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Abstract
Time series classification is an increasing research topic due to the vast amount of
time series data that is being created over a wide variety of fields. The particularity
of the data makes it a challenging task and different approaches have been taken,
including the distance based approach. 1-NN has been a widely used method within
distance based time series classification due to its simplicity but still good performance.
However, its supremacy may be attributed to being able to use specific distances for
time series within the classification process and not to the classifier itself.With the aim
of exploiting these distances within more complex classifiers, new approaches have
arisen in the past few years that are competitive or which outperform the 1-NN based
approaches. In some cases, these new methods use the distance measure to transform
the series into feature vectors, bridging the gap between time series and traditional
classifiers. In other cases, the distances are employed to obtain a time series kernel
and enable the use of kernel methods for time series classification. One of the main
challenges is that a kernel function must be positive semi-definite, a matter that is also
addressed within this review. The presented review includes a taxonomy of all those
methods that aim to classify time series using a distance based approach, as well as a
discussion of the strengths and weaknesses of each method.
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1 Introduction

Time series data are being generated everyday in a wide range of application domains,
such as bioinformatics, financial fields, engineering, etc (Keogh and Kasetty 2002).
They represent a particular type of data due to their temporal nature; a time series is
an ordered sequence of observations of finite length which are usually taken through
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time, but may also be ordered with respect to another aspect, such as space. With
the growing amount of recorded data, the interest in researching this particular data
type has also increased, giving rise to a vast amount of new methods for represent-
ing, indexing, clustering, and classifying time series, among other tasks (Esling and
Agon 2012). This work focuses on time series classification (TSC), and in contrast
to traditional classification problems, where the order of the attributes of the input
objects is irrelevant, the challenge of TSC consists of dealing with temporally corre-
lated attributes, i.e., with input instances xi which are defined by complete ordered
sequences, thus, complete time series (Bagnall et al. 2017; Fu 2011).

Time series classification methods can be divided into three main categories (Xing
et al. 2010): feature based, model based, and distance based methods. In feature based
classification methods, the time series are transformed into feature vectors and then
classified by a conventional classifier such as a neural network or a decision tree.
Somemethods for feature extraction include spectral methods such as discrete Fourier
transform (DFT) (Faloutsos et al. 1994) or discrete wavelet transform (DWT), (Popi-
vanov andMiller 2002)where features of frequency domain are considered, or singular
value decomposition (SVD) (Korn et al. 1997), wsingular value decomposition (SVD)
(Korn et al. 1997), where eigenvalue analysis is carried out in order to reduce the set
of features while retaining the relevant information. On the other hand, model based
classification assumes that all time series in a class are generated by the same underly-
ing model, and thus a new series is assigned with the class of the model that best fits.
Some model based approaches are formed using auto-regressive models (Bagnall and
Janacek 2014; Corduas and Piccolo 2008) or hidden Markov models (Smyth 1997),
among others. Finally, distance based methods are those in which a (dis)similarity
measure between series is defined, and then these distances are introduced in some
manner within distance-based classification methods such as the k-nearest neighbour
classifier (k-NN) or Support Vector Machines (SVMs). This work focuses on this last
category: distance based classification of time series.

Until now, almost all research in distance based classification has been oriented to
defining different types of distance measures and then exploiting them within k-NN
classifiers. Due to the temporal (ordered) nature of the series, the high dimensionality,
the noise, and the possible different lengths of the series in the database, the definition
of a suitable distancemeasure is a key issue in distance based time series classification.
One of the ways to categorize time series distance measures is shown in Fig. 1; Lock-
step measures refer to those distances that compare the i th point of one series to the
i th point of another (e.g., Euclidean distance), while elastic measures aim to create a
non-linear mapping in order to align the series and allow comparison of one-to-many
points [e.g., Dynamic Time Warping (Berndt and Clifford 1994)]. These two types of
measures consider the important aspect to define the distance is the shape of the series,
but there are also structure based or edit based measures, among others (Esling and
Agon 2012). In this sense, different distance measures are able to capture different
types of dissimilarities, and, even if in theory there is a best distance for each case
(Li et al. 2004), in practice it is hard to find it. Nevertheless, the experimentation in
Esling and Agon (2012), Xing et al. (2010), Wang et al. (2013), Chen et al. (2013),
Ding et al. (2008), Lines and Bagnall (2015) and Xi et al. (2006) has shown that, on
average, the DTW distance seems to be particularly difficult to beat.
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Fig. 1 Mapping of Euclidean distance (lock-step measure) versus mapping of DTW distance (elastic mea-
sure) (Wang et al. 2013)

One of the simplest ways to exploit a distance measure within a classification pro-
cess is by employing k-NN classifiers. One could expect that a more complex classifier
would outperform the performance of the 1-NN and, as such, the bad performance of
these complex classifiers may be attributed to the inability of the classifiers to deal
with the temporal nature of the series using the default settings. On the other hand,
it is known that the underlying distance is crucial to the performance of the 1-NN
classifier (Tan et al. 2005) and, hence, the high accuracy of 1-NN classifiers may arise
from the efficiency of the time series distance measures—which take into consider-
ation the temporal nature—for classification. In this way, methods that exploit the
potential of these distances within more complex classifiers have emerged in the past
few years (Kate 2015; Jalalian and Chalup 2013; Marteau and Gibet 2014), achieving
performances that are competitive or outperform the classic 1-NN.

These new approaches aim to take advantage of the existing time series distances
to exploit them within more complex classifiers. We have differentiated between two
new ways of using distance measures in the literature: the first employs the distance to
obtain a new feature representation of the series (Kate 2015; Iwana et al. 2017; Hills
et al. 2014), i.e., a representation of the series as an order-free vector, while the second
uses the distance to obtain a kernel (Gudmundsson et al. 2008; Cuturi and Vert 2007;
Marteau and Gibet 2014), i.e., a similarity between the series that will then be used
within a kernel method. Both approaches have achieved competitive classification
results and, thus, different variants have arisen (Jeong and Jayaraman 2015; Zhang
et al. 2010; Lods et al. 2017). The purpose of this review is to present a taxonomy of
all those methods which are based on time series distances for classification. At the
same time, the strengths and shortcomings of each approach are discussed in order to
give a general overview of the current research directions in distance based time series
classification.

The rest of the paper is organized as follows: in Sect. 2 the taxonomy of the reviewed
methods is presented, as well as a brief description of the methods in each category. In
Sect. 4 a discussion on the approaches in the taxonomy is presented, where we draw
our conclusions and specify some future directions.

2 A taxonomy of distance based time series classification

As mentioned previously, the taxonomy we propose intends to include and categorize
all the distance based approaches for time series classification. A visual representation
of the taxonomy can be seen in Fig. 2. From themost general point of view, themethods
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Fig. 2 Avisual representation of the proposed taxonomyof distance based time series classificationmethods

can be divided into threemain categories: in the first one, the distances are used directly
in conjunctionwith k-NN classifiers; in the second one, the distances are used to obtain
a new representation of the series by transforming them into features vectors, while
in the third one, the distances are used to obtain kernels for time series.

2.1 k-Nearest Neighbour

This approach employs the existing time series distances within k-NN classifiers. In
particular, the 1-NN classifier has mostly been used in time series classification due to
its simplicity and competitive performance (Ding et al. 2008; Lines et al. 2012). Given
a distancemeasure and a time series, the 1-NN classifier predicts the class of this series
as the class of the object closest to it from the training set. Despite the simplicity of
this rule, a strength of the 1-NN is that as the size of the training set increases, the
1-NN classifier guarantees an error lower than two times the Bayes error (Cover and
Hart 1967). Nevertheless, it is worth mentioning that it is very sensitive to noise in the
training set, which is a common characteristic of time series datasets. This approach
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has been widely applied in time series classification, as it achieves, in conjunction with
theDTWdistance, the best accuracies achieved onmany benchmark datasets. As such,
quite a few studies and reviews include the 1-NN in the time series literature (Bagnall
et al. 2017; Wang et al. 2013; Lines and Bagnall 2015; Kaya and Gündüz-Öüdücü
2015), and hence, it is not going to be further detailed in this review.

2.2 Distance features

In this group, we include the methods that employ a time series distance measure to
obtain a new representation of the series in the form of feature vectors. In this manner,
the series are transformed into feature vectors (order-free vectors in RN ), overcoming
many specific requirements that are encountered in time series classification, such as
dealing with ordered sequences or handling instances of different lengths. The main
advantage of this approach is that it bridges the gap between time series classification
and conventional classification, enabling the use of general classification algorithms
designed for vectors, while taking advantage of the potential time series distances.
In this manner, calculating the distance features can be seen as a preprocessing step,
thus, the transformation can be used in combination with any classifier. Note that even
if these methods also obtain some features from the series, they are not considered
within feature based time series classification, but within distance based time series
classification. The reason is that the methods in feature based time series classification
obtain features that contain information about the series themselves, while distance
features contain information relative to their relation with the other series. Three
main approaches are distinguished within this category: those that directly employ the
vector made up of the distances to other series as a feature vector, those that define
the features using the distances to some local patterns, and those that use the distances
after embedding the series into some vector space.

2.2.1 Global distance features

The main idea behind the methods in this category is to convert the time series into
feature vectors by employing the vector of distances to other series as the new rep-
resentation. Firstly, the distance matrix is built by calculating the distances between
each pair of samples, as shown in Fig. 3. Then, each row of the distance matrix is used
as a feature vector describing a time series, i.e., as input for the classifier. It is worth
mentioning that this is a general approach (not specific for time series) but becomes
specific when a time series distance measure is used. Learning with the distance fea-
tures is also known as learning in the so-called dissimilarity space (Pȩkalska and Duin
2005). For more details on learning with global distance features in a general context,
see Pȩkalska and Duin (2005), Chen et al. (2009), Pȩkalska et al. (2001) and Graepel
et al. (1999).

Even if learning with distance features is a general solution, it is particularly advan-
tageous for time series; the distance to each series is understood as an independent
dimension and the series can be seen as vectors in a Euclidean space. This new rep-
resentation enables the use of conventional classifiers that are designed for feature
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Fig. 3 A visual representation of the global distance features method

vectors, while it takes advantage of the existing time series distances. However, learn-
ing from the distance matrix has some important drawbacks; first, the distance matrix
must be calculated, which may be costly depending on the complexity of the distance
measure. Then, once the distance matrix has been calculated, learning a classifier
may also incur large computational cost, due to the possible large size of the training
set. Note that in the prediction stage, the consistent treatment of a new time series is
straightforward—just the distances from the new series to the series in the training set
have to be computed—but it can also become computationally expensive depending
on the distance measure. Henceforth, given a distance measure d, we will refer to the
methods employing the corresponding distance features as DFd .

After this brief introduction of the distance based features, a summary of the meth-
ods employing them is now presented. Gudmundsson et al. (2008) made the first
attempt at investigating the feasibility of using a time series distance measure within a
more complex classifier than the k-NN. In particular, they aimed at taking advantage
of the potential of Support Vector Machines (SVMs) on the one hand, and of Dynamic
Time Warping (DTW) on the other. First, they converted the DTW distance measure
into two DTW-based similarity measures, shown in Eq. (1). Then, they employed the
distance features obtained from these similarity measures, DFGDTW and DFNDTW ,
in combination with SVMs for classification.

GDTW (T Si , T Sj ) = exp

(
−DTW (T Si , T Sj )

2

σ 2

)
,

NDTW (T Si , T Sj ) = −DTW (T Si , T Sj ) (1)

where σ > 0 is a free parameter and T Si , T Sj are two time series. They concluded
the new representation in conjunction with SVMs is competitive with the benchmark
1-NN with DTW.

In Jalalian and Chalup (2013), the authors introduced a Two-step DTW-SVM classi-
fier where the DFDTW are used in order to solve a multi-class classification problem.
In the prediction stage, the new time series is represented by the distance to all the
series in the training set and a voting scheme is employed to classify the series using
all the trained SVMs in a one-vs-all schema. They concluded that even if DFDTW

achieves acceptable accuracy values, the prediction of new time series is too slow for
real world applications when the training set is relatively big.
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Additionally, based on the potential of using distances as features for time series
classification, Kate (2015) carried out a comprehensive experimentation in which dif-
ferent distance measures are used as features within SVMs. In particular, they tested
not onlyDFDTW but also a constrained versionDFDTW−R [awindow-size constrained
version of DTW which is computationally faster (Sakoe and Chiba 1978)], features
obtained from the Euclidean distance DFED and also concatenations of these dis-
tance features with other feature based representations. In their experimentation, they
showed that even the DFED , when used as features with SVMs, outperforms the accu-
racy of 1-NN classifier based on the same Euclidean distance. An extension of Kate
(2015) was presented in Giusti et al. (2016), who argued that not all relevant features
can be described in the time domain (frequency domain can be more discriminative,
for example) and added new representations to the set of features. Specifically, they
generalized the concept of distance features to other domains and employed four dif-
ferent representations of the series with six different distance measures, giving rise
to 24 distance features. For each representation of the series Ri , i = 1, . . . , 4, they
computed six different distance features DFRi

d1
, . . . ,DFRi

d6
. In their experimentation on

85 datasets from UCR,1 they showed that using representation diversity improves the
classification accuracy. Finally, in their work about early classification of time series,
Mori et al. (2017) benefit from Euclidean distance features DFED in order to classify
the series with SVMs and Gaussian Processes (Rasmussen and Williams 2006).

Recently, Wu et al. (2018b) proposed another distance feature approach for time
series classification in which is based on Random Features (Rahimi and Recht 2008)
approximation. Following the methodology of the D2KE kernel (Wu et al. 2018a)
discussed in Sect. 2.3, the authors exploit the idea of randomly sampled time series
and employ the distances from the original series to the random series as features:
DFRF . The random series are defined by D segments—where the length D is a user-
defined parameter-, each segment associated with a random number. The idea is that
these random series can be interpreted as the possible shapes of the time series. In
the experiments carried out on 16 UCR datasets, they compare their representation—
in combination with SVMs—against 6 state-of-the-art distance based classification
methods. In particular, they propose two variants of their method: the first employs a
large number of random series, while the second employs a small number. The exper-
imentation shows that the first approach outperforms the accuracies of the baseline
methods but incurs in large computational times, while the second obtains comparable
accuracies in less time (reducing the time complexity from quadratic to linear).

With the aim of addressing the limitation of the high computational cost of the
DTW distance, Janyalikit et al. (2016) proposed the use of a fast lower bound for the
DTW algorithm, called LB_Keogh (Keogh and Ratanamahatana 2005). Employing
DFLB_Keogh with SVMs, Janyalikit et al. showed in their experimentation on 47 UCR
datasets that their method speeds the classification task up by a large margin, while
maintaining the accuracies comparing with the state-of-art DFDTW−R proposed in
Kate (2015).

1 UCR is a repository of time series datasets (Chen et al. 2015a) which is often used as a benchmark
for evaluating time series classification methods. These datasets are greatly varied with respect to their
application domains, time series lengths, number of classes, and sizes of the training and testing sets.
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Table 1 Summary of global distance feature approaches

Authors Features Classifier Datasets

Gudmundsson
et al. (2008)

DFGDTW , DFNDTW SVMs 20 UCR

Jalalian and
Chalup (2013)

DFDTW SVMs 20 UCR

Kate (2015) DFED − DFDTW −
DFDTW−R − SAX

SVMs 47 UCR

Giusti et al. (2016) DF
R1,...,4
d1,...,6

SVMs 85 UCR

Mori et al. (2017) DFED GPs, SVMs 45 UCR

Wu et al. (2018b) DFRF SVMs 16 UCR

Janyalikit et al.
(2016)

DFLB_Keogh SVMs 47 UCR

Jain and Spiegel
(2015)

DFDTW+PCA SVMs 42 UCR

Iwana et al. (2017) DFDTW+PROT O Adaboost 1 (UNIPEN)

As previously mentioned, another weakness of using distances as features is the
high dimensionality of the distance matrix, since for n instances a n × n matrix is
used as the input to the classifier. In view of this, Jain and Spiegel (2015) proposed
a dimensionality reduction approach using Principal Component Analysis (PCA) in
order to keep only those dimensions that retain the most information. In their exper-
imentation they compare the use of DFDTW with the reduced version of the same
matrix, DFDTW+PCA in combination with SVMs. They showed PCA can have a con-
sistent positive effect on the performance of the classifier but this effect seems to be
dependent of the choice of the kernel function applied in the SVM. Note that for pre-
diction purposes, they transform the new time series using the PCA projection learned
from the training examples and, hence, the prediction process will also be significantly
faster.

Another dimensionality reduction approach used in these cases is prototype selec-
tion, employed by Iwana et al. (2017). The idea is to select a set of k reference time
series, called prototypes, and compute only the distances from the series to the k pro-
totypes. The authors pointed out that the distance features let each feature be treated
independently and, consequently, prototype selection can be seen as a feature selection
process. As shown in Jain and Spiegel (2015), this dimensionality reduction technique
not only speeds up the training phase but also the prediction of new time series. The
proposed method uses the AdaBoost (Freund and Schapire 1997) algorithm, which
is able to select discriminative prototypes and combine a set of weak learners. They
experimented with DFDTW+PROT O and analyzed different prototype selection meth-
ods.

To conclude this section, a summary of the reviewed methods of Global distance
features for TSC can be found in Table 1.
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Fig. 4 Visual representation of two shapelets (Shap1 and Shap2) and six time series from the Coffee dataset
(UCR). These shapelets are identified as being representative of class membership: Shap1 belongs to class
1, as can be seen in the three time series (T1, T2 and T3) which belong to class 1, while Shap2 belongs to
class 2, as can be seen in the three time series (T4, T5 and T6) which belong to class 2

2.2.2 Local distance features

In this section, instead of using distances between entire series, distance to some local
patterns of the series are used as features. Instead of assuming that the discriminatory
characteristics of the series are global, the methods in this section consider that they
are local. As such, the methods in this category employ the so-called shapelets (Ye and
Keogh 2009), subsequences of the series that are identified as being representative of
the different classes. An example of three shapelets belonging to different time series
can be seen in Fig. 4. An important advantage of working with shapelets is their inter-
pretability, since an expert may understand the meaning of the obtained shapelets. By
definition, shapelets are subsequences and as such, the methods employing shapelets
are not a priori applicable to other types of data. However, it is worth mentioning
that the original shapelet discovery technique, proposed by Ye and Keogh (2009), is
carried out by enumerating all possible candidates (all possible subsequences of the
series) and using a measure based on information theory that takes O(n2m4), where
n is the number of time series and m is the length of the longest series. Thereby, most
of the work related to shapelets has focused on speeding up the shapelet discovery
process (He et al. 2012; Mueen et al. 2011; Rakthanmanon and Keogh 2013; Ye and
Keogh 2011) or on proposing new shapelet learning methods (Grabocka et al. 2014).
However, we will not focus on that but rather on how shapelets can be used within
distance based classification.

Building on the achievements of shapelets in classification, Lines et al. (2012)
introduced the concept of Shapelet Transform (ST). First, the k most discriminative
(over the classes) shapelets are found using one of the methods referenced above.
Then, the distances from each series to the shapelets are computed and the shapelet
distance matrix shown in Fig. 5 is constructed. Finally, the vectors of distances are
used as input to the classifier. In Lines et al. (2012), the distance between a shapelet
of length l and a time series is defined as the minimum Euclidean distance between

123



A review on distance based time series classification 387

Fig. 5 Example of the local distance features methods using ST

the shapelet and all the subsequences of the series of length l. Shapelet transformation
can be used in combination with any classifier and, in their proposal, the authors
experimented with seven classifiers (C4.5, 1-NN, Naïve Bayes, Bayesian Network,
Random Forest, Rotation Forest and SVMs) and 26 datasets, showing the benefits of
the proposed transformation.

Hills et al. (2014) provided an extension of Lines et al. (2012) that includes a com-
prehensive evaluation which analyzes the performance of the seven aforementioned
classifiers using the complete series and the ST as input.As such, the authors concluded
that the ST gives rise to improvements in classification accuracy in several datasets. In
the same line, Bostrom andBagnall (2014) proposed another shapelet learning strategy
(called binary ST ) and evaluated their ST in conjunction with an ensemble classifier
on 85 UCR datasets, showing that it clearly outperforms conventional approaches of
time series classification.

Recently, Li and Lin (2018) proposed another approach that exploits time series
distances in a novelway: theirmethodmaps the series into a specific dissimilarity space
inwhich the different classes are effectively separated. This specific dissimilarity space
is defined based on what they call Separating References (SRs), which, in practice,
are subsequences. These SRs are found, by means of an evolutionary process, such
that the distances between the SRs and series belonging to different classes differs
with a large margin. The corresponding decision boundaries that split the classes in
the dissimilarity space are also found during the same process. As such, this approach
does not specifically employ distances as features but, since it is very related to the
methods in this category, it has been included. They experiment with 40 UCR datasets
showing that their Evolving Separating References (ESR) approach is competitive
with the benchmark TSC methods, being particularly suitable for datasets in which
the size of learning set is small.”

Lastly, Wang et al. (2016) introduced another representative subsequence based
approach that is similar to shapelet based methods but from a novel perspective. Their
method first transforms the real-valued series into discrete-valued series using Sym-
bolic Aggregate approXimation (SAX) (Lin et al. 2007) and employs a grammar
induction (GI) procedure (Senin et al. 2014) to generate a pool of representative pat-
tern candidates. Then, it selects the most representative patterns from these candidates
and transforms them back into subsequences. Finally, the series are represented by a
vector containing the distances from the series to these subsequences, and the clas-
sification is carried out using SVMs.A significant difference between this method,
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Table 2 Summary of local distance feature approaches

Authors Features Classifier Datasets

Lines et al. (2012) ST 7 classifiersa 18 UCR + 8 own

Hills et al. (2014) ST 7 classifiersa 17 UCR + 12 own

Bostrom et al. (2016) Binary ST Ensemble 85 UCR

Li and Lin (2018) SRs ESR 40 UCR

Wang et al. (2016) RPM SVMs 42 UCR + 1 own

aC4.5, 1-NN, Naïve Bayes, Bayesian network, random forest, rotation forest and SVMs

called Representative Pattern Mining (RPM), and shapelet based methods is that,
while a shapelet may be representative of more than one class—exclusiveness is not
required—, in RPM the representative subsequences can only belong to one class.
In addition, the pattern discovery in RPM is much more efficient than the existing
shapelet discovery procedures.

To sum up, a summary of the reviewedmethods that employ Local distance features
can be found in Table 2.

2.2.3 Embedded features

The methods presented until now within the Distance features category employ the
distances directly to create feature vectors representing the series, however, this is
not the only way to use the distances. In the last approach within this section, the
methods using Embedded features do not employ the distances directly as the new
representation. Instead, they make use of them to obtain a new representation. In
particular, the distances are used to isometrically embed the series into someEuclidean
space while preserving the distances.

The distance embedding approach is not a specific method for time series. In many
areas of research, such as empirical sciences, psychology, or biochemistry, it is com-
mon to have (dis)similarities between the input objects and not the objects per se. As
such, one may learn directly in the dissimilarity space mentioned in Sect. 2.2.1, or one
may try to find some vectors whose distances approximate the given (dis)similarities.
If the given dissimilarities come from the Euclidean distance, it is possible to easily
find some vectors that approximate the given distances. This is known in literature
as metric multidimensional scaling (Borg and Groenen 1997). On the contrary, if
the distances are not Euclidean (or even not metric), the embedding approach is not
straightforward and many works have addressed this issue in research (Pȩkalska et al.
2001; Graepel et al. 1999; Wilson et al. 2014; Jacobs et al. 2000).

In the case of time series, this approach is particularly advantageous since a vector
representation of the series is obtained such that the Euclidean distances between
these vectors approximate the given time series distances. The main motivation is that
many classifiers are implicitly built on Euclidean spaces (Jacobs et al. 2000) and this
approach aims to bridge the gap between the Euclidean space and elastic distance
measures. However, as it will be seen, the consistent treatment of new test instances
is not straightforward and it is an issue to be considered.
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Fig. 6 Example of the stages of embedded distance features methods using the approach proposed by
Hayashi et al. (2005)

As examples in TSC, Hayashi et al. (2005) and Mizuhara et al. (2006) proposed,
for the first time, a time series embedding approach in which a vector representa-
tion of the series is found such that the Euclidean distances between these vectors
approximate the DTW distances between the series, as represented in Fig. 6. They
applied three embedding methods: multidimensional scaling, pseudo-Euclidean space
embedding, and Euclidean space embedding by the Laplacian eigenmap technique
(Belkin and Niyogi 2002). They experimented with linear classifiers and a unique
dataset [Australian Sign Language (ASL) (Lichman 2013)], in which their Lapla-
cian eigenmap-based embedded method achieved a better performance than the 1-NN
classifier with DTW.

Another approach presented byLei et al. (2017) first defines aDTWbased similarity
measure, called DTWS, following the relation between distances and inner products
(Adams 2004) (see Eq. 2). Then they search for some vectors such that the inner
product between these vectors approximates the given DTWS:

DTWS(T Si , T Sj ) = DTW (T Si , 0)2 + DTW (T Sj , 0)2 − DTW (T Si , T Sj )
2

2
(2)

where 0denotes the time series of lengthoneof value0.Theirmethod learns the optimal
vector representation preserving the DTWS by a gradient descent method, but a major
drawback is that it learns the transformed time series, but not the transformation itself.
The authors propose an interesting solution to deal with the high computational cost
of DTW, which consists of assuming that the obtained DTWS similarity matrix is a
low-rank matrix. As such, by applying the theory of matrix completion, sampling only
O(n log n) pairs of time series is enough to perfectly approximate a n × n low-rank
matrix (Sun and Luo 2016). However, it is not possible to transform new unlabeled
time series, which makes the method rather inapplicable in most contexts.
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Table 3 Summary of embedded distance feature approaches

Authors Features Classifier Datasets

Mizuhara et al.
(2006)

DTW distance preserving
vectors

Linear classifiers ASL

Lei et al. (2017) DTWS similarity preserving
vectors

XGBoost 6 own

Lods et al. (2017) DTW distance preserving ST clustering 15 UCR

Finally, Lods et al. (2017) presented a particular case of embedding that is based on
the shapelet transform (ST) presented in the previous section. Their proposal learns a
vector representation of the series (the ST), such that the Euclidean distance between
the representations approximates the DTW between the series. In other words, the
Euclidean distances between the row vectors representing each series in Fig. 5 approx-
imate the DTW distances between the corresponding time series. The main drawback
of this approach is the time complexity in the training stage: first all the DTWdistances
are computed and then, the optimal shapelets are found by a stochastic gradient descent
method. However, once the shapelets are found, the transformation of new unlabeled
instances is straightforward, since it is done by computing the Euclidean distance
between these series and shapelets. Note that the authors do not use their approach for
classifying time series but for clustering, but since it is closely related to the methods
in this review and their transformation can be directly applied to classification, it has
been included in the taxonomy.

As previouslymentioned, an important aspect to be considered in themethods using
embedded features is the consistent treatment of unlabeled test samples,which depends
on the embedding technique used. In the work by Mizuhara et al. (2006), for instance,
it is not clearly specified how unlabeled instances are treated. The method by Lei et al.
(2017), on the other hand, learns the transformed data and not the transformation,
hence it is not applicable to real problems. Lastly, in the approach by Lods et al.
(2017), new instances are transformed by computing the distance from these new
series to the learnt shapelets.

To end this section, a summary of the reviewed methods employing Embedded
distance features for TSC can be found in Table 3.

2.3 Distance kernels

The methods within this category do not employ the existing time series distances to
obtain a new representation of the series. Instead, they use them to obtain a kernel for
time series. Before going in-depth into the different approaches, a brief introduction
to kernels and kernel methods is presented.

2.3.1 An introduction to kernels

The kernel function is the core of kernel methods, a family of pattern recognition
algorithms, whose best known instance is the Support Vector Machine (SVM) (Cortes
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Fig. 7 The stages involved in the application of kernel methods (Shawe-Taylor and Cristianini 2004)

and Vapnik 1995). Many machine learning algorithms require the data to be in feature
vector form, while kernel methods require only a similarity function (known as kernel)
expressing the similarity over pairs of input objects (Shawe-Taylor and Cristianini
2004). The main advantage of this approach is that one can handle any kind of data
including vectors, matrices, or structured objects, such as sequences or graphs, by
defining a suitable kernel which is able to capture the similarity between any two pairs
of inputs. The idea behind a kernel is that if two inputs are similar, their output on the
kernel will be similar, too.

More specifically, a kernel κ is a similarity function

κ : X × X → R

(x, x ′) → κ(x, x ′)

that for all x, x ′ ∈ X satisfies

κ(x, x ′) = 〈�(x),�(x ′)〉 (3)

where � is the mapping from X into some high dimensional feature space and 〈, 〉 is
an inner product. As Eq. (3) shows, a kernel κ is defined by means of a inner product
〈 , 〉 in some high dimensional feature space. This feature space is called a Hilbert
space and the power of kernel methods lies in the implicit use of these spaces (Vapnik
1998).

In practice, the evaluation of the kernel function is one of the steps within the phases
of a kernel method. Figure 7 shows the usage of the kernel function within a kernel
method and the stages involved in the process. First, the kernel function is applied to
the input objects in order to obtain a kernel matrix (also called Gram matrix), which
is a similarity matrix with entries Ki j = κ(xi , x j ) for each input pair xi , x j . Then,
this kernel matrix is used by the kernel method algorithm in order to produce a pattern
function that is used to process unseen instances.

An important aspect to consider is that the class of similarity functions that satisfies
(3), and hence are kernels, coincides with the class of similarity functions that are
symmetric and positive semi-definite (Shawe-Taylor and Cristianini 2004).
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Definition 1 (Positive semi-definite kernel) A symmetric function κ : X × X → R

satisfying

n∑
i=1

n∑
j=1

ci c jκ(xi , x j ) ≥ 0 (4)

for any n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R is called a positive semi-definite
kernel (PSD) (Schölkopf 2001).

As such, any PSD similarity function satisfies (3) and (since it is a kernel) defines
an inner product in some Hilbert space. Moreover, since any kernel guarantees the
existence of the mapping implicitly, an explicit representation for � is not necessary.
This is also known as the kernel trick (see Shawe-Taylor and Cristianini 2004 for more
details).

Remark 1 We will also refer to a PSD kernel as a definite kernel.

Remark 2 Wewill informally denominate indefinite kernels to non-PSD kernels which
are employed in practice as kernels, even if they do not strictly meet the definition.

Providing the analytical proof of the positive semi-definiteness of a kernel is rather
cumbersome. In fact, a kernel does not need to have a closed-form analytic expression.
In addition, as Fig. 7 shows, the way of using a kernel function in practice is via the
kernel matrix and, hence, the definiteness of a kernel function is usually evaluated
experimentally for a specific set of inputs by analysing the positive semi-definiteness
of the kernel matrix.

Definition 2 (Positive semi-definite matrix) A square symmetric matrix K ∈ R
n×n

satisfying

vTKv ≥ 0 (5)

for any vector v ∈ R
n is called a positive semi-definite matrix (Schölkopf 2001).

The following well-known result is obtained from Shawe-Taylor and Cristianini
(2004):

Proposition 1 The inequality in Eq. (5) holds⇔ all eigenvalues ofK are non-negative.

Therefore, if all the eigenvalues of a kernel matrix are non-negative, this kernel
function is considered PSD for the particular instance set in which it has been eval-
uated. In this manner, the definiteness of a kernel function is usually studied by the
eigenvalue analysis of the corresponding kernel matrix. However, a severe drawback
of this approach is that the analysis is only performed for a particular set of instances,
and it cannot be generalized.

After introducing the basic concepts related to kernels, some examples of different
types of kernels are now presented. As previouslymentioned, one of themain strengths
of kernels is that they can be defined for any type of data, including structured objects,
for instance:
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– Kernels for vectors Given two vectors x, x′, the popular Gaussian Radial Basis
Function (RBF) kernel (Shawe-Taylor and Cristianini 2004) is defined by

κ(x, x′) = exp

(
−||x − x′||2

2σ 2

)
(6)

where σ > 0 is a free parameter.
– Kernels for strings Given two strings, the p-spectrum kernel (Leslie et al. 2002)
is defined as the number of sub-strings of length p that they have in common.

– Kernels for time series Give two time series, a kernel for time series returns a
similarity between the series. There are plenty of ways of defining a similarity. For
instance, two time series may be considered similar if they are generated by the
same underlying statistical model (Rüping 2001). In this review, we will focus on
those kernels that employ a time series distance measure to evaluate the similarity
between the series.

Therefore, in this category denominated Distance kernels, instead of using a dis-
tance to obtain a new representation of the series, the distances are used to obtain a
kernel for time series. As such, the methods in this category aim to take advantage
of the potential of time series distances and the power of kernel methods. Two main
approaches are distinguished within this category: those that construct and employ an
indefinite kernel, and those that construct kernels for time series that are, by definition,
PSD.

2.3.2 Indefinite distance kernels

The main goal of the methods in this category is to convert a time series distance
measure into a kernel. Most distance measures do not trivially lead to PSD kernels, so
many works focus on learning with indefinite kernels. The main drawback of learning
with indefinite kernels is that the mathematical foundations of the kernel methods are
not guaranteed (Ong et al. 2004). The existence of the feature space to which the data
is mapped (Eq. 3) is not guaranteed and, due to the missing geometrical interpretation,
many good properties of learning in that space (such as orthogonality and projection)
are no longer available (Ong et al. 2004). In addition, some kernel methods do not
allow indefinite kernels (due to the implementation or the definition of the method)
and some modifications must be carried out, but for others the definiteness is not a
requirement. For example, in the case of SVMs, the optimization problem that has
to be solved is no longer convex, so reaching the global optimum is not guaranteed
(Chen et al. 2009). However, note that good classification results can still be obtained
(Bahlmann et al. 2002; Decoste and Schölkopf 2002; Shimodaira et al. 2002), and as
such, some works focus on studying the theoretical background about SVMs feature
space interpretation with indefinite kernels (Haasdonk 2005). Another approach, for
instance, employs heuristics on the formulation of SVMs to find a local solution (Chen
et al. 2006) but, to the best of our knowledge, it has not been applied to time series
classification. Converting a distance into a kernel is not a specific challenge of time
series and there is a considerable amount of work done in this direction in other
contexts (Chen et al. 2009; Haasdonk and Bahlmann 2004).
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Indefinite distance kernels

◦ Employing indefinite kernels
Jalalian & Chalup [2013]
Gudmundsson et al. [2008]
Kaya & Gündüz-Öüdücü [2015]
Bahlmann et al. [2002]
Shimodaira et al. [2002]
Pree et al. [2014]
Jeong et al. [2011]

◦ Dealing with the indefiniteness
Jalalian & Chalup [2013]

◦ Regularization
Chen et al. [2015b]

◦ Analyzing the indefiniteness
Zhang et al. [2010]
Lei & Sun [2007]

Fig. 8 Different approaches taken with indefinite distance kernels

For time series classification, most of the work focuses on employing the distance
kernels proposed by Haasdonk and Bahlmann (2004). They propose to replace the
Euclidean distance in traditional kernel functions, such as the Gaussian kernel in
Eq. (6), by the problem specific distance measure. They called these kernels distance
substitution kernels. In particular, we will call the following kernelGaussian Distance
Substitution (GDS) (Haasdonk and Bahlmann 2004):

GDSd(x, x
′) = exp

(
−d(x, x ′)2

σ 2

)
(7)

where x, x ′ are two inputs, d is a distance measure and σ > 0 is a free parameter.
This kernel can be seen as a generalization of the Gaussian RBF kernel presented in
the previous section, in which the Euclidean distance is replaced with the distance
calculated by d. For the GDS kernel, the authors in Haasdonk and Bahlmann (2004)
state that GDSd is PSD if and only if d is isometric to an L-2 norm, which is generally
not the case.As such, themethodswhich use this type of kernel for time series generally
employ indefinite kernels.

Within the methods employing indefinite kernels, there are different approaches,
and for time series classification we have distinguished three main directions (shown
in Fig. 8). Some of them just learn with the indefinite kernels (Kaya and Gündüz-
Öüdücü 2015; Bahlmann et al. 2002; Shimodaira et al. 2002; Pree et al. 2014; Jeong
et al. 2011) using kernel methods that allow this kind of kernels andwithout taking into
consideration that they are indefinite; others argue that the indefiniteness adversely
affects the performance and present some alternatives or solutions (Jalalian andChalup
2013; Gudmundsson et al. 2008; Chen et al. 2015b); finally, others focus on a bet-
ter understanding of these distance kernels in order to investigate the reason for the
indefiniteness (Zhang et al. 2010; Lei and Sun 2007).
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Employing indefinite kernels
Bahlmann et al. (2002) made the first attempt to introduce a time series specific

distance measure within a kernel. They introduced the GDTW measure presented in
Eq. (1) as a kernel for character recognition with SVMs. This kernel coincides with the
GDS kernel in Eq. (7), in which the distance d is replaced by the DTW distance, i.e.,
GDSDTW . They remarked that this kernel is not PSD since simple counter-examples
can be found in which the kernel matrix has negative eigenvalues. However, they
obtained good classification results and argued that for the UNIPEN2 dataset, most of
the eigenvalues of the kernelmatrixweremeasured to be non-negative, concluding that
somehow, in the given dataset, the proposed kernel matrix is almost PSD. Following
the same direction, Jeong et al. (2011) proposed a variant of GDSDTW which employs
the Weighted DTW (WDTW) measure in order to prevent distortions by outliers,
while Kaya and Gündüz-Öüdücü (2015) also employed the GDS kernel with SVMs,
but instead of using the distance calculated by the DTW, they explored other distances
derived from different alignment methods of the series, such as Signal Alignment
via Genetic Algorithm (SAGA) (Kaya and Gündüz-Öüdücü 2013). Pree et al. (2014)
proposed a quantitative comparison of different time series similarity measures used
either to construct kernels for SVMs or directly for 1-NN classification, concluding
that some of the measures benefit from being applied in an SVM, while others do not.
Note that in this last work, how they construct the kernel for each distance measure is
not exactly detailed.

There is another method that employs a distance based indefinite kernel but takes a
completely different approach to construct the kernel: the idea of this kernel is to, rather
than use an existing distance measure, incorporate the concept of alignment between
series into the kernel function itself.Many elasticmeasures for time series dealwith the
notion of alignment of series. The DTW distance, for instance, finds an optimal align-
ment between two time series such that the Euclidean distance between the aligned
series is minimized. Following the same idea, in DTAK, Shimodaira et al. (2002)
align two series so that their similarity is maximized. In other words, their method
finds an alignment between the series that maximizes a given similarity (defined by
the user), and this maximal similarity is used directly as a kernel. They give some good
properties of the proposed kernel but they remark that it is not PSD, since negative
eigenvalues can be found in the kernel matrices of DTAK (Cuturi 2011).

On the other hand, Gudmundsson et al. (2008) employed the DTW based similarity
measures they proposed (shown in Eq. 1) directly as kernels. Their method achieved
low classification accuracies and the authors claimed that another way of introducing
a distance into a SVM is by using the distance features introduced in Sect. 2.2.1. They
compared the performance of DTW based distance features and DTW based distance
kernels, concluding that distance features outperform the distance kernels due to the
indefiniteness of these second ones.

2 On-line handwritten digit data set (Guyon et al. 1994).
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Dealing with the indefiniteness
There is a group of methods that attribute the poor performance of their kernel

methods to the indefiniteness, and propose some alternatives or solutions to over-
come these limitations. Jalalian and Chalup (2013), for instance, proposed the use of
a special SVM called Potential Support Vector Machine (P-SVM) (Hochreiter and
Obermayer 2006) to overcome the shortcomings of learning with indefinite kernels.
They employed theGDSDTW kernel within this SVMclassifier which is able to handle
kernel matrices that are neither positive definite nor square. They carried out an exten-
sive experimentation including a comparison of their method with the 1-NN classifier
and with the methods presented by Gudmundsson et al. (2008). They conclude that
their DTW based P-SVMmethod significantly outperforms both distance features and
indefinite distance kernels, as well as the benchmark methods in 20 UCR datasets.

Regularization
Another approach that tries to overcome the use of indefinite kernels consists of

regularizing the indefinite kernel matrices to obtain PSDmatrices. As previously men-
tioned, a matrix is PSD if and only if all its eigenvalues are non-negative, and a kernel
matrix therefore can be regularized by clipping all the negative eigenvalues to zero, for
instance. This technique has been usually applied for non-temporal data (Chen et al.
2009; Wu et al. 2005a, b) but it is rather unexplored in the domain of indefinite time
series kernels. Chen et al. (2015b) proposed a Kernel Sparse Representation based
Classifier (SRC) (Zhang et al. 2012) with some indefinite time series kernels and
applied spectrum regularization to the kernel matrices. In particular, they employed
the GDSDTW , GDSERP [Edit distance with Real Penalty (ERP) (Chen and Ng 2004)]
and GDSTW ED [TimeWarp Edit Distance (TWED) (Marteau 2009)] kernels and their
method checks whether the kernel matrix obtained for a specific dataset is PSD. If it is
not, the corresponding kernel matrix is regularized using the spectrum clip approach.

Regarding this approach, it is alsoworthmentioning that in thework byGudmunds-
son et al. (2008), the authors point out that they tried to apply some regularization to the
kernel matrix subtracting the smallest eigenvalue from the diagonal but they found out
that the method achieved a considerably low performance. Additionally, the authors
added that matrix regularization can lead tomatrices with large diagonal entries, which
may result in overfitting (Weston et al. 2003).

Finally, the consistent treatment of training and new unlabeled instances is not
straightforward and is also a matter to bear in mind (Chen et al. 2009). When new
unlabeled instances arrive, the kernel between them and the training set has to be com-
puted. If the kernel matrix corresponding to the training set has been regularized, the
kernelmatrix corresponding to the unlabeled set should also bemodified in a consistent
way, which is not a trivial operation. Therefore, the benefit of matrix regularization in
the context of time series is an open question.

Analyzing the indefiniteness
The last group of methods do not focus on solving the problems of learning with

indefinite kernels but, instead, focus on a better understanding of these distance kernels
and their indefiniteness. Lei and Sun (2007) theoretically analyze theGDSDTW kernel,
proving that it is not a PSD kernel. This is because DTW is not a metric [it violates the
triangle inequality (Casacuberta et al. 1987)] and non-metricity prevents definiteness
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Table 4 Summary of distance
properties used in GDS

Distance Metric Elastic GDSd is PSD

Euclidean � × �
DTW × � ×
ERP � � ×
TWED � � ×

(Haasdonk andBahlmann 2004). That is, if d is notmetric, GDSd is not PSD.However,
the contrary is not true and, hence, the metric property of a distance measure is not
a sufficient condition to guarantee a PSD kernel. In any case, Zhang et al. (2010),
hypothesized kernels based on metrics give rise to better performances than kernels
based on distance measures which are not metrics. As such, they define what they
called the Gaussian Elastic Metric Kernel (GEMK), a family of GDS kernels in which
the distance d is replaced by an elastic measure which is also a metric. They employed
GDSERP and GDSTW ED and stated that, even if the definiteness of these kernels
is not guaranteed, they did not observe any violations of their definiteness in their
experimentation on 20 UCR datasets. In fact, these kernels are shown to perform
better than the GDSDTW and the Gaussian kernel in those experiments. The authors
attribute this to the fact that the proposed measures are both elastic and obey metricity.
In order to provide some information about the most common distance measures
applied in this context, Table 4 shows a summary of properties of the main distance
measures employed in this review. In particular, we specify if a given distancemeasure
d is a metric or not, if it is an elastic measure or not, and if the corresponding GDSd
is proven to be PSD or not.

To sum up, there are some results that suggest a relationship between the metricity
of the distance and the performance of the corresponding distance kernel. However,
it is hard to investigate the contribution of metricity in the accuracy since several
factors take part in the classification task. The definiteness of a distance kernel seems
to be related to the metricity of given distance-metric distances seem to lead to kernels
that are closer to definiteness than those based on non-metric distances-, and the
definiteness of a kernel may directly affect on the accuracy. In short, the relationship
betweenmetricity, definiteness and performance is not clear and is, thus, an interesting
future direction of research.

To conclude, a summary of the reviewed methods of Indefinite distance kernels can
be found in Table 5.

2.3.3 Definite distance kernels

We have included in this section those methods that construct distance kernels for
time series which are, by definition, PSD. First of all, we want to remark that there
are other kernels for time series in the literature that are PSD but have not been
included in this review. We have only incorporated those kernels based on time series
distances and, in particular, those which construct the kernel functions directly on the
raw series. Conversely, the Fourier kernel (Rüping 2001) computes the inner product
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Table 5 Summary of indefinite kernel approaches

Authors Kernel Classifier Datasets

Employing indefinite kernels

Bahlmann et al.
(2002)

GDSDTW SVMs 1 (UNIPEN)

Jeong et al. (2011) GDSWDTW SVDDa, SVMs 20 UCR

Kaya and
Gündüz-Öüdücü
(2015)

GDS + alignment based
distances

SVMs 40 UCR

Pree et al. (2014) Unespecified similarity based
kernels

SVMs 20 UCR

Shimodaira et al.
(2002)

DTAK SVMs ATR

Gudmundsson
et al. (2008)

NDTW, GDSDTW SVMs 20 UCR

Dealing with the indefiniteness

Jalalian and
Chalup (2013)

GDSDTW P-SVM 20 UCR

Regularization

Chen et al.
(2015b)

GDSDTW , GDSERP ,
GDSTW ED

KSRCb 16 UCR

Analyzing the indefiniteness

Lei and Sun
(2007)

GDSDTW SVMs 4 UCR

Zhang et al.
(2010)

GDSERP , GDSTW ED SVMs 20 UCR

aSupport vector data descriptor (Hochreiter and Obermayer 2006; Tax and Duin 2004)
bKernel sparse representation based classifiers (Zhang et al. 2012)

of the Fourier expansion of two time series, and hence, does not compute the kernel on
the raw series but on the Fourier expansion of them. Another example is the kernel by
Gaidon et al. (2011) for action recognition, in which the kernel is constructed on the
auto-correlation of the series. There are also smoothing kernels that smooth the series
with different techniques and then define the kernel for those smoothed representations
(Troncoso et al. 2015; Kumara et al. 2008; Sivaramakrishnan and Bhattacharyya 2004;
Lu et al. 2008). On the contrary, we will focus on those that define a kernel directly on
the raw series. Regarding those included, all of them aim to introduce the concept of
time elasticity directly within the kernel function by means of a distance, and we can
distinguish two main approaches: in the first, the concept of the alignment between
series is exploited,while in the second, the direct construction of PSDkernels departing
from a given distance measure is addressed.

Xue et al. (2017) proposed the Altered Gaussian DTW (AGDTW) kernel, in which,
first, the alignment that minimizes the Euclidean distance between the series is found,
as in DTW. For each pair of time series T Si and T Sj , once this alignment is found,
the series are modified to this alignment resulting in T Si ′ and T Sj

′. Then, if S is the
maximum length of both series, the AGDTW kernel is defined as follows:
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κAGDTW (T Si , T Sj ) =
S∑

s=1

exp

(
−||T Si ′s − T Sj

′
s ||2

σ 2

)

Since AGDTW is, indeed, a sum of Gaussian kernels, they provide the proof of the
definiteness of the proposed kernel.

There is another family of methods that also exploits the concept of alignment but,
instead of considering just the optimal one, considers the sum of the scores obtained by
all the possible alignments between the two series. Cuturi and Vert (2007) claimed that
two series can be considered similar not only if they have one single good alignment,
but rather if they have several good alignments. They proposed the Global Alignment
(GA) kernel that takes into consideration all the alignments between the series and
provide the proof of its positive definiteness under certain mild conditions. It is worth
mentioning that they obtain kernel matrices that are exceedingly diagonally dominant,
that is, that the values of the diagonal in thematrix aremany orders ofmagnitude larger
than those out of the diagonal. Thus, they use the logarithmof the kernelmatrix because
of possible numerical problems. That transformationmakes the kernel indefinite (even
if it is not indefinite per se), so they apply some kernel regularization to turn all its
eigenvalues positive. However, since the kernel they obtain is PSD and it is because
of the logarithm transformation that it becomes indefinite, it has been included within
this section. In Cuturi (2011), the author elaborates on the GA kernels, give some
theoretical insights, and introduce an extension called Triangular Global Alignment
(TGA) kernel, which is faster to compute and also PSD.

There is another kernel that takes a similar approach. In their work about periodic
time series in astronomy, Wachman et al. (2009) investigate the similarity between
just shifted time series. In this way, they define a kernel that takes into consideration
the contribution of all possible alignments obtained by employing just time shifting:

Kshi f t (T Si , T Sj ) =
n∑

s=1

eγ 〈T Si ,T S j+s 〉

where γ ≥ 0 is a user-defined constant. In this way, the kernel is defined by means
of a sum of inner products between T Si and all the possible shifted versions of T Sj

with a shift of s positions. The authors provided the proof of the PSD of the proposed
kernel.

On the other hand, there are methods that, instead of focusing on alignments,
address the construction of PSD kernels departing from a given distance measure.
Thesemethods can be seen as refined versions of the GDS kernel in which the obtained
kernel is PSD. Marteau and Gibet (2010) elaborate on the indefiniteness of GDS
kernels derived from elastic measures, even when such measures are metrics. As
previously mentioned, metricity is not a sufficient condition to obtain PSD kernels.
They postulated that elastic measures do not lead to PSD kernels due to the presence
of min or max operators in their definitions, and define a kernel where they replaced
the min or max operators by a sum (

∑
). In Marteau et al. (2012), these same authors

define what they called an elastic inner product, eip. Their goal was to embed the time
series into an inner product space that somehowgeneralizes the notion of the Euclidean
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space, but retains the concept of elasticity. They provide proof of the existence of such
a space and showed that this eip is, indeed, a PSD kernel. Since any inner product
induces a distance (Greub 1975), they obtained a new elastic metric distance δeip that
avoids the use ofmin ormax operators. They evaluated the obtained distance within a
SVMbymeans of theGDSδeip kernel, in order to compare the performance of δeip with
the Euclidean and DTW measures. Their experimentation showed that elastic inner
products can bring a significant improvement in accuracy compared to the Euclidean
distance, but the GDSDTW kernel outperforms the proposed GDSδeip in the majority
of the datasets.

They extended theirwork inMarteau andGibet (2014) and introduced theRecursive
Edit Distance Kernels (REDK), a method to construct PSD kernels departing from
classical edit or time-warp distances. The main procedure to obtain PSD kernels is, as
in the previous method, to replace themin or max operators by a sum. They provided
the proof of the definiteness of these kernelswhen some simple conditions are satisfied,
which areweaker than those proposed inCuturi andVert (2007) and are satisfied by any
classical elastic distance defined by a recursive equation. Note that, while in Marteau
et al. (2012) the authors define an elastic distance and construct PSD kernels with it,
in Marteau and Gibet (2014) the authors present a method to construct a PSD kernel
departing from any existing elastic distance measure. As such, the REDK can be seen
as a refined version of the GDS kernel which leads to PSD kernels. In this manner,
they proposed the REDKDTW , REDKERP and REDKTW ED methods and compare
their performance with the corresponding distance substitutions kernels GDSDTW ,
GDSERP and GDSTW ED . An interesting result they reported is that REDK methods
seem to improve the performance of non-metric measures in particular. That is, while
the accuracies of REDKERP and REDKTW ED are slightly better than the accuracies
of GDSERP andGDSTW ED , in the case of DTW the improvement is really significant.
In fact, they presented some measures to quantify the deviation from definiteness of a
matrix and showed that while GDSERP and GDSTW ED are almost definite, GDSDTW

is rather far from being definite. This makes us wonder if metricity implies proximity
to definiteness, and in addition, if accuracy is directly correlated to the definiteness of
the kernel.

Furthermore, they explored the possible impact of the indefiniteness of the kernels
on the accuracy by defining several measures to quantify the deviation from definite-
ness based on eigenvalue analysis. If Dδ is a distance matrix, GDSDδ is PSD if and
only if Dδ is negative definite (Cortes et al. 2004), and Dδ is negative definite if it has
a single positive eigenvalue. In this manner, the authors studied the deviation from
definiteness of some distance matrices, and stated that when the distance matrix Dδ

was far from being negative definite, the REDKδ outperforms the GDSδ kernel in
general, while when the matrix is close to negative definiteness, REDKδ and GDSδ

perform similarly.
Recently, Wu et al. (2018a) introduced another distance substitution kernel, called

D2KE, that addresses the construction of a family of PSD kernels departing from any
distance measure. It is not specific for time series but in their experimentation they
include a kernel for time series departing from the DTW distance measure. Their ker-
nel employs a probability distribution over random structured objects (time series in
this case) and defines a kernel that takes into account the distance from two series to
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Table 6 Summary of definite distance kernels

Authors Kernel Classifier Datasets

Xue et al. (2017) AGDTW KSRC, SVMs 4 UCR

Cuturi and Vert
(2007)

GA SVMs TI46a

Cuturi (2011) TGA SVMs 5 UCI

Marteau et al.
(2012)

GDSδeip SVMs 20 UCR

Marteau and Gibet
(2014)

REDKDTW , REDKERP ,
REDKTW ED

SVMs 20 UCR

Wu et al. (2018a) D2KE SVMs 3 UCI + 1 own

Wachman et al.
(2009)

Kshi f t SVMs Astronomy

aTI46 speech dataset (Liberman 1993)

the randomly sampled objects. In this manner, the authors point out that the D2KE
kernel can be interpreted as a soft version of the GDS kernel, which is PSD. Their
experimentation on four time series datasets showed that their D2KEDTW kernel out-
performs other distance based approaches such as 1-NN or GDSDTW both in accuracy
and computational time.

To conclude this section, a summary of the reviewed methods on Definite distance
kernels can be found in Table 6.

3 Computational cost

An important aspect that has not been addressed in depth when presenting the taxon-
omy is the computational cost of the methods included. The time complexity of the
classification methods, in general, is dominated by the learning phase and depends on
the size of the dataset from which the model is learnt; in distance based classification,
in addition to the size of the dataset—understood as the number of instances—, the
complexity of both the learning and prediction phases also depends on the computa-
tional cost of the employed distancemeasure. At the same time, the cost of the distance
measure also highly depends on the lengths of the series we are working with. In this
way, many time series distances, especially the most commonly employed measures
(DTW, ERP, TWED…), are characterized by a quadratic complexity on the length of
the series, which results in methods which are very time consuming for cases in which
the length of the series is large. In this context, many of the methods that employ
common time series distance measures usually turn out to be too time consuming for
real world applications. Even if this is so, and even if some of the reviewed works
experimentally evaluate the running times of their methods or aim at speeding up their
learning processes, most of them do not even address this issue. Thereby, in this sec-
tion, a brief overview of the complexity of distance based TSC methods is provided
in order to review the computational specificities of the methods in each category of
the taxonomy.
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First of all, it is important to highlight that one of the most significant differences
between distance based and non-distance based classification methods (from the point
of view of the computational cost) is the time complexity of the prediction phase. In
non-distance based methods, normally, the learning phase depends on the size of the
training dataset but, once the model is learnt, the prediction of unlabeled instances
does not depend on this dataset and is usually independent from the size of the dataset.
In distance based classification, on the contrary, both the learning and the prediction
stages computationally depend on the size of the dataset and on the chosen distance
measure, so they must both be taken into account. Thereby, from now, we are going
distinguish between the computational cost of the learning and the prediction phases
of the reviewed methods. Note that we are going to provide a general computational
time analysis of the methods but there are exceptions which do not exactly fit into the
computational characterization that we provide for each category.

In the case of the methods based on the 1-NN classifier, there is no learning phase
and the computational cost of prediction is determined by the size of the dataset and
the complexity of the distance measure (which, in turn, depends on the lengths of the
series). For instance, the distances DTW, ERP or TWED have a complexity of O(n2),
where n is the length of the longest time series, while the cost of the Euclidean distance
is O(n). As such, the computational cost of predicting an unlabeled time series using
theDTWdistance, for instance, is O(n2m) (wherem is the size of the training dataset),
since the m distances between the unlabeled series and the series in the dataset have
to computed. The approach adopted by most researchers to accelerate this process is
to speed up the computation of the employed distance measure, for example by using
the fast lower bound for the DTW (Keogh and Ratanamahatana 2005), which reduces
the complexity of the distance to O(n) (Esling and Agon 2012).

Regarding the methods that exploit distances as features, it is important to note that
the computation of the distances and the learning/prediction of the classifier are two
independent steps with their corresponding computational costs. In the learning stage,
first, the pairwise distances between all the series in the dataset are computed—as
a preprocessing step—to obtain the distance features, which are then used as input
for learning the classifier. We focus only on the complexity of the first step, which is
specific for distance based methods: the computational cost of this step depends on
the complexity of the distance measure, as well as on the size of the training dataset.
For instance, computing the DTW distance matrix of the m series in a dataset has a
complexity of O(n2m2). For prediction, the distances from the new unlabeled series
to all the series in the training dataset have to be computed also as a preprocessing
step. Then, the obtained distance features are introduced into the classifier to predict
the unknown label. As in the previous case, the distance computation depends on the
complexity of the distance measure and the size of the dataset. As such, an important
drawback is that, for cases with large datasets or high time consuming distances,
the prediction can become unrealistically time consuming. In view of this, several
approaches have been taken to mitigate the effect of these two factors: Janyalikit et al.
(2016) employed the fast lower bound to speed up the computation of the distances
(from quadratic to linear), while Iwana et al. (2017) and Jain and Spiegel (2015)
address the issue of reducing the dimension of the distance matrix that is used as input
to learn the model. The former proposed using time series prototypes and used the
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distances to them instead of calculating the entire distance matrix, while the latter
applied PCA in order to reduce its dimensionality.

In the shapelet based approaches, there are some preprocessing steps in order to
obtain the features before the application of the classifier. In the learning phase, first, a
shapelet discovery stage is carried out in which the best shapelets are learnt and, then,
the pairwise distances between the series in the dataset and the obtained shapelets
are computed. The initially proposed shapelet discovery technique takes O(n4m2),
which turns out to be very time consuming for real world applications. As such, over
the years, many methods have been proposed to speed up this search (He et al. 2012;
Mueen et al. 2011; Rakthanmanon and Keogh 2013; Ye and Keogh 2011). Once the
shapelets have been discovered, the computational cost of calculating the pairwise
distances between series and shapelets depends on the complexity of the distance,
the number of series and the number of shapelets. The distance between a series and
a shapelet is computed using the Euclidean distance most of the times -which has
a complexity of O(n)-, so, once the shapelets are learnt, the distance computation
has a complexity of O(nms), where s is the number of shapelets. This number is
determined in the shapelet discovery process, which usually involves techniques such
as candidate pruning or shapelet clustering in order to reduce the amount of shapelets
(Hills et al. 2014; Ye and Keogh 2009). In the prediction phase, the shapelet based
methods require a preprocessing step that involves a distance computation between
the new unlabeled series and the learnt shapelets, which has O(ns) complexity in the
case of the commonly employed Euclidean distance.

For the embedding based methods, the pairwise distances between the series in the
dataset have to be computed before they are embedded into another space. In the learn-
ing, this process hasO(n2m2) complexity (with theDTWdistance, for example),while
the complexity of the embedding process depends on the specific technique employed.
Hayashi et al. (2005) and Mizuhara et al. (2006), for instance, applied multidimen-
sional scaling, pseudo-Euclidean space embedding, and Euclidean space embedding
by the Laplacian eigenmap technique, but they do not specify the computational cost
of these methods so it is hard to draw conclusions. Lei et al. (2017) and Lods et al.
(2017), employed gradient descent based techniques, and, while the formers do not
specify the complexity of the method, the latter points out that the complexity of the
learning phase is quite high. Then, the obtained features are introduced into a classi-
fier. In prediction, the pairwise distances between the unlabeled series and the training
dataset have to be computed, which has a complexity of O(n2m) for cases using DTW
(Hayashi et al. 2005; Mizuhara et al. 2006).

In the methods that employ distance kernels, there is no preprocessing step and the
series are directly used as input to the given kernel method. However, the distance
kernels are derived from time series distances, so the computational cost of the kernel
methods is mainly dominated by the computation of the kernel matrix (analogous to
the distance matrix). In particular, this computation depends on the complexity of
the distance measure from which the kernel is derived as in (Bahlmann et al. 2002;
Jeong et al. 2011; Chen et al. 2015b) methods. As such, the distance substitution ker-
nels derived from DTW, ERP, EDR or TWED are computationally more expensive
(O(n2m2)) than the Gaussian RBF kernel (O(nm2)), for instance. In the prediction
phase, the kernel matrix—computed in the learning phase—is extended with the pair-
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wise values between the unlabeled series and the series in the dataset, which has the
same complexity as the previous 1-NN or global distance features methods.

Apart from the distance substitution kernels, the review includes other distance
kernels that are specific for time series and whose computational cost has to be anal-
ysed more in depth. The kernel proposed by Cuturi and Vert (2007) considers all the
alignments instead of only the optimal one and, thus, has a complexity of O(n2m2)

in the learning learning phase and O(n2m) in prediction phase. In view of this, the
same authors proposed another version of the kernel (Cuturi 2011), which, by means
of adding additional constraints on the allowed alignments, is faster than the original
kernel but equally accurate. In the definite kernel derived from an elastic inner product
proposed byMarteau et al. (2012), the computational cost is evaluated experimentally
and the authors show that the proposed elastic kernel has a complexity of O(n). As
such, the learning phase takes O(nm2), while the prediction phase O(nm). In other
words, they obtained an elastic kernel for time series that is characterized by a linear
complexity instead of the quadratic complexity derived from the traditional elastic
distances, which is a significant improvement.

From a general point of view, it is hard to draw accurate comparative results between
themethods presented due to their variants and the lack of experimental computational
time results available in the published works. Wu et al. (2018b) carried out the most
comprehensive evaluation of the computational cost of several distance based TSC
methods until now. They first compare their DFRF distance features method with two
embedding methods: the method proposed by Mizuhara et al. (2006), and the one by
Lods et al. (2017), concluding that their method outperforms the other two, both in
accuracy and in computational time. In addition, two variants of their method are also
evaluated on 16 UCR datasets against other baseline distance based TSC approaches
(1-NNwith DTW, theGA kernel (Cuturi andVert 2007) andDFDTW (Kate 2015)); the
first variant of their method outperforms the other approaches in accuracy but involves
a high computational cost, while the second variant achieves competitive accuracies,
significantly reducing the required computational time.

To summarize, distance based TSC methods have usually quadratic complexity
both in the length of the series and in the size of the dataset, due to the common use
of elastic measures. In this context, if the series are long enough or the size of dataset
is large, the methods can become too time consuming for real world applications. As
such, it is an important aspect to be considered. Some of the methods take this into
account and evaluate the running time of their method but, in general, in our opinion,
it has not been addressed enough. There are some attempts to speed up the distance
based methods (Janyalikit et al. 2016; Iwana et al. 2017; Jain and Spiegel 2015; Cuturi
2011; Marteau et al. 2012) but it is still a direction in which there is considerable
room for improvement. In addition, we think that a comprehensive comparison of the
running times of the methods would be a great contribution as future work.

4 Discussion and future work

In this paper, we have presented a review on distance based time series classification
and have included a taxonomy that categorizes all the discussedmethods depending on
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how each approach uses the given distance. We have seen that from the most general
point of view, there are three main approaches: those that directly employ the distance
together with the 1-NN classifier, those that use the distance to obtain a new feature
representation of the series, and thosewhich construct kernels for time series departing
from distance measure. The first approach has been widely reviewed, so we refer the
reader to Wang et al. (2013), Ding et al. (2008) and Serrà and Arcos (2014) for more
details about the discussion.

Regarding the methods that employ a distance to obtain a new feature represen-
tation of the series, these approaches have been considerably studied for time series
as it bridges the gap between traditional classifiers (that expect a vector as input) and
time series data, taking advantage of the existing time series distances. In addition,
some methods within this category have outperformed existing time series benchmark
classificationmethods (Kate 2015). Note that distance features can be seen as a prepro-
cessing step, where a new representation of the series is found which is independent of
the classifier. Depending on the specific problem, these representations vary and can
be more discriminative and appropriate than the original raw series (Hills et al. 2014).
As such, an interesting point that has yet to be addressed is to compare the different
transformations of the series in terms of how discriminative they are for classification.

Nevertheless, learning with the distance features can often become cumbersome
depending on the size of the training set and a dimensionality reduction techniquemust
be applied in many cases in order to lower the otherwise intractable computational
cost. Some of the methods (Iwana et al. 2017; Jain and Spiegel 2015) reduce the
dimensionality of the distancematrix once it is computed.Another direction focuses on
time series prototype selection (Iwana et al. 2017), that is, selecting some representative
time series in order to compute only the distances to them instead of to the whole
training set. It is worth mentioning that there has been some work done in this context
in other dissimilarity based learning problems (Pȩkalska et al. 2006) but it is almost
unexplored in TSC. Due to the interpretability of the time series and, in particular, of
their prototypes, we believe that this is a promising future direction of research.

Another feature based method consists of embedding. The embedded distance fea-
tures have only been employed in combination with linear classifiers (Mizuhara et al.
2006) or the tree based XGBoost classifier (Lods et al. 2017), which, in our opinion,
do not take direct advantage of the transformation. The main idea of the embedded
features is that if the Euclidean distances of the obtained features are computed, the
original time series distances are approximated. In this way, we believe classifiers that
compute Euclidean distances within the classification task (such as the SVM with the
RBF kernel, for instance) will profit better from this representation. In addition, in the
particular case of kernel methods, the use of embedded features can be seen as a kind
of regularization; the RBF kernel obtained from the embedded features would be a
definite kernel that approximates the GDS indefinite kernel.

As already pointed out, the third way of using a distance measure is trying to con-
struct kernels departing from these existing distances. However, these distances do not
generally lead to PSD kernels. Both distance features and distance kernel approaches
are not specific for time series, and some work has been done to compare the benefits
of each approach in a general context. Chen et al. (2009) mathematically studied the
influence of distances features and distances kernels within SVMs in a general frame-
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work. In time series classification, Gudmundsson et al. (2008) and Jalalian and Chalup
(2013) address the problem of experimentally evaluating whether it is preferable to
use distance features or distance kernels. Both works assert that the indefiniteness of
the distance kernels negatively affects the performance, although their proposals are
restricted to the DTW distance. It would be interesting to comprehensively compare
these two approaches taking into account different distances, kernels and classifiers
in order to draw more general conclusions.

The problem of the definiteness of a kernel has been widely addressed within the
methods in this review. Note that the definiteness of a kernel guarantees the mathe-
matical foundations of the kernel method and, therefore, it seems natural to think that
definiteness and performance are correlated, which is the assumption of almost all
the methods. Some authors confirm that the performance is still good and do not care
about the indefiniteness of the kernels, while, in general, the research focuses mainly
on trying to somehow deal with the indefiniteness of the kernels. Isolating the contri-
bution of the definiteness of a kernel to the performance is rather challenging due to
the many other factors (optimization algorithm or the choice of the kernel function)
that also affect it. However, since the relation between definiteness and accuracy is
a general matter—not specific for time series, and in fact, not specific for distance
kernels—, a promising future direction would be to evaluate whether there exists or
not a direct correlation between them.

Within the methods that try to deal with the indefiniteness there are two main
directions. The first uses kernel based classifiers that can handle indefinite kernels.
This approach is almost unexplored in time series classification, since only the P-SVM
by Jalalian and Chalup (2013) has been applied, achieving very competitive results.
Indeed, there are some studies on learning with indefinite kernels from a general point
of view (Ong et al. 2004), and considering that indefinite kernels appear often within
TSC, this approach may be interesting future work.

The second approach, called kernel regularization, aims to adapt the indefinite
kernel to be PSD. As in the previous direction, this is also an almost unexplored
approach for time series. Only eigenvalue analysis has been applied with ambiguous
results. Chen et al. (2015a) used eigenvalue regularization techniques but they do not
evaluate the regularization itself, while Gudmundsson et al. (2008) argued that the
method after kernel regularization achieves lower performance than the method with
the indefinite kernel. One of the main shortcomings of this specific regularization is
that it is data dependent, and, in addition, the consistent treatment of new test samples
is not straightforward. As previously mentioned, it is not clear whether regularization
is helpful or whether the new kernel becomes so different from the initial one that
the information loss is too big; this is an open question which has not been studied in
detail.

As previously mentioned, another direction focuses on a better understanding of
the indefiniteness of these kernels. Concerning the GDS kernels, which are distance
kernels valid for any type of data, the first attempt in the time series domain was
to define kernels departing from distances that are metrics. Although it has been
proven that themetric property does not guarantee the definiteness of the inducedGDS
kernel, Zhang et al. (2010) argued that the performance of metric distance kernels
is significantly better than those defined with non-metric distances, suggesting that
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kernels with metric distances are closer to definiteness. In addition, Marteau and Gibet
(2014) conjecture that the reason of the indefiniteness is the presence of min or max
operators in the recursive definition of time series distance measures. An interesting
observation is that these discussions arise from time series distances but are, regardless,
general issues concerning the characteristics of a distance measure and the derived
GDS kernel. Even if the mentioned works address the relation between metricity and
definiteness, this connection is not yet clear. It is also an interesting future research
direction due to the generalizability of the problem and the possible applications.

Cuturi and Vert (2007), by contrast, focused on the specific challenge of construct-
ing ad-hoc kernels for time series. As such, they found a direct way of constructing
PSD kernels that take into account the time elasticity by defining a kernel that does not
consider just the optimal alignment between two series but, instead, considers all the
possible alignments. Moreover, given an elastic distance measure defined by a recur-
sive equation, Marteau (2009) address the construction of distance based PSD kernels.
Their kernel can be seen as a particular case of GDS kernel for elastic measures that
become PSD by replacing the min or max operators in the recursive definition of the
distance by a sum. By using this trick, they obtain kernels for time series that take
into account time elasticity and are also PSD. Their comprehensive experimentation
shows that SVM based approaches which use these kernels clearly outperform the
1-NN benchmark approaches, even for the DTW distance. Furthermore, they reported
that the REDK kernel brings significant improvement in comparison with the GDS
kernel, especially when the kernel matrices of the GDS kernels are far from definite-
ness, which in their particular case corresponds to the non-metric measures. However,
they experimented with just two metric and one non-metric measures which is not
enough to draw strong conclusions.

It is also worth mentioning that many methods introduced in the taxonomy are not
specific for time series, but become specific when a time series distance is employed.
In particular, only the methods that are based on shapelets and the methods that con-
struct kernels for time series considering the concept of alignment between series are
specific for time series. The rest of the methods are general methods of distance based
classification for any type of data. An interesting observation is that questions or prob-
lems arising for time series can be extrapolated to a general framework. In the same
manner, some of the presented approaches are specific for some classifiers (1-NN,
kernel methods), while others can be used in combination with any classifier. Also
note that many of the methods, such as those which employ global distance features,
embedded features or indefinite distance kernels, are directly applicable in the case
of multivariate or streaming time series, provided a suitable distance for this kind of
series is defined. The extension of these methods for multivariate or streaming time
series could be a possible future direction. It would be interesting also to extend other
methods, such as the shapelet based methods or the ad-hoc definite kernels, to these
kind of time series, since, in these cases, the adaptation of the methods by itself would
be a great contribution.

To conclude, note that in contrast to the number and variety of existing kernels for
other types of data, there are rather few benchmark kernels for time series in current
literature (Shawe-Taylor and Cristianini 2004). Therefore, we would like to highlight
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the value of these kernels for time series, especially those that are able to deal with
the temporal nature of the series and are PSD.
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