FG = {AA}. A supervisor solving the synthesis problem may therefore at some stage disable

11See Brenguier et al. (2017), Sec. 3, for an illustrative explanation of this phenomenon, called Win-under-
Hype there.

Discrete Event Dynamic Systems (2020) 30:81–124106

0 A AABBB

Fig. 5 Transition structure of a Büchi-automaton realising a plant behaviour that needs to anticipate future
control patterns in order to satisfy its acceptance condition. Accepting states are marked in red and
controllable transitions are indicated by a tick

the transition from B to BB for all future. If the plant is not aware of this restriction, it might
still organise its moves in the attempt to satisfy its acceptance condition by visiting BB
infinitely often, e.g., by always transitioning form 0 to B. This results in an infinite sequence
which falsifies the assumptions.

To avoid the implicit need for cooperation, there is an interest in plant behaviours that
can attain their acceptance conditions independently of the supervisor. A class of such plant
behaviours has been characterised by Moor et al. (2011) for the special case of input-output
behaviours. The reported results amount to a representation of A as a union of topologically
closed components that each exhibit Y = �−�uc as a locally free input. It is further shown
that this condition is equivalent to the controllability prefix of A w.r.t. the closure cloA to
equal pfx A, i.e.,

cfxcloA, YA = pfx A (37)

where Y = � − �uc takes the role the uncontrollable events.
The latter property is referred to as strong non-anticipation. Referring to the game theo-

retic interpretation of supervisory control used in the discussion of the synthesis algorithm in
Section 4.3, Eq. 37 requires that the local plant pfx A is always in a winning configuration
regarding the satisfaction of its own acceptance condition, i.e., at any time the plant can decide
to internally apply a causal feedback map to choose the next event such that the plant accep-
tance condition will be met regardless the control imposed by the supervisor. By strong non-
anticipation, a non-conflicting closed loop, Eq. 16, is implied by the absence of deadlocks.

Since non-conflictingness imposes its formal requirements only on words within the
local closed loop, (pfx A) ∩ (pfx L), we may use the weaker condition

(pfx A) ∩ (pfx L) ⊆ cfxcloA, YA (38)

to conclude a non-conflicting closed loop from the absence of deadlocks; see Appendix D,
Proposition 9, for a formal proof.

If we synthesise L by supervisory control, the closed loop will be non-conflicting by
construction. To additionally ensure Eq. 38, we can pre-process the specification s.t.

G ′ := G ∩ {α ∈ �ω | pfx α ⊆ cfxcloA, YA } . (39)

Comparison When comparing the game theoretic interpretations of non-falsifiable
assumption and strong non-anticipation, the former requires the “environment to play
clever” from the very beginning, whereas the latter allows the plant to start doing so
eventually. This suggests that whenever an assumption is non-falsifiable we have

ε ∈ cfxcloA, Y (A), which is indeed always the case if Eq. 37 holds; see Appendix D,
Proposition 8, for a formal proof. Hence, the condition of a non-falsifiable assumption is
weaker then the condition of a strongly non-anticipating plant behaviour. More precisely, we
have that (i) topological closedness of A implies (ii) strong non-anticipation, which in turn
implies (iii) (38), to finally imply (iv) A to be a non-falsifiable assumption. The converse
implications, however, do not hold in general.

Discrete Event Dynamic Systems (2020) 30:81–124 107

Result Referring to the simple transformation discussed in Section 5.2.2, we consider an
instance of the supervisory control problem SCT[�, �uc,A, G] where A and G are input-
output behaviours, and the corresponding reactive synthesis problem RS[U, Y, A, G], with
U = �uc, Y = � − �uc. As the condition in Eq. 38 constitutes a closed-loop property,
it can be verified after a solution L of RS[U, Y, A, G] is computed. If this test passes,
we can conclude that the absence of deadlocks, Eq. 4, implies a non-conflicting closed
loop, Eq. 16. With this, we can use Eq. 38 as a sufficient condition to establish a solution
of SCT[�, �uc,A, G] via RS[U, Y, A, G] analogously to Theorem 3. Nevertheless, as
Eq. 38 is weaker then topological closeness of A, we obtain a generalisation of Theorem 3.

Theorem 4 Given the premises of Theorem 3,
L′ defined by Eq. 36 solves SCT[�, �uc, A, G] if Eq. 38 holds. If L′ is ω-regular, then

so is L.

Again referring to Theorem 1 from Section 5.1, but now using Theorem 4 rather than
Theorem 3, we obtain the following generalisation of Corollary 2.

Corollary 3 Given an alphabet � with ∅ �= �uc � �, let U = �uc and Y = � − �uc.
For any non-empty behaviours A, G ⊆ (UY)ω where A is strongly non-anticipating, the
control problem SCT[�, �uc,A, G] has a (ω-regular) solution if and only if the reactive
synthesis problem RS[U, Y,A, G] has a (ω-regular) solution.

Referring back to the discussion below Corollary 2, we still have that the automata real-
isations of the two corresponding problem instances are effectively identical. As A is not
assumed to be topologically closed, we now have to use the three-nested fixed-point algo-
rithm in Eq. 10 to solve the reactive synthesis problem and, in turn, to obtain a solution of
supervisory control problem. Note that it is not evident how the four-nested fixed-point for
supervisory controller synthesis (21) can be directly converted to a three-nested fixed-point
to specifically address strongly non-anticipating plants.

Example 7 Consider the instance of Problem 2 represented by M̌ depicted in Fig. 3 and
the automaton M depicted in Fig. 1 representing the corresponding instance of Problem 1.
Recall from Example 2 that a solution of the latter is given by a reactive module which
always transitions from from q3 to q6. The only possible closed-loop run on M is hence
given by the sequence q0q1q2(q3q6)

ω, and this run generates an ω-word α ∈ (cloA) ∩ L but
α �∈ A. In particular, we have pfx α ⊆ (pfx A) ∩ (pfx L) and, if our condition in Eq. 38 was
satisfied, we had that pfx α ⊆ cfxcloA, YA. Here, the definition of the controllability prefix,
Definition 2, requires that there exists a choice of uncontrollable events, by which the plant
can enforce to attain its acceptance condition. However, this is not possible given that the
choice of controllable events taken by the module only allows for the run q0q1q2(q3q6)

ω.
Therefore, Eq. 38 is not satisfied for this example. This is as expected, since the given
solution to Problem 1 falsifies the assumptions.

6 Conclusion

We have described a variant of reactive synthesis (RS) with upper-bound language-inclusion
specification which explicitly addresses environment assumptions and, thus, is a promising
candidate when aiming for a comparison with supervisory control theory (SCT). For SCT,

Discrete Event Dynamic Systems (2020) 30:81–124108

we have presented a variant that uses ω-languages as the base model and, hence, matches
this characteristic feature of RS. For both domains we present technical problem statements
and we derive behavioural characterisations of reactive modules and supervisors, respec-
tively. This facilitates a technical comparison. In our attempt to transform problem instances
from one domain of research to the other, we make the following core observations.

We succeed unconditionally in solving any instance of the considered RS problem by
using SCT; see Section 5.1 (Theorem 1). On the practical side, our proposed transformation
retains regularity and we may apply the four-nested fixed-point algorithm from SCT to
obtain a reactive module. Notably, the obtained reactive module will not actively falsify the
assumptions on the environment. This additional property is enforced by the SCT algorithm
as it only computes solutions which do not conflict with the environment assumptions. As
the latter property cannot be encoded as an ω-regular property, the four-nested fixed-point
algorithm cannot result from a straightforward translation of an LTL synthesis problem into
a μ-calculus formula over a two-player game. This provides a new perspective on algorithms
ensuring solutions which do not falsify the assumptions, which is an active field of research
in the RS community.

The reverse transformation does not work out in general. The reason is that the addi-
tional property of non-conflicting solutions required by SCT is not guaranteed by solutions
to the RS problem. For this reason, we can only solve a synthesis problem from SCT
by RS, if we ensure a non-conflicting closed-loop by imposing additional restrictions on
the problem parameters. To this end, we identify three cases: topologically closed plants,
Theorem 2, topologically closed plants with alternating inputs and outputs, Theorem 3,
and strongly non-anticipating plants with alternating inputs and outputs, Theorem 4. The
last, in our opinion, is of particular interest since the additional assumption of strong non-
anticipation is weaker then topologically closedness and well motivated for hybrid systems
or abstractions thereof, see Moor et al. (2011). It is furthermore both conceptionally and
technically closely related to non-falsifiable assumptions, a condition developed indepen-
dently in the RS community. Again, each of the proposed transformations retains regularity
of the problem parameters and, hence, can be used to practically synthesise supervisors by
algorithms from RS. Hence, for the considered class of plant behaviours we see that a three
nested fixed-point computation suffices and may therefore expect computational benefits as
a trade-off when imposing additional conditions on the supervisor synthesis problem.

Referring back to the transformation of RS problems via Theorem 1 into synthesis prob-
lems in SCT, it is observed that it affects the solutions but not the problem parameters. The
same is true for the reverse transformations of input/output behaviours in Theorems 3 and 4.
This establishes equivalence of the two problems regarding solvability for respective sub-
classes of plants as stated in Corollaries 2 and 3. Likewise, we establish by Corollary 1 the
equivalence of the transformed problems regarding solvability for topologically closed but
non-alternating plants behaviours. Moreover, we show that for topologically closed plant
behaviours with alternating inputs and outputs both fixed-point algorithms collapse to the
same 2-nested fixed-point. Using Corollary 2, this establishes equivalence of both synthesis
algorithms in this case.

Acknowledgments We thank the anonymous reviewers for their valuable comments and suggestions that
helped us to improve our paper.

Funding Information Open access funding provided by Max Planck Society.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

Discrete Event Dynamic Systems (2020) 30:81–124 109

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A behavioural characterisations of the respective problem statements

We provide proofs for the behavioural characterization of Problems 1 and 2 in Lemma 1
and 2, respectively.

Proof of Lemma 1 We prove both implications separately. First, let r : U+→Y be a reactive
module with associated behaviour L ⊆ (UY)ω as in Eq. 2. For our argument, we consider
the ∗-language

L := { t ∈ (UY)∗ | ∀ s ∈ (U ∪ Y)∗ . ∀ y ∈ Y . sy ≤ t → y = r(pUs) } , (40)

to observe (pfx L) ∩ (UY)∗ ⊆ L. By L ⊆ (UY)ω, this implies L ⊆ limpfx L ⊆ limL.
Moreover, t ∈ L implies (pfxt) ∩ (UY)∗ ⊆ L and we obtain limL ⊆ L. We conclude
limL = L, and we will use this preliminary observation to establish (RM1)–(RM3).

Ad (RM2)

Ad (RM1) We have that cloL = limpfx L ⊆ limL = L, and, hence, L is topologically
closed.

Ad (RM2) We pick arbitrary s ∈ (pfx L) ∩ (UY)∗, u ∈ U , and show that su ∈ pfx L.
Let t1 := s and define the sequence (ti)i∈N by ti+1 := tiur(pU(tiu)) to observe ti ∈ L

for all i ∈ N. By construction, (ti)N is strictly monotone and, hence the limit amounts to
a singleton α ∈ (UY)ω, { α } = lim{ ti | i ∈ N } ⊆ lim L = L. Observe that su < t2 < α,
to conclude su ∈ pfx L. As u was chosen arbitrarily, and since su′ ∈ pfx L with u′ ∈ U

implies s ∈ (UY)∗, this constitutes (RM2).
Ad (RM3) Pick any s ∈ pfx L and any y′, y′′ ∈Y such that sy′, sy′′ ∈ pfx L. We need to

show that y′ =y′′. As sy′, sy′ ∈ pfx L, we have sy′, sy′ ∈L and, hence, y′ =r(pUs)=y′′.
Ad L �= ∅ Observe that ε ∈ L. Hence, we can pick an arbitrary u ∈ U and do the same

construction as in (RM2), now staring with t1 = ε, to obtain α ∈ L.

Thus, we have established (RM1)–(RM3) and non-emptiness for L defined by Eq. 2.
For the converse implication of the lemma, consider any non-empty L ⊆ (UY)ω that

complies with (RM1)–(RM3). For a proof, we need to construct a reactive module such that
the associated behaviour matches L. This is done in three steps (A)–(C).

Step (A) To observe that for any v ∈ U+ there uniquely exist s ∈ (UY)∗U and y ∈ Y

such that
pUs = v and sy ∈ pfx L , (41)

we argue by induction over the length of v. For v ∈ U , i.e., length 1, non-emptiness of L
and (RM2) implies v ∈ pfx L. In particular, we can choose y ∈ Y such that vy ∈ pfx L.
By (RM3), the latter choice of y is unique. With s := v this establishes the claim for input
strings v of length 1. Now assume that the claim holds for some v ∈ U+ and consider vu

Discrete Event Dynamic Systems (2020) 30:81–124110

http://creativecommons.org/licenses/by/4.0/

for an arbitrary u ∈ U . Let s ∈ (UY)∗U and y ∈ Y denote the unique choice to satisfy
(41) for v. By (RM2), we obtain syu ∈ pfx L, and, hence, we can choose y′ ∈ Y such
that syuy′ ∈ pfx L.

With s′ = syu, we observe pUs′ = vu and s′y′ ∈ pfx L, i.e., s′ and y′ satisfy Eq. 41
for vu. Now consider any s′′ ∈ (U ∪Y)∗ and y′′ ∈ Y ′ with pUs′′ = vu and s′′y′′ ∈ pfx L.
Since the length of vu is at least 2, we can decompose by s′′ = t ûŷu with û ∈ U and
ŷ ∈ Y . By the induction hypothesis, we obtain t û = s and ŷ = y. Hence, s′′ = syu = s′.
Together with (RM3), this also implies y′′ = y′.

Step (B) Referring to Step (A), we can define functions f ′ : U+ → (U ∪ Y)∗ and
r ′ : U+ → Y such that Eq. 41 is true for s ∈ (UY)∗U and y ∈ Y if and only if s = f ′(v)

and y = r ′(v). Clearly, r ′ is a reactive module.
Step (C) We now show that the behaviour L′ associated with r ′ constructed in step (B)

matches L. Pick any α ∈ L and consider any prefix sy < α with s ∈ (UY)∗U and y ∈ Y .
Denote v = pUs. By sy ∈ pfx L and the unique choice in (A) this implies s = f ′(v)

and y = r ′(v). Since this holds true for any prefix, we have α ∈ L′. For the converse
inclusion, pick any α ∈ L′. By siyi < α, si ∈ (UY)(i−1)U , yi ∈ Y , i ∈ N, we construct
a strictly monotone sequence of prefixes of α. Observe via (RM2) that s1 ∈ pfx L. Now
assume si ∈ pfx L for some i ∈ N and consider v := pUsi . By the claim in (A), there
uniquely exists s ∈ (UY)∗U and y ∈ Y such that Eq. 41 holds, where we have y = r ′(v)

and s = f ′(v). Uniqueness then implies si = s and, referring to the definition of the
associated behaviour, we also have yi = r ′(v). We conclude siyi ∈ pfx L, and hence,
by (RM2), si+1 ∈ pfx L. Thus, infinitely many prefixes (si)i∈N of α are within pfx L.
Topological closedness (RM1) then implies α ∈ L.

Proof of Lemma 2 Technically, our lemma can be interpreted as a special case of Proposi-
tion 3.1 in Ramadge (1989a) when applied to the formal plant behaviour A = �ω. In the
interest of a self-contained exposition, we provide a direct proof.

First, let f : �∗ → � denote a supervisor with associated behaviour L as in Eq. 14. For
our argument, we consider the ∗-language

L := { t ∈ �∗ | ∀ s ∈ �∗ . ∀ σ ∈ � . sσ ≤ t → σ ∈ f (s) } . (42)

We observe that pfx L ⊆ L and, hence, L ⊆ limpfx L ⊆ limL. Moreover, t ∈ L implies
pfxt ⊆ L, i.e., L is prefix-closed, and limL ⊆ L. Hence, limL = L. We now establish
(SC1), (SC2) and non-emptiness of L.

Ad (SC1) As the limit of a prefix-closed ∗-language, L is topologically closed.
Ad (SC2) We pick arbitrary s ∈ pfx L and σ ∈ �uc to show that sσ ∈ pfx L. We begin

with t1 := s ∈ L to construct a sequence (ti)i∈N by ti+1 := tiσ . From σ ∈ �uc ⊆ f (ti),
we obtain ti ∈ L for all i ∈ N. By construction, (ti)i∈N is strictly monotone and, hence,
the limit amounts to a singleton α ∈ �ω with { α } = lim{ ti | i ∈ N } ⊆ limL = L.
Observe that sσ = t2 < α, to conclude sσ ∈ pfx L.

Ad L �= ∅ Observe that ε ∈ L. Since �uc �= ∅ we can pick an arbitrary σ ∈ �uc and
conduct the same construction as in (SC2), now starting with t1 = ε, to obtain α ∈ L.

Thus, we have established (SC1), (SC2) and non-emptiness for L defined by Eq. 14.
For the converse implication, we now consider any non-empty L ⊆ (UY)ω that complies

with (SC1) and (SC2) to define the supervisor f ′ : �∗→�,

f ′(s) := { σ ∈ � | sσ ∈ pfx L } ∪ �uc , (43)

with associated behaviour L′, and we show that L = L′.

Discrete Event Dynamic Systems (2020) 30:81–124 111

Ad L ⊆ L′ Pick any α ∈ L and consider an arbitrary prefix sσ < α with s ∈ �∗, σ ∈ �.
In particular, we have sσ ∈ pfx L and, hence, σ ∈ f ′(s). By the arbitrary choice of the
prefix, we conclude that α ∈ L′ from Eq. 14.

Ad L′ ⊆ L Pick any α ∈ L′. We fist show that pfx α ⊆ pfx L by induction over the length
of the respective prefix. Clearly, the claim is true for the prefix of length 0, i.e., we have
ε ∈ pfx L by non-emptiness of L. For the induction step, consider s ∈ pfx L and σ ∈ �

with sσ < α. Since α ∈ L′ we obtain σ ∈ f ′(s) from Eq. 14. If σ is in the left union
component of Eq. 43, we directly obtain sσ ∈ pfx L. If σ is in the right union component
�uc, we also obtain sσ ∈ pfx L from the proof of (SC2). Hence, pfx α ⊆ pfx L and we
finally obtain α ∈ L by topological closeness (SC1).

B Reactive synthesis via supervisory control

The following technical proposition summarises relevant properties obtained by our con-
struction of L′′ in Eqs. 26, 27 and 31.

Proposition 2 Given non-empty alphabets U , Y , � and �uc, where � = U ∪̇ Y and
�uc = U , consider any supervisor f : �∗ → � with associated behaviour L that solves
SCT[�, �uc,A, G] for parameters A, G ⊆ (UY)ω.

Then the behaviour L′′ defined by Eqs. 26, 27 and 31, exhibits properties (RM1)–(RM3).
Moreover, we have that A and L′′ do not deadlock and that A ∩ L′′ ⊆ A ∩ L.

Proof Recall that L′ is the behaviour associated with the supervisor f ′ and, hence, exhibits
the properties (SC1) and (SC2). As a preliminary observation, we show that L′ and (UY)ω

are non-conflicting. Pick any s ∈ (pfx L′) ∩ (pfx(UY)ω). If s ∈ (UY)∗, we refer to univer-
sal controllability (SC2) to obtain su ∈ pfx L′ for any u ∈ U . If s �∈ (UY)∗, we must have
s ∈ (UY)∗U and we refer to Eq. 29 to obtain that sy ∈ pfx L′ for some y ∈ Y . In both cases,
we have established the existence of some σ ∈ � such that sσ ∈ (pfx L′) ∩ (pfx(UY)ω),
i.e., the two languages do not deadlock. Note that L′ is topologically closed (SC1) and that
(UY)ω is topologically closed, too. Thus, not to deadlock implies non-conflictingness.

We now turn to the individual claims suggested by the proposition.

Ad (RM1) The intersection L′′ of two topologically closed languages is itself topologi-
cally closed.

Ad (RM2) Pick any s ∈ �∗, u′, u′′ ∈ U and assume that su′ ∈ pfx L′′. In particular,
su′ ∈ pfx L′ and, by (SC2), su′′ ∈ pfx L′. By su′ ∈ pfx L′′ ⊆ pfx((UY)ω), we
obtain su′′ ∈ pfx((UY)ω). Since L′ and (UY)ω are non-conflicting, this implies su′′ ∈
pfx(L′′ ∩ (UY)ω) = pfx L′′.

Ad (RM3) Pick any s ∈ �∗, y′, y′′ ∈ Y and assume that sy′ ∈ pfx L′′. sy′′ ∈ pfx L′′.
This implies sy′ ∈ pfx L′ and sy′′ ∈ pfx L′, and, by Eq. 30, y′ = y′′.

Ad A ∩ L′′ ⊆ A ∩ L We pick any α ∈ A ∩ L′′ and establish α ∈ L. Since L is topo-
logically closed, it is sufficient to show that pfxα ⊆ pfx L and we do so by induction.
By L �= ∅, we have ε ∈ pfx L, i.e., the claim is true for the prefix ε < α of length 0.
Now consider s ∈ �∗, σ ∈ � with sσ < α and assume that s ∈ pfx L. If s ∈ (UY)∗,
we have that σ ∈ U and refer to (RM2) to obtain sσ ⊆ pfx L. If s �∈ (UY)∗, we must
have s ∈ (UY)∗U , and, hence, σ ∈ f ′(s) ∩ Y . Denote Yf(s) the outputs that comply
with the original supervisor f given s, i.e., Yf(s) := f (s) ∩ Y = { y ∈ Y | sy ∈ pfx L }.
Likewise, denote Ya the outputs that comply with the plant given s, i.e., Ya(s) := { y ∈
Y | sy ∈ pfx A }. Then non-conflictingness of A and L implies Ya(s) ∩ Yf(s) �= ∅. By

Discrete Event Dynamic Systems (2020) 30:81–124112

the definition of the post-processed supervisor h, we have h(s) ∩ Y = (Ya(s) ∩ Yf(s)).
By the definition of f ′, we have that f ′(s) ∩ Y is a singleton, i.e., we obtain that
{σ } = f ′(s) ∩ Y ⊆ h(s) ∩ Y = Ya(s) ∩ Yf(s). In particular, this implies σ ∈ f (s). We
extend sσ by an arbitrary β ∈ �ω

uc, and refer to the induction hypothesis s ∈ pfx L to
obtain sσβ ∈ L. This implies sσ ∈ pfx L and thereby completes the induction step. This
concludes the proof of α ∈ L with A ∩ L′′ ⊆ A ∩ L as an immediate consequence.

Ad A and L′′ not to deadlock Pick any s ∈ (pfx A) ∩ (pfx L′′). If s ∈ (UY)∗, we refer
to (RM2) to obtain sU ⊆ pfx L′′. Since A ⊆ (UY)ω, there must exist some u ∈ U

such that su ∈ pfx A. Thus, we have su ∈ (pfx A) ∩ (pfx L′′). If s �∈ (UY)∗, we
must have s ∈ (UY)∗U . Consider the same sets of enabled output events as above, i.e.,
Yf := f (s) ∩ Y = { y ∈ Y | sy ∈ pfx L } and Ya := { y ∈ Y | sy ∈ pfx A }, and
recall that Ya ∩ Yf �= ∅. By the definition of the post-processed supervisor h, we have
h(s) = �uc ∪ (Ya ∩ Yf). Thus, y ∈ f ′(s) for some y ∈ Ya ∩ Yf. As above, we extend sy

by an arbitrary β ∈ �ω
uc to obtain syβ ∈ L′, and, hence sy ∈ pfx L′. Since L′ and (UY)ω

are non-conflicting, we finally obtain that sy ∈ (pfx L′) ∩ (pfx((UY)ω)) = pfx L′′.

Proof of Theorem 1 We refer to the above proposition and obtain that L′′ satisfies (RM1)–
(RM3) and that A ∩ L′′ ⊆ A ∩ L. Hence L′′ ⊆ (A ∩ L) ∪ (�ω − A). Since L
solves the supervisory control problem, Problem 2, we also have that A ∩ L ⊆ G. Thus,
L′′ ⊆ G ∪ (�ω − A) = A → G. This establishes that L′′ solves Problem 1.

Regarding ω-regularity, we first observe that all post-processing is performed for
topologically closed languages. Thus, there are no acceptance conditions. The language
associated with h is the intersection of cloA and L and amounts to a product composition.
The static filter h′ can be implemented on a per-state basis. In particular, the language L′
associated with f ′ := h′ ◦ h is ω-regular. Hence, L′′ = L′ ∩ (UY)ω is ω-regular, too.

C Supervisory control via reactive synthesis – control-patternsasoutputs

The following three technical propositions summarise relevant properties obtained by our
construction of L from L′ in Eq. 35 w.r.t. the plant and specification as transformed by
Eqs. 33 and 34.

Proposition 3 Consider a finite alphabet �, uncontrollable events �uc, ∅ �= �uc ⊆ �,
control patterns � := { γ ⊆ � |�uc ⊆ γ } and extended variants thereof as defined in
Eq. 32, and, for an arbitrary language L′ ⊆ (�′�′)ω, the variant L ⊆ �ω defined in
Eq. 35. If L′ is topologically closed, then so is L.

Proof In general, topological closedness is not retained under projection. Thus, in order to
establish the claim, we need to explicitly refer to the special situation of alternating visible
symbols and invisible symbols, as well as to the fact that the alphabets under consideration
are finite. Pick an arbitrary β ∈ cloL and denote (si)i∈N a sequence si < si+1 ∈ pfxβ ⊆
pfx L for all i ∈ N. Define the sets of ∗-words from the full alphabet that comply with si ,
i ∈ N, by

Ri := { r ∈ (�′�′)∗ | ∃α ∈ (�′�′)ω with rα ∈ L′ such that

p�′r = 0si and ∀ γ ∈ �′ . σ ∈ �′ . sγ σ ∈ pfxr → σ ∈ γ } ⊆ pfx L′ .

(44)

Discrete Event Dynamic Systems (2020) 30:81–124 113

Note that si ∈ pfx L implies that Ri �= ∅, and observe by p�′Ri = {0si} and Ri ⊆ (�′�′)∗
that words in Ri have uniform length. In particular, Ri is a finite set. Moreover, we have the
following property:

∀ i, j ∈ N . ∀ t ∈ Rj . ∃ r ∈ Ri . i ≤ j → r ≤ t ; (45)

i.e., Rj consists of specific postfixes from Ri . Next, denote

Ri,j := { r ∈ Ri | ∃ t ∈ Rj . r ≤ t } , (46)

where i, j ∈ N, i ≤ j . By Eq. 45, Ri,j is monotonously decreasing w.r.t. j , and, since Rj

is non-empty, so is Ri,j , i.e., ∅ �= Ri,j+1 ⊆ Ri,j for all i, j ∈ N, i ≤ j . For i ∈ N, consider
the limit

Ni :=
⋂

j≥i

Ri,j ⊆ Ri (47)

and observe that Ni �= ∅, since all components of the monotone sequence are non-empty
and finite. To establish that

∀ i ∈ N . ∀ r ∈ Ni . ∃ t ∈ Ni+1 . r ≤ t (48)

by contradiction, assume that we can pick i ∈ N, r ∈ Ni such that rv �∈ Ni+1 for all
v ∈ �∗. Since the words in Ri and Ri+1 are of uniform length, the last clause is equivalent
to rv �∈ Ni+1 for all v ∈ �l and some suitably chosen l ∈ N. Next, referring to the
definition of Ni+1, we pick for each v ∈ �l some jv ≥ i + 1 such that rv �∈ Ri+1,jv and
denote the maximum k := maxv∈�l jv ∈ N. By monotonicity of Ri+1,j w.r.t. j , this implies
rv �∈ Ri+1,k for all v ∈ �l , and,

hence, rvw �∈ Rk for all v ∈ �l , w ∈ �∗. The latter collapses to rt �∈ Rk for all t ∈ �∗
and thereby implies r �∈ Ri,k . This is a contradiction with r ∈ Ni and concludes the proof of
Eq. 48. By the latter property, we begin with an arbitrary r1 ∈ N1 and successively obtain a
sequence (ri)i∈N, ri ∈ Ni ⊆ pfx L′, ri < ri+1 for all i ∈ N. Denote the singleton limit by
α ∈ (�′�′)ω. We then have p�′α = 0β and, by topological closedness of L′, also α ∈ L′.
Referring to the second condition in Eq. 44, we also obtain that σ ∈ γ for all γ ∈ �′,
σ ∈ �′ and s with sγ σ ∈ pfxα, and, hence β ∈ L. Thus, L is topologically closed.

Proposition 4 Consider a finite alphabet �, uncontrollable events �uc, ∅ �= �uc ⊆ �,
control patterns � := { γ ⊆ � |�uc ⊆ γ } and extended variants thereof as defined in
Eq. 32, and, for an arbitrary language L′ ⊆ (�′�′)ω, the variant L ⊆ �ω defined in Eq. 35.

If L′ is non-empty and satisfies (RM1) and (RM2) with U = �′ and output Y = �′, then
L is non-empty and satisfies (SC1) and (SC2).

Consider the additional parameters A ⊆ �ω and G ⊆ �ω and extended variants thereof
as defined in Eqs. 33 and 34. If L′ ⊆ A′ → G ′ then L ⊆ A → G.

Proof Note that topological closedness (SC1) is provided by Proposition 3 and we are left
to prove the remaining claims suggested by the proposition.

Ad (SC2) In order to establish controllability, pick any s ∈ pfx L and σ ∈ �uc and choose
β ∈ �ω such that sβ ∈ L. By the definition Eq Eq. 35 of L, we can further choose
r1 ∈ (�′�′)∗ and α ∈ (�′�′)ω with r1α ∈ L′, such that p�′r1 = 0s and σ1 ∈ γ1 for all
v1 ∈ (�′�′)∗ with v1γ1σ1 ≤ r1.

Referring to (RM2), we extend r1 ∈ pfx L′ by σ to obtain r1σ ∈ pfx L′. Writing
r1 = v1γ1 with γ1 ∈ �′ we observe σ ∈ γ1 by σ ∈ �uc. Referring to L′ ⊆ (�′�′)ω,
we further extend r1σ by some γ ∈ �′ to obtain r2 := r1σγ ∈ pfx L′ and note that

Discrete Event Dynamic Systems (2020) 30:81–124114

and σ2 ∈ γ2 for all v2 ∈ (�′�′)∗ with v2γ2σ2 ≤ r2. This construction is repeated to
obtain a strictly monotone sequence (ri)i∈N, ri ∈ (0�′)(��′)∗, ri < ri+1 for all i ∈ N,
and we denote the singleton limit α′ ∈ (0�′)(��′)ω. In particular, pfx α′ ⊆ pfx L′ and
we obtain α′ ∈ L′ by topological closedness (RM1). By our construction, we have that
σ ′ ∈ γ ′ for all v′ ∈ (�′�′)∗ with v′γ ′σ ′ < α′. Let β′ := p�α to obtain 0β′ = p�′α and,
thus, β′ ∈ L. In particular, 0sσ = p�′r2 ∈ 0pfxβ′ and, hence, sσ ∈ pfx L.

Ad L �= ∅ We refer to L′ �= ∅ and (RM2) to observe that 0 ∈ pfx L′. Thus, we can pick
r1 ∈ 0�′ such that r1 ∈ pfx L′. Now assume that ri ∈ pfx L′ ∩ (0�′)(��′)∗ for some
i ∈ N. Then, we can write ri = sγ for some γ ∈ �′. Because �uc ⊆ γ , we can extend sγ

by some σ ∈ γ ∩� to observe sγ σ ∈ pfx L′ by (RM2). Hence, there exists ri+1 ∈ riσ�′
such that ri+1 ∈ pfx L′ ∩ (0�′)(��′)∗. This establishes a monotone sequence (ri)i∈N,
ri < ri+1 ∈ pfx L′ for all i ∈ N. We denote the singleton limit α ∈ (0�′)(�′�′)ω and
conclude α ∈ L′ by topological closedness (RM1). Moreover, there exists β ∈ �ω such
that 0β = p�′α. By construction, we also have σ ∈ γ for all σ ∈ �′, γ ∈ �′, sγ σ < α,
and, hence, β ∈ L.,

Ad L ⊆ A → G Pick any β ∈ L and choose α ∈ L′ according to Eq. 35, i.e, p�′α = 0β
and σ ∈ γ for all s ∈ (�′�′)∗ with sγ σ < α. If β ∈ A, we have α ∈ A′ by Eq. 34. Since
L′ solves RS[�′, �′,A′, G ′] this implies α ∈ G ′, and, by Eq. 33, 0β = p�′α ∈ 0G.
Thus, we observe that β ∈ G.

Proposition 5 Consider a finite alphabet �, uncontrollable events �uc, ∅ �= �uc ⊆ �,
control patterns � := { γ ⊆ � |�uc ⊆ γ } and extended variants �′ and �′ thereof as
defined in Eq. 32. Given a plant A ⊆ �ω, construct the assumption A′ ⊆ (�′�′)ω by
Eq. 34. For a reactive module L′ ⊆ (UY)ω with input range U := �′, output range Y := �′
and satisfying (RM1) and (RM2), consider the supervisor candidate L ⊆ �ω defined in
Eq. 35. If pfx A′ and pfx L′ do not deadlock, then neither do pfx A and pfx L.

Proof To establish the absence of deadlocks, we pick an arbitrary s ∈ (pfx A) ∩ (pfx L)

and extend this synchronously by one more symbol.
We first refer to s ∈ pfx L and extend by β ∈ �ω to obtain sβ ∈ L. By the definition of

L in Eq. 35, we can choose α ∈ L′ such that p�′α = 0sβ and such that all prefixes comply
with all past control patterns, i.e., we have pfx α ⊆ L, where

L := pfx{ t ∈ (�′�)∗) | ∀ σ ∈ � . ∀ γ ∈ � . ∀ r ∈ pfxt . rγ σ ≤ t → σ ∈ γ } . (49)

In particular, we can rewrite

α = 0γ1σ1γ2σ2 · · · γnσnγn+1σn+1 · · · , (50)

with σk ∈ γk ⊆ � for k ∈ N to observe that s = σ1σ2 · · · σn, n := |s|.
We now refer to s ∈ pfx A and extend by β′ ∈ �ω to obtain sβ′ ∈ A. Here, we write

β′ = σ ′
n+1σ

′
n+2σ

′
n+3 · · · and let γ ′

k := � for all k ∈ N to assemble

α′ := 0γ1σ1γ2σ2 · · · γnσnγ
′
n+1σ

′
n+1 · · · . (51)

Again, we have pfx α′ ⊆ L and, by sβ′ ∈ A, we conclude α′ ∈ A′.
Both ω-words α and α′ share the prefix 0t with t := γ1σ1γ2σ2 · · · γnσn and we have

that 0t ∈ (pfx A′) ∩ (pfx L′). Since A′ and L′ do not deadlock, we can extend 0t by
σ ′′ ∈ γ ′′ ⊆ � to obtain 0tγ ′′σ ′′ ∈ (pfx A′) ∩ (pfx L′). Extending 0tγ ′′σ ′′ by α′′ to
obtain 0tγ ′′σ ′′α′′ ∈ A′ we observe 0sσ ′′p�′α′′ = p�′(0tγ ′′σ ′′α′′) ∈ 0A, and, hence,
sσ ′′ ∈ pfx A.

Discrete Event Dynamic Systems (2020) 30:81–124 115

We can also extend 0tγ ′′σ ′′ to an ω-word in L′, however, in order to address (35) we need
to take care that all prefixes comply with past control patterns. For an inductive argument,
pick any rσ ∈ pfx L′. By the alternating structure of L′, we find γ ∈ � such that rσγ ∈
pfxL′ and, by the free input (RM2), we can choose any � ∈ γ to obtain rσγ � ∈ pfxL′. This
construction maintains compliance with control patterns, i.e., rσ ∈ L implies rσγ � ∈ L.
Applying this construction to the initial string 0tγ ′′σ ′′ ∈ pfx L′, and referring to topological
closedness (RM1), we obtain an ω-word 0tγ ′′σ ′′α′′′ ∈ L′ such that pfx(0tγ ′′σ ′′α′′′) ⊆ L.
For the projection, we have p�′(0tγ ′′σ ′′α′′′) = 0sσ ′′p�′α, and, referring to the definition
of L in Eq. 35, we obtain sσ ′′ ∈ pfx L. This concludes the proof.

Proof of Theorem 2 Regarding L, (SC1), (SC2) and non-emptyness are established by
Propositions 3 and 4. Moreover, we obtain by Proposition 5 that A and L do not dead-
lock. Since both languages are topologically closed, this implies non-conflictingness. Since
the intersection of non-empty and non-conflicting languages is non-empty12, we obtain for
the closed-loop behaviour ∅ �= K := A ∩ L. For the specification, we again refer to
Proposition 4 to obtain K = A ∩ L ⊆ A ∩ (A → G) = A ∩ G ⊆ G.

Now assume that L′ is ω-regular and consider a finite automaton realisation A′ =
(Q, �′ ∪�′, δ, Qo). Since L′ is topologically closed, we do not need to consider an accep-
tance condition and we can without loss of generality assume that A′ is deterministic and
reachable. A finite automaton realisation A of L as defined by Eq. 35 can be constructed in
three steps.

Step (i) We can test on a per state basis whether or not enabled transitions are labeled in
compliance with the recent control pattern. Here, we may need to split states in order for
the most recent control pattern to be unique for each state. We then remove all transitions
which are meant to be disabled by the most recent control pattern an denote the resulting
automaton A′′. This automaton realises the language

L′′ := { α ∈ L′ | ∀ s ∈ pfx α . ∀ γ ∈ �′ . ∀ σ ∈ �′ . sγ σ ∈ pfxα → σ ∈ γ } . (52)

Step (ii) We refer to well known algorithms that implement the projection to obtain A′′′
to realise L′′′ := p�′L′′ and to observe that

L′′′ := { β ∈ �ω | ∃ α ∈ L′ with

β = p�′α and ∀ s ∈ pfx α . ∀ γ ∈ �′.∀ σ ∈ �′ . sγ σ ∈ pfxα → σ ∈ γ } .

(53)

Although in general projection does not retain realisability by deterministic Büchi
automata, in the absence of an acceptance condition we may determinise the result by
the common subset-construction.

Step (iii) We perform the intersection with 0(�′�′)ω and drop the leading 0-symbol.
Again, these operations retain regularity and respective algorithms are well known. We
denote the resulting automaton A and observe that A indeed realises L.

The following proposition is used to support the proof of the equivalence Corollary 1.

12If M,N ⊆ �ω are both non-empty and non-conflicting, we have that ε ∈ (pfx M) ∩ (pfx N) =
pfx(M ∩ N) and, hence, M ∩ N �= ∅.

Discrete Event Dynamic Systems (2020) 30:81–124116

Proposition 6 Let � be a finite alphabet with the non-empty set of uncontrollable events
�uc ⊆ � and let L be a solution of SCT[�, �uc,A, G] with a non-empty topologically-
closed plant A ⊆ �ω and an upper-bound specification G ⊆ �ω. Furthermore, let

L′ := {α ∈ (�′�′)ω | ∀ γ ∈ �′ . ∀ s ∈ pfx α . sγ < α → γ = f (p�s) ∪ {0} } , (54)

where f denotes the supervisor with behaviour L.
Then L′ solves RS[U, Y,A′, G ′] with U = �′, Y = �′, A′ and G ′ defined via (32)-(34).

If L is ω-regular, then so is L′.

Proof We need to prove that (RM1)–(RM3) hold for L′, that ∅ �= L′ ⊆ A′ → G ′, and that
L′ and A′ do not deadlock.

Ad (RM1) Pick any α ∈ cloL′ and γ ∈ �′, s ∈ pfx α such that sγ < α. By α ∈ cloL′, we
can choose an arbitrary length prefix t < α such that t ∈ pfx L′, i.e., such that there exists
an extension β with tβ ∈ L′. In particular, we can take the choice such that sγ < t < tβ,
which implies γ = f (p�s) ∪ {0}. We conclude that α ∈ L′ and obtain that L′ is closed.

Ad (RM2) Pick an arbitrary s ∈ (pfx L′) ∩ ((�′�′)∗) and an arbitrary σ ′ ∈ �′. Observe
that γ = f (p�t) ∪ {0} for all tγ ≤ s, γ ∈ �′. Now let γ ′ := f ((p�t)σ ′) and s′ :=
sσ ′γ ′. Thus, we again have γ = f (p�t) ∪ {0}, but now for all tγ ≤ s′, γ ∈ �′. Repeating
this procedure, we obtain an ω-word α ∈ (�′�′)ω, sσ ′ < α, such that γ = f (p�t) ∪ {0}
for all tγ < α, γ ∈ �′. In particular, we have α ∈ L′ and, hence sσ ′ ∈ pfx L′. Since the
choice of σ ′ ∈ �′ was arbitrary, this implies (RM2).

Ad (RM3) Consider some s such that sγ ∈ pfx L′ and sγ ′ ∈ pfx L′ for γ, γ ′ ∈ �′. By
the definition of L′ this implies γ = f (p�s) ∪ {0} = γ ′ and we conclude (RM3).

Ad ∅ �= L′ Pick an arbitrary ω-word β = σ1σ2σ3 · · · ∈ �′ω and denote γi :=
f (σ1σ2 · · · σi) ∪ {0} ∈ �′. Then α := σ1γ1σ2γ2 · · · ∈ (�′�′)ω qualifies for α ∈ L′.

Ad L′ ⊆ A′ → G ′ We prove A′ ∩ L′ ⊆ G ′. Pick any α ∈ A′ ∩ L′. From α ∈ A′ and
Eq. 34 we obtain (i) that p�′α ∈ 0A and (ii), for all γ ∈ �′, σ ∈ �′, sγ σ ∈ pfxα,
that σ ∈ γ . From α ∈ L′, we obtain that (iii) σ ∈ γ = f (p�s) ∪ {0} with the same
quantification as in (ii). We apply the projection p� to α ∈ A′ ⊆ 0(�′�)ω and refer
to the alternating structure to obtain, for all σ ∈ � and rσ ∈ pfxp�α, that σ ∈ f (r).
This implies p�α ∈ L, and, hence p�α ∈ A ∩ L ⊆ G. Thus, we have that p�′α =
0p�α ∈ 0G, which establishes α ∈ G ′ by Eq. 33. Finally, we observe L′ ⊆ A′ → G ′
from A′ ∩ L′ ⊆ G ′.

Ad A′ and L′ not to deadlock Pick any s ∈ (pfx A′) ∩ (pfx L′). We distinguish two
cases. For case (a), we assume that s ∈ (�′�′)∗. Here, we choose σ ∈ �′ such
that sσ ∈ pfx A′ and to refer to (RM2) for sσ ∈ pfx L′. For case (b), we have
s ∈ 0((�′�′)∗). From s ∈ (pfx A′) and Eq. 34 we obtain (i) that p�′s ∈ pfx(0A)

and (ii), for all γ ∈ �′, σ ∈ �′, tγ σ ∈ pfxs, that σ ∈ γ . From s ∈ pfx L′,
we obtain that (iii) σ ∈ γ = f (p�t) ∪ {0} with the same quantification as in (ii).
Referring to the alternating structure s ∈ pfx A′ ⊆ 0pfx((��)∗), we apply the pro-
jection p� to s and obtain, for all σ ∈ � and rσ ∈ pfxp�s, that σ ∈ f (r). This
implies p�s ∈ pfx L, and, hence p�s ∈ (pfx A) ∩ (pfx L). Since A and L are non-
conflicting, we can choose σ ∈ � such that (p�s)σ ∈ (pfx A) ∩ (pfx L). In particular,
(p�s)σ ∈ pfx L implies that σ ∈ γ := f (p�s). Hence, with γ ′ := γ ∪ {0}, we have
that sγ ′σ ∈ pfx A′ and σ ∈ γ ′ = f (p�s) ∪ {0}. This implies sγ ′ ∈ pfx L′ to conclude
case (b).

Regarding regularity, consider a deterministic automaton realisation A of the topologically
closed behaviour L. By Eq. 54, ω-words β ∈ L′ are constructed by inserting control

Discrete Event Dynamic Systems (2020) 30:81–124 117

patterns in ω-words α ∈ L after every single symbol. This construction can be realised
by adding a marker-bit to the state set of A, effectively doubling the state count, and by
extending the transition relation in order to track whether or not a control pattern is to be
inserted next. Here, the control pattern to be inserted is identified as the set of enabled
events in the corresponding state of A. In particular, the resulting automaton has a finite state
count.

Proof of Corollary 1 Assume that SCT[�, �uc,A, G] has a (ω-regular) solution L. We
then refer to Proposition 6 to obtain a (ω-regular) solution of RS[UYA′G ′]. Conversely,
assume that RS[UYA′G ′] has a solution L′. We then refer to Theorem 2 to obtain a (ω-
regular) solution of SCT[�, �uc,A, G].

D Supervisory control via reactive synthesis – input-output behaviours

The following technical proposition summarises relevant properties obtained by our con-
struction of L′ in Eq. 36.

Proposition 7 Consider a finite alphabet �, uncontrollable events �uc, ∅ �= �uc � �, let
U = �uc and Y = � −�uc. Consider arbitrary languages A, L ⊆ (UY)ω and the variant
L′ ⊆ �ω defined in Eq. 36.

If L satisfies (RM1) and (RM2) and if pfx L and pfx A do not deadlock, then L′ satisfies
(SC1) and (SC2).

Moreover, L′ ∩ (UY)ω = L, (pfx L′) ∩ (pfx((UY)∗)) = pfx L. Finally, pfx L′ and
pfx A do not deadlock.

Proof We prove the individual claims suggested by the proposition.

Ad (SC1) For topological closedness, pick any α ∈ cloL′, i.e., pfx α ⊆ pfx L′. Note that

pfx L′ = (pfx L) ∪ ((pfx L)�∗
uc) (55)

and that α must have infinitely many prefixes in at least one of the union components.
We distinguish two cases. If, case (a), α has infinitely many prefixes in pfx L, we refer
to refer to topological closedness (RM1) to obtain α ∈ L ⊆ L′. For the complementary
case (b), α has finitely many prefixes in pfx L and, hence, infinitely many in (pfx L)�∗

uc.
In particular, there is a longest prefix s < α with s ∈ pfx L). Therefore, we have
α ∈ s�ω

uc ⊆ (pfx L)(�ω
uc). In both cases, we have established α ∈ L′. Hence, L′ is

topologically closed.
Ad (SC2) For controllability, pick any s ∈ pfx L′ and σ ∈ �uc, to obtain sσ ∈ pfx L′ by

Eq. 55.
Ad L′ ∩ (UY)ω = L This equality is immediate from the fact that for every α ∈ L′ −L

we have α ∈ (pfx L)�ω
uc and, hence, α �∈ (UY)ω.

Ad (pfx L′) ∩ (pfx((UY)∗)) = pfx L We first show that L′ and (UY)ω are non-
conflicting. Pick any s ∈ (pfx L′) ∩ (pfx((UY)ω)). If s ∈ (UY)∗, we refer to (SC2) and
extend s by any σ ∈ U = �uc to obtain sσ ∈ pfx L′. Else, if s �∈ (UY)∗, we must have
s ∈ (UY)∗U . We write s = tu with u ∈ U and refer (55) for t ∈ pfx L, and to (RM2) for
s = tu ∈ pfx L. Thus, we can extend s by σ ∈ Y such that sσ = tuσ ∈ pfx L ⊆ pfx L′.
In both cases, we have established sσ ∈ (pfx L′) ∩ (pfx((UY)ω)). Since both lan-
guages are topologically closed, this concludes the proof of non-conflictingness of L′ and

Discrete Event Dynamic Systems (2020) 30:81–124118

(UY)ω, which in turn implies (pfx L′) ∩ (pfx((UY)∗)) = (pfx L′) ∩ (pfx((UY)ω)) =
pfx(L′ ∩ ((UY)ω)) = pfx L.

Ad A and L′ not to deadlock Note that (pfx A) ∩ (pfx L′) = (pfx A) ∩ (pfx L′) ∩
(pfx((UY)ω)) = (pfx A) ∩ (pfx L); as A and L do not deadlock, the latter equality
implies that A and L′ do not deadlock, either.

Proof of Theorem 3 Referring to Proposition 7, we have (SC1) and (SC2) for L′. Note also
that L′ �= ∅ is an immediate consequence of non-emptyness of L. Regarding the specifica-
tion, we observe for the closed-loop behaviour A ∩ L′ = A ∩ L′ ∩ (UY)ω = A ∩ L ⊆
A ∩ (A → G) = G. Again referring to Proposition 7, we also have that pfx L′ and pfx A
do not deadlock. Thus, non-conflictingness is implied by both A and L′ being topologi-
cally closed. Since the latter two languages are also non-empty, it follows that A ∩ L′ �= ∅.
Inspecting (36), all operations retain regularity.

Proof of Corollary 2 Assume that SCT[�, �uc,A, G] has a (ω-regular) solution. We then
refer to Theorem 1 to obtain a (ω-regular) solution of RS[U, Y,A, G]. Conversely, assume
that RS[U, Y, A, G] has a (ω-regular) solution. We then refer to Theorem 3 to obtain a
(ω-regular) solution of SCT[�, �uc,A, G].

Non-falsifiable assumptions and strong non-anticipation

Proposition 8 Given an alphabet � with the non-empty set of uncontrollable events �uc �

�, consider the reactive synthesis problem RS[U, Y,A, G] with U = �uc, Y = � − �uc,
and parameters A, G ∈ (UY)ω, both realised by deterministic Büchi automata.

Furthermore let H be the game graph induced by A and G via M in Eq. 7 with accep-
tance condition {T 0, T 1}. Then, the environment, player 0, has a winning strategy f 0 in the
Büchi game (H, T 0) if and only if ε ∈ cfxcloA, YA.

Proof We prove both implications separately. First, assume there exists a winning strategy
f 0 for player 0 in the Büchi game (H, T 0). Then all plays compliant with f 0 have corre-
sponding words α ∈ A. Now use f 0 to define the map r : Y+ → U s.t. r(pY s) := f 0(q)

for δ(q0, s) = q. Then we can infer from Lemma 1 that the behaviour L associated with r

satisfies (RM1)–(RM3), however, with Y the input symbols and U the output symbols. In
particular, L is closed. Moreover, we have that L ∩ (cloA) ⊆ A and that pfx L and pfx A
do not deadlock. Now we can apply the transformation from Section 5.2.2 and, adapting the
role of inputs and outputs accordingly, to obtain L′ := L ∪ ((pfx L)((� − �uc)

ω)). Here,
we refer to Proposition 7 to obtain that L′ satisfies (SC1) and (SC2) with Y = � − �uc
in the role of the uncontrollable events. In particular, we have that L′ is closed and that
L′ ∩ (clo A) ⊆ A. Using V := L′ ∩ (clo A), we have (i) V = cloV= (cloV) ∩ (cloA) and
(ii) ((pfx V)Y) ∩ (pfx A) ⊆ pfx V . Referring to Definition 2 this implies ε ∈ cfxcloA, Y (A)

and hence proves the first implication.
For the converse implication, assume that ε ∈ cfxcloA, Y (A) and consider any determin-

istic Büchi automaton MA = {Q,�, {q0}, δ, FA} such that A = Lω
m(MA) and pfx(A) =

L∗(M). Without loss of generality, we assume that MA does not deadlock. Hence, using the
trivial acceptance condition F = Q, we can realise cloA on the same transition structure
and we denote

M ′ = (Q,�, {q0}, δ, {Q,FA}) (56)

Discrete Event Dynamic Systems (2020) 30:81–124 119

a realisation of the formal plant A′ = cloA and the formal guarantee G ′ = A with uncon-
trollable events �′

uc := � − �uc = Y and controllable events �uc = U . This matches the
setting of our discussion of the algorithmic solution to the synthesis problem, Section 4.3.
Here, we refer to the simplified fixed-point in Eq. 25 for topologically closed plants, which
for our problem parameters amounts to

Win(M ′) = νX . μZ . Pre(Z) ∪ (FA ∩ Pre(X)) (57)

with inverse dynamics operator, Eq. 22,

Pre(T) = { q ∈ Q | δ(q, U ∪ Y) ∩ T �= ∅ and δ(q, Y) ⊆ T } . (58)

Recall from our discussion in Section 4.3 that a string is in the controllability prefix if
and only if it leads to a winning state; i.e., technically s ∈ cfxA′,�′

uc
(G ′) if and only if

δ(q0, s) ∈ Win(M ′). In particular, we obtain that q0 ∈ Win(M ′) from the prerequisite
ε ∈ cfxcloA, Y (A) = cfxA′,�′

uc
(G ′).

We now turn to an interpretation in the context of reactive synthesis and recall that the
alternation of input symbols and output symbols induces a disjoint union composition of
the state set and the transition relation. Technically, we refer to Eq. 7 and write

M ′′ = (Q0 ∪ Q1, U ∪ Y, {q0}, δ0 ∪ δ1, {T 0, T 1}) (59)

with Q0∪̇Q1 = Q, δ0∪̇δ1 = δ, q0 ∈ Q0, δ0 ⊆ Q0 × U × Q1, δ1 ⊆ Q1 × Y × Q0,

T 0 = FA, and with an arbitrary dummy parameter T 1 ⊆ Q. Note that, at this stage, we are
not interested in solving a reactive synthesis problem. Instead, we consider the Büchi game
(H ′′, T 0) from the perspective of player 0, where H ′′ denotes the game graph associated
with M ′′. It is well known that this game can be solved via the fixed-point

Win0 = νX4 . μX3 . Pre0(X3) ∪ (T 0 ∩ Pre0(X4)) (60)

with the player-0-controllable prefix defined

Pre0(T) := { q ∈ Q0 | δ0(q, U) ∩ T �= ∅ } ∪ { q ∈ Q1 | δ1(q, Y) ⊆ T } ; (61)

see also Eqs. 9 and 12, our argument in Remark 4 and the provided references (i.e., Maler
et al. 1995; Zielonka 1998). In particular, there exists a winning strategy for player 0 if and
only if q0 ∈ Win0. We now observe (a) that the player-0-controllable prefix (61) matches
the inverse dynamics operator (58), i.e., we have Pre0(T) = Pre(T) for any T ⊆ Q; and
(b) that the two fixed-points (57) and (60) coincide. This implies that Win(M ′) = Win0. In
particular, we obtain that q0 ∈ Win0 from q0 ∈ Win(M ′), and, hence, there exists a winning
strategy f 0 for player 0 in (H ′′, T 0).

Recall that our entire argument is valid for any deterministic Büchi automaton realisation
MA of A. Hence, our argument also applies to the specific case where we choose MA to
have the same state set and the same transition relation as M from Eq. 7 obtained from the
actual problem parameters A and G. We then have that M ′′ = M and, hence, the associated
game graph H ′′ matches H . Thus player 0 has a winning strategy f 0 in the Büchi game
(H, T 0).

Proposition 9 Given an alphabet � with the non-empty set of uncontrollable events �uc �

�, let U = �uc and Y = � − �uc. For an assumption A ⊆ (UY)ω and a guarantee
G ⊆ (UY)ω, let L denote a solution to the reactive synthesis problem, Problem 1. If Eq. 38
holds then A and L are non-conflicting.

Discrete Event Dynamic Systems (2020) 30:81–124120

Proof Given any s ∈ (pfx A) ∩ (pfx L), we need to show that s ∈ pfx(A ∩ L). As a first
step, we refer to the absence of deadlocks, Eq. 4, and optionally extend s by one symbol to
obtain s ≤ s′ ∈ (pfx A) ∩ (pfx L) ∩ (UY)∗.

Referring to Eq. 38 and Definition 2, we can choose V ⊆ A ∩ (s′�ω) such that (i) V
is relatively topologically closed w.r.t. (cloA) ∩ (s′�ω) and (ii) ((pfx V)Y) ∩ (pfx A) ∩
(s′�∗) ⊆ (pfx V). Since (cloA) ∩ (s′�ω) is topologically closed, (i) implies that V is
closed, too.

We now construct a strictly monotone sequence (ti)i∈N with ti < ti+1 and

s′ti ∈ (pfx V) ∩ (pfx L) ∩ (UY)∗ . (62)

We begin with t1 = ε and assume, for some i ∈ N, that we are provided a qualifying ti .
We can then pick ui ∈ U such that s′tiui ∈ pfx V to observe s′tiui ∈ pfx L by the free
input (RM2). Likewise, we refer to the absence of deadlocks, Eq. 4, and choose yi ∈ Y such
that s′tiuiyi ∈ (pfx A) ∩ (pfx L). By property (ii) of V , we obtain s′tiuiyi ∈ (pfx V) ∩
(pfx L). Now ti+1 := tiuiyi satisfies the requirements to conclude the iterative construction
of (ti)i∈N.

Denote β the singleton limit of the sequence (ti)i∈N. Then s′β has infinitely many pre-
fixes in pfx V and pfx L. Topological closedness of V and L then implies that s < s′β ∈
V ∩ L ⊆ A ∩ L, and, hence, s ∈ pfx(A ∩ L).

Proof of Theorem 4 As in the proof of Theorem 3, we refer to Proposition 7 to obtain (SC1),
(SC2), A ∩ L′ ⊆ G, A ∩L′ = A ∩L, and (pfx A) ∩ (pfx L′) = (pfx A) ∩ (pfx L). For
non-conflictingness, pick s ∈ (pfx A) ∩ (pfx L′),

and refer to Proposition 9 for s ∈ pfx(A ∩ L) = pfx(A ∩ L′). Again,
non-conflictingness and non-emptyness of A and L′ imply a non-empty closed-loop
behaviour.

For a Proof of Corollary 3, substitute the reference to Theorem 3 by Theorem 4 in the
Proof of Corollary 2.

References

Baier C, Moor T (2015) A hierarchical and modular control architecture for sequential behaviours. J Discret
Event Dyn Syst 25:95–124

Barati M, St-Denis R (2015) Behavior composition meets supervisory control. In: 2015 IEEE International
Conference on Systems, Man, and Cybernetics, pp 115–120. https://doi.org/10.1109/SMC.2015.33

Barveau M, Kabanza F, St-Denis R (1998) A method for the synthesis of controllers to handle safety,
liveness, and real-time constraints. IEEE Trans Autom Control 43(11):1543–1559. ISSN 0018-9286.
https://doi.org/10.1109/9.728871

Bloem R, Jobstmann B, Piterman N, Pnueli A, Sahar Y (2012) Synthesis of reactive(1) designs. J Comput
Syst Sci 78(3):911–938

Bloem R, Ehlers R, Jacobs S, Kȯnighofer R (2014) How to handle assumptions in synthesis. In: SYNT’14
Vienna, Austria, pp 34–50

Bloem R, Ehlers R, Könighofer R (2015) Cooperative reactive synthesis. In: ATVA Shanghai, China, pp
394–410

Bourdon E, Lawford M, Wonham WM (2005) Robust nonblocking supervisory control of discrete-event
systems. IEEE Trans Autom Control 50:2015–2021

Bradfield J, Stirling C (2006) Modal mu-calculi. In: The Handbook of Modal Logic. Elsevier, pp 721–
756

Brenguier R, Raskin J-F, Sankur O (2017) Assume-admissible synthesis. Acta Inform 54(1):41–83

Discrete Event Dynamic Systems (2020) 30:81–124 121

https://doi.org/10.1109/SMC.2015.33
https://doi.org/10.1109/9.728871

Büchi JR, Landweber LH (1969) Solving sequential conditions by finite-state strategies. Trans Amer Math
Soc 138:367–378

Cai K, Zhang R, Wonham WM (2015) Relative observability of discrete-event systems and its supremal
sublanguages. IEEE Trans Autom Control 60(3):659–670

Chatterjee K, Henzinger TA (2007) Assume-guarantee synthesis. In: TACAS 2007, Braga, Portugal, pp 261–
275

Chatterjee K, Horn F, Löding C (2010) Obliging games. In: CONCUR’10, Paris, France, pp 284–296
Chatterjee K, Henzinger TA (2012) A survey of stochastic ω,-regular games. J Comput Syst Sci 78(2):394–

413. https://doi.org/10.1016/j.jcss.2011.05.002
Church A (1957) Applications of recursive arithmetic to the problem of circuit synthesis. Summ Summer

Inst Symbol Log I:3–50
Cieslak R, Desclaux C, Fawaz AS, Varaiya P (1988) Supervisory control of discrete-event processes with

partial observations. IEEE Trans Autom Control 33(3):249–260
Cury J, Krogh B (1999) Robustness of supervisors for discrete-event systems. IEEE Trans Autom Control

44:376–379
de Alfaro L, Henzinger TA (2000) Concurrent omega-regular games In: Proceedings Fifteenth Annual, IEEE

Symposium on Logic in Computer Science (Cat. No.99CB36332), pp 141–154
de Alfaro L, Henzinger TA, Kupferman O (2007) Concurrent reachability games. Theor Compute Sci

386(3):188–217
de Querioz MH, Cury JER (2000) Modular supervisory control of large scale discrete event systems. WODES
Ehlers R, Lafortune S, Tripakis S, Vardi MY (2017) Supervisory control and reactive synthesis: a comparative

introduction. Discret Event Dyn Syst 27(2):209–260
Emerson E, Jutla C (1991) Tree automata, mu-calculus and determinacy. In: FOCS’91, pp 368–377
Felli P, Yadav N, Sardina S (2017) Supervisory control for behavior composition. IEEE Trans Autom Control

62(2):986–991. ISSN 0018-9286. https://doi.org/10.1109/TAC.2016.2570748
Finkbeiner B (2016) Synthesis of reactive systems. Technical report, Universität des Saarlandes
Fisman D, Kupferman O, Lustig Y (2010) Rational synthesis. In: TACAS’10, pp 190–204
Grädel E, Thomas W, Wilke T (eds.) (2002) Automata Logics, and Infinite Games, volume 2500 of LNCS.

Springer, Berlin
Gurevich Y, Harrington L (1982) Trees, automata, and games. In: STOC ’82,San Francisco, pp 60–65
Hopcroft JE, Ullman JD (1979) Introduction to automata Theory, languages and computation. Addison-

Wesley, Reading
Kučera V (2011) A method to teach the parameterization of all stabilizing controllers. IFAC Proc Vol

44(1):6355–6360. 18th IFAC World Congress
Kupferman O, Vardi MY (2000) Synthesis with incomplete information. In: Advances in Temporal Logic,

pp 109–127
Lin F, Wonham WM (1988) On observability of discrete-event systems. Inf Sci 44:173–198
Majumdar R, Piterman N, Schmuck A-K (2019) Environmentally-friendly GR(1) synthesis. In: TACAS’19.

Springer, pp 229–246
Maler O, Pnueli A, Sifakis J (1995) On the synthesis of discrete controllers for timed systems, pp 229–242
Moor T, Schmidt K, Wittmann T (2011) Abstraction-based control for not necessarily closed behaviours.

Proceedings of the 18th IFAC World Congress, pp 6988–6993
Moor T, Baier C, Yoo T-S, Lin F, Lafortune S (2012) On the computation of supremal sublanguages relevant

to supervisory control 45(29):175–180. WODES 2012
Moor T (2016) A discussion of fault-tolerant supervisory control in terms of formal languages. Annu Rev

Control 41:159–169
Moor T (2017) Supervisory control on non-terminating processes: An interpretation of liveness properties.

Technical report, Lehrstuhl für Regelungstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg
Paoli A, Sartini M, Lafortune S (2011) Active fault tolerant control of discrete event systems using online

diagnostics. Automatica 47(4):639–649
Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on

Foundations of Computer Science. IEEE Computer Society Press, pp 46–57
Pnueli A, Rosner R (1989) On the synthesis of a reactive module. In: SIGPLAN-SIGACT. ACM, New York,

pp 179–190
Rabin MO (1972) Automata on infinite objects and church’s problem. American Mathematical Society,

Boston
Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control

Optim 25:206–230
Ramadge PJ (1989a) Some tractable supervisory control problems for discrete-event systems modeled by

büchi automata. IEEE Trans Autom Control 34:10–19

Discrete Event Dynamic Systems (2020) 30:81–124122

https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1109/TAC.2016.2570748

Ramadge PJ, Wonham WM (1989b) Modular control of discrete event systems Maths. of Control. Signals
Syst 1:1:13–30

Rudie K, Wonham WM (1992) Think globally, act locally: decentralized supervisory control. IEEE Trans
Autom Control 37:11:1692–1708

Safra S (1988) On the complexity of omega-automata. In: FOCS’88, pp 319–327
Schmidt K, Moor T, Perk S (2008) Nonblocking hierarchical control of decentralized discrete event systems.

IEEE Trans Autom Control 53(10):2252–2265
Schmuck A-K, Moor T, Majumdar R (2018) On the relation between reactive synthesis and supervisory

control for input/output behaviours. WODES
Thistle JG (1995) On control of systems modelled as deterministic rabin automata. Discret Event Dyn Syst

5(4):357–381
Thistle JG, Wonham WM (1992) Control of omega-automata, church’s problem, and the emptiness problem

for tree omega-automata. Proceedings of the 5th Workshop on Computer Science Logic, pp 367–382
Thistle JG, Wonham WM (1994a) Supervision of infinite behavior of discrete event systems. SIAM J Control

Optim 32:1098–1113
Thistle JG, Wonham WM (1994b) Control of infinite behavior of finite automata. SIAM J Control Optim

32:1075–1097
Thistle JG, Lamouchi HM (2009) Effective control synthesis for partially observed discrete-event systems.

SIAM J Control Optim 48:1858–1887
Thomas W (1990) Automata on infinite objects. In Handbook of Theoretical Computer Science (Vol. B).

MIT Press, pp 133–191
Thomas W (1995) On the synthesis of strategies in infinite games. In: STACS’95 Munich, Germany, pp 1–13
Vardi MY, Wolper P (1986) Automata-theoretic techniques for modal logics of programs. J Comput Syst Sci

32:183–221
Wen Q, Kumar R, Huang J, Liu H (2008) A framework for fault-tolerant control for discrete event systems.

IEEE Trans Autom Control 53:1839–1849
Willems JC (1991) Paradigms and puzzles in the theory of dynamic systems. IEEE Trans Autom Control

36:258–294
Wong KC, Wonham WM (1996) Hierarchical control of discrete-event systems. Discret Event Dyn Syst

Theory Appl 6(3):241–273
Yin X, Lafortune S (2016) Synthesis of maximally permissive supervisors for partially-observed discrete-

event systems. IEEE Trans Automat Contr 61(5):1239–1254
Yin X, Lafortune S (2017) Synthesis of maximally-permissive supervisors for the range control problem.

IEEE Trans Autom Control 62(8):3914–3929
Zhang R, Cai K (2018) Supervisor localization of discrete-event systems with infinite behavior. WODES, pp

361–366
Zhong H, Wonham WM (1990) On the consistency of hierarchical supervision in discrete-event systems.

IEEE Trans Autom Control 35:1125–1134
Zielonka W (1998) Infinite games on finitely coloured graphs with applications to automata on infinite trees.

Theor Comput Sci 200(1-2):135–183

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Anne-Kathrin Schmuck received the Dipl.-Ing. (M.Sc) degree in
engineering cybernetics from OvGU Magdeburg, Germany, in 2009
and the Dr.-Ing. (Ph.D.) degree in electrical engineering from TU
Berlin, Germany, in 2015. She is currently a postdoctoral researcher
at the MPI-SWS in Kaiserslautern, Germany. From 2010 to 2015 she
was a research assistant in the Control Systems Group at TU Berlin,
Germany. Her current research interests include abstraction based
controller synthesis, reactive synthesis, supervisory control theory
and hierarchical control.

Discrete Event Dynamic Systems (2020) 30:81–124 123

Thomas Moor received his PhD degree (Dr.-Ing.) in 1999 from the
University of the Federal Armed Forces Hamburg. From 2000 to 2003
he was a research fellow with the Research School of Information
Sciences and Engineering at the Australian National University. Since
2003, he holds a professorship at the Lehrstuhl für Regelungstech-
nik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
His research interests include the control of discrete-event systems
and hybrid systems, hierarchical and/or modular control systems,
control system abstraction and fault-tolerant control. He is maintainer
and principle developer of the discrete-event systems software library
libFAUDES, with a particular focus on supervisory control in an
industrial application context.

RupakMajumdar is a Scientific Director at the Max Planck Institute
for Software Systems. His research interests are in the verification
and control of reactive, real-time, hybrid, and probabilistic sys-
tems, software verification and programming languages, logic, and
automata theory. He received the B.Tech. degree in Computer Sci-
ence from the Indian Institute of Technology at Kanpur and the Ph.D.
degree in Computer Science from the University of California at
Berkeley.

Affiliations

Anne-Kathrin Schmuck1 ·Thomas Moor2 ·Rupak Majumdar1

Thomas Moor
lrt@fau.de

Rupak Majumdar
rupak@mpi-sws.org

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg,

Nürnberg, Germany

Discrete Event Dynamic Systems (2020) 30:81–124124

http://orcid.org/0000-0003-2801-639X
mailto: lrt@fau.de
mailto: rupak@mpi-sws.org

	On the relation between reactive synthesis and supervisory control of non-terminating processes
	Abstract
	Introduction
	Scope
	Contribution
	Related work
	Outline

	Preliminaries
	Formal languages
	Automata
	Accepted languages
	Two-player games
	Fixpoint calculus

	Reactive synthesis
	Reactive modules
	Problem statement (RS)
	Algorithmic solution

	Supervisory control
	Supervisors
	Problem statement (SCT)
	Algorithmic solution

	Comparison
	Reactive synthesis via supervisory control
	Step (i)
	Step (ii)
	Result

	Supervisory control via reactive synthesis
	Control-patterns as system outputs
	Step (i)
	Step (ii)
	Result
	Equivalence of problem statements

	Input-output behaviours
	Step (i)
	Step (ii)
	Result

	Non-falsifiable assumptions and strong non-anticipation
	Non-falsifiable assumptions in reactive synthesis
	Strong non-anticipation in supervisory control
	Comparison
	Result

	Conclusion
	Appendix A
	A behavioural characterisations of the respective problem statements
	B Reactive synthesis via supervisory control
	C Supervisory control via reactive synthesis – control-patterns as outputs
	D Supervisory control via reactive synthesis – input-output behaviours
	Non-falsifiable assumptions and strong non-anticipation
	References
	Affiliations

