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Abstract The behavior of events that occur infrequently but have a large impact
tends to differ from that of the central tendency, and identifying the tail dependence
structure among key factors is critical for controlling risks. However, due to technical
difficulties, conventional analyses of dependence have focused on the global average
dependence. This article proposes a novel approach for analyzing the entire structure
of nonlinear dependence between two data sets on the basis of accurate pointwise
mutual information estimation. The emphasis is on fat-tailed distributions that tend
to appear in events involving sudden large changes. The proposed pointwise mutual
information estimator is sufficiently robust and efficient for exploring tail dependence,
and its good performance was confirmed in an experimental study. The significance
of the identified dependence structure was assessed using the proposed bootstrap pro-
cedure. New facts were discovered from its application to daily returns and volume
on the New York stock Exchange (NYSE) Composite Index.

Keywords Nonparametric density estimation · Adaptive kernel · Risk control ·
Stock price changes · Volume · Dependence structure · Data visualization

1 Introduction

Many complex and dynamic systems are known to experience critical transitions,
causing disastrous harm to society, such as in the form of financial bubbles, large
earthquakes, or sudden climate changes. In financial markets, for example, sudden
large changes in prices and volume appear periodically, and market behavior in such
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extreme periods has been observed to be quite different from normal tendencies. For
the purpose of risk control, it is crucial to understand the behavior of events that
have large effects but occur only rarely. In traditional data mining, however, the usual
assumption is an independence of the learning samples. Conventional statistics have
focused on the analysis of central tendencies, and infrequent but large changes have
been nuisance factors and are often removed from data sets. Consequently, it has
been difficult to reveal complex spatio-temporal dependence structures in the areas of
economics, finance, geophysics, and climate systems.

Capturing a local behavior is essentially a difficult task. Mari and Kotz (2001) stated
that the number of works on local dependence remains quite low in contrast to the
voluminous literature on global dependence measures. One reason for this is that the
amount of information required for a sufficiently accurate estimation is larger for local
dependence than for global dependence. This problem becomes even more difficult to
resolve if the target phenomenon is nonlinear and occurs only infrequently: The struc-
ture to be identified is complicated, requiring a large amount of information, while the
little amount of available data is short and noisy (Barahona and Poon 1996). Another
difficulty is that events including sudden large changes tend to follow fat-tailed distri-
butions. Estimation results can be significantly different depending on the selection of
the estimator, as illustrated by Takada’s Monte Carlo study (2008). In order to exploit
the maximum amount of information from a limited amount of noisy data generated
from complex dynamical systems, it is necessary to use a good dependence measure
that can be estimated by a sufficiently efficient and robust method for exploring the
tail dependence structure.

Mutual information (MI), a concept introduced by Shannon (1948), is an excellent
measure for describing all types of nonlinear dependence without assuming specific
functions or models. For further details on MI and some examples of its application,
see Cover and Thomas (2006); Pluim et al. (2003) and Papana and Kugiumtzis (2008),
along with their included references. While accurate estimations are not easy even for
a global average MI (Kraskov et al. 2004), the estimation of a local average MI suffers
more from too few samples (Pluim et al. 2003). Therefore, the application of MI has
been limited to the global average MI, that is, the expected value of pointwise MI. In
a review of the literature on MI-based image processing by Pluim et al. (2003), few
examples of local MI computations are listed. The only application areas of point-
wise MI the authors can find are the computations of collocations in linguistics or
text-mining related problems.

Considering the management of risks generated from complex dynamic systems,
the objective of this article is to propose a statistical framework for comprehensive
analysis of the dependence structure. This analysis is enabled through the use of the
proposed pointwise MI estimator, whose efficiency and robustness is improved to a
level sufficient for exploring a weak tail dependence structure. The major contributions
of this article are as follows:

• To the best of the author’s knowledge, this article reports the first visualization of
a complete dependence structure expressed through pointwise MI.

• We proposed a pointwise MI estimator that provides a sufficiently efficient and
robust estimation for investigating a tail dependence structure, without requiring
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any prior knowledge or assumptions. The superior performance of the estimator
relative to other approaches is demonstrated through an experimental study.

• The bootstrap procedure used for assessing the statistical significance of an iden-
tified dependence structure is proposed.

• New stylized facts obtained by the application of the proposed analysis to daily
NYSE return and volume datasets are presented.

Pattern mining of the whole dependence structures proposed in this article has a
large potential to reveal interesting nonlinear relationships. Moreover, this research
can serve as the initial step toward inferring functional relationships among important
variables.

The remainder of this article is organized as follows. Section 2 reviews related
works. Section 3 illustrates how to interpret pointwise MI using an example of para-
metric bivariate densities. Section 4 describes the computational procedures used for
an accurate and robust pointwise MI estimation, where a bootstrapping procedure for
assessing the statistical significance of an identified local dependence structure is pro-
posed. Section 5 compares the computational performance of the proposed methods
with a major competing approach. In Sect. 6, the proposed analysis is applied toward
an investigation of the dependence structure between daily NYSE index returns and
volume. Section 7 provides some concluding remarks.

2 Related works

With special emphasis on capturing the tail dependence structure, previous works
related to pointwise MI estimation are reviewed from the following three perspectives:
(1) application of MI estimation, (2) MI estimation methods, and (3) other measures
for local and tail dependence.

Global average MI is a nonlinear measure of dependence that is applied across
multiple disciplines. Some recent examples of direct MI application are as follows:
Suzuki et al. (2009) measured the association between conditions of yeast and bio-
logical processes through microarray datasets. Afshin-Pour et al. (2010) evaluated the
performance of activation detection in real and experimental datasets.

In addition to a direct use, a large portion of the literature on this subject is moti-
vated by either of the following two lines of research. The first line is the use of MI as
a measure of testing independence for feature extraction and independent component
analysis. For examples of this line of research, see Battiti (1994); Kwaku and Choi
(2002) and Hyvärinen and Oja (2000).

The second line is the use of MI in the analysis of nonlinear complex dynamical
systems, and consequently, causality detection. MI is considered to be a natural tool for
analyzing complex systems. The driving characteristic of frequently occurring order-
disorder transitions is entropy, which is deeply connected with MI. Reconstructing
multi-dimensional phase portraits from a single or a few time series of observations
is very important in nonlinear analysis, where an appropriate choice of time-delay
is required. Fraser and Swinney (1986) proposed the use of a global average MI as
a nonlinear version of an autocorrelation function for lag identification. Wicks et al.
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(2007) show that a global average MI can be used to detect order-disorder transitions
given the observations of the limited elements within a system.

MI can be used for inferring causality of spatio-temporally separated observed
parameters: For example, solar wind conditions were studied by March et al. (2005),
and information transmission within the brains of Alzheimer’s patients was studied by
Jeong et al. (2001). Paluš et al. (2001) used a conditional average MI for detecting the
directionality of coupling from the phases of interacting oscillators. For more details
on MI-based causality analysis, see the review by Hlaváčková-Schindler et al. (2007).

The results of comparative analyses of global average MI estimators have been
mixed: While k-nearest neighbors (KNNs) and ordinary fixed-width kernel density
estimators (FKDEs) have been shown to outperform classical histogram-based meth-
ods, the reported relative performance between KNN and FKDE is mixed depending
on the conditions of the experiments. Results from Khan et al. (2007) in their estima-
tion of global average MI based on very short data indicates that FKDE shows the best
performance for highly noisy data, whereas the performance of KNN, is optimum for
data with low noise levels.

Among the few measures used for capturing a local dependence structure, a func-
tion called a copula has gained considerable attention, particularly for analyzing mul-
tivariate dependence in financial risk management (Cherubini et al. 2004; McNeil et
al. 2005). A copula separates multivariate distributions into multivariate dependence
structures and their marginal distributions. The main statistical advantage of a copula
is that it is possible to replicate data sets through simulation using any type of marginal
distribution. For further details on copulas, as well as a latest review on their use, and a
description of their application in the area of finance, see Nelsen (2006); Patton (2009)
and McNeil et al. (2005), respectively.

Recently, several extreme value copulas have been investigated: Klüppelberg et al.
(2007) proposed the modelling of tail copulas via elliptical copulas, which is applied
toward the calculation of spatio-temporal tail dependence for precipitation by Kuhn et
al. (2007). General results on the tail dependence coefficients of Archimedean copulas
have been given by Charpentier and Segers (2009). Joe et al. (2010) also studied the
extreme dependence of vine copulas and developed various multivariate tail depen-
dence functions. For an explanation and a list of references regarding extreme value
copula, see a survey conducted by Gudendorf and Segers (2010). However, the appli-
cation of copulas to certain phenomena including extreme events seems to require a
degree of caution. Through example estimates of copulas used in foreign exchange
rates and stock returns, Malevergne and Sornette (2006, Chapter 5) warned about the
risks of model misspecification in the empirical determination of copulas.

Relative to previous works, this article greatly improves on the efficiency and robust-
ness of the MI estimation. The pointwise MI estimator was first proposed by Takada
(2001). This article emphasizes its efficiency by comparing it with other conven-
tional method. The proposed pointwise MI estimator is based on the adaptive kernel
density estimator, which combines the features of KNN and FKDE with additional
devices for an improvement in accuracy. This enables an analysis of pointwise MI
itself even within the tails, without requiring any prior knowledge or assumptions. To
the author’s best knowledge, this is the first attempt to visualize an entire dependence
structure using pointwise MI for continuous variables.
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3 Visualizing local dependence structure using pointwise
MI: illustrative examples

The idea of plotting pointwise MI on the colored map of a dependence structure is
quite novel even for known bivariate densities. Using examples of bivariate normal and
Student-t densities, this section illustrates how to interpret the dependence structures
visualized through pointwise MI.

3.1 Definition of the MI

Let X and Y be random variables of a probability space. The MI of {X, Y } at (x, y)

was defined by Shannon (1948) as

ϕX,Y(x, y) = log

[
fX,Y(x, y)

fX(x) fY(y)

]
, (1)

where fX,Y(x, y) is the joint probability density of X and Y at the point (x, y),
and fX(x) and fY(y) are the marginal densities of X at x and Y at y, respectively.
The global average MI is then defined for a continuous case as

E
[
ϕX,Y(x, y)

] =
∞∫

−∞

∞∫
−∞

log

[
fX,Y(x, y)

fX(x) fY(y)

]
fX,Y(x, y) dx dy. (2)

The term, mutual information (MI) generally implies global average MI defined as
in (2), probably because applications of MI defined as in (1) are rarely seen. To avoid
confusion, we call representation (1) pointwise MI following the custom used in lin-
guistics. The pointwise MI of X and Y measures the amount of information provided
for event X = x by the occurrence of the event Y = y. On the other hand, global
average MI is a measure of the central tendency of the local dependence structure
captured by pointwise MI. See Cover and Thomas (2006) for further explanations on
the uses of global average MI.

3.2 Interpretation of pointwise MI: the case of bivariate normal density

Let X and Y follow bivariate normal distributions N [μ,�], where μ is the mean vector
of (X, Y ), and � is a covariance matrix with correlation coefficient ρ. Figure 1(a–c)
show contour plots of bivariate standard normal density with different correlation
levels at ρ = 0.3,−0.3 and 0.0. For all figures in this article, the plot range of x
and y from known densities is set to include 99% quantiles of the target density.
The joint density is spherical when it is independent, as in Fig. 1(a), and elliptical
when there is dependence, as in Fig. 1(b) and (c). An event (x, y) located within the
center occurs with high frequency, which may be regarded as a central tendency or
normal-time event. In contrast, tail events occur only rarely, and are termed abnormal
or non-central tendency events.
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Fig. 1 Theoretical bivariate normal density with different correlation coefficient, ρ, and the corresponding
pointwise MI: The plot includes the 99% quantile

Figure 1(d–f) are the plots of the pointwise MI corresponding to the bivariate stan-
dard normal densities shown in Fig. 1(a–c). The contours of pointwise MI in the figures
are colored in the following manner. The green line implies no dependence between
X and Y (ϕX,Y = 0). Positive dependence (ϕX,Y > 0) is indicated by yellow to orange,
and implies that Y tends to be large (small) when X is very large (small). Negative
dependence (ϕX,Y <0) is indicated by light to dark blue, and implies that Y tends not
to be large (small) when X is very large (small). Darker colors indicate larger absolute
dependence. From the figures, it is clearly shown that pointwise MI is a function of
the pair of values (x, y), and provides a view of the entire dependence structure. For
the non-correlation case with ρ = 0 shown in Fig. 1(d), the corresponding pointwise
MI becomes zero for all pairs of (x, y) in green only.

In the case of the positive correlation ρ = 0.3 in Fig. 1(e), pointwise MI is close to
zero around the center, while the degree of dependence is larger as it goes toward the
tail of the distributions. In addition, the contour of pointwise MI is symmetric with
regard to the line y = x , with positive dependence in the first and third quadrants, and
negative dependence in the second and fourth quadrants. Observing the contour plot
of the bivariate density estimates in Fig. 1(b), it is difficult to capture such complicated
local relations as those illustrated in Fig. 1(e). In the case of the negative correlation,
ρ = −0.3 in Fig. 1(c), the region of positive dependence is observed in the second
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and third quadrants and negative dependence in the first and fourth quadrants. Again,
the plot is symmetric with regard to the line y = x . The pointwise MI is not rotation
free. In rotating the x and y axes by 45 degrees, the coordinates are transformed into
(x ′, y′) = ((x − y)/

√
2, (x + y)/

√
2), and the generated pointwise MI no longer

preserves the initial dependence.

3.3 Pointwise MI for assessing independence: the case of bivariate t (3) density

First consider mutually independent bivariate t density. Let X and Y be mutually
independent, and follow univariate Student-t distributions with ν degrees of freedom.
The joint probability density function (pdf) of mutually independent bivariate t distri-
butions with ν degrees of freedom is defined as:

fIT (x, y, ν) = fX (x, ν) fY (y, ν), (3)

where fX (x, ν) and fY (y, ν) are the pdf of the univariate Student-t (ν) density.
The pointwise MI corresponding to the density defined in (3) is zero for all x and
y.

Next, consider a general bivariate t density where X and Y are mutually dependent.
The joint pdf of a dependent bivariate central t distribution with ν degrees of freedom
is defined as

fT (x, y, ν, ρ̃) = �((ν + 2)/2)

πν
√

1 − ρ̃2�(ν/2)

[
1 + x2 + y2 − 2ρ̃xy

ν(1 − ρ̃2)

]−(ν+2)/2

, (4)

where ρ̃ is the correlation coefficient between X and Y . This is the bivariate version
of the most common form of multivariate t distributions: it directly generalizes the
univariate Student-t distribution in the same manner in which the multivariate normal
distribution generalizes the univariate normal distribution. See Kotz and Nadarajah
(2004) for further explanation of multivariate t distributions. Note that the pointwise
MI does not reduce to zero when ρ̃ = 0. Thus, X and Y following the joint density
defined as (4) with ρ̃ = 0 are not mutually independent.

Figure 2 illustrates the contour plots of joint t (3) density and the corresponding
pointwise MI. The contours of the densities are presented in log10 scale to empha-
size the tail behavior. Figure 2A refers to the independent case defined in (3), and
Fig. 2B refers to the correlated case defined in (4). The independent joint t (3) density
in Fig. 2A(a) is plotted as a rhomboid contour, while the dependent joint t (3) density
in Fig. 2B(a) is plotted as a spherical contour. Differing from the case of the correlated
standard normal density, a weak positive dependence is observed at the tails. Given
these density contours, identifying an independent case is difficult. On the other hand,
the pointwise MI plot provides a very clear information regarding the dependence.
The pointwise MI for the independent joint t (3) density in Fig. 2A(b) is shown in
green only, indicating the local independence for all x and y values. The pointwise
MI for dependent joint t (3) density with ρ̃ = 0 in Fig. 2B(d) exhibits a significant
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Fig. 2 Theoretical bivariate t(3) densities and the corresponding pointwise MI: (Panels A) Cases of inde-
pendent t(3) density defined in (3); (Panels B) Cases of dependent densities defined in (4) where ρ̃ denotes
the degree of dependence. The plot includes the 99% quantile

positive dependence along the positive and negative 45-degree lines, and the signif-
icance becomes stronger as it goes toward the tails. In this way, the pointwise MI
comprehensively uncovers a hidden dependence structure, which is impossible for the
case of global average statistics.

4 Pointwise mutual information estimation method

For the purpose of risk control, it is important to analyze target events that include
sudden large periodic changes. Such events tend to follow fat-tailed distributions.
Moreover, the data tend to include noise and outliers. Estimation of such distributions
is difficult using conventional approaches. An accurate tail estimation becomes even
more difficult. This section proposes a robust estimation method that enables capturing
the tail dependence structure of target events with a fat-tailed distribution.

4.1 Bivariate adaptive kernel density estimation

The estimation of the pointwise MI proposed herein is based on the bivariate adaptive
kernel density estimation method of Breiman et al. (1977), and refined by Abramson
(1982), which is known to be good at estimating fat-tailed and multi-modal densities.
Different from conventional kernel methods with a fixed bandwidth, the bandwidth
of the adaptive kernel method varies locally. Because of this locality in fitting, this
method has the best performance among the major approaches in estimating densities
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with fat tails and multi-modes. See Takada (2008) and Hwang et al. (1994) for a com-
parative analysis of competing estimators in univariate cases and multivariate cases,
respectively. Another appealing point is that a good performance can be achieved using
a relatively simple algorithm.

Let d-dimensional data set with sample size n be X = {X1, . . . , Xn}, i = 1, . . . , n,
and a d-dimensional point be x = (x1, . . . , xd). The conventional kernel density
estimator with a Gaussian kernel has the following form:

f̂ F K (x) = 1

nhd

n∑
i=1

φ

(
x − Xi

h

)
, (5)

where φ denotes the standard Gaussian density, and fixed bandwidth h controls the
degree of smoothing. An optimal choice of h for the Gaussian kernel suggested by
Silverman (1986) is given as h = {4/(d + 2)}1/(d+4)n−1/(d+4).

The adaptive kernel density estimator of Breiman et al. (1977), and refined by
Abramson (1982), is defined as

f̂ (x) = 1

n

n∑
i=1

1

(hλi )d
φ

(
x − Xi

hλi

)
, (6)

where λi is a local bandwidth factor, which narrows the bandwidth hλi near the modes
and widens it at the tails. The determination of λi is based on the pilot estimate f̃ (x)

from the fixed kernel method, which is defined in (5) as λi = { f̃ (Xi )/g}−1/2, where
log g = n−1 ∑

log f̃ (Xi ).

4.2 Robust sphering

In order to avoid extreme differences of spread in the various coordinate directions,
pre-scaling or data sphering is generally desirable in multivariate settings. This has the
effect of skewing the shape of kernels to better fit to the data. To assure the accuracy of
a sufficient tail estimation for exploring tail behavior, we employ the robust sphering
of Rousseeuw and van Zomeren (1990).

The conventional approach of Fukunaga (1972) first spheres d-dimensional
observed data M into Z using Zi = Ω−1/2(Xi −X̄), where X̄ and Ω are the mean vec-
tor and covariance matrix of X, respectively. After estimating the density of sphered
data, Z, the estimates are transformed back as f̂ (m) = (det Ω)−1/2 f̂ (z). In the robust
sphering of Rousseeuw and van Zomeren (1990), non-robust X̄ and Ω in Fukunaga
sphering are replaced with robust alternatives: The center of the minimum volume
ellipsoid covers q% of the observations, and the covariance matrix is determined
based on the same ellipsoid multiplied by a correction factor to obtain consistency in
multivariate normal distributions. The authors recommend q = 50% from a robustness
perspective.

If the target data are known to follow fat-tailed distributions such as the case of finan-
cial asset returns, robust sphering is advantageous to the Fukunaga (1972) method,
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Fig. 3 Effects of robust sphering in estimating scaled independent bivariate t (3) densities: Scale of x is
set as three-times of the scale of y

which we demonstrate by using the example of bivariate t (3) density estimation. The
choice of density comes from the fact that the value of the algebraic tail index α for
most financial data has been reported to be about three to five. For example of this,
see Huisman et al. (2001) and Lin and Kao (2008). Figure 3 compares the effect of
employing a different sphering method in estimating the independent bivariate t (3)

density defined in (3). The range of x is modified to three-times that of y in order
to observe the sphering effects. The corresponding theoretical density contours at the
log10 scale are plotted in Fig. 3(a).

Figure 3(b) shows the joint density estimates using Fukunaga (1972) sphering with
the sample mean and covariance matrix. Figure 3(c) and (d) are the results of robust
sphering developed by Rousseeuw and van Zomeren (1990) using a minimum volume
ellipsoid covering m = 90 and 50% of the observations, respectively. The estimates
based on robust sphering are significantly better than those based on Fukunaga spher-
ing, which are much too smoothed. In addition, the robust sphering based on a 50%
observation is slightly better than that based on a 90% observation, which is in agree-
ment with the claim of Rousseeuw and van Zomeren (1990) that q = 50% is a desirable
choice from a robustness perspective. To investigate weak local (tail) dependence of a
fat-tailed data series, which tends to have a more serious effect from the outliers than
the other cases, it is desirable to employ a robust sphering procedure.

4.3 Problems of artifacts in the tail estimates

A sufficiently accurate estimation for exploiting the tail relationship requires special
attention in estimating the denominator of the pointwise MI, fX(x) fY(y). Herein, it
is shown that the naive estimators for fX(x) fY(y) as a product of univariate density
estimates are problematic, and therefore new estimators are proposed. Table 1 is a list
of different pointwise MI estimators, the performance of which are compared in this
and the following sections.

In the acronyms listed in Table 1, the FKUD pointwise MI estimator in Table 1
is that used by Moon et al. (1995) and Khan et al. (2007), where FK denotes the
conventional fixed bandwidth density estimator defined in (5). UD denotes a naive
estimator for fX(x) fY(y), which is a product of univariate density estimates. AK in
Table 1 denotes the adaptive kernel density estimator defined in (6).
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Table 1 Acronyms used for different pointwise MI estimators

Acronyms Pointwise MI estimator

FKUD log
[

fFK (x,y)
fFK (x) fFK (y)

]

AKUD log
[

fAK (x,y)
fAK (x) fAK (y)

]

AKMD log

[
fAK (x,y)∫

x fAK (x,y)dx
∫

y fAK (x,y)dy

]

AKSD log
[

fAK (x,y)
fAK (x,yshuffled)

]

fFK : conventional fixed bandwidth kernel density estimator
fAK : adaptive kernel density estimator
(x, yshuffled): Bivariate (x,y) sequence where the order of y is shuffled to eliminate dependence between x
and y

Figure 4A shows pointwise MI estimates of the independent bivariate t (3) den-
sity defined in (3) with a sample size of 10000, where the estimates for fX(x) fY(y)

are obtained in different ways. Figure 4A(b) shows pointwise MI estimates from the
AKUD estimator, which is a natural estimator based on the adaptive kernel density
estimator defined in Table 1. In Fig. 4A(b), artificial dependence is observed in the
tails. This is because the precisions of the bivariate density estimation and univar-
iate density estimation are different, and their difference becomes more significant
as they move toward the tails where the amount of available data is limited. Taking
the logarithm of the ratio in the computation of pointwise MI enlarges the difference,
particularly when the dependence is weak. The noise in the tails is more significant
for the t (3) density than for the Gaussian density, probably because fitting fat tails is
generally more difficult than fitting Gaussian tails.

A tail artifact occurs due to data scarcity at the tails, which is inevitable. In order
to eliminate noises coming from the procedural differences, we devised an AKMD
estimator whose denominator is the product of marginal densities of the joint density,
fX,Y(x, y). MD implies a marginal density estimation. The AKMD estimates shown in
Fig. 4A(c), show a reduced artificial dependence, but the level is still harmful.

4.4 AKSD estimation

For a practical tail analysis, the pointwise MI estimator is required to identify the
existence of dependence for all data types, including faint or no dependence cases.
We propose computing fX(x) fY(y) using the bivariate density estimation of shuffled
data series {X, Yshuffled}, where the dependence between X and Y is completely elim-
inated by randomizing the order. We call the proposed estimator as AKSD, where SD
denotes bivariate density estimation in the shuffled sequences. In the AKSD estimation,
to eliminate the noises coming from procedural differences, we can apply an iden-
tical bivariate density estimation procedure to both the nominator and denominator
of pointwise MI. In a way, the pointwise MI measures the degree of independence
between the outcome X and outcome Y , and the denominator, fX(x) fY(y), may be
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Fig. 4 The effects of employing different procedures to obtain an estimate of f (x) f (y): (Panels A) Point-
wise MI estimates of independent bivariate t (3) density; (Panels B) Pointwise MI estimates of dependent
bivariate t (3) density; (Panels C) Pointwise MI estimation errors of dependent bivariate t (3) density; Sample
size n = 10000. See Table 1 for an explanation of the acronyms used

regarded as a test statistics for pointwise independence. Thus, a comparison of the
densities of the given {X, Y } and shuffled no-dependence {X, Yshuffled} is reasonable
for the purpose of identifying the existence of pointwise dependence.

Let Y = {Y1, . . . , Yi−1, Yi , Yi+1, . . . , Y j−1, Y j , Y j+1 . . . , Yn}. The algorithm for
shuffling the order of Y is as follows:

1. Choose two components of Y, Yi and Y j , where i �= j , based on the uni-
form deviates, and swap them to obtain Ỹ = {Y1, . . . , Yi−1, Yj, Yi+1, . . . , Y j−1,

Yi, Y j+1, . . . , Yn}.
2. Repeat the first step 10 n times to obtain two independent series, {X, Ỹshuffled}.
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Figure 4A(d) shows the estimation results of AKSD, which illustrates the characteris-
tics of white noise as theoretically expected. No artifacts can be observed at the tails.
Therefore, the proposed AKSD estimator seems better than AKUD and AKMD for
the purpose of exploring subtle pointwise dependence.

Applying an identical bivariate density estimation procedure to compute fX,Y(x, y)

and fX(x) fY(y) has the effect of unifying the accuracy or resolution to the level of
bivariate density estimation. Using AKUD and AKMD estimation, we can obtain a
more accurate estimate of fX(x) fY(y) than through AKSD estimation. However, more
information does not always bring about better estimation results. From the view point
of “scale space theory” in the literature on computer vision, applying an identical pro-
cedure to both estimates and calculating the ratio, plays the same role as that played
by scale resolution in a visual system. A similar example is the minimum distance
estimations of Basu and Lindsay (1994) and Takada (2009): Minimizing the distance
between a nonparametrically smoothed density and a smoothed analytical model den-
sity has been proven to provide higher efficiency than cases in which analytical model
density itself is used. For further discussion of this view, see Chaudhuri and Marron
(2000) and Lindeberg (1994).

However, some limitations are observed in AKSD estimation when a certain level of
dependence exists. Figure 4B shows the pointwise MI estimates of dependent bivariate
t (3) density defined in (4) with ρ̃ = 0.3 and a sample size of 10000, and Fig. 4C shows
the corresponding error plot. While AKSD estimates correctly capture the dependence
structure, the image is fainter than the theoretical level. From Fig. 4C, we can observe
that AKMD estimates have the smallest amount of error in this case. While some
negative patterns exists in the AKSD estimation of the error plot in Fig. 4C(d), the
level of error is slightly lower than in the tail artifacts observed in Fig. 4A(c).

4.5 Assessment of statistical significance

In pointwise MI estimation, errors in a data-scarce region are unavoidable. In prac-
tice, therefore, it is desirable to be able to distinguish whether the estimated depen-
dence structure is significant or mere noise when the densities of the target data are
unknown. This subsection proposes an assessment procedure for the significance of
pointwise MI dependence: The statistical significance of the estimated dependent
structure is compared with the 95% quantile range of pointwise MI estimates of rep-
licated non-dependent data sets, which are generated from the original data sets to
eliminate dependence.

Construction of the quantile range, or confidence band, is conducted through boot-
strapping. See Efron and Tibshirani (1993) for details of the bootstrapping method.
The computational procedure is as follows:

1. Given observed data set {X, Y }, remove the dependence by following the shuf-
fling algorithm described in Sect. 4.4, to obtain N sets of non-dependent pairs of
{X, Yshuffled}.

2. Compute pointwise MI of the N sets of {X, Yshuffled} in an identical manner used
for estimating the given data set {X, Y }.
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3. Compute 2.5% and 97.5% of the sample quantile points of the pointwise MI
estimates of N sets of {X, Yshuffled} to obtain a 95% confidence band for non-
dependence.

The confidence band with non-dependent shuffled data sets describes the noise level
of the estimation procedure: If the estimated pointwise MI is within the 95% con-
fidence band, it implies that the detected dependence is not statistically significant.
Thus, it helps in discriminating noises or artifacts with significant dependence. This
assessment can be applied to any type of estimator. An example use of the confidence
band is demonstrated in Sect. 6.

5 Experimental analysis

The performance of pointwise MI estimation using the AKSD and AKMD estimators is
thoroughly examined by changing the sample size and tail fatness. Their performance
is compared in the same setting with those of the widely used FKDE-based pointwise
MI estimator first used in Moon et al. (1995), whose superior performance in short
and noisy data was demonstrated in the comparative studies by Khan et al. (2007).
The inclusion of other approaches is avoided, since our purpose is not a comparison
of the performance of several density estimators.

5.1 Implementations and data

The definitions of the estimators are given in Sects. 4.3 and 4.4, and are summarized in
Table 1. Considering the applications used to control the risks arising from infrequent
but sudden large changes, this study focuses on fat-tailed distributions. We choose
bivariate Student-t distributions, whose degree of freedom coincides with the alge-
braic tail parameter, α. In addition to mutually dependent cases, mutually independent
cases are compared for analyzing the problem of artifacts occurring within the tails.

Mutually independent bivariate t (ν) deviates are generated as {X, Y }, where X
and Y are separately generated as univariate Student-t (ν) deviates. Mutually depen-
dent bivariate t (ν) deviates, {X, Y }, following the pdf defined in (4) are generated
as follows: {X, Y } = {Zx (S/

√
ν)−1, Z y(S/

√
ν)−1}, where Zx and Z y jointly follow

a standardized bivariate normal distribution with variance-covariance matrix �, and
being independent of Zx and Z y, S is distributed as χν . This is the same procedure as
that employed in Mathematica. Since the FKUD estimator used by Moon et al. (1995)
and Khan et al. (2007) does not employ a sphering procedure, the scales of X and Y
of the simulated data are kept equal to avoid the possibility that the sphering effect
dominates the differences in the performance.

5.2 Results: size effect

The effect of changing sample sizes n for estimation of the pointwise MI performance
is compared with respect to the FKUD, AKMD, and AKSD estimators. Random sam-
ples with sizes n = 100, 1000, 10000, and 100000 are simulated from independent
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bivariate t density defined in (3) and dependent bivariate t density defined in (4) with
ρ̃ = 0.3. As in the example cases of financial asset returns, the degree of freedom is
set at ν = 3, which is a widely observed level of tail fatness.

Using the independent bivariate t (3) data sets, we study the effects of changing the
sample sizes n to those in the tail artifact problems. The pointwise MI estimation per-
formance of three methods are compared. Figure 5 shows the results. Figure 5A plots
the theoretical value, which indicates the zero pointwise MI for all (x, y). The FKUD
estimator shows a positive dependence in the region where the data are observed.
Judging from the FKDE joint density estimates, the black area corresponds to a data
scarce area. We prepared 23 color levels, and the pointwise MI contour levels are
plotted in 0.5 steps. The region in black is considered to be either positive or negative
estimates overflown from the preset color range. The AKMD estimator also shows
artificial positive dependence in all tails, and the error level increases as the sample
size increases. On the other hand, the AKSD estimator exhibits a white noise image for
all sample sizes. For identifying subtle dependence, the AKSD estimator is therefore
considered to be the best method.

The effect of sample size on the change in performance in estimating the point-
wise MI of dependent bivariate t (3) deviates is illustrated in Fig. 6. The corresponding
errors from the true value are plotted in Fig. 7. The performance of the FKUD estimator
is significantly poor. In Fig. 7(a–d), positive artificial errors are observed. The perfor-
mance improves as the sample size increases, but a sample size of even 100000 seems
insufficient for the FKUD estimator to provide an accurate pointwise MI estimate.
Relative to the FKUD estimator, the AKMD estimator is very close to the theoretical
image. Its error plot shows the smallest amount of errors among the three estimators,
and the amount of errors is reduced as the sample size increases.

Relative to the AKMD estimator, the AKSD estimator seems advantageous for
small sample sizes. In the case of larger sample sizes, however, the estimated image
becomes fainter than the theoretical image. A good aspect is that the estimated pattern
of the dependence structure is correct. The error patterns shown in Fig. 7 are similar
to an independent bivariate t (3) density contour, suggesting that major errors come
from estimating fX(x) fY(y). Since the error pattern indicates mostly negative pointwise
MI, the risk of misunderstanding is lower than in the opposite case: While a negative
pointwise MI indicates that the events (x, y) are not likely to occur simultaneously,
our major interest is in events that are likely to simultaneously occur.

5.3 Results: effect from tail fatness

For the purpose of examining the tail effect on the pointwise MI estimation perfor-
mance, the selected densities of the experimental data sets are dependent bivariate t
densities with degrees of freedom 2, 5, 10 and 30. The sample size is set as n = 10000.
The pointwise MI estimation results are illustrated in Fig. 8, and corresponding errors
from the true value are plotted in Fig. 9. The performance of the FKUD estimator
improves as the tail fatness decreases, but significant positive errors are still observed
even for the case of t (30). On the other hand, the AKMD estimator provides the closest
image to the theoretical one. However, the amount of positive errors in the data-scarce
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Fig. 5 Size effect on the pointwise MI estimation of independent bivariate t (3) density: (Panels A) The-
oretical pointwise MI; (Panels B) Pointwise MI estimates. See Table 1 for an explanation of the acronyms
used

area slightly increase as the tail fatness decreases. Small positive errors for the AKSD
estimates are found in Fig. 9(i) and (l) with ν = 2 and 30. The errors in Figs. 4C(d)
and 9(j), (k) are mostly slightly negative. A tail fatness range of ν from 3 to 10 is
frequently observed in fat-tailed phenomena. Therefore, in practice, the possibility of
misunderstanding the dependence structure from the AKSD estimates seems relatively
low.
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Fig. 6 Size effect on the pointwise MI estimation of dependent bivariate t (3) density: (Panels A) Theo-
retical pointwise MI; (Panels B) Pointwise MI estimates. See Table 1 for an explanation of the acronyms
used

The results from the experimental study are summarized as follows: The accuracy
of the FKSD estimator for pointwise MI estimation is not sufficient for practical use.
Whereas the AKMD estimator exhibits excellent performance in estimating dependent
bivariate t densities, it has a problem of artifacts at the tails in estimating independent
bivariate densities. The AKSD estimator does not have such a tail artifact problem,
and can correctly capture the dependence structure.
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Fig. 7 Size effect on the pointwise MI estimation error of dependent bivariate t (3) density: See Table 1
for an explanation of the acronyms used

6 Empirical application: stock price changes and volume

The relationship between price and quantity is the fundamental building block of
economic theory. This section illustrates an application example of the proposed local
dependence analysis by investigating the contemporaneous relationship between stock
price changes and volume.

6.1 Related studies and background discussion

The estimation methods used for investigating return-volume relations have been
mostly based on linear regression, and a global relationship has been the major con-
cern of many studies. Only few studies have investigated a conditional relationship,
where linear regression is used by dividing the data range into two to three sections.
However, these estimates are too partial to capture an entire dependence structure.
The study by Gallant et al. (1992) applying the joint SNP density estimation of the
daily Standard and Poor’s composite stock price index and the total volume of shares
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Fig. 8 Tail effect on the pointwise MI estimation of dependent bivariate t density: (Panels A) Theoretical
pointwise MI; (Panels B) Pointwise MI estimates. Sample size n = 10000. See Table 1 for an explanation
of the acronyms used

traded at the NYSE, is the first trial to capture a whole dependence structure between
stock returns and volume. However, their approach, which is based on the SNP esti-
mator, has serious defects in estimating fat-tailed densities, as shown in a compar-
ative study by Takada (2008). In particular, the credibility of their findings regard-
ing tail behavior is suspicious due to artificial bumps frequently created in the SNP
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Fig. 9 Tail effect on the pointwise MI estimation error of dependent bivariate t density: Sample size
n = 10000. See Table 1 for an explanation of the acronyms used

estimation. Accordingly, our proposed local dependence analysis based on pointwise
MI is expected to reveal unknown features.

Many empirical studies have documented significantly positive global correlations
between returns and volume. The empirical findings in the first review of Karpoff
(1987) on the return-volume relationship can be summarized as follows: The positive
dependence between price changes and volume is larger in cases of positive price
changes than in cases of negative price changes. However, more detailed findings
have been difficult to achieve thus far due to technical constraints.

6.2 Data and adjustments

The raw data consist of the daily closing prices of the NYSE composite index and the
total number of shares traded on the NYSE. The sample period is from December 31,
1965 to February 29, 2008 and comprises of 10609 raw observations. The adjustment
of the raw data series is conducted in two steps. In the first step, the raw price series,
Pt , is first differenced in the logs as log Pt −log Pt−1. The log of raw volume series,
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log Vt , is nonlinearly detrended by log Vt− the centered one-year moving average of
log Vt . Due to this detrending, the size of the adjusted data is shortened to 10358 for
the period from June 30, 1966, to August 30, 2007.

In the next step, systematic calendar effects and seasonalities are removed from
log Pt − log Pt−1 and detrended log Vt , in order to obtain the adjusted returns and
detrended log volume series, �pt and vt . The selection of dummy variables used in
the seasonal adjustment regression follows those of Gallant et al. (1992): Day of the
week, gap in trading days, month variables from March through November, and Jan-
uary effects comprise of each week of December and January. The total number of
dummies is 24, which has sufficient degrees of freedom for the 10358 adjusted observa-
tions. Let Y be a vector of pre-adjusted data with length n, and X be a matrix consisting
of adjustment dummy vectors. The seasonal adjustment regression is Y = X′β + ε,
where β denotes the vector of least squares coefficients, and the vector of residuals,
ε. The adjusted series, Yadj, is obtained as Yadj = Y − X′β. The seasonalities of the
two series, which are found to be significant, are in agreement with those detected
by Gallant et al. (1992). The basic statistics of the adjusted series, �pt and vt , are
summarized in Table 2.

Sample observations tend to include outliers, which are more likely for fat-tailed
distributions such as those of financial asset returns. Figure 10(a) plots the contempo-
raneous adjusted returns and volume, {�pt , vt }, and thus all data are included. The
existence of outliers compress the mass of the data into a small region, worsening
the resolution level in investigating subtle patterns. To avoid this problem, we set the
bounds for an output range used in generating joint density estimates. The scatter plot
of Fig. 10(b) illustrates the output range used for the density estimation. Let n be the
number of observations, {�pt , vt }. The bound is then set at the 0.2% extreme data
point (or 0.002 n-th extremes) in each coordinate direction. If grid of either �pt or vt

of a data point exceeds the bound, it is eliminated from the output range. Since the
same data can be removed more than once in this algorithm, the total amount of data
removed from the output region is usually about 0.4% of the sample size. Note that
the information obtained from all data, including those outside the output region, are
used in estimating the densities.

6.3 Results

We analyze the contemporaneous dependence between the adjusted daily NYSE com-
posite index returns, �pt , and the adjusted detrended log volume, vt . Figure 10(b)
shows that the variability of price changes tend to be larger when volume is larger.
Figure 10(c) shows the bivariate adaptive kernel density estimates of the NYSE data

Table 2 Basic statistics for the full sample period of adjusted returns and volume

Mean Median SD Skewness Kurtosis

�pt 0.0003 0.0004 0.0090 −1.42 37.93

vt −0.0006 −0.0091 0.1954 −0.10 8.56
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Fig. 10 Joint density and pointwise MI estimates of contemporaneous NYSE index returns and vol-
ume: (Panels (a–c)) Scatter plot and adaptive kernel log density estimates; (Panel (d)) AKSD estimates
of pointwise MI; (Panels (e–g)) The median and the 95% confidence bands of the null profile for assessing
the significance of Panel (e). See Table 1 for an explanation of AKSD. In Panels (d–g), the green line implies
no dependence. Yellow to orange imply positive pointwise MI, indicating that the volume tends to be high
(low) when the returns are very high (low). Blue implies negative pointwise MI indicating that the volume
tends not to be high (low) when the returns are very high (low)

sets based on all the adjusted data shown in Fig. 10(a). The joint density estimate
in Fig. 10(c) is almost symmetric, and interesting feature cannot be observed. The
ordinary Pearson correlation between the corresponding returns and volume is 0.10.

From the pointwise MI plot of Fig. 10(d), we can explore rich information on the
local dependence between the stock returns and volume of the adjusted NYSE data.
Considering the fact that an image estimated by the AKSD method is fainter than the
true image, the contours are set doubly finer than in the cases of experimental studies
in Sect. 5. In Fig. 10(d), the significant positive pointwise MI indicated in orange is
found in the first quadrant, which implies that positive large price changes tend to
accompany a high volume. The blue area in the fourth quadrant implies that a low
volume is not likely to occur when price changes are positive and large. It is suggested
that investors tend to trade actively when prices increase. Clear patterns are revealed
that cannot be found from conventional approaches using a scatter plot, joint density
estimates, or global measures of dependence.

Panels (e–g) of Fig. 10 provide the noise level of the estimation results of Fig. 10(d),
based on 500 replicated non-dependent profiles obtained by randomizing the order of
volume sequences using the procedure provided in Sect. 4.5. Figure 10(e) shows a
median image of a sample of no dependence. Figure 10(f) and (g) represent 2.5 and
97.5 sample percentiles, giving a 95% confidence band for the no dependence case.
For darker colors than those shown in the confidence band in Fig. 10(f) and (g), the
corresponding dependence is considered to be significant.
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Comparing the pointwise MI estimate in Fig. 10(d) with the noise level indicated
in Fig. 10(e–g), we can infer that a subtle positive dependence might exist in the sec-
ond and third quadrants. In other words, the accompanied volume size is different
depending on the size of the price decrease: Trading is generally inactive when price
decreases are small. Whereas many investors do not have strong incentives for buy-
ing, stock holders hesitate to realize losses by selling in the hope of a price increase.
During the phase of a large price decrease, however, trading becomes active: While
many stock holders will want to get out of the market, some will want to go bargain
hunting.

A similar graphical pattern can be observed in Fig. 2.11 of Takada (2001), which
illustrates the pointwise MI estimates of the NYSE and NASDAQ total market returns
and volume data from January 1966 to May 2000, along with six individual stock data
sets of different market capitalization by digit in US dollar for the sample period of July
1962 to December 1998. The individual stock data consist of General Electric, IBM,
Ford Motor, Amerada Hess Corp., Universal Corp., and Edo Corp. Figure 10(d) is
consistent with the stylized facts provided in the previous literature: A positive depen-
dence between price changes and volume is higher for a positive price change than
for a negative price change. Moreover, our pointwise MI estimates reveal a complete
dependence structure, which enables the interpretation of investor behavior.

7 Discussion and conclusion

The proposed local and tail dependence analysis enables the capture of an entire
dependence structure, providing insight into the functional relationship between two
variables. By examining the statistical significance, even a weak tail dependence can
be identified given data sets of relatively small sample sizes. The limitation of the pro-
posed AKSD method is that the estimated pointwise MI pattern is fainter in the color
plot, but the dependence structure is correctly captured. A comprehensive analysis
of the error patterns of the AKMD and AKSD estimators might give us some clues
on how to improve the pointwise MI estimation performance given the observations
following unknown distributions.

As a direction for future research, there is a good possibility of extending into
three to four dimensions or more. One reason for this possibility is the good point-
wise MI estimation results achieved for sample sizes 100 to 1000 in two dimensions.
Another reason is based on Monte Carlo study by Hwang et al. (1994). They reported
that the performance of an adaptive kernel density estimator in fitting fat-tailed and
multi-modal multivariate densities is the best for up to three or four dimensions. A
complete dependence structure at higher dimensions is very useful, especially for
capturing functional relationships among key variables. However, depending on the
available sample size, the combination of pairwise results may be more informative.
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