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Abstract

A large portion of the stream mining studies on classification rely on the availability of
true labels immediately after making predictions. This approach is well exemplified by
the test-then-train evaluation, where predictions immediately precede true label arrival.
However, in many real scenarios, labels arrive with non-negligible latency. This raises
the question of how to evaluate classifiers trained in such circumstances. This question
is of particular importance when stream mining models are expected to refine their
predictions between acquiring instance data and receiving its true label. In this work,
we propose a novel evaluation methodology for data streams when verification latency
takes place, namely continuous re-evaluation. It is applied to reference data streams
and it is used to differentiate between stream mining techniques in terms of their
ability to refine predictions based on newly arriving instances. Our study points out,
discusses and shows empirically the importance of considering the delay of instance
labels when evaluating classifiers for data streams.
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1 Introduction

The evaluation of stream mining algorithms in many cases relies on the test-then-train
or prequential approach (Gama and Rodrigues 2009), i.e., first an unlabelled instance
is used to generate model prediction; next, the model is provided with the label of the
instance to trigger possible model updates. This approach, while clear and uniform
over all stream instances, is not applicable when delayed labels are observed. In this
case, the time period between using the unlabelled instance data as a model input and
receiving the true label is non-negligible.

Since prequential evaluation does not match all stream mining settings, verification
latency (Ditzler et al. 2015) and stream mining methods focusing the delayed label
setting have been investigated (Kuncheva and Sanchez 2008; Masud et al. 2011; Souza
etal. 2015). Many of these works assume that the prediction for an instance of interest
is performed when the instance data arrives for the first time. However, in problems
such as delay prediction in transportation systems an extension of this approach can
be proposed aiming at iterative re-consideration of predictions already made. As an
example, when the objective is to predict whether a plane will arrive in time, the pre-
diction is made at departure time. However, such initial prediction can be refined in
the period preceding planned arrival based on the most recent situation at the desti-
nation airport. More formally, the on-line learning model that reflects the knowledge
of the process arising from the most recent labelled instances may be polled to get a
new prediction made for the data of the instance of interest. Such extension aiming at
generating additional predictions can be applied to both classification and regression
tasks.

The objective of such re-evaluation proposed in this study is to verify whether a
model can improve its prediction for the same instance data when polled for further
predictions before the true label arrives. The evaluation of such iterative predictions
provides additional insight into the way different stream mining techniques exploit
newly arriving labelled instances. We expect that some of the models may respond
during the entire period with the same predicted class for the same input instance,
while other models are going to update their predictions, either because they were
given access to other instances’ labels or in response to concept drift detection. In fact,
the evaluation process that we propose reveals the varied ability of the techniques to
refine their predictions under delayed label scenarios. This is achieved through both
numerical indicators and visual analysis that we outline in this work. A reference
task that illustrates our approach is the delay prediction performed with airlines data.
The objective is to investigate the ability of streaming classification models to refine
their delay prediction after flight departure and before its real arrival. Other model
evaluation methodologies rely on the first prediction only, while our extension consid-
ers intermediary predictions. We claim that our approach yields model performance
assessment better matching use cases where streaming classification models are used,
i.e., where the evolution of the models is desirable and predictions provided by these
models may evolve in turn.

In summary, the main contributions of this work are the following:

— We point out the need for a specific evaluation for delayed labelled streams;
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— We propose a novel evaluation method to be applied when verification latency
takes place, and provide an open source implementation of it! that can be used by
the community;

— We discuss the impact of delayed labels using synthetic and real world data streams
of flights’ delays and others;

— We present empirical experiments highlighting our evaluation procedures and the

traditional test-then-train procedure;

Finally, we discuss possible extensions to this work as well as an experiment with

a regression problem.

This work is organized as follows: we present in Sect. 2 relevant related work, and in
Sect. 3 the problem statement and its motivation. Sect. 4 presents the new methodology
proposed, and Sect. 5 shows a comprehensive evaluation, which is followed by Sect. 6
discussing the role of hyper-parameters of the evaluation procedure, alongside con-
siderations about the computational resources. Sect. 7 presents possible extensions to
our methodology with special attention on how it can be applied to regression. Finally,
the conclusions are presented in Sect. 8.

2 Related work

There are at least two major aspects to take into account when evaluating data stream
mining algorithms. The first aspect concerns “how” past predictions will influence
the current model learning performance estimation. The second aspect must take into
account “when” the ground truth values will become available for estimating the
learning performance.

The first aspect was thoroughly studied and there are already well established
methods to provide robust evaluations that consider the time when predictions were
obtained. These evaluation methods include: periodic holdout, test-then-train, pre-
quential (Gama and Rodrigues 2009) and cross-validated prequential (Bifet et al.
2015).

Periodic holdout evaluation interleaves training and testing using predefined win-
dows, such that one window of instances is used for training, the next window for
testing and so on. Test-then-train evaluation uses each instance first for testing
and then right after for training. Prequential evaluation is similar to test-then-train
except that prequential includes a fading factor (or windowed evaluation) (Gama and
Rodrigues 2009) to ‘forget’ old predictions performance. Finally, in cross-validated
prequential evaluation models are trained and tested in parallel on different folds of
data to better estimate its performance.

The second aspect, which concerns “when” labels are made available has not yet
been thoroughly explored. Until recently the majority of works assumed that instances
appear sequentially in fixed intervals, and that an instance’s ground truth is available
before the next instance arrives. This problem setting can be identified as the ‘immedi-

1 Available at https://github.com/mgrzenda/ContinuousReEvaluation. The implementation is an extension
of the Massive Online Analysis (MOA) framework.
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ate labelling setting’ (Gomes et al. 2017), and many algorithms (Domingos and Hulten
2000; Hulten et al. 2001) were developed focusing this setting.

Formally, we can define a data stream as a sequence of tuples Sy, Sy, ... which
includes two types of tuples i.e.

{(xk, D} if no true label is available yet

“ {(xk,yr)}  when a true label becomes available

Furthermore, x; denotes a feature vector xx € R" and yy a discrete class label (Ditzler
et al. 2015). Under the aforementioned assumption that an instance class label is
available before the next instance arrives, the stream can be defined as a sequence of
tuples {(Xx, D}, { Xk, Vi) } oA Xie+1, DAk, Ye+1)}, - - .. Since the true class label y; of
agiven instance {(Xy, ?)} is available before the next instance feature vector {(X¢+1, 7)}
arrives, {(Xx, yx)} can be used to update the learner performance and its internal model
without any delay.

The existence of non-negligible delay between the instance data generation and the
labels has been discussed on several works (Kuncheva and Sanchez 2008; Zliobaite
2010; Abdulsalam et al. 2010; Plasse and Adams 2016; Gomes et al. 2017), which we
briefly survey below.

Abdulsalam et al. (2010) discuss a streaming scenario where class labelling is
intermittent, such that blocks of labelled instances are interleaved with blocks of
unlabelled instances. Furthermore, the authors propose an algorithm that combines a
streaming random forest implementation with several components to adapt to concept
drifts and cope with multi-class problems. More importantly, the algorithm is designed
to decide whether the current model can be used for predictions, based on a threshold,
in situations where the number of labelled records is not sufficient to build or update it.

Gomes et al. (2017) present an approach to evaluate the classification performance
assuming a problem setting where the labels are not readily available. It was identified
as ‘delayed labelling setting” and its definition was quite simple: the learner is evaluated
based on its capacity to correctly predict an instance, which ground truth will only be
available a fixed number of time units latter. In Gomes et al. (2017), authors show that
useful information can be obtained when comparing the results for both the immediate
and the delayed labelling settings, using the same algorithms and datasets.

Plasse and Adams (2016) introduce a taxonomy to determine the delay mecha-
nism and magnitude, present real world applications where delayed labels occur (e.g.
credit scoring), notation for the delayed setting and how the set of delayed labels can
be used to pre-update the classifier. However, in Plasse and Adams (2016) no spe-
cific evaluation procedure was introduced when verification latency occurs. Kuncheva
and Sanchez (2008) present experiments focusing on different approaches to exploit
delayed labelled instances using IB2 and IB3, however, the evaluation of the results
followed the traditional holdout approach (i.e. 90% for training and 10% for testing).

Zliobaite (2010) presents an analytical view of the conditions that must be met
to allow concept drift detection in a delayed labelled setting. Three types of concept
drifts are analytically studied and two of them also empirically evaluated. Similar to
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Kuncheva and Sanchez (2008) the experiments focusing on classification performance
did not further explore the verification latency of the data.

In the current work we present a novel evaluation method that assumes labels will be
presented to the model with verification latency, i.e. delay. The goal is to better estimate
the learner capability to refine predictions by successively polling it for predictions
before the true label arrives. This approach degenerates to test-then-train when there
is no verification latency, but it is different from the delayed evaluation presented in
Gomes et al. (2017) when delay exists, as in our approach there is no fixed amount of
time units. Also, in the current work we take into account the intermediary predictions
(re-evaluation), while in Gomes et al. (2017) only the prediction obtained at the time
the instance data was first presented was used to update the learner performance.

3 Problem statement and justification

As discussed in Sect. 2, many stream classification studies assume that yj is available
after {(x¢, ?)} and immediately before the next unlabelled instance arrives. However,
when labels are available with some delay, between {(xx, ?)} and {(Xt, yx)}, other
labelled and unlabelled instances may arrive in the stream. Let us use the term time
to refer to the moment that an instance becomes available in the stream. Without the
loss of generality, let us assume that time is represented by a numeric timestamp for
real data streams and by an instance index for synthetic streams for which time notion
has not been defined. In line with these assumptions, let 7(S,) denote the time of
observing instance S, in the stream. Moreover, 1(S,) < t(Sp), a < b. The unlabelled
instance S, = {(x¢, ?)} appears in the stream before its labelled counterpart {(xx, yx)}.

S, can be used to obtain prediction )A/,tc(s“) from a model /, available at this stage of
the stream processing. Let #(S,) denote the time that the label of S, arrived, and
Aty = 1(S,) —1(S,), Aty > 0 the latency for {(Xg, yx)} to arrive in the stream. At this
stage, the loss between prediction 51,2(8”) and y, can be computed.

Importantly, the presence of delayed labels means that the stream potentially
includes sequences Sy = {(X¢, D}, ..., Sp = {(Xj, ¥}, ... Se = {Xk, )}, a <
b < c. Hence, between an unlabelled instance S, = {(Xx, ?)} and its labelled version
Se = {(Xx, yr)} other (possibly many) labelled instances {(x;, y;)} arrive. As a conse-
quence, it is possible that the models differ, i.e., h, 7#% hp # h.. In particular, perhaps
hq(Xx) # he(Xg),1.e., the prediction made for the same input data x; changes with time
as model s, changes and becomes model /.. Such evolving predictions are possible
when model & changes between the time of generating prediction 7(S,) and the time
of obtaining true label 7(S, ). Changes in the model are expected especially when con-
cept drift occurs, i.e., the posterior probability p;(y|x) shifts. However, such changes
are also expected in stationary conditions, for instance when a tree-based model is
gradually extended by adding new branches, which refines the tree predictions.

Let us illustrate the aforementioned problem setting with the flight delay prediction
task. Let the objective be to predict flight delay at a destination airport for individual
flights. Hence, flight features such as planned duration, destination, time of the day or
weather conditions at departure time can be placed in S, = {(x, ?)} to obtain delay
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Xk departure up to y « arrival

Input data i E i
Labels Q i G Q
h

Models = A .. & ‘{. .,{)' ‘(k'

time

Fig. 1 Illustration of the flight problem. From the time X is generated up to the time its corresponding
label yy is available the tree model h changes as new labelled instances (e.g., y;, y) are presented to it

prediction h, (X;) = 92(8“). Such prediction is made at the time of planned departure.

However, during the flight the prediction model is likely to evolve taking into account
recently observed delays of other flights. Moreover, the predictive features, such as
weather conditions may change. Hence, requests for new predictions from an evolving
model 4 are justified. We also show this example graphically on Fig. 1.

The aforementioned changes to model 4 and possible evolution of instance data
enable new, and possibly more accurate predictions provided by % in the period pre-
ceding the arrival of the delayed label. Not only, can initial prediction )AJIZO be acquired
at time typ = #(S,), but also a sequence of predictions )3,? , )7,? ...t < £(S,) can
be considered. Let us use the term continuous re-evaluation to refer to the process of
obtaining and evaluating such predictions. Moreover, let y; stand for the most recent
prediction, i.e. the most recent refinement of the initial prediction for {(xx, 7)} available
at time ¢.

In an ideal case, we expect the model to provide accurate predictions immediately,
or shortly, after the original instance data x : S; = {(x, ?)} was used to obtain the
initial prediction. Obviously, such model would be preferred to a model that provides
accurate predictions only shortly before true label arrives. In the case of flight data,
this would mean a preference for the models capable of producing more accurate
predictions shortly after the flight departure.

Therefore, we believe there is a need for both continuous re-evaluation and new
evaluation procedures taking into account possible multiple requests made to evolving
models to generate predictions for instance data between the time of knowing the
instance data and the time of receiving its ground truth. Such evaluation procedures
should extend existing procedures applied under both immediate and delayed label
settings. Moreover, they should help differentiate models and techniques in terms of the
ability of providing accurate response based on (if possible) limited volume of labelled
instances Sg; k > a following individual S, instances, for which no labels have arrived
yet. Furthermore, such extended evaluation should foster the development of novel
stream classification techniques by providing additional insight into the process of
model evolution.
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Fig.2 Mapping predictions into bins, B = 5 under fixed (a) and varied (b) label latency

4 New delayed evaluation methodology

The question arises as of how frequently to get new predictions for an instance of
interest awaiting its true label. Intuitively, we expect the unlabelled instance to be
used as an input for a prediction model more frequently when: (a) the period between
getting instance data for the first time and receiving delayed label is long, or (b) multiple
new labelled instances S, arrive before the ground truth label y; becomes available.
This is because numerous S,, instances may cause the evolution of the model / during
this period. Hence, let us propose continuous re-evaluation to be parameterised with
the number K of labelled instances {(x;, y;)} that have to appear in the stream between

two consecutive j),i’ , j/,t(’ + predictions made for the instance {(xg, ?)}. In other words,
a new prediction for {(xx, ?7)} will be made every K new labelled instances until true
label yy arrives.

The periods of waiting for the labels can be decomposed into subperiods to analyse
the changes in the performance measures before the labels arrive. In case all labels
arrive with the same latency, predictions made within same-length subperiods can
be analysed, as illustrated in Fig. 2a for B = 5 subperiods. In the analysed case of
At; = 50 in Fig. 2a, every subperiod would share the same length of % = 10 [mins].

Let us refer to every subperiod as a bin. Importantly, for some data streams true
labels arrive with varied latency. Still, bins of varied lengths can be identified in this
case, as shown in Fig. 2b. Furthermore, performance measures can be calculated for the
predictions made in each of the periods of individual bins, separately. Hence, by defin-
ing a number of bins, we can analyse how the values of performance measures change
between making initial predictions and receiving true labels also in the case of varied
label latencies. The label latency is always known when the true label arrives. Con-
sequently, the periods of individual bins can be calculated and performance measures
for individual bins can be updated, in turn. Before this happens all predictions made
for the instance have to be buffered. Once the true label arrives, individual buffered
predictions can be mapped to corresponding bins and the evaluation of performance
measures for every bin can be made.

The proposed continuous re-evaluation algorithm is summarised in Algorithm 1.
First, the algorithm checks whether an unlabelled instance, or a true label arrived.
In the former case of an instance awaiting its true label, the instance is placed in a
buffer L and the first prediction is made for it and placed in bin b = 0. When a true
label arrives, the prediction immediately preceding model updates is placed in a bin
B + 1. Next, performance measures are updated based on all the buffered predictions
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Input: S1, S, ... - datastream, K - the number of labelled instances triggering new prediction, B -
the number of bins, d ({ (51,', ti)}) —> Y - function converting possibly many predictions
made during a certain period into one prediction from the set ¥ denoting the set of possible
values of yi
Data: L - list of tuples ({(xx, ?)}, 1), where {(X, ?)} is an instance for which true label has not
arrived yet and / is the number of other labelled instanced received since 7 ({(xx, 7)}); P (k) -
the list of prediction tuples made for S; = {(x, ?)}, the list contains tuples (3, 7, b), where y
denotes prediction, 7 - the time of generating it and b - the bin it belongs to, respectively, while
b = —1 denotes a placeholder bin i.e. a bin containing periodical predictions until true label
Yk arrives i.e. until these predictions can be shuffled into proper bins b = 1, ..., B associated
with subperiods between #(S;) and 7(S;) ; E(b),b =0, ..., B + 1 - evaluators for individual
bins calculating performance measures, e.g. accuracy, h; - the prediction model trained with
labelled instances S s j=1,...,i—1,C(i), CL(i) - the number of calculated predictions
following initial prediction, after processing i instances for all and labelled instances,
respectively
begin
hy =¢;C(0)=0;CL{E) =0;
fori =1,...do
C)=C(-1);
/* New unlabelled instance arrived */
if Si = {(Xk, 7)} then
L.add({(x¢. )}, 1 = 0);
/* obtain first time prediction, add it to bin b=0 and
publish */
P(k).add(h; (x¢). 1(S;), b = O);
else
/* Si ={(Xk,yx)}, i.e. true label arrived */
/* obtain test-then-train prediction, add it to bin b=B+1
and publish */
P(k).add(h; (x¢), 1(S;), b = B + 1);
E(b =0, ..., B+ l)=updatePerformanceMeasures(P(k),yx,t(S;));
Cr(i)+ = card(P (k) : P(k).b = —1); L.remove(k);
for m € L do
if m % K =0 then
/* obtain periodical prediction, add it to
placeholder bin b= -1 and publish */
5057 = by mx):
Pm).add(5L 7, 1(Sp), b = —1);
C(1)=C(@i)+1;
end
m./=m./+1;
end
hi1=train(h;, {(Xg, ye)Ds
end
end
end

Algorithm 1: Continuous re-evaluation
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made for the instance. Furthermore, for every other instance m € L still awaiting
its true label, the number of other labelled instances received since ¢ (m) is checked.
Every K labelled instances a new prediction is made by the most recent model. In
this way possible updates to the model can be reflected in refined predictions, which
are immediately published and can be used in scenarios such as on-line monitoring
of industrial processes. Such periodic predictions are all placed in a placeholder bin
(b = —1) to be shuffled into proper bins once true label latency and bin length is
known. Last, but not least the model /; is updated.

The way performance measures are updated is particularly important. This is
achieved by updatePerformanceMeasures method, and takes as an input all
prediction tuples P (k) obtained for the instance of interest, the true label y; and the
time this true label arrived t(S;). The way performance measures can be calculated
based on prediction tuples is proposed below.

4.1 Performance indicators

Let us propose binned performance to be defined as an average performance of the
models available in bth bin between attaining instance data and receiving its true label,
where b = 0, ..., B + 1 stands for bin index. We propose that every labelled instance
contributes to binned performance with the same weight. The primary objective for
binned performance is to enable visualization of performance evolution under evolving
predictions. The performance can be defined through various indicators, including,
but not limited to accuracy and kappa statistic. The first bin, denoted by b = 0 stands
for the model performance observed at the time the instance data becomes available
for the first time. The last bin, denoted by b = B + 1 stands for test-then-train
performance. All the remaining bins are used to aggregate performance indicators of
evolving predictions for individual subperiods of the periods between #(S;) and 1(S;).
The way such aggregation is performed for individual instances and the entire data
stream is what we propose below.

Once true label becomes available, individual predictions can be linked to the appro-
priate bins. Let us observe that for 1 < b < B, the sequence of predictions U (S;, b)
available for instance S; = {(X¢, ?)} and period b includes all predictions for the
period of this bin. More precisely this means the prediction available at the beginning
of bin period, predictions made during this period and the prediction available at the
end of it. Formal definition of U (S;, b) is provided in “Appendix 1”.

In the case of flight data, these predictions would contain possibly changing pre-
dicted flight status displayed at the beginning of and during bin period. Hence, the set
of predictions made for S; and linked to bin b is as follows:

{(vi. ti) € P(k) : b; =0} b=0
R(S;i, D) = {{(i, i) € U(S;, b)} bell,...,B)
{(yi.ti)e P(k)y:b; =B+1} b=B+1

It follows from Algorithm 1 that R(S;, b) contains exactly one element for b € {0, B+
1} i.e. first time prediction and test-then-train prediction, respectively. In the case of
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periodic predictions, i.e., b € {1, ..., B}, card(R(S;, b)) > 1. The question arises
how to calculate performance indicators for individual bins, when it is possible that
multiple, possibly different predictions exist for one bin period and one instance. We
propose to handle such possibly diverse predictions in the same way the output of
probabilistic classifier, taking the form of a vector of probabilities, is mapped to a
single predicted class. Hence, we propose to determine a single averaged prediction
d(U(S;, b)). The way the averaged prediction is selected is defined by d() function,
which is a parameter of Algorithm 1. In the case of classification, we propose to use
a function selecting dominating prediction i.e. the prediction displayed during the
largest part of the bin period as an averaged prediction. Such prediction is defined as

follows: dp(U(S;, b)) = arg max, Z;‘ZS(U(Si’b))(tj —tj_1) : yj—1 = c. In other
words, we propose to determine the prediction that was announced for the longest
period of time during bin subperiod, i.e. the prediction with the highest probability.
In the case of airlines use case, the prediction would be the predicted delay status that
was displayed during the longest total period of time during bin period. It is worth
noting here that frequently multiple identical predictions contained in R(S;, b) will
be replaced with a single one.

Hence, for every instance and bin combination, one predicted label y is used to
calculate performance measures. For every bin b € {0, ..., B 4+ 1}, V(S;, b) denotes
the pair {(vk, Jx)} of true label and predicted label used to calculate performance
measures. In the case of bins b € {0, B + 1} a predicted label J; is the first time and
test-then-train prediction for S; instance, respectively. In the case of remaining bins
i.e. the bins representing periodic predictions, the predicted label i, which is used to
calculate performance measures is the averaged prediction for S; instance in b — th
subperiod. Formal definition of V (&;, b) is provided in “Appendix 1”.

Furthermore, let us also propose aggregate loss function A over a single bin b to be
applied to a sequence of tuples V(S;, b), ... V(S;, b), ... gradually produced for indi-
vidual labelled instances. In particular, Vi, j 1(S;) < (S ). Moreover, every labelled
instance contributes to performance evaluation of every bin. Since performance eval-
uation is not affected by varied number of predictions in bth sub-period for individual
instances, performance evolution is due to changes in the models, not due to the varied
sets of instances and their predictions used to calculate performance for different bins.
Furthermore, for B = 0, the formula resolves to performance assessment taking into
account only predictions made at the time of receiving unlabelled instance data for
the first time (b=0) and at the time preceding receiving true label (b = B + 1).

Finally, let us propose aggregate loss function to be defined as a function of bin

index: A(T,b) = A(V(Si,b),..., V(S;,b),...: 5.,S; € .Q(T)), where §2(T)
denotes a sequence of all labelled instances {(x, yx)} that arrived until time 7, i.e.
t{Xk, y0)) < T ,and b € {0, ..., B + 1}. The function provides numerical assess-

ment of the performance of evolving classification models as a function of discretised
proportion of time that elapsed between getting instance data and receiving their true
labels.

It is important to note that every V(S;, b) takes the form of one pair {(vk, %)}
Hence, for every bin index, performance assessment performed by A(T, b) is based
on the same sequence of true labels y; matched with J; predicted labels, which depend
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on b value. The predicted labels y; are: first time predictions (for b = 0), averaged
predictions (forb € {1, ..., B}i.e.forindividual subperiods between first time predic-
tion and true label arrival); and test-than-train predictions (for b = B + 1). Hence, this
approach is uniform for all these three cases. In particular, A(T', 0) provides aggregate
loss value for the first time predictions, A(T, B + 1) yields performance assessment
calculated for test-then-train mode, and A(T', b),b € {0, ..., B} provides aggregate
loss value for the predictions available in individual subperiods of the periods preced-
ing true label arrivals. Hence, the aggregate loss function A(7, b) can be considered
the generalisation of previously existing performance indicators used for delayed label
setting.

To calculate A(T, b), different loss functions can be applied. Without loss of gen-
erality, a zero-one loss function where the cost of misclassification &(y,, ¥,) = 0 if

Ya = Yq and 1 otherwise will be used throughout the rest of this study. In this case,
Zsig_q(r) EOkI0): Ok, Y=V (S;,b)
AT, b) = card($2(1))

5 Experimental analysis

In order to analyse the proposed performance indicators, we have used three synthetic
and three real streaming datasets. Furthermore, we have selected stream classifica-
tion methods illustrating both methods developed to address unique requirements of
stream mining, and methods successfully adapted to stream processing needs. The
first group of stream classification methods featured in the experiments was Hoeffd-
ing tree (HT) (Domingos and Hulten 2000), Hoeffding Adaptive Tree (HAT) (Bifet
and Gavalda 2009), and recently proposed Adaptive Random Forest (ARF) (Gomes
et al. 2017). Other methods included k Nearest Neighbours (kNN) and Naive Bayes
(NB). Finally, the baseline models No Change (NC) and Majority Class (MC) were
also used. Hence, methods typically used for comparison purposes in stream mining
studies and representing different groups of classification methods i.e., tree models,
distance-based models and probabilistic models, but also model ensembles were used
to analyse the proposed performance indicators.

HT is a traditional stream classification algorithm based on the Hoeffding Bound.
HT serves as the base for many stream classifiers, and ensemble methods, as it defines
how to grow trees incrementally. HAT is an extension of HT in which the drift detec-
tion algorithm ADaptive WINdow (ADWIN) (Bifet and Gavalda 2007) is used for
signalling changes, which triggers updates to the tree model. Adaptive Random Forest
is an adaptation of the original Random Forest (Breiman 2001) algorithm to stream-
ing data with the addition of drift detectors and a weighting function based on models
prediction performance. NB is based on the Bayes’ theorem and it is called ‘naive’ as
it assumes independence of the features. NB is straightforward to train incrementally
since it does not add structure to the model. kNN is the classic lazy learning approach
adapted to stream mining via a windowing approach, i.e. only the latest instances
(stored in the window) are used for predictions. NC always predicts the next label
as the latest ground-truth it had access to. This baseline model outperforms many
classifiers when the data stream exhibit temporal dependencies (Zliobaite et al. 2015).
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Finally, the MC baseline simply predicts the majority class. In our experiments, the
algorithms that are most likely to adapt faster are HAT and AREF, since both include
strategies for detecting and adapting to concept drifts.

We briefly discuss each dataset below and present the results, per dataset, in the
following subsections.

5.1 Reference data

Hyperplane We start with a synthetic generator often used to assess classification
algorithms (Gomes et al. 2017; Masud et al. 2011) simulating incremental concept
drifts. This generator is based on the hyperplane generator (Hulten et al. 2001). A
hyperplane is a flat, » — 1 dimensional subset of that space that divides it into two
disconnected parts. It is possible to change a hyperplane orientation and position by
slightly changing its relative size of the weights w;. This generator can be used to
simulate time-changing concepts, by varying the values of its weights as the stream
progresses. Formally, a hyperplane in a n-dimensional space is the set of points x that
satisfy Eq. 1 where x; is the i coordinate of x.

n
Zwixi = Wy (1)
i=1

In binary classification, instances where Z?:l w;ix; > wo are labelled positive, and
instances for which )"/, wix; < wy are labelled negative. This generator can be
used to simulate incremental concept drifts, by varying the values of its weights as the
stream progresses (Bifet et al. 2011b).

The Hyperplane data represents the case of streams missing the notion of time.
Therefore, first the time of every instance is set to instance index in this dataset. Next,
labels from original instances S, are removed and labelled instances S, are added at
t(Sp) = t(S,) + 100. Hence, for this data stream we set the latency of true label to
a fixed value. As a consequence the stream includes pairs S; = {(X¢, D}, ..., Sp =
{(Xks yi)}-

LED The LED data set simulates both abrupt and gradual drifts based on the LED
generator, early introduced in Breiman (2017). This generator yields instances with
24 boolean features, 17 of which are irrelevant. The remaining 7 features corresponds
to each segment of a seven-segment LED display. The goal is to predict the digit
displayed on the LED display, where each feature has a 10% chance of being inverted.
To simulate drifts in this data set the relevant features are swapped with irrelevant
features. Concretely, we parametrize 3 abrupt drifts each with an amplitude of 3.75k
up to 7.5k instances and centered at the 3.75k, 7.5k and 15k instance, respectively.
The first drift swaps 3 features, the second drift swaps 5 features, and the last one 7
features. Furthermore, the delay for LED was set to 1000 instances.

Agrawal The synthetic generator introduced in Agrawal et al. (1993), often referred to
as AGRAWAL, produces data streams with six nominal and three continuous attributes.
As commented in Bifet et al. (2011a), the synthetic data describes hypothetical loan
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applications. There are ten different functions? that map instances into two different
classes. It is possible to simulate concept drift by changing the function. For example,
the first function assign instances to class A according to age: age < 40 Vv age < 65;
while the seventh function uses the salary, commission and loan attributes to assign
instances to class A: (0.67 x (salary 4+ commission) — 0.2 x loan — 20000) > 0.
A perturbation factor is used to add noise to the data. This factor changes the original
value of an attribute by adding a deviation value to it, which is defined according to
a uniform random distribution. In our experiments with AGRAWAL, we simulate 4
gradual concept drifts. The size of the window of change for each drift was set to 400;
the amount of instances per concept was set to 2000; the functions (concepts) vary
from 1 to 5; the total amount of instances was set to 10, 000; and the delay was fixed
to 1000.

Airlines The airlines dataset comes from Data Expo 093 and contains flight depar-
ture and arrival records for all commercial flights within the USA. A part of this
dataset constrained to flights arriving to Atlanta International Airport (ATL) has been
used. Only departure and arrival events for flights not cancelled and not diverted were
included in our analysis. The objective is to predict whether a flight will arrive to
ATL before time, on time or delayed based on instance data describing the flight and
including features such as distance, planned departure and arrival time, origin airport
and carrier. We assume that the instance data becomes available at planned depar-
ture time. Moreover, delayed label becomes available at true arrival time. Hence, the
time between obtaining the instance data #(S;) and the time of receiving its true label
1(S;) = t(S;) + At; is the time between planned departure and true arrival. Not sur-
prisingly, the latency individual labels arrive with strongly varies. Approximately two
hours being the most frequent value, but some Af; values exceeding 13 hours. Before
true label of an instance arrives evolving predictions for the instance are expected to
be made. We expect temporal dependencies to occur in the data.

Electricity The Electricity dataset, made available by J. Gama?, contains class labels
annotating energy price changes (UP or DOWN). Further details on Electricity data can
be found inter alia in Bifet et al. (2013). Based on the raw Electricity data, we develop
a stream of instances reflecting frequent practice in power systems of performing 24-
hour-ahead prediction (Kuo et al. 2014; Srinivasan et al. 1995). More precisely, we
create out of the raw instances including features such as energy prices and demand,
a stream of instances each containing these features for 24 time periods of day d. The
objective is to predict the price change (UP or DOWN) during ith period of day d 4 2
i.e. at least 24 hours ahead. Hence, we assume that after the midnight starting day
d + 1, all instances containing day d data become available. Next, the true label which
arrives on the day d + 2 after i x 30 minutes contains actual price change observed on
the d + 2 day in the [(i — 1) x 30, i x 30] period, i = 1, ..., 48. Therefore, the delay
that every true label arrives with varies approximately between one and two days.
Forest cover type The forest cover type dataset (Blackard and Dean 1999) contains
581, 383 instances each of them representing one of 7 different forest cover types. The

2 See Bifet et al. (2011a) for the complete list of functions.
3 http://stat-computing.org/dataexpo/2009/.
4 http://www.inescporto.pt/~jgama/ales/ales_5.html.
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Fig.3 Prediction accuracy for individual bins (hyperplane data)

cover types are 30 x 30-meter cells obtained from the US Resource Information System
(RIS), which are represented by 10 numeric and 44 binary features. This dataset does
not contain a “natural” delay, therefore we simulated the delay using 1000 instances.

5.2 Experimental results

The primary objective of this section is to investigate the insights provided by the
evaluation measures proposed in this study. All experiments were performed in the
Massive Online Analysis (MOA) framework (Bifet et al. 2011b). For each dataset, the
results were produced by running Algorithm 1 varying the learning algorithm. Table 1
provides an overview of the results and characteristics of the datasets, including the
number of labelled instances |§2(7T)| after which binned performance is reported. In
all experiments, K = 10 was used to ensure a balance between the computational
cost of polling models for refined predictions and additional insight arising from
these predictions. Furthermore, B = 50 was applied to divide the periods between
receiving individual unlabelled instances and their delayed labels into 50 sub-periods
and produce smooth performance trends. How K and B values can be set, and their
impact on computational cost and binned performance visualization will be discussed
in Sect. 6.

5.2.1 Hyperplane data

Figure 3 depicts the binned accuracy Ap(7', b) for hyperplane data. It is worth noting
that Fig. 3 shows the results of the evaluation performed in the initial stage of stream
processing when the scale of concept drift is relatively large. Furthermore, Ap(T, b)
values for individual bins are provided in Table 1.

It follows from Fig. 3 and Table 1 that the most accurate initial predictions are
provided by NB, HT, HAT, and ARF. However, the accuracy of additional predictions
made periodically by NB, HT, HAT, kNN and ARF while waiting for the true label
grows over time, while the baseline models NC and MC maintain more stable results.
This improvement in accuracy is due to exploiting new labelled instances that reflect
incremental concept drift and provide a basis to move the decision border. The question
arises whether such almost linear accuracy improvement from Ap(7, 0), i.e., initial

@ Springer



Delayed labelling evaluation for data streams 1251

Table 1 Performance evaluation for different bins

Data |2(T)|xdim(x;) Ap(T,b) NB NC MC kNN HT HAT ARF
Hyperplane 250 x 2 b=0 75.60 49.60 5240 7320 75.60 7520  72.80
b=45 90.80 51.20 48.00 89.60  88.00 89.20  90.00
b=B +1 9240 4640 4680 92.80 91.60 91.20 92.40
Airlines 6227 x 10 b=0 47.53  39.68 4845 44.66 4559 4525 4747
b=45 48.92  40.13 4848 47.63 47.13  46.76 4834
b=B +1 4924 4252 4858 5033 4734 4692 4876
Electricity 44204 x 149 b=0 5344 4978 5751 6436 5693 5954  57.00
b=45 5333 5533 5751 59.68 56.13 5937 5442
b=B +1 5434 8537 5756 7158 6159 6499  68.27
Cover type 24500 x 54 b=0 61.09 3420 31.16 5275 5337 5351 5112
b=45 68.36 4328 38.13 71.02 6538 6724  69.42
b=B +1 7092 7051  39.62 7994 70.85 73.09  80.87
Agrawal 10000 x 9 b=0 5647  53.18 50.11 5439 56.80 56.07 53.29
b=45 60.51 5128 5211 5955 6460 6536 57.79
b=B +1 61.07 5195 5237 6035 6642  66.64 58.04
LED 20000 x 24 b=0 5374  9.75 10.58  56.66  59.56 59.13  56.17
b=45 5889 1059 1066  61.77 6553 6535 61.59

b=B +1 59.61 945 10.65 62.10 66.27 6598  62.13

Results for the best method for each bin and data set are shown in bold

prediction accuracy to test-the-train accuracy Ap(7, B + 1) takes place also for other
data sets.

5.2.2 Airlines data

The Airlines dataset depicts a realistic scenario where the labels are presented with
varied label latency, thus before discussing the results we elucidate the implications
of such configuration. As a consequence of major differences among Af; values,
the set of instances still waiting for their delayed labels after At is A¢-dependent.
Hence, it remains impossible to analyse the accuracy of individual stream classification
techniques over all instances as a function of time that elapsed since #(S;). In the
analysed case, time-based aggregate accuracy could be developed only for the period
of 19 mins, when all instances are awaiting their true labels. Once the analysis is
extended beyond this point, the set of instances over which any aggregate performance
indicators would need to be calculated would vary for individual points on time axis. As
a consequence, the aggregate performance changes could be caused by the changes in
instance set. As an example, class distribution can be different for instances with major
label latencies compared to short latency instances. Hence, under major differences
of label latency times, the accuracy defined as a function of A¢ can be misleading.
The accuracy trends observed in such cases may be caused by the changes in {S; :
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At; > At} rather than the ability of stream classification method to model the process
of interest.

Therefore, let us analyse binned accuracy Ap(T, b) for the airlines data set. Unlike
in time-based accuracy, in binned accuracy, the predictions made for all instances
contribute to every point in the accuracy trend plot. Figure 4 depicts binned accuracy
Ap(T, D) for the data set and a selection of stream classification methods previously
analysed in the case of hyperplane data.

Bin 51 is reserved for the prediction made in test-then-train mode, i.e., immediately
before getting the true label. It follows from the figure that kNN, followed by NB and
AREF, provide the highest accuracy then. However, in the context of flight delays, the
closer to the label arrival the less relevant the prediction is, i.e., if we accurately predict
that a flight will be delayed minutes before it lands it is less relevant than a model with
an average performance at the time the flight departs.

It can be observed that kNN, HT and HAT algorithms offer similar accuracy of
predictions made when instance data becomes available, i.e., for b=0. However, when
predictions preceding arrival of a true label are made, they can take into account most
recent labels of other instances. Moreover, some algorithms, such as kNN, which
operates on a sliding window of recent instances can exploit temporal dependencies
in the data (Zliobaite et al. 2015). In the case of airlines data, this means that some
techniques may identify periods of major delays and tune models to predict delays
more accurately. In particular, NB, kNN, and ARF, clearly benefit from the evolution
of the models based on most recent data. This is unlike MC, which yields the same
accuracy irrespective of whether prediction is made at the time of departure or shortly
before receiving true label. At the same time, Fig. 4 extends the comparison of test-
then-train accuracy by showing that HT, kNN and NB largely differ in their ability to
provide accuracy gains in the period between getting instance data and receiving its
true label.

5.2.3 Electricity data

Let us investigate the results of similar analysis for Electricity data. Figure 5 shows the
accuracy Ap(T, b) of the same set of methods on the electricity instances, described
above. Test-then-train results show that NC classifier yields largest accuracy, which
shows major temporal dependence in the data successfully exploited by NC which
simply predicts the next label to be the same as the last true label received. However,

Accuracy [%]

Delayed label bin index

Fig.4 Prediction accuracy for individual bins (airlines data)
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Fig.5 Prediction accuracy for individual bins (electricity data)

once the prediction under delayed label setting is an objective, it should be performed
within the period preceding true label arrival, not immediately before receiving it. The
binned accuracy trends shown in Fig. 5 reveal that it is kNN method that for b = 0
yields superior accuracy i.e. the accuracy higher than in the case of the remaining
methods. However, when predictions made in the periods [#(S;), 7(S;)] are considered,
kNN accuracy varies. In particular, it is lower than the accuracy of HAT during some
bins. This is caused by periodical changes in the electricity data that reflect time of the
day and week. Hence, a sliding window of recent instances that kNN relies on, may
contain instances reflecting similar conditions as the conditions for which prediction is
performed or not. Continuous re-evaluation answers the question whether additional
labelled data can be used by the learner to improve on its initial predictions or not.
kNN is an example of a technique that can both benefit from newer labelled instances
for some stream mining tasks (hyperplane data) or not (electricity data at some bins)
depending on to what extent these instances contribute to valid reasoning for the
instance of interest.

Finally, let us investigate which of the methods yields highest accuracy models. It
follows from Table 1 that the accuracy of the models and which of them offers the
best performance largely varies. Importantly, the best model in terms of its ability
to correctly predict the value of the feature of interest at the first time of receiving
it (b = 0) is not the same as the one consuming additional data possibly reflecting
concept drift and applied at » = B 4+ 1 = 51. Interestingly, it is the value of binned
accuracy in the intermediate period, here shown for b = 45 that reveals whether a
modelling technique provides improved prediction capabilities within non-negligibly
long period before true label becomes available or not.

Figure 6 presents the prediction accuracy throughout the execution for b = 0,
b = 25,b = 45 and b = 51, in particular, this plot serves the purpose of observing
some of the results depicted in Fig. 5 over time for KNN and HAT. We can observe
in Fig. 6 that the accuracy of both algorithms is at its best when observing them at
b =751.

5.2.4 Forest cover type data

Figure 7 presents the results of the continuous evaluation for forest cover type. At time
of the instance data generation, the most accurate model is NB, which is an interesting
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Fig.6 Prediction accuracy at different stages of stream processing (electricity data)
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Fig.7 Prediction accuracy for individual bins (forest cover type data)

result, especially as we observe that the more complex models, such as HAT and
AREF, can only outperform NB once we start considering the performance closer to
bin 40. In other words, these results indicate that a simple NB model would be the
most appropriate model if we are only interested in the quality of the first prediction.
Furthermore, ARF and kNN only obtain reasonably good results for b = B + 1, i.e.,
their accuracies rose as the bin index increase. In ARF, this might be due to how
the algorithm relies on having access to labelled instances immediately as its feature
drift detection method is most useful when the feedback (true labels) is immediately
available.

5.2.5 LED data

In Fig. 8 we can observe how the synthetic stream LED combined with latency make
the evolution of the models reasonably simple. Besides the baselines NC and MC,
every model shows an increase in accuracy as we focus the evaluation closer to bin
b = B+ 1. This evolution is not trivial in other synthetic streams, such as AGRAWAL.
It is interesting to observe how continuous assessment reveal this ‘simple’ evolution
characteristic in LED, something that would not be observable just evaluating at the
first prediction and test-then-train.

5.2.6 Agrawal data

Figure 9 shows how accuracy changes under periodic re-evaluation for Agrawal data
stream for which labels arrive with fixed latency of 500 instances. It can be observed
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Fig.8 Prediction accuracy for individual bins (LED data)
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Fig.9 Prediction accuracy for individual bins (Agrawal data)

that additional predictions made before true label arrives provide substantially increas-
ing accuracy. This is in spite of the complexity of the stream. Hence, additional
predictions can yield performance gains even under complicated streaming scenar-
i0s, involving multiple concept drift periods. In particular, Ap (7', 45) provided by HT
and HAT shows that the predictions available in the period preceding the arrival of
true labels are significantly more accurate than the best initial predictions. While the
use of continuous re-evaluation is not limited to improving initial predictions, it may
yield benefits also of this category even for complex concept drifting streams.

In Fig. 10 we can observe how HAT obtains the best performance in comparison to
itself and kNN when we the predictions taken into account are those closer the arrival of
the true class label (i.e., b = 45 and b = 51). However, we can also observe that KNN
starts improving in comparison to itself, e.g., in b = 45, while HAT only decreases in
accuracy after the first drift around instance 2000. This shows how complex accuracy
evolution for concept drifting data streams can be.

5.2.7 Discussion

In summary, in these experiments we observe two main aspects of continuous re-
evaluation. First, by evaluating intermediary predictions between the time of instance
being presented and its label arrival we can better observe the model classification
performance in these intermediary stages. Consistently, » = B + 1 (i.e. evaluating
only the latest prediction before the label arrivals) depicts optimistic accuracy results
comparing the same learner across b = 0 and b = 45 in all experiments, conversely
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Fig. 10 Prediction accuracy at different stages of stream processing (Agrawal data)

b = 0 (i.e. evaluating only with the first prediction made) can be too pessimistic.
The intermediary analysis given by b = 45 gives a clearer view of how the models
perform when pooled several times for predictions. Second, the experiments confirm
that additional predictions made with newer models may gradually provide higher
accuracy than initial predictions. However, the newer model may also turn out to be
less appropriate than the one existing at the time of initial predictions, which is shown
in the electricity case. Both airlines and electricity data sets show that no linear trend
in accuracy change between initial » = 0 and test-then-train b = B 4 1 predictions
can be assumed. This shows that periodic predictions and their continuous evaluation,
i.e. both components of continuous re-evaluation are needed. In this way, the method
providing potential accuracy improvement can be determined.

It is also interesting to note that a method operating with a sliding window i.e. KNN
typically provides higher accuracy shortly before true label arrives e.g. at b = 45
subperiod than at the time of making first prediction. However, Electricity data shows
that in case major changes such as periodic changes occur in the data, the accuracy
at b = 45 can also be substantially lower than at the time of first time prediction. In
other words, the content of instance buffer, which kNN relies on, may be less suitable
to derive true classification border e.g. at bin b = 45 i.e. shortly before true label
arrival than the content of the instance buffer available at the time of first prediction.
This shows that attempts to predict which group of stream mining methods is likely
to provide better predictions at different times between first time prediction and true
label arrival can be successful to some extent only.

These results show that additional insight into the way newer labelled instances
influence a model is provided. This may suggest adaptive techniques of selecting
instances for instance-based classifiers, going beyond sliding window technique,
which directly follows from the experiments with electricity data. In this way, con-
tinuous re-evaluation can be used to guide the development or tuning of classification
methods. Hence, also under scenarios where only initial predictions are used to trigger
immediate actions, e.g. to block suspicious network connections in intrusion detection
systems, the methods we propose can be used.

Furthermore, experiments with hyperplane data show potential accuracy improve-
ments, which occur in spite of limited number of labelled instances causing model
updates. This shows that continuous re-evaluation can be used to reveal for which
industrial use cases, initial predictions of events of interest, such as device failures,
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can be refined based on newly arriving labelled data. This includes the scenarios when
machine learning is used to predict whether a device will fail during the next main-
tenance period. More precisely, during this period, as defined in Algorithm 1 new
predictions are periodically published, which may change these previously made for a
device of interest. These new predictions can be based on the knowledge arising from
newly available labelled instances including failures of other devices in this period.
Since in some industrial settings labelled data is very limited, the ability to exploit the
benefits of on-line learning by updating first predictions with more accurate predictions
based on newly available labelled data is of particular interest.

Let us note that as defined in Sect. 3 we assume that we rely on the processing on
time feature, which is represented by a numeric timestamp (for real data streams) or by
an instance index (for synthetic streams). In particular, bin periods are calculated based
on the proportion of time between receiving instance data and receiving its true label.
Hence, continuous re-evaluation can be used for data streams, including synthetic
data streams, but also for time series data. In the latter case, any time series data
that amonyg its features include a timestamp and instance identifier can be used with
continuous re-evaluation. Importantly, assigning timestamps and unique identifiers is
a recommended industry practice for large volume realtime data systems (Marz and
Warren 2015). Out of the data used in this study, Electricity and Airlines data illustrate
the use of time series data with the evaluation method we propose and additional
insight into the performance of evolving models this method provides.

Last but not least, results for diverse data streams including airlines, electricity
and cover type show that during the period of waiting for true label, there can be no
single model that provides most accurate predictions in all bins. This shows that hybrid
methods, including the methods that switch between the use of different modelling
techniques such as kNN and Hoeffding trees can yield the best performance when
entire periods of waiting for true labels are concerned.

6 Analysis of hyper-parameters
6.1 Computational cost and memory consumption

Continuous re-evaluation relies on additional predictions, the frequency of which
depends on the value of hyper-parameter K. Hence, the question arises how frequently
these predictions should be made. First of all, let use observe that under online learn-
ing paradigm, every labelled instance is used to trigger potential model updates. For
some models, such as instance-based classifiers, such a change occurs every time new
labelled instance is used to update the model. Importantly, changes to a model may
occur because of concept drift or may be caused by incremental updates aiming at
improving the approximation of true decision borders in stationary cases. In general,
when no assumptions regarding the stationarity of the process are made and different
online learning methods are considered, generating new predictions every time new
true label arrives i.e. setting K = 1 could be considered. However, this could cause
major computational overhead.
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Fig. 11 The number of predictions made (a) and the number of predictions in memory buffer awaiting their
true labels (b)

Before we analyse the impact of K on the computational complexity of re-
evaluation, let us note that we will focus on the predictions made for b € {1, ..., B}.
This is because initial predictions (b = 0) and test-than-train predictions (b = B + 1)
are made under delayed labelling scenario, irrespective of whether continuous re-
evaluation is used or not. Furthermore, there is always exactly one prediction of each
of these two types for any labelled instance.

To analyse the number of predictions made, let us define the number of calcu-
lated predictions over a sliding window of 100 instances Nc(T') = ZiTzT—IOO C(i)
while C(7) is calculated in Algorithm 1. Furthermore, let L(7T) denote all instances
stored in memory buffer and awaiting their true labels at time 7', and let Ng(T) =
D ke L(T) card({P (k) : P(k).b = —1}) denote the number of additional predictions
made for these instances. Hence, Nc(T') shows the number of extra predictions trig-
gered by continuous re-evaluation, whereas Ng(7T') reveals memory allocation needs
of the method.

Figure 11 shows both resource use indicators for airlines data. It follows from the fig-
ure that the number of predictions stored is closely related to the number of predictions
made. Both indicators drop significantly at some periods, which is because of a signif-
icantly lower number of overnight flights, which reduces substantially card (L(T)).
Since Nc(T) and Ng(T) are influenced by card (L(T)), we propose Nr(T) = %((TT))‘
i.e. the average number of additional predictions per a labelled instance until time
T to be analysed. Figure 12 shows how Ngr(T') changes depending on K value. It
follows from the figure that Nr(T') is stable. For K = 10 on average approx. 10
additional predictions are made for every labelled instance. It is important to note
that the number of predictions made for labelled instance {(Xx, yx)} is no larger than
card ({Sp=((x; )}t (e D <1 (Sp) <t (70D })

K

. Hence, by calculating the average num-
ber of labelled instances that arrive between initial and test-then-train prediction is
made, we can estimate the number of additional predictions arising from K value
under consideration. In this way and through the plots such as Fig. 12, K value can
be set. In the analysed case of the airlines data K = 10 on average provides one new
prediction for approx. every 10% of the period of waiting for a true label, which can
be considered optimal. Importantly, all Nr(T') plots are very stable in spite of major
volatility of the number of instances arriving at different times of the day.
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Fig. 12 Computational cost. The average number of re-predictions per a labelled instance since the begin-
ning of the stream
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Fig. 13 The impact of the number of bins B on the calculation of performance indicators. Electricity data

6.2 Performance aggregation settings

The value of B parameter controls the number of bins, which are used to aggregate
model performance. It is important to note that how many predictions are made and
when is notdriven by B value. The role of B is to control the calculation of performance
indicators on the top of the same predictions and true labels.

To compare how different B values influence the aggregation process, let us define
standardised bin index as bs (b, B, N) = b %. In this way, performance indicators such
as accuracy or kappa attained for individual b = 1, ..., B can be referred to the same
range [1, N] of x axis, irrespective of B value. Figure 13 shows the role of various
B settings by presenting the accuracy Ap(T, b) for electricity data set. We selected
results for NC method to be shown in Fig. 13 as these results are particularly variable.
The figure includes data for » = 1, ..., B and skips the data of remaining two bins,
since bins b € {0, B + 1} contain the same values (for the same data stream and stream
mining method), irrespective of B value. As noted before, individual [b, Ap(T, b)]
points were mapped to [bs(b, B, N), Ap(T, b)]. Moreover, N = 100 was applied.
Not surprisingly, the higher B value, the more smooth accuracy trend is revealed as it
relies on a larger number of accuracy points, each representing binned performance.
B < 20 yields only coarse approximation of the performance evolution of a model
during the periods between individual unlabelled instances and their true labels arrive.

Furthermore, only a minor difference between B = 50 and B = 100 can be
observed in Fig. 13. This confirms that for continuous re-evaluation B € [50, 100] is
justified, as any B in this period provides precise estimation of the trends in the per-
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formance indicator changes. Moreover, under B = 50, every bin represents 2% of the
length of the periods [ ({(Xx, 7)}), t ({(Xk, yx)}], which provides precise estimation of
performance changes during such short sub-periods. This confirms that B € [50, 100]
can be applied to different stream mining settings.

7 Extensions of the base continuous evaluation

Let us observe that continuous evaluation defined in Algorithm 1 and discussed above
can be extended to other related stream mining tasks, some of which are outlined
below.

7.1 Regression tasks
7.1.1 The applicability of continuous evaluation

Continuous evaluation is applicable both to classification and regression tasks. In both
cases, delayed labels may result in verification latency. Hence, the accuracy of initial
predictions made at the time of observing an instance for the first time may differ
from the accuracy of test-then-train prediction also for regression tasks. Similarly, the
accuracy of predictions made in the periods preceding arrival of individual delayed
labels may change. Therefore, continuous evaluation can be used to reveal accuracy
evolution also for these regression tasks for which verification latency occurs.

The only change, which has to be applied to adapt Algorithm 1 to regression tasks is
to make it match continuous rather than discrete true and predicted labels. Furthermore,
other than dp() functions can be used to obtain averaged prediction. In the case of
regression tasks, we propose the use of weighted average to convert possibly many
predictions made during bin period into a single averaged prediction da (U (S;, b)).

More formally, da (U (S;, b)) = leli(fivbﬂ % b =1,...,B.In this way
predictions displayed over longer periods of time have a larger impact on averaged

prediction.

7.1.2 Sample results

As in the case of classification, all experiments described in this subsection were
performed with MOA framework (Bifet et al. 2011b). The results reported below
were produced by running Algorithm 1 every time with a different learning algorithm.
Bike sharing data was used for all experiments.

Bike sharing data The bike dataset (Fanaee-T and Gama 2013) includes 2 years (2011
and 2012) worth of a bike-sharing service from Washington D.C., USA. The goal
is to predict how many bikes in total will be rented in the next hour using weather
and temporal data (e.g., time of the day, the day of the week and so forth). Some
features from the original data were removed to avoid data leakage (e.g., “registered”
and “casual”), as their sum converges to the target variable (i.e., “cnt”). The delay for
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Table 2 Performance evaluation for different bins: regression task

Data |2(T)|xdim(x;) Ap(T,b) ORTO FIMTDD TMean AMRules ARFREG

Bike sharing 17379x 12 b=0 199.27 9321 132.30 86.27 60.69
b=45 22820  102.58 131.81 84.75 58.37
b=B +1 183.22  93.35 131.80 82.55 54.85

Results for the best method for each bin are shown in bold

250 =
200 = -~ ORTO
-~ FIMTDD

w
< 150 - = TMean
~ AMRULES
100 g N ittt e | ARFREG
50 5 i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 51

Delayed label bin index

Fig. 14 Mean absolute error for individual bins (bike sharing data)

bike sharing was set to one week, however, since there is no timestamp available in
the data we used a delay of 168 instances, which corresponds to 24 hours x 7 days.

Table 2 provides a summary of bike sharing data used for the experiments including
the number of labelled instances |§2(T)| after which binned performance is reported
below. This is combined with Mean Absolute Error (MAE) of the models developed
with each of the regression methods.

The regression methods used in the experiments include decision trees, rule-
based models, a random forest model, and a baseline model of Target Mean
(TMean). The first regression tree used is the Fast and Incremental Model Trees
(FIMTDD) (Ikonomovska et al. 2011a) algorithm, which grows the tree model simi-
larly to the Hoeffding Trees (Domingos and Hulten 2000) algorithm. FIMTDD also
includes a change detection scheme that periodically signals and adapts subbranches of
the tree where significant variance increases are observed. The second tree algorithm
used is ORTO (Ikonomovska et al. 2011b), which also grows trees incrementally as
instances arrive. Yet, ORTO also includes the notion of “option” nodes, which allow an
instance to follow all the branches available in a tree node. The Adaptive Model Rules
(AMRules) (Almeida et al. 2013) was designed to learn both ordered and unordered
rule sets from a data stream. AMRules associates each of its rules with a Page-Hinkley
drift detector to make it possible to detect and adapt to concept drifts by pruning the rule
set. Finally, Adaptive Random Forest for Regression (ARFReg) (Gomes et al. 2018)
is an ensemble method based on the ARF (Gomes et al. 2017) algorithm for classifi-
cation tasks. The main difference is that the base learner used in ARFReg is based on
the FIMTDD algorithm instead of Hoeffding Trees. As a consequence, when using
ARFReg, one can choose between using the external drift detection methods, as in
AREF, or relying on the internal drift detection methods within FIMTDD. Experiments
in Gomes et al. (2018) indicate that the latter is a more sustainable approach.
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Figure 14 presents the results per bin index for the Bike sharing dataset, where we
can observe that most of the learners produced better performance than the baseline
TMean, except for ORTO. Interestingly, there is not much variation in MAE as the bin
index varies, e.g., ARFReg outperforms all other methods for every bin. Moreover,
MAE for ARFREG is lower for test-then-train predictions (b = B + 1) than for first
time predictions (b = 0), which is in line with previously observed trend of the higher
accuracy of predictions made shortly before true label arrival.

7.2 Evolving instances

Let us observe that even though we assume x; in Algorithm 1 to be fixed, it may
be defined as xx(¢) i.e. it may change with time. In the case of the reference flight
delay prediction task we already assumed that S, = {(X¢, ?)} could include weather
conditions at departure time. It is natural to observe that every time new prediction
is made for S,, it could use xi(f) as an input i.e. evolving instance data rather than
static data available at the time of making first prediction 7(S,) for this instance. In
the case of flight prediction task, this could mean using weather conditions at the time
of making periodical prediction rather than weather conditions at departure time as a
part of input data for the classifier. Hence, in Algorithm 1 it is enough to use xj(¢)
as an input for /; () model when periodic and test-then-train predictions are made to
consider evolving values of input features rather than constant x; data.

Importantly, the changes in instance data could also cause changes in predictions.
Hence, a sequence of predictions made for an instance )7,’(' , f},’f, ...ty < 1(S,) could
contain different predictions not only because of the changes of 4 model, but also
because of the changes in instance data xy.

To sum up, by replacing x; with x;(¢), we can apply continuous re-evaluation
to these classification tasks in which instance data evolves between making initial
prediction and receiving true label.

7.3 Weighted binned performance

In some classification and regression tasks, it may be important to create a ranking
of different methods in terms of their ability to create and evolve models of high
accuracy. In such cases, based on individual performance indicators comprising on the
vectors of [A(T,0), A(T, 1), ..., A(T, B+ 1)], summary performance ¥ (7T) € R
can be developed. Furthermore, in some use cases, predictions made in different bins
can be of different importance. As an example, predictions made in test-then-train
mode may be considered not important in the evaluation or less important than initial
predictions.

Let us propose to apply weight vector w to aggregate performance indicators
calculated for individual bins. Furthermore, let us propose summary performance
W (T) to be a function of [A(T,0), A(T, 1), A(T, B + 1)] providing one sum-
mary assessment of the performance of stream mining method attained for individual
bins.
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In the simplest case, weighted average can be used to calculate summary perfor-
B+1
mance. More precisely, let us propose Yw(T) = %’j)wa. Let us observe that
b=0 Wb
by applying w = [1,0,...,0] summary performance will be equal to the perfor-

mance observed for first time predictions. Furthermore, w = [0, ..., 0, 1] yields
test-then-train performance, w = [1,0,...,0, 1] provides summary performance
equal to the average of first time and test-then-train method performance. Further-
more, w = [1,1,..., 1] gives equal weights to all binned performance indicators
A(T,b),b = 0,..., B+ 1. Importantly, w vector can be used to make summary
performance take into account only some of the predictions e.g. only the predictions
made in the second half of the period between making initial predictions and true label
arrival. In this way, unique needs of individual settings can be considered.
Moreover, growing including exponential weights can be assigned to predictions
made shortly before true label arrives. In this way methods providing particularly high
performance indicators then can receive higher summary performance values.

8 Conclusions

Many applications of stream mining require non-negligible latency that the true labels
arrive with to be taken into account. This results in the development of novel stream
mining techniques. In this study we concentrate on the evaluation of these techniques
both to select the best technique for a problem of interest and to foster the development
of new techniques through increased understanding of the impact of model evolution
on its accuracy in the period separating instance arrival and delayed label arrival.

Experiments were conducted with seven data sets widely used in research commu-
nity, which revealed that the investigation of first time and test-then-train performance
only, while important may not be sufficient to reveal the evolution of model prediction
performance. The evaluation procedure proposed in this study reveals the evolution of
performance and shows how the ranking of most accurate methods changes depend-
ing on varied abilities of the techniques to exploit temporal dependencies and new
evidence arriving before true label becomes available. Furthermore, our study reveals
that some of the evolving models when polled for further predictions before ultimate
true label arrives can gradually provide more accurate prediction for the same instance
data. This provides basis for further development of methods that can refine previously
made predictions. One limitation of our current evaluation method is that it does not
account for evolving class labels, i.e. once the true label arrives, performance indi-
cators are calculated and possible newer versions of this label are not considered.
This aspect can also be addressed when developing new stream mining methods and
extending continuous re-evaluation.

For future works, one of the objectives is the use of the proposed approach to analyse
the evaluation metrics evolution under evolving instances. In fact, the airlines data used
in this study provides an immediate use case for it by providing the data on departure
delays, which can be used to update initial schedule-based instance data and in this way
contribute to the prediction performance. Furthermore, it would be interesting to use
this evaluation procedure to assess the performance of semi-supervised techniques,
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as it can be used to verify how intermediary predictions are affected by leveraging
unlabelled instances. Moreover, hybrid methods exploiting the fact that no single
online learning method may yield the best performance during entire period before
true label arrival, can be developed.
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A Formal definitions

As observed in Sect. 4, once true label becomes available, individual predictions can
be linked to the appropriate bins. For every bin 1 < b < B the sequence of predictions
U (S;, b) available for this bin S; = {(x, ?)} and period b is as follows:

MR bt b—1
v = (yff{( CODHARTED (o D)) + Aty > ,
b—1 b
{(yi’ i) € P(k) s by = =L At({(xi, D)) + A——— < 1; < 1({(xe, D)) + Ark§>} ,
? b b
(ﬂ({m, W) L 4 AtkE)

Furthermore, V (S;, b) denoting the pair of true and predicted label for S; =
{(xx, 7)}, which is used to calculate performance measures is defined as follows:

{0k, 30} = Ik € R{(xk, D}, b).y b e {0, B+1}

V(Si,b) = AR
{0k, Y} 2 e =dU({(xx, D}, b)) befl, ..., B}
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