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Abstract In this contribution we present an approach to formulate and solve certain
scheduling tasks for hybrid systems using timed discrete event control methods.
To demonstrate our approach, we consider a cyclically operated plant with parallel
reactors using common resources and a continuous output. For this class of systems,
we show how to pose the control problem within a discrete event framework
by modelling system components as multirate timed automata. We propose a
supervisory control strategy incorporating off-line optimisation to assure safety and
nonconflicting use of resources. These properties have to be achieved in the presence
of a class of bounded errors/disturbances and can be verified by applying formal
methods.

Keywords Multirate timed automata · Scheduling · Parallel production lines ·
Hybrid systems · Verification · Discrete event control

1 Introduction

Coordinating the interaction of components is an essential task in the control of
chemical production processes, particularly with regard to parallelised processes.
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In this context, scheduling problems aiming at the non-conflicting use of limited
resources are of crucial importance. In chemical industry, batch processes are often
connected to continuous processes by material supply and frequently the tasks of
continuous flow control and the nonconflicting use of resources cannot be decom-
posed. In these cases the hybrid character of the plant cannot be neglected.

We present an approach to a scheduling problem guaranteeing the nonconflict-
ing use of resources and safety despite disturbances using discrete event control
methods. The approach combines standard off-line scheduling methods for batch
processing and discrete event supervisory control which results in a flexible schedul-
ing strategy for a class of cyclically operated plants.

In this contribution, we propose a control approach for a “parallelised” production
line with resource constraints and continuous output. The system consists of an
arbitrary number of parallel batch reactors sharing an arbitrary number of resources,
e.g., reactants, hot steam or cool water. The reactors are discharged into a shared
storage tank or another continuously processed production unit that has a continuous
outflow which must not be interrupted. For this hybrid system, the goal is to assure
nonconflicting work of the reactors and to prevent over- and underfilling of the tank
in the presence of disturbances. Such a plant has been proposed as a case study within
the EU Network of Excellence HYCON (Simeonova et al. 2005).

Solving the described problem in a monolithic way by the use of standard
optimisation-based scheduling methods (Méndez et al. 2006; Schilling and Pantelides
1999) is hardly tractable for various reasons. Some constraints on the operation
sequence require a continuous time formulation of events and most approaches
cannot deal with this; an exception is Wu and Ierapetritou (2004). Cyclically oper-
ated plants may be very sensitive to disturbances, thus, frequent computationally
expensive rescheduling is necessary in a standard framework. The major limiting
factors in the applicability of standard scheduling methods are the constraints on the
storage tank and its continuous outflow. Hence, material flow has to be considered
additionally, and this makes the problem a hybrid one. Taking into account all these
constraints, the described scheduling task results in a highly complex optimisation
problem. To overcome these difficulties, we propose a method that combines off-line
scheduling and discrete event supervisory control in a hierarchical way. The feedback
structure increases robustness under uncertainties, and hierarchical decomposition
can remarkably reduce the complexity of the problem.

The potential of discrete event methods for scheduling problems has been demon-
strated in Abdeddaïm et al. (2006), Abdeddaïm and Maler (2001), Panek et al. (2006),
Niebert and Yovine (2000), where timed automata have been used for modelling
and solving job-shop scheduling problems by verification-based methods. Scheduling
strategies in the presence of uncertainties have been proposed in Abdeddaïm et al.
(2006). In contrast to these publications, we consider cyclically operated plants and
additionally take continuous flows between the plant components into account. For
the modelling of scheduling tasks in combination with continuous output flow control
we use multirate timed automata.

To combine off-line optimisation and discrete event control, we formulate the
requirement of nonconflicting use of resources by timed automata, where free
parameters can be optimised off-line with respect to a given cost function. The
resulting automata can be composed with other supervisor automata to enforce



Discrete Event Dyn Syst (2008) 18:241–262 243

the overall specifications. In this way, we can exploit feedback capabilities to avoid
undesired behaviours and can use efficient off-line scheduling methods.

Describing scheduling problems in a timed automata framework is very intuitive.
All system components including the resources can be considered as subsystems
which can be easily described by timed automata and subsequently composed to
form the overall problem. A major advantage of using timed automata methods for
modelling is that controllers can be represented in the same formal framework. This
facilitates the use of formal methods, which, in contrast to heuristic methods, can
guarantee desired properties. Standard tools and methods for verification of timed
automata are available and can be modified for multirate timed automata.

This contribution is an extended version of the conference paper (Gromov et al.
2006) and is structured as follows: in Section 2, we give a formal description of the
overall problem. Multirate timed automata are introduced in Section 3. In Section 4,
the modelling of the system components is described. In Section 5, we propose
control strategies to ensure safety and a non-conflicting performance. In Section 6, we
discuss verification techniques for problems described by multirate timed automata.
Finally, in Section 7, we apply our approach to the HYCON benchmark described in
Simeonova et al. (2005).

2 Problem statement

Figure 1 presents a schematic view of the chemical plant considered in the sequel.
The system consists of n parallel batch reactors with k common resources, e.g., reac-

Fig. 1 A parallelised
production line with resource
constraints
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tants, cold/hot water supplies and pumps. The reactors of volume V are discharged
into one tank that acts as an output buffer and has the continuous output flow Fout,t.
Only one reactor can be discharged at any instant of time. The volumetric flow Fout,r

during the discharging of a reactor is fixed, the output flow of the tank Fout,t can
be adjusted within a given range. In each reactor the same process is performed.
The goal is to assure the nonconflicting use of resources and to keep the level of
the tank volume between given values vmax and vmin. We assume that vmax > V.
Furthermore, due to technological restrictions, the tank outflow once started may
not be interrupted.

A production cycle in the j-th reactor consists of a set of operations: Oj =
{oij}, i = 1 . . . m, e.g., “heating,” “cooling,” “reaction,” “discharging” and so on. The
temporal ordering of these operations is fixed and given by the index i. We assume
that there is efficient control of each operation, e.g. temperature control during the
operation “heating.” Thus, operations can be characterised by their processing times
dij. We will also consider varying processing times of operations for which an upper
and lower bound is known: dij ∈ [d∗

i − d i; d∗
i + di]. These deviations in processing

times may be caused by disturbances.
There are a set of resources R and sets of “resource-sensitive” operations O′

j ⊂
O j, j = 1, . . . , n. A map r j : O′

j → R associates a resource to each operation oij ∈ O′
j

for reactor j. Here we assume that these maps are bijective, i.e. resources are used
only once within the production cycle of a reactor.

Due to technological or safety requirements adjacent (in the temporal order) op-
erations must sometimes be processed without delay. These operations are grouped
into tasks Kl

j = {ol
μj}, l = 1, 2 . . . ; p μ = 1, 2, . . . , where different tasks are disjoint,

i.e. Kl1
j ∩ Kl2

j = ∅, for all l1 	= l2. By requiring that each operation belongs to a task,
we have

⋃

l
Kl

j = O j. We further require that each task contains at least one resource-

sensitive operation. This implies that an “isolated” operation also forms a task if it
is resource-sensitive. Otherwise, it can be joined with the neighbour task. The index
μ describes the temporal ordering of operations within the task. Note that there is
a fixed relation between the temporal position of an operation within the task and
within the overall sequence of operations in the reactor. Each operation within a task

corresponds to an operation in the reactor cycle, ol
μj 
→ oij where i =

l−1∑

q=1
|Kq

j | + μ.

The goal of the control system to be designed is to assure cyclicity of the entire
plant, i.e. safety requirements and the nonconflicting use of resources have to be
guaranteed to avoid a shut-down of the plant. This has to be achieved in the presence
of disturbances characterised by varying operation durations. Furthermore, in the
nominal case of fixed durations, the plant output has to be maximised, i.e. the control
system has to minimise the cycle duration. In the presence of disturbances, the cycle
duration has to be minimised for a worst case scenario. Note that the worst case is a
priori unknown.

The above assumptions can be relaxed without affecting our approach, but this
would further complicate notation. For example, the approach can be generalised
and adapted to other plant structures, e.g. plants with several tanks with continuous
outflows, reactors processing different sequences of operations, and multiple use of
resources within a reactor cycle.
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3 Multirate timed automata

Timed automata (Alur and Dill 1994) are finite automata augmented with a fi-
nite set of continuous clocks whose values grow uniformly. Clocks can be reset
independently of each other at certain transitions. Transitions and locations can
be equipped with clock constraints representing continuous time information. To
model our problem adequately we need an extended class of timed automata, namely
multirate timed automata (Alur et al. 2000). In contrast to timed automata, clock rates
are not fixed, but may change when transitions occur.

Multirate timed automata are a special case of piece-wise linear hybrid systems,
where the continuous dynamics are modelled by affine differential equations in
each location, e.g. Sontag (1996). In the context of our scheduling problem, the
approximation of material flow between plant components by integrators with
switched integration constants is sufficient. Therefore, multirate timed automata are
the simplest adequate class of models where formal methods can be applied and
analytical solutions can be obtained.

Multirate timed automata are formalised in the following definition.

Definition 1 A multirate timed automaton is a tuple A = (L, l0, �, X, x0, I, E, c, λ),
where

• L is a finite set of locations,
• l0 ∈ L is the initial location,
• � is a finite set of events,
• X is a finite set of clocks. A clock valuation for the set X is a real vector x ∈ R

|X|
where xi is the value of the i-th element of X.

• x0 is the initial clock value.
• I is a map that associates a clock constraint in �(x) to each location, i.e.

I : L → �(x), I(l) is called an invariant of l.
• E ⊆ L × � × �(x) × L is a set of transitions, where transition e = (l, σ, φ, l′)

is a directed arc between locations l and l′ characterised by an event σ and a
guard φ.

• c : L → Q
|X| is a function that defines the rates of change of all clocks in each

location. Thus, the dynamics of the clock variable xi in location l can be described
by a simple differential equation ẋi = ci(l) = const. If ci(l) is equal to 1 for all
indices l and i, we recover the case of pure timed automata.

• λ : E → 2X associates to each transition a set of clocks to be reset to zero.
[λ(e) 
→ 0]x denotes the vector of the clock values after the reset related to
transition e, i.e. clock xi is reset if and only if the respective clock belongs
to λ(e).

Clock values are used to check whether a clock constraint is satisfied. Clock
constraints �(x) are defined over x with φ ∈ � expressed in the following way:

φ(x) = φ1(x1) ∧ φ2(x2) ∧ . . .

φi(xi) : = k1i ≥ xi ∨ xi ≥ k2i ∨ k1i ≤ xi ≤ k2i
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k1i, k2i ∈ Q ∪ {−∞,∞} are constants. This is to be interpreted as follows: the value
of xi is required to be either ≤ k1i or ≥ k2i or between k1i and k2i. This means that
each clock constraint can be represented as a union of inequalities. Sometimes it is
more convenient to consider a symbolic clock constraint as a set of clock values that
satisfies some constraint φ. In this case we write φ(X ) ⊂ R

|X|.
Note that a transition may be equipped with clock constraints which are inter-

preted as enabling or guard conditions. Clock constraints attached to locations can
be interpreted as invariants.

We assume throughout this paper that the multirate timed automata are well
posed regarding the reset function of clocks. This means that the set of clock values
after each transition must agree with the invariant of the successor location:

Definition 2 A multirate timed automaton is said to be well posed if for
each transition e = (l, σ, φ, l′) ∈ E the vector of clock values after the transition
satisfies I(l′):

[λ(e) 
→ 0]x ∈ I(l′)(X ).

A state of a multirate timed automaton is a pair (l, x), where l and x are the
current location and the clock value, respectively. To describe the dynamics of a
multirate timed automaton, transition rules which form a so called transition system
are introduced. We have to distinguish two possible scenarios: the evolution of time
while staying in a location and the switching from one location to another.

Definition 3 A transition system of a well posed multirate timed automaton consists
of two kinds of transitions:

1. Continuous transitions

(l, x)
τ−→ (l, x + τc(l)), τ ∈ R+ if x ∈ I(l)(X ) and x + τc(l) ∈ I(l)(X );

2. Discrete transitions

(l, x)
e−→ (l′, x′), e = (l, σ, φ, l′) ∈ E if x satisfies φ, and x′ = [λ(e) 
→ 0]x.

In the present paper, we describe the behaviour of the overall system in a modular
way by several automata. To express the overall system behaviour by parallel
composition, we use the standard definition of the product of timed automata (Alur
and Dill 1994) extended to multirate timed automata.

Definition 4 Let A1 = (L1, l01, �1, X1, x01, I1, E1, c1, λ1) and A2 = (L2, l02, �2, X2,

x01, I2, E2, c2, λ2) be two timed automata. Assume that the clock sets X1 and X2 and
the location sets L1 and L2 are disjoint. Then, the product, denoted by A1||A2, is the
timed automaton (L, l0, �, X, x0, I, E, c, λ), where L = L1 × L2, l0 = (l01, l02), � =
�1 ∪ �2, X = X1 ∪ X2 and x0 = (x01, x02). The functions I, c, λ and the transition
structure E are defined as follows:

1. I(l1, l2) = I1(l1) ∧ I2(l2)

2. c : L1 × L2 → Q
|X1|+|X2| with c(l1, l2) =

(
c1(l1)

c2(l2)

)
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Fig. 2 Example automaton.
The transition from location l2
to l3 must take place at the first
possible time instant.
Switching between location
l1 and l2 can take place for
2 ≤ x1 ≤ 4

3. a. σ ∈ �1 ∩ �2.
e = ((l1, l2), σ, φ, (l′1, l′2)) ∈ E ⇐⇒ (l1, σ, φ1, l′1) ∈ E1 and (l2, σ, φ2, l′2) ∈ E2,
φ = φ1 ∧ φ2.
Then λ(e) = λ1(e1) ∪ λ2(e2).

b. σ ∈ �1 \ �2.
e = ((l1, l2), σ, φ, (l′1, l2)) ∈ E ⇐⇒ (l1, σ, φ1, l′1) ∈ E1, φ = φ1.
Then λ(e) = λ1(e1).

c. σ ∈ �2 \ �1.
e = ((l1, l2), σ, φ, (l1, l′2)) ∈ E ⇐⇒ (l2, σ, φ2, l′2) ∈ E2, φ = φ2.
Then λ(e) = λ2(e2).

We further introduce a set �∗ ⊂ � of forced events. Transitions labelled by forced
events are called forced transitions, and they must occur at the first possible time
instant, i.e. as soon as the clocks satisfy the guard φ. This time instant is not known
in all locations due to varying clock values at the previous switching time.

The example automaton in Fig. 2 illustrates the use of forced transitions. In our
modelling process, we want to switch from location l2 to location l3 at the first possible
time instant. The switching time from location l1 to l2 can vary in the interval [2; 4]
and not all clocks are reset to zero. In Fig. 3 the trajectories of clock values x1 and
x2 are shown. The guard set can be reached at different time instants. By assigning
σ ∗

2 ∈ �∗, we force the transition to switch at the earliest possible time.

4 Timed automaton model of the plant

In this section we use multirate timed automata for the modelling of the chemical
plant by assigning one automaton to each plant component. The modelling is

Fig. 3 Possible trajectories in
location l2 of the example
automaton. The guard set can
be reached at different time
instants
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straightforward and common practice. Nevertheless, the modelling procedure is
briefly described for the sake of completeness, especially as we also apply forced
transitions to reflect our problem properly. The plant consists of reactors, resources
and an output tank. Reactors can be modelled by pure timed automata, i.e. clock
rates do not change. In the output tank model the clock value represents the liquid
level in the tank. Its rate can change depending on the in- and outflow, and a multirate
timed automaton is used for modelling. Resources can be in use or not and are
described by simple finite automata. Note that both standard untimed and timed
automata can be interpreted as special cases of multirate timed automata. Hence,
the product is well defined, and the behaviour of the entire plant can be modelled by
the product of all automata resulting in a multirate timed automaton. In the following
we explain the models of all types of components in detail.

4.1 Reactors

The first step is the modelling of the reactors using timed automata. Since the
operation sequence is identical in each reactor, they can be described in a uniform
way, as shown in Fig. 4.

The operations processed in each reactor are represented by the locations woij and
oij, which mean “wait before i-th operation starts in reactor j” and “i-th operation
is active in reactor j.” The events Stoij and Eoij denote start and end of the i-th
operation in the j-th reactor, respectively. Fig. 4 is to be interpreted as follows: in
location oij, the progress of time is measured by a clock modelled by ẋ j = 1, and the
clock is reset to zero when the transition from woij to oij takes place, i.e. when event
Stoij occurs. We are only allowed to stay in the location oij if x j ≤ (d∗

i + di) holds
(invariant). The event Eoij may only occur if x j ≥ (d∗

i − di) holds (guard). Hence,
the transition between location oij to location wo(i+1) j has to happen when (d∗

i − di) ≤
x j ≤ (d∗

i + di). The switching can take place at an arbitrary time instant within this
interval, so that all possible disturbances are included in the model. In location
woij, there are two possibilities: either invariant and guard of the outgoing transition
enforce an immediate switch to the next location (an example for this case is location
wo2 j in Fig. 4), or invariant and guard allow an arbitrarily long stay within the loca-
tion (an example for this case is location wo3 j in Fig. 4). If a woij-location is of the for-

Fig. 4 A timed automaton model of reactor j
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Busy BusyIdle Idle

Fig. 5 A finite automaton modelling the availability of resource i

mer type, o(i−1) j and oij must be processed without any delay in between and belong
to the same task (this is illustrated by the dashed box in Fig. 4). For the latter type of
location we want transitions to take place at the first possible time instant. Hence,
transitions are interpreted as forced in sense of Section 3 and are denoted by ∗.
Forced events always start a task.

The last operation, denoted by Dj, is the discharging of reactor j. Note that
the operation “discharging” always represents a task since the output tank can be
interpreted as an external resource.

4.2 Resources

The next step is to model the restrictions on the availability of resources. The
simplest way is to build a finite automaton for each resource Ri, i = 1, . . . k, and the
corresponding resource sensitive operations r−1

j (Ri) ∈ O′
j, j = 1, . . . , n as shown in

Fig. 5. The depicted timed automaton represents a simple rule: a resource sensitive
operation can be simultaneously carried out in one reactor only. Whether event Stoi·
is forced or not depends on the reactor model.

To enforce uniqueness of the solution, a sequence of reactors is predetermined,
and the temporal order corresponds to the indices of the reactors. As all reactors are
equal, this does not restrict generality.

4.3 Output tank

Another element of the plant is the output tank. Its timed automaton model is
presented in Fig. 6. The transitions StD∗ and ED denote “start discharging” and
“discharging is finished.” The clock variable v models the amount of liquid in the
tank. We assume that the initial value v0 is greater than vmin. Here, v has two different
rates, a = Fout,r − Fout,t > 0 when the output valve is open and one reactor is being
discharged and b = −Fout,t when no reactor is being discharged while the output
valve is still open, where Fout,r is the volumetric rate of the flow from any reactor j to
the tank during discharging and Fout,t is the volumetric rate of the output flow of the
tank. The outlet valve of the tank is only opened when the first discharging operation
starts and, as part of requirements, must not be closed thereafter. If v becomes too
small or too large, the automaton goes to one of the locations modelling a forbidden
situation, overfilling or underfilling.
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Fig. 6 A multirate timed
automaton modelling the
output tank

5 Control synthesis

In the controlled system, resources must be allocated in a nonconflicting way. In
addition, we have safety specifications, the locations overfilling and underfilling must
be rendered unreachable.

In the following we present control strategies to enforce the specifications. The
approach combines feedforward scheduling strategies with hierarchical discrete
event feedback methods, which makes the overall scheduling problem less complex
and more robust. Note that by adding a formal verification step, we can provide
a formal guarantee for the safety specifications to hold, even if the actual design
process contains some heuristics (for the safety aspect).

The modular modelling framework allows us to apply a two-layer controller
structure (Fig. 7). We first synthesise a controller which, by appropriate scheduling
of reactor operations, guarantees nonconflicting resource allocation. This design step
incorporates off-line optimisation in on-line discrete event control. Other on-line
strategies can be added to solve further subproblems. E.g., in a second step, we design
a controller for the output tank to guarantee safety.

Fig. 7 Two-layer controller
structure

output
tank

resource
availability

reactors

scheduling of reactor operations

scheduled plant

output flow control

plant model
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5.1 Scheduling of reactor operations

The goal of the scheduling subproblem is to generate a nonblocking interaction of
reactor models (Fig. 4) and resource availability models (Fig. 5) for all possible
variations in operation durations. We further want to minimise the duration tc
between two discharging operations in the same reactor. For the case of varying
operation durations, tc has to be minimised for the worst case, i.e. we want to
minimise the maximal duration tc,max.

It is obvious that, in the uncontrolled case, the synchronous product of the n
reactor models (Fig. 4) and the k resource availability models (Fig. 5) may give rise to
blocking. This can happen in the following way: a resource, say Ri, is being allocated
by an operation oij in reactor j. At the same time, an operation o(i−1)( j−1) is finished
in reactor ( j − 1) and the succeeding operation oi( j−1) belonging to the same task
as o(i−1)( j−1) attempts to allocate Ri. In this situation, oi( j−1) must start immediately
after o(i−1)( j−1) has finished. This is clearly not possible as the corresponding resource
is still being used by reactor j.

It is intuitively possible to prevent blocking by appropriately delaying the starting
times of tasks in the individual reactors. To determine the minimal necessary delays,
we solve the corresponding scheduling problem in an off-line fashion and represent
the result as timed automata which, when composed with reactor and resource
automata, prevent blocking.

First, we give an algebraic formulation of the scheduling problem. We formulate
all constraints to achieve a non-conflicting use of resources and meet the process
requirements. Operations have to be processed until completion which gives a
relation between start times sij and finish times fij of operations oij:

f (ρ)

ij = s(ρ)

ij + d(ρ)

ij , i = 1, . . . , m, j = 1, . . . , n, ∀ρ ∈ N, (1)

where index ρ denotes the cycle number. Operations must be performed in a given
sequence denoted by index i. The i-th operation must be completed before the
(i + 1)-th operation in the same reactor can start:

s(ρ)

(i+1) j ≥ f (ρ)

ij , i = 1, . . . , m − 1, j = 1, . . . , n, (2)

s(ρ+1)

1 j ≥ f (ρ)

mj , j = 1, . . . , n, ∀ρ ∈ N. (3)

We further must take task constraints into account, namely time delays between
operations within a task must not occur:

sl(ρ)

(μ+1) j = f l(ρ)

μj , l = 1, . . . , p, j = 1, . . . , n, μ = 1, . . . |Kl
j| − 1, ∀ρ ∈ N, (4)

where the index l denotes the task and μ the temporal position of an operation within
a task. Without loss of generality, we fix a reactor sequence to reduce degrees of
freedom:

sl(ρ)

1( j+1) ≥ sl(ρ)

1 j , j = 1, . . . , n − 1, l = 1, . . . p, ∀ρ ∈ N, (5)

sl(ρ+1)

11 ≥ sl(ρ)

1n , l = 1, . . . , p, ∀ρ ∈ N. (6)
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The following resource constraints exclude overlapping of two operations in different
reactors using the same resource Ri:

s(ρ)

i( j+1) ≥ f (ρ)

ij , j = 1, . . . , n − 1, i = 1, . . . , m, ∀oij ∈ O′
j, oi( j+1) ∈ O′

j+1, (7)

s(ρ+1)

i1 ≥ f (ρ)

in , i = 1, . . . , m, ∀oi1 ∈ O′
1, oin ∈ O′

n, ∀ρ ∈ N. (8)

This algebraic problem description corresponds to the timed automata repre-
sentation set up previously. In particular, constraints 1 to 4 represent the “reactor
automata” (Fig. 4) and constraints 5 to 8 the “resource automata” (Fig. 5). The
equivalence can be shown by listing the temporal restrictions implied by the logical
structure of the automata and their invariants and guards.

The inequality system 1 to 8 has to be solved for all possible variations of operation
durations while minimising tc,max. In this inequality system, the start times sl

1 j of tasks
l are the only free parameters. We express the relation between these start times in
different reactors by parameters wl : sl

1 j = sl
1( j−1) + wl, j = 2, . . . , n.

For fixed processing times, the duration between two discharging operations in
the same reactor can be calculated by:

tc =

⎧
⎪⎪⎨

⎪⎪⎩

n max
l

wl, for
m∑

i=1
d∗

i < n max
l

wl

m∑

i=1
d∗

i , otherwise.

(9)

Note that the minimum of tc is bounded from below by
m∑

i=1
d∗

i . If all parameters wl are

minimal, tc is the minimal solution of the scheduling problem. Parameters wl have
to be minimised such that constraints 1 to 8 are satisfied. From the Gantt charts in
Fig. 8, it can be seen that minimal wl are achieved if for each l ∈ {1, . . . , p}

min
μ:ol

μj∈O′
j

(
sl
μ( j+1) − f l

μj

)
= 0 (10)

holds, where sl
μ1 = sl

11 +
μ−1∑

k=1
dl

k1, f l
μ1 = sl

μ1 + dl
μ1, sl

μj = sl
1( j−1) + wl +

μ−1∑

k=1
dl

kj, j > 1.

sl
μj and f l

μj denote the start and end times of operation ol
μj; its duration is dl

μj.

Fig. 8 Gantt chart of task Kl
j in reactor j and task Kl

( j+1)
in reactor j + 1 for fixed processing

durations
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In the nominal case, the duration of each operation is known and fixed for all
reactors: dl

μj = dl
μ. Thus, the solution of the optimisation problem is wl = max

μ
dl

μ.

This is illustrated by the Gantt charts in Fig. 8. There, operation ol
μj is a resource

sensitive operation which satisfies condition 10. The start sl
μ( j+1) of the same task in

the subsequently used reactor is delayed by wl such that condition 10 holds. Hence,
the first operation of a task is not allowed to start until the resource availability for
all resource sensitive operations in the same task can be guaranteed. It can be seen
that the resulting wl are indeed minimal subject to constraints 1 to 8.

The situation becomes more complicated if the processing durations are only
known imprecisely, i.e., dl

μj ∈ [d∗
i − d i; d∗

i + di], where the relation between i and μ

is explained in Section 2. Condition 10 then takes the form

min
μ:ol

μj∈O′
j

d l
μj,d

l
μ( j+1)∈[d∗

i −d i;d∗
i +di]

(
sl
μ( j+1) − f l

μj

)
= 0. (11)

Thus, wl is calculated in a worst-case fashion and is therefore conservative. In Fig. 9
the Gantt charts are depicted for this worst case situation. In reactor j, the processing
durations are smaller than in the nominal case while in reactor ( j + 1) operations last
longer. This results in a larger wl than in the nominal case.

Hence, the solution of the scheduling problem is the computation of delays wl .
Delaying task l by wl guarantees nonblocking while, in the nominal case, ensuring
time-optimal solutions. The insertion of delays can be easily translated into the
timed automata modelling framework. This is done by defining p timed automata,
one for each task l, l = 1, . . . , p, as shown in Fig. 10. Note that events Stol∗

1 j in

Fig. 10 correspond to events Sto∗
ij in the “reactor automata” if i =

l−1∑

q=1
|Kq

j | + 1

(compare Section 2). When forming the product between these automata and the
plant model, i.e. the “reactor automata” and the “resource automata,” the start of
tasks in subsequently used reactors is suitably delayed.

Fig. 9 Gantt charts of task Kl
j in reactor j and task Kl

( j+1)
in reactor ( j + 1) for imprecisely known

processing durations
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Fig. 10 A timed automaton modelling the control of starting times of task l in reactors 1 to n

5.2 Output flow control

The process under low-level control (denoted as “scheduled plant” in Fig. 7) is
represented by the synchronous product of the reactor models (Fig. 4), the resource
availability models (Fig. 5), the task control automata (Fig. 10) and the tank model
(Fig. 6). As we have previously determined suitable delays wl , in this step only
nonconflicting resource allocation schemes are possible. The remaining problem is
to find an outputflow rate Fout,t for the storage tank that ensures that the locations
underfilling and overfilling are not reached. Recall that the outflow from the tank,
once started, may not be interrupted.

For the case where all processing times are known we set

Fout,t = nV
tc

,

where V is the volume of one reactor and tc is the cycle time (see Section 5.1).
Clearly, this is the maximal possible outflow rate and any larger value would cause
underfilling at some instant of time. This choice of output flow may cause overfilling
in some cases. To prevent this, one needs an additional degree of freedom. One
possibility is to introduce additional waiting times for the discharging of the reactors.
We force reactors to delay discharging if the amount of liquid v in the output tank
is above a certain threshold v∗ (vmin < v∗ < vmax) to prevent overfilling. If the liquid
level is below this threshold, the start of discharging of reactors is enabled. If the
threshold is set to the maximal possible level, v∗ = vmax − V, the added waiting times
do not effect the cycle time tc in the case of fixed processing times and under the
assumption of vmax − V > vmin.

This results in a modified multirate timed automaton modelling the controlled
output tank (Fig. 11). Using the verification algorithm in Section 6, it may be shown
that underfilling and overfilling is avoided.

For the case of unknown operation durations, over- and underfilling of the output
tank can be avoided in a similar way. To avoid overfilling, a waiting location can
be introduced as described above (Fig. 11). The outflow of the output tank can be
initially set to

Fout,t = nV
tc,max

,

where tc,max is the maximal cycle duration, i.e. the maximal time between two
discharging operations by the same reactor. tc,max can be obtained by applying
verification procedures to the product of reactor models (Fig. 4), resource availability
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Fig. 11 A modified timed
automaton modelling the
output tank when overfilling is
prevented by an additional
waiting location

models (Fig. 5) and task control automata (Fig. 10). Applying the verification
algorithm presented in Section 6 we check whether underfilling can be reached.
If yes, Fout,t can be reduced iteratively. For highly uncertain processing times the
simultaneous avoidance of under- and overfilling may not be possible with a constant
outflow rate.

An alternative is to discretise the allowed range of the tank outflow Fout,t and
switch the output rate on-line between several values Fout,ti, Fout,ti < Fout,t(i+1), i =
1, 2, . . . q, where the outflow rate Fout,ti is applied if the liquid level v is between
thresholds vi−1 and vi (v0 < v1 < . . . < vq−1 < vq), with v0 = vmin and vq = vmax. As
in the method above, verification is required. If verification fails outflow rates or
thresholds need to be adapted iteratively.

A modified output tank model with two different outflow rates is presented in
Fig. 12.

We have proposed strategies for the output tank control. Other algorithms e.g.
the combination of waiting locations with switched outflow rates, can be modelled in
a similar way as multirate timed automata. We have seen that even the rather simple

Fig. 12 A timed automaton modelling the controlled output tank with two different outflow rates
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methods presented in this section require verification results. Hence, we focus on
verification in the next section.

6 Verification

Our control approach in Section 5.2 contains some heuristics. Therefore, in particular
for large systems, it is essential to verify safety of the overall control system
behaviour. For more complex system structures than considered in the present
paper, it might be necessary to integrate verification into an iterative controller
synthesis procedure. In this section, we present an algorithm for safety verification
of multirate timed automata. We show how to extend symbolic methods for “pure”
timed automata to multirate timed automata. We also address some computational
issues to achieve a tractable problem and improve efficiency.

All possible temporal evolutions of (l, x) must meet a given safety requirement.
The safety requirement is connected to a reachability problem, i.e. forbidden states
must not be reached. In our system the locations underfilling and overfilling of the
output tank automaton are forbidden.

One of the most important questions in the analysis of timed automata (and, in
general, of all hybrid systems) is the reachability of a given state or a set of states.
We give a formal definition of reachability, introduce some symbolic operations and
propose an algorithm for reachability verification. The following definition is adapted
from Alur et al. (1995):

Definition 5 For a (multirate) timed automaton A with initial state (l0, x0), the state
(l f , x f ) is reachable if there exists a sequence of discrete transitions e1, e2, . . . and
durations τ1, τ2 . . . such that

(l0, x0)
τ1−→ (l0, x̃0)

e1−→ (l1, x1)
τ2−→ . . . −→ (l f , x f ). (12)

Moreover, given a constraint φ ∈ �(x), we say that the configuration (l f , φ) is
reachable if there exists a sequence of transitions and durations such that Eq. 12
holds for some x f satisfying φ.

Numerical methods for reachability verification of timed automata are described
in Pettersson (1999), Bengtsson and Yi (2004), Bozga et al. (1998) and symbolic
methods are presented, for instance, in Asarin et al. (1995). Symbolic methods are
based on the partitioning of the state space of a timed automaton into symbolic
states which are represented by clock zones or regions. In the following we show
how to extend the symbolic framework to multirate timed automata and propose an
algorithm for solving the reachability problem. Particular attention is paid to forced
transitions.

A zone is a generalisation of a state of a (multirate) timed automaton. A zone D
is defined as a pair (lD, SD), where SD is a set of clock values, such that each x ∈ SD

satisfies the constraint I(lD). Zone D is said to be regular if SD is bounded and can
be represented as a set of clock constraints

SD = {x|Ax ≤ b , A ∈ Q
n×k, b ∈ Q

n, k = |X|}.
A lifting operation is introduced as a generalisation of a continuous transition (see

Def. 3).
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Definition 6 A lifting operation S↑
D(τ ) is defined as

S↑
D(τ ) = {x̃ | x̃ = x + τc(l), (l, x) ∈ D} ∩ I(l)(X ).

Furthermore, it can be generalised to an untimed lifting operation S↑
D =

∞⋃

τ=0
S↑

D(τ ).

Based on this, one can define a generalised (symbolic) transition relation
Bengtsson and Yi (2004).

Definition 7 The symbolic transition relation, denoted by �, is defined by the
following rule:

(l, S) � (l′, [λ(e) 
→ 0](S↑ ∩ φ(X ))), if ∃e = (l, σ, φ, l′) ∈ E \ E∗.

In our case, the above transition relation must be extended by a new transition rule
for forced transitions e ∈ E∗. A forced transition must take place as soon as clocks
satisfy the guard φ. Thus, the corresponding transition rule can be defined as

(l, S)
∗� (l′, [λ(e) 
→ 0](S↑ ∩ φ(X ))), if ∃e = (l, σ, φ, l′) ∈ E∗,

where φ(X ) is a part of the boundary φ(X ) characterised by φ(X ) = {x ∈ φ(X )|xi ≤
x̃i∀x̃ ∈ φ(X ) for at least one i}.

Inspired by Bengtsson and Yi (2004), the algorithm below checks whether the
given automaton can reach zone (l f , S f ) starting from (l0, S0).

Algorithm Reachability analysis.

New := {l0, S0}, Checked := ∅
While New 	= ∅

Next := ∅
For each (l, S) ∈ New

For each l′ ∈ Post(l)
If (l, σ, φ, l′) ∈ E\E∗

(l′, S′) = (l′, [λ(e) 
→ 0](S↑ ∩ φ(X )))

Else
(l′, S′) = (l′, [λ(e) 
→ 0](S↑ ∩ φ(X )))

End If
Next := Next

⋃
(l′, S′)

End For
End For
If Next ∩ (l f , S f ) 	= ∅

Type ("zone (l f , S f ) is reachable")
Stop

End If
Checked := Checked

⋃
(Next \New)

New := Next \Checked
End While
Type ("zone (l f , S f ) is not reachable")
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The computational details are out of the scope of this paper. Nevertheless, a few
short remarks seem appropriate.

There are only few operations that need to be performed cyclically during the
reachability computation. First, we need to compute the result of the untimed lifting
operation S↑

D and find - if it exists - its intersection with the guard φ(X ). This
can be done using the quantifier elimination algorithm (see Anai and Weispfennig
2001 and references within). As a result of quantifier elimination one gets a set
of equations that describes all possible clock values that can be reached via the
respective transition. Obviously, an empty set means that this transition cannot take
place and, therefore, the successor location cannot be reached via this transition.

For a discussion of implementation issues of the remaining set-theoretic opera-
tions we refer to Avis et al. (2002), Halbwachs et al. (1994), Halbwachs et al. (2006),
Goodman and O’Rourke (1997).

Obviously, multirate timed automata form a subclass of piecewise linear hybrid
systems. Therefore, in principle, methods and tools for this class of systems could be
applied. However, regarding computational efficiency, it seems wise to exploit the
additional structure embodied in multirate timed automata.

7 Example

We now consider a specific example described in detail in Simeonova et al. (2005).
The plant consists of two reactors. In each reactor the following sequence of
operations is performed: filling (d∗

1 = 0.17 h), heating (d∗
2 = 0.45 h), maintaining

temperature (d∗
3 = 3.44 h), cooling (d∗

4 = 0.92 h) and discharging (d∗
5 = 0.17 h). The

operations filling, heating and cooling are resource-sensitive. The set of operations
has been partitioned into three tasks: K1

j ={filling}, K2
j ={heating, maintaining temper-

ature, cooling} and K3
j ={discharging}, j = 1, 2. The time for heating is only known

imprecisely: d2 ∈ [d∗
2 − d2, d∗

2 + d2] where d2 = d2 = 0.13 h. The volumes of both
reactors are 27 m3. The minimal and maximal volume of liquid in the tank is vmin = 0
and vmax = 50 m3, respectively.

We applied the method presented in the previous sections to obtain a solution that
allocates resources in a nonconflicting way, performs a worst-case minimisation of
cycle duration and guarantees safety for all possible variations of parameters. Using
the first method from Section 5.2, the maximal admissible constant tank outflow is

j=1

j=2
0 1 2 3 4 5 6 7 8 9 10 11 12

T,h

Filling Heating
Maintaining
temperature

Cooling Discharging

Fig. 13 Resulting schedule for d2 j = d∗
2 + d2, j = 1, 2
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Fig. 14 Liquid volume in the
tank

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11

T, h

V, m3

Fout,t = 10.23 m3/h. The resulting schedule for the worst case d2 = d∗
2 + d2 is shown

in Fig. 13, the resulting change of the liquid volume in the tank is shown in Fig. 14.

8 Conclusions

In this contribution, we have investigated the use of multirate timed automata for
the scheduling and control of a class of parallel production lines taking material
flow into account. The aim is to allocate resources in a nonconflicting way while
minimising cycle durations, and to guarantee safety. We have addressed the case
when uncertainties regarding certain operating times are present. Although the
described approach contains heuristic elements in the design procedure, we can
guarantee safety. This is assured by using a standard verification procedure which
has been adapted to the case of multirate timed automata. We have applied this
procedure to a specific process which has been suggested as a benchmark problem
within the EU Network of excellence HYCON.

Our approach combines “classical” optimisation-based scheduling methods and
discrete-event methods. Since our approach was motivated by an application, it is
currently restricted to a particular type of problems. Future research may investigate
how this idea can be extended to more general problems using different types of
scheduling methods.
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