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Abstract Agent-based Methodology (ABM) is becoming indispensable for
the interdisciplinary study of social and economic complex adaptive systems.
The essence of ABM lies in the notion of autonomous agents whose behavior
may evolve endogenously and can generate and mimic the corresponding
complex system dynamics that the ABM is studying. Over the past decade,
many Computational Intelligence (CI) methods have been applied to the design
of autonomous agents, in particular, their adaptive schemes. This design issue is
non-trivial since the chosen adaptive schemes usually have a profound impact on
the generated system dynamics. Robert Lucas, one of the most influential mod-
ern economic theorists, has suggested using laboratories with human agents,
also known as Experimental Economics, to help solve the selection issue. While
this is a promising approach, laboratories used in the current experimental
economics are not computationally equipped to meet the demands of the selec-
tion task. This paper attempts to materialize Lucas’ suggestion by establishing a
laboratory where human subjects are equipped with the computational power
that satisfies the computational equivalence condition.
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1 Introduction

The use of agent-based simulation to study complex adaptive systems has be-
come increasingly popular, and its significance has been well demonstrated by
a series of recent conferences and journals exclusively devoted to this subject.1

One of the major issues in agent-based simulation is agent engineering. Agent
is a concept which has attracted a great deal of attention among economists
in recent years. In earlier times, economists worked with the device of the
agent, but largely without an explicit definition of it. It was the emergence of
agent-based computational economics that pushed for a formal addressing of
it,2 and agent engineering represents a blueprint, a technical description, and a
manifestation of the agent.

From a computer science viewpoint, a general definition of agent engineering
is provided by Liu et al. (2001).

Agent engineering concerns the development of autonomous computational
or physical entities capable of perceiving, reasoning, adapting, learning, coop-
erating and delegating in a dynamic environment.

Wooldridge and Jennings (1995) detail some of these possessed properties:

• Autonomy: agents can control their own actions and internal states to some
extent and are able to operate without the direct intervention of humans or
others;

• Social ability: agents can interact with other agents through
agent-communication language;

• Reactivity: agents perceive their environment and can respond to it;
• Pro-activeness: more than simply responding to the environment, agents can

also take the initiative and behave according to their goals.

The above general description applies well to the economic literature, such
as to Tesfatsion (2001) for her discussion of autonomous adaptive agents, and
to LeBaron (2001) for his discussion of financial agents.

In the agents literature, many have reported that the simulation results are
highly dependent upon how agents are designed and how agents learn and
adapt, i.e. agent engineering does matter. Hence, much work has been devoted

1 Conferences exclusively devoted to this area include the Workshop on the Economics of
Heterogeneous Interacting Agents (WEHIA), the Workshop on Agent-Based Approaches in
Economic and Social Complex Systems (AESCS), the Conference on Agent-Based Models of
Market Dynamics and Consumer Behaviour, and the Workshop on Multi-Agent Systems: Theory
and Applications (MASTA), etc. Other conferences, such as Computing in Economics and Finance
(CEF), the International Workshop on Computational Intelligence in Economics and Finance
(CIEF), and the International Conference on Computational Intelligence, Robotics and Autono-
mous Systems (CIRAS), have also devoted quite a significant portion of their sessions and papers
to this area. Journals which have a sharp focus in this area are the Journal of Artificial Societies and
Social Simulation, the Journal of Economic Dynamics and Control, Journal of Economic Behavior
and Organization, Nonlinear Dynamics, Psychology, and Life Sciences.
2 A full review of the concept of the agent in economics is beyond the scope of this paper. The
interested reader is refereed to Lucas (1986), Holland and Miller (1991), Tesfatsion (1997), Chen
(2001), Tesfatsion (2001) and LeBaron (2001).
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to research on agent engineering. One important topic that agent engineering
addresses is the robustness of agent-based simulation results. This is normally
done by evaluating whether different learning algorithms used in the simula-
tion would lead to different implications. While the famous KISS principle 3

has provided a simple approach, e.g., zero-intelligence random behavior, for
agent engineering (Duffy, 2006), other sophisticated approaches, e.g., genetic
algorithms, are also very popular in the agents literature. In fact, many tech-
niques within the field of computational intelligence have been used for agent
engineering.4 Given such a wide variety of techniques, there is a great need for
a guideline on how to select an appropriate technique for agent engineering.

Recently, there has been a guideline for selecting techniques based on empir-
ical observations. This guideline leads to two possibilities. The first one uses data
from field studies, surveys or censuses. Izumi and Ueda (2002), for example, use
the evidence from interviews and questionnaires to justify the use of genetic
algorithms in the design of artificial dealers in an agent-based foreign exchange
market. This study highlights the significance of the field study, an approach
frequently used by sociologists, in agent engineering. The second one uses data
from laboratories with human subjects. Examples abound. In Feltovich (2000),
Tang (2003), and Arifovic and Ledyard (2004), different learning schemes were
compared based on the results of human experiments. In economics, labora-
tory data is becoming increasingly available from the study of Experimental
Economics and Behavioral Economics. When data from field studies, surveys
or censuses becomes difficult to obtain, it is inevitable for economists to use
the second type of data to conduct research. This approach is known as the
Lucas criterion (Lucas, 1986; Chen & Yeh, 1996). Lucas criterion suggests that
a comparison of the behavior of adaptive schemes with behavior observed in
laboratory experiments involving human subjects can facilitate the choice of a
particular adaptive scheme.

There are already many studies that have grounded their agent engineering
in the spirit of Lucas criterion. For example, Arifovic (1994) used two versions of
the genetic algorithm (basic GA and augmented GA) to implement agent engi-
neering. She reported that the simulation results from the basic GA showed
that individual quantities and prices exhibited fluctuations over the entire dura-
tion and did not result in convergence to the rational expected equilibrium
values, which was inconsistent with the experimental results involving human
subjects. By contrast, the results of the augmented GA exhibited convergence
to the rational expected equilibrium values, and were able to capture several
features of the experimental behavior of human subjects better than other

3 The KISS principle was first proposed in Axelrod (1997). It stands for “Keep it simple, stupid.”
4 Computational intelligence is a new development paradigm of intelligent systems which has
resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation,
and machine learning, etc. (Chen & Wang, 2003). All of these techniques have been applied to
modeling agents in the economic literature; see Chen (2002a), Chen (2002b), and Brenner (2006)
for a glossary of them.
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simple learning algorithms. According to Lucas criterion, the augmented GA
was justified as an appropriate adaptive scheme.5

In addition to Lucas criterion, empirical evidence from experiments has been
used to examine whether reinforcement learning adequately describes the way
people behave. For example, Feltovich (2000) gives an evaluation of reinforce-
ment learning versus some of its competitive alternatives, such as direction
learning and belief learning, in experimental asymmetric-information games.

The purpose of this paper is twofold. First, we will address the question:
to what extent can experimental economics or behavioral economics help build
agent engineering? Does the proposed guideline really have a solid foundation?
Our assertion is that experimental economics and behavioral economics have
their limits and cannot solve the foundation issue of agent engineering. The
published guideline therefore requires revision. In this paper, we shall argue
that computational equivalence (CE) is the direction in which to go.

Then, the second issue addressed by this paper, in light of the proposed
computational equivalence principle, is the relevance of computational intelli-
gence. While CI has already been extensively used in agent engineering, objec-
tions to or scepticism regarding the use of CI techniques still exist. We shall
argue, in this paper, that most objections originate from neglecting the CE
principle. As Simon (1996) observed, paper and pencils are tools that give
bounded-rational agents more memory power. So is CI, which serves as a
decision-support device to help bounded-rational agents deal with complex
surroundings. Accordingly, the relevance of CI should not be based on its pre-
diction of the outcomes of human experiments alone, but on its penetration
rate when they are available for human subjects. A setup for a laboratory that
satisfies the computational equivalence condition, called the CE Lab, is, there-
fore, proposed to examine the relevance of CI. The lab may further extend our
analysis and understanding of human adaptive behavior under consideration to
the computational capacity imposed upon humans.

The remainder of this paper is organized as follows. Section 2 introduces
the computational equivalence principle as a foundation of agent engineering.
Section 3 presents the idea of a lab, called the CE lab, which satisfies the compu-
tational equivalence condition. As an illustration, Sect. 4 states some common
objections to the use of CI techniques and shows how the proposed CI principle
can overcome these objections. Section 5 addresses the research questions that
can be dealt with using the CE lab. The concluding remarks are presented in
Sect. 6.

2 Computational equivalence

The idea of the computational equivalence principle was motivated by Herbert
Simon, the 1978 Nobel Laureate in Economics. In proposing bounded

5 For more applications of the Lucas criterion to justify the use of the GA or some of its specific
versions, the interested reader is referred to Arifovic (1995) and Arifovic and Maschek (2003).
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rationality, Simon took into account the cognitive limitations of the decision
maker – limitations of both knowledge and computational capacity (Simon,
1997). In a simple psychological study on concept attainment, Gregg and
Simon (1979) designed an experiment with human subjects. The experiment
was designed with limited dimensions so that the number of trials a subject
needed to discover the answers could, provided that the subject used the most
efficient discovery strategy, be estimated a priori. With such a simple design,
Simon stated that if sufficient time were allowed for each trial and if the subject
were provided with paper and pencils, any subject of normal intelligence could
be taught to follow this most efficient strategy and would do so without much
difficulty. However, Simon thought that when subjects were asked to respond
in just a few seconds and also without facilities such as paper and pencils, they
would be unable to apply the efficient strategy (Simon, 1996).

The lack of facilities and the limited reaction time are important sources
of the bounded rationality of human beings. Computational intelligence tools
function as “advanced” paper and pencils, and they may cause agents to make
decisions differently or, sometimes, more effectively. Agent-based computa-
tional economics may help predict the market outcome when agents are well
equipped with such “paper and pencils.” Nonetheless, whether or not agents
would like to use such “paper and pencils” is an empirical issue which needs to
be addressed in the context of experimental economics. However, this idea has
not been well acknowledged in experimental economics as it currently stands.

Our departure is, therefore, based on the rationale that different learning
algorithms require different computational resources and that difference, to
the best of our knowledge, has not been addressed in the experimental design
that includes human subjects. As a result, the claim that an adaptive scheme
(generated by one type of learning algorithm) is superior over others (gener-
ated by other types of learning algorithm), based on their simulation results,
is not always valid. One scenario can be that the adaptive schemes become
unavailable to human subjects due to the lack of high-performance comput-
ing facilities required by the adaptive schemes. Another scenario is for on-line
transaction experiments where a very limited amount of time is allocated to
the agents (human subjects) to process the data before making a decision. Such
a constraint makes it impossible for the human agents to carry out compu-
tationally-intensive adaptive schemes, such as genetic programming or fuzzy
neural networks. Without considering the issue of computational resources, any
comparative study based on experimental results may be biased.

Let us take the double-auction experiment as another example. In this auction,
both sellers and buyers submit bids which are then ranked from the highest to
the lowest to generate demand and supply profiles. Based on the profiles, the
maximum quantity exchanged can be determined by matching selling offers
(starting with the lowest price and moving up) with demand bids (starting
with the highest price and moving down). Experiments based on double auc-
tion have a long history in experimental economics (Smith, 1991). While the
experiments involving human subjects started 40 years ago, serious work on
agent engineering is only just beginning. The zero-intelligence (ZI) trader was
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introduced by Gode and Sunder (1993). It was then extended into the zero-intel-
ligence plus (ZIP) trader by Cliff (1997). More sophisticated agents based on
human-written programs were considered by Rust et al. (1993) and Rust et al.
(1994), which also motivated Chen and Tai (2003) to use genetic programming
to make traders autonomous. Another related study is that by Dawid (1999)
who used the genetic algorithm to evolve traders. Given such a variety, can we
answer which one provides better agent engineering in light of the experiments
conducted by Smith (1991)? Can the experimental economics of the 1970s and
1980s resolve the selection issue?

Clearly not. ZIP, GA and GP differ in their required computational resources.
Consequently, as mentioned above, in a computationally-poor environment, it
is not surprising to see that the behavior of human subjects is quite similar to the
agent-based simulation using simple heuristics, such as the ZIP Plus scheme,
and may be quite distinctive from the one using genetic programming. However,
that result alone cannot effectively lend support to the superiority of ZIP Plus
over GP. Without knowing this critical relation, experiments involving human
subjects would simply be too arbitrary to be a foundation of agent engineering.
Unfortunately, this subtle point has not received sufficient attention on the part
of either experimental economists or agent-based computational economists.

Experimental economics was developed in an age where decision supports
provided by intensive computation were not available, whereas agent-based
computational economics was cultivated in an era accompanied by increasing
efficiency in terms of both software and hardware. This sharp difference in
computational background does not make the use of the former as the foun-
dation of the latter as obvious as one might have thought initially. To address
the pivotal questions, such as whether genetic algorithms (or any other CI
tools) represent an essential learning process regarding the past of humans, the
laboratory involving human subjects must be upgraded to such a degree that
GA (or any other CI tool) can be effectively executed for human subjects.
We shall call this condition computational equivalence. In other words, unless
the condition of computational equivalence is satisfied, experimental economics
cannot serve as a way of defining a principle of agent engineering. It is mis-
leading to claim the superiority of one adaptive scheme over another simply
by citing the experimental results observed in the laboratories which are not
computationally equivalent.

3 Computational equivalence laboratory

Given the discussion above, we propose a computer laboratory which is built
in line with the condition of computational equivalence. In this laboratory, all
human subjects can choose to follow any adaptive scheme (CI tool) which is
already installed in the lab and is made available to the end users. Of course,
they can also choose their own preferred ways of making decisions, e.g., relying
on their simple heuristics, if they fail to see the benefits of using the sophisticated
adaptive schemes. The whole idea is depicted in Figs. 1–3.
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Fig. 1 A web of the CE Lab. In the CE laboratory, each human participant will be connected to
the “society” through a personal computer (client) and the server. The interactive dynamics of all
participants then takes place through the web

The whole laboratory is webbed by a network as shown in Fig. 1. This web
provides the basic platform for running experiments involving human subjects.
Each human subject (real agent) is connected to at least one computer (client).
The participation of the real agents in the experiments, e.g., through submitting
a limit order in a stock market experiment (Smith et al., 1988), proceeds via
the client to the server and further to the whole web. Figure 2 is an expanded
picture of what the human subject can see from his/her computer screen. Via
this client machine, the real agent can acquire all the information pertinent
to the experiment. The real agent may not have direct eye contact with other
real agents since these clients are not necessarily located in the same room.
Nonetheless, in the case where these clients are distributed in different places,
real agents may still have eye contact with other participants via the attached
camera.6

The idea of computational equivalence is exemplified in Figs. 2 and 3. In
addition to the basic information provided by the experiment, the client also
provides real agents with a computationally rich environment such that the
agents are able to perform some non-trivial computation before they finalize
their decision. Here, real agents can make their choice of the adaptation scheme
that they would like to follow. For example, in the context of the double auction
experiment, they can follow the GA to submit a bid or ask. If they all make
such a choice, then the market dynamics will be pretty much similar to what
Dawid (1999) predicted. They can also follow the GP to learn a trading strategy
first, and based on that strategy submit a bid or ask. Again, if they all make
such a choice, then the market dynamics will be close to what Chen and Tai
(2003) predicted. Of course, there is no reason why they should all choose the

6 To the best of our knowledge, experiments relying on eye contact are very limited. One of the
examples is the famous ultimatum game. (Güth et al., 1982; Hoffman et al., 1996)



320 Comput Econ (2006) 28:313–331

Fig. 2 Menu of adaptive schemes (CI Tools). CI tools are made available for each human agent.
From the computer screen, each human agent can choose his/her favorite adaptive scheme to learn
from and adapt to the surrounding environment. The screen is presented to them in a very friendly
manner. In this case, different classes of CI tools are grouped in an organization chart. See Chen
and Wang (2003) for more details of this proposed taxonomy of CI

Fig. 3 Advanced menu of adaptive schemes (CI Tools). A human agent may combine several
different CI tools into a hybrid system to learn and adapt. For example, a genetic neural fuzzy
system is shown here

same adaptive scheme, as each can make a choice independently from the menu
shown in Fig. 2.

Additionally, one recent research trend in computational intelligence involves
the extensive use of hybrid systems, in which many tools work synergetically
together as a multi-agent system. The CE lab also allows participants to organize
their own hybrid systems from a set of CI tools. For example, a genetic neural
fuzzy system (Ringhut & Kooths, 2003) is shown in Fig. 3.

There are two important issues when human agents are presented with the
adaptive schemes as shown in Fig. 2. The first one is the provision of performance
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indicators of adaptive schemes. Because agents, be they human or artificial ones,
are goal-driven, they have to be provided with performance indicators whenever
they are going to make decisions. For example, in a stock market experiment,
each human agent is allowed to choose among, say, 5 adaptive schemes. Each
time he/she follows a specific algorithm and sends the orders to the market, there
is no problem that he/she will know the performance of his/her decisions. But
considering the other 4 adaptive schemes left unchosen, there are two possible
arrangements. In the first case, each adaptive scheme is assigned a performance
indicator, e.g., profit earned in the last trading round, in a best-response fashion.
Thus human agents can easily compare different adaptive schemes and choose
among them. In the second case, only the scheme chosen by the human agent
in this round is assigned a performance indicator. Making a decision in this
setting is not as easy as in the previous one, but this setting is more realistic,
especially when the market being studied is an electronic market mentioned in
Sect. 5.3.

The second issue that should be fairly contemplated is whether human agents
are familiar with the CI techniques presented. Aside from the practical difficul-
ties in gathering experienced subjects or training inexperienced ones, this issue
is rather interesting because of the role reasoning might play in the human
decision process. When the limitations on computational capacity are largely
removed, and when human agents are facing an abundance of alternative
adaptive schemes, what will they choose? Are reasonableness, semantics, and
comprehensibility crucial criteria for human agents when choosing among CI
techniques? Or, will human agents simply choose the one that performed best
regardless of whether they are familiar with it or not? This is a question that
can only be answered empirically in the CE lab.

4 Computational equivalence and the selection of adaptive algorithms

Now, we can define what computational equivalence means. For an agent-based
computational model, if each of the human agents behaves by choosing exactly
the same form of agent engineering as the model suggests, then the experimental
results, either individual or aggregate, will be the same as the agent-based sim-
ulation results, at least in a statistical sense. In other words, in a way quite
different from the current directional relationship between experimental eco-
nomics and agent-based computational economics, we are not only interested
in replicating experimental results based on agent-based simulations, but what
we have also said here is that agent-based simulation results can also be rep-
licated by experiments if the “right” form of agent engineering is chosen by
the human subjects in the experiment. This is the essence of computational
equivalence.

The contributions of computational equivalence to complex adaptive eco-
nomic systems are twofold. First, it provides a competing explanation for the
failure of some adaptive schemes to replicate the experimental results. In the
past, such failures would usually be largely attributed to the irrelevancy of
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the chosen adaptive schemes. However, a competing explanation nowadays is
that the laboratory is not well designed to satisfy the CE condition. Had it been
so, those adaptive schemes might have proved their relevance in describing how
humans behave. Second, through the CE lab, we can see that the agent-based
computational economic model is no longer just a theoretical representation
of the reality, but it can also serve as a blueprint for an economic system to be
realized in the future. For example, the model of Kirman and Vriend (2001) is
not just an agent-based simulation of the fish market. If the fish market some-
how becomes automated one day in the future and all market participants can
get access to a computationally rich environment to form their decisions, then
the model of Kirman and Vriend (2001) can be considered to be a blueprint of
the real fish market.

Let us elaborate on the first point above using the example of genetic
programming, one of the very popular CI tools. The following is a list of
criticisms voiced by the journal referees on several of the uses of genetic
programming in agent-based computational economics. For the convenience
of discussion, they are numbered as follows:

(1) One can see why genetic programming (an extension of genetic algo-
rithms) might work for computer problem-solving. However, genetic
programming is not well grounded in considerations of human behavior.

(2) There just isn’t sufficient justification in the paper to support the view that
what we have is a model for a population of agents learning over time (if
they seriously wanted to push this view they would, for instance, need to
tell readers how to interpret the cross-over operation).

(3) The regular GP representation and presence of operators often lead to
overly complex and unreliable solutions. Such solutions, comprised of
complex combinations of functions and indicators, have often been diffi-
cult to understand and interpret. Deciphering the winning programs might
be an impossible task in many applications. It might be impossible to use
these rules in order to understand the process by which humans behave.
The usefulness of the GP method for fundamental research thus seems
quite restricted a priori.

As we shall argue here, none of these arguments is true when computational
equivalence is imposed. Objection (1) is the most general type of criticism. It
is true that, up to the present, genetic programming is not well grounded in
considerations of human behavior, but the main reason for this is that we do
not have a lab which can make it easier for human subjects to use GP in forming
decisions.7 As was discussed before, GP is a highly computationally-demanding
CI tool. How can we expect human subjects to seriously base their decisions
on GP without first reducing their computational load to a reasonable degree?

7 The leading GP expert, John Koza, has reacted to this criticism by pointing out that the structure
and function of the human brain is nothing simple and comprehensible. Maybe one day, neural
economics, a recently emerging field, may shed light on the foundation of genetic programming
or artificial neural nets as the real foundation of human behavior (Glimcher & Rustichini, 2004;
Camerer et al., 2005; Rustichini, 2005).



Comput Econ (2006) 28:313–331 323

So, clearly, Objection (1) cannot be valid because it violates the computational
equivalence condition.

Objection (2) is also similar to Objection (1), but is more technical-oriented.
This kind of comment is frequently made in relation to other CI tools. In gen-
eral, this means that a CI tool cannot be regarded as a sensible human learning
and adaptation process if its major operator, e.g., the cross-over operator in
GP, is empirically not analogous to human behavior. Without acknowledging
computational equivalence, this argument is also misplaced. Whether or not a
CI tool can be an effective description of human behavior has nothing to do
with whether the society has an innate sense of that operator. On the other
hand, managers who use GP to make predictions may not need to be convinced
that its technical operators have empirical social meaning.8 As long as human
behavior is concerned, the key issue is whether they would believe that GP can
enhance their quality decisions. This is an empirical question, and can only be
solved with a lab based on computational equivalence. A full understanding of
its technical details may be neither a necessary nor a sufficient condition for the
formation of this belief.

Just as in the case of Objection (2), Objection (3) proposes another possible
reason why people may not use GP. This criticism is commonly shared in rela-
tion to other CI tools characterized by complex and nonlinear behavior. Our
response to Objection (3) is similar to that to Objection (2). Whether or not a
comprehensive understanding is crucial for humans to accept a state-of-the-art
technology can only be answered empirically. It is quite common in behavioral
economics for human choices to not necessarily be rational or scientific. Various
biases have been well established empirically in behavioral economics.

To sum up, the relevance of computational intelligence to human adaptive
behavior cannot be appropriately studied without a CE laboratory (a lab that
satisfies the computational equivalence condition).

5 Research questions driven by the CE-Lab

The CE Lab is not designed only for specific applications; its framework is very
general so that we can use it to address a very fundamental question: What will
happen when the participating human agents are equipped with CI tools in a com-
plex adaptive environment? We will try to elaborate on this question by using a
picture. Figure 4 gives four different types of agent-based models. On the left
of the top row, we have an agent-based model that is completely composed of
human agents. On the right of the top row, we have a model that is purely com-
posed of software agents. Two models on the bottom are agent-based models
that are composed of both human and software agents. The difference between
the two is that human agents on the left model are aware of the existence of
software agents while the human agents on the right model are not.

8 An interesting example can be found in Caplan and Becker (2004), which shows the process of
convincing the CEO of the company to implement a GP-based investment project.
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Fig. 4 Complex systems composed of human and/or software agents

The CE lab enables us to conduct experiments based on the four different
types of agent-based models and hence makes it possible for us to perform a
comparative study on the complex dynamics of the four agent-based models.
Moreover, in addition to the comparative study, the CE lab also allows us to
examine the possible structural changes or regime changes when a society that
is solely composed of human agents is gradually or suddenly transforming itself
into a society with a mixed population of software agents and human agents.
The main points of interest are as follows:

• First, in general, how do humans react to the nonlinear complex dynamics?
Would they tend to behave in a more complex manner when situated in such
a complex environment?

• Second, if they do behave in a more complex manner,9 what are the
consequences of such behavior? Will the aggregate dynamics become more
(or less) complex and nonlinear?

• Third, what are the additional impacts of the inclusion of artificial agents
(human agents) on an already-existing society composed of only human
agents (artificial agents)? Do artificial agents on markets influence human
behavior? (Grossklags & Schmidt, 2003).

These three issues will be elaborated separately below.

9 For example, they incorporate some of the CI tools into their decisions.
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5.1 Behavioral complexity

Regarding question (1), an interesting hypothesis is that humans may not nec-
essarily respond to a complex environment with complex behavior. On the
contrary, they may just follow a rule of thumb. This simplicity hypothesis is
partially supported by some theoretical and empirical work.10 For example,
the winning strategy in a trading tournament involving many agents is simple
(Rust et al., 1993, 1994). In trading, the simple trading strategy buy-and-hold
was found to exhibit superior performance to many other sophisticated strate-
gies. In making predictions, the simple predictor random walk was also shown
to predict more accurately than other sophisticated predictors. Nonetheless,
these findings are not strong enough to discourage people from devoting a
great deal of effort to developing sophisticated nonlinear predictors as well as
trading strategies. Therefore, what determines people’s search intensity for a
“best” perception (representation) of complex nonlinear phenomena remains
an interesting issue.

Through these experimental designs and the associated agent-based simula-
tions of the CE lab, we can watch and study how human agents react to a complex
nonlinear environment. In particular, this helps us to understand under what
circumstances human agents tend to behave in ways that are more complex than
simple.11 More generally, can we find an effective characterization or implicit
constraint of agents’ choices of adaptive schemes? For example, we need to
ask whether they tend to prefer qualitative schemes over quantitative schemes,
linguistic schemes over crisp schemes, and simple (comprehensible) but sub-
optimal schemes over complex (incomprehensible) but accurate schemes, etc.
We believe that these are important questions that need to be addressed before
we can lay a solid foundation for agent engineering.

One important recent development in agent-based social simulation has
occurred in the use of natural language (Lindström, 1998; He et al., 2002; Tay &
Linn, 2001). People frequently and routinely use natural language or linguistic
values, such as high, low, and so on, to describe their perception, demands,
expectations, and decisions. Some psychologists have argued that our ability to
process information efficiently is the outcome of applying fuzzy logic as part
of our thought process. Evidence on human reasoning and human thought pro-
cesses supports the hypothesis that at least some categories of human thought
are definitely fuzzy. Yet, early agent-based economic models have assumed that
agents’ adaptive behavior is crisp. Tay & Linn (2001) made progress in this
direction by using the genetic-fuzzy classifier system (GFCS) to model traders’
adaptive behavior in an artificial stock market. Tay & Linn (2001) provided
a good illustration of the non-equivalence between the acknowledgement of

10 This hypothesis can be loosely connected to the famous Occam’s razor or the parsimony
principle.
11 While Chen and Yeh (2001) simulate the evolving complexity of software agents in the artificial
stock markets, the empirical counterpart of human behavior is not available in the literature. The
establishment of a CE Lab would help.
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the cognitive constraint and the assumption of simple agents. It is well-known
that the human mind is notoriously bad at intuitively comprehending expo-
nential growth. However, there is no evidence that traders on Wall Street are
simple-minded. Tay & Linn (2001) recognized the difference, and appropriately
applied the GFCS to lessen the agents’ reasoning load via the use of natural
language.

5.2 Micro-Macro Relationship

The thing that concerns the second issue is the casual relationship between the
complexity of macro dynamics and the complexity of micro dynamics, or simply
the emergent phenomena. While a series of studies regarding the emergent phe-
nomena were conducted in the past in the ACE context (Franke, 1998; Chen &
Yeh, 2002; Chen & Liao, 2004), there is also no empirical evidence in relation
to experimental economics.

A particularly interesting thing is that the micro behavior can sometimes be
quite different from the macro behavior. Both the work done by Franke (1998)
on the cobweb model and by Chen and Yeh (2002) on the asset pricing model has
shown that the time series of the market price (an aggregate variable) follows
a simple stochastic process. However, there is no simple description of the pop-
ulation dynamics of individual behavior. The simple stochastic price behavior
was, in effect, generated by a great diversity of agents whose behavior was con-
stantly changing. Chen and Yeh (2002) proposed a measure for the complexity
of an agent’s behavior and a measure of the diversity of an agent’s complexity,
and it was found that both measures can vary quite widely, regardless of the
simple aggregate price behavior.

In addition, using micro-structure data, Chen and Liao (2004) initiated an
approach to study the emergent property. Based on that definition, they found
that a series of aggregate properties, such as the efficient market hypothesis,
the rational expectations hypothesis, the price-volume relation and the sun-
spot effect, which were proved by rigorous econometrics tests, were generated
by a majority of agents who did not believe in these properties. Once again,
our understanding of the micro behavior does not lead to a consistent pre-
diction of the macro behavior. The latter is simply not just the linear scaling-
up of the former. Conventional economics tends to defend the policy issues
concerned with the individual’s welfare, e.g., the national annuity program,
based on the macroeconometric tests, e.g., the permanent income hypothesis.
Agent-based macroeconomics may invalidate this approach due to emergent
properties.

By using the CE lab, one can vary the computational resources under differ-
ent experiments. For example, in one experiment, human agents are exposed
only to simple adaptive schemes, whereas in the others they can gain access to
sophisticated adaptive schemes. In this way, we can examine whether a society
of naive agents will tend to result in less complex aggregate dynamics than a
society of sophisticated agents.
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5.3 Interactions between human agents and software agents

Most experimental economic models only consider human agents, whereas
most agent-based computational models only have software agents. While the
original motivation of agent-based models has been to understand the equiva-
lent systems composed of human agents, human participation and interface with
the system and with the artificial agents have been excluded. In other words,
human agents have been completely replaced by artificial agents.12 Recently,
the literature has started to look at the issue of interaction between software
agents and human agents in complex adaptive systems, such as auction games
(Das et al., 2001; He et al., 2002; Grossklags & Schmidt, 2003; Shachat &
Swarthout, 2002; Wellman et al., 2002), oligopoly games (Midgley et al., 1997)
and the stock market (Kurumatani et al., 2005). Nonetheless, in these setups,
human agents are only exposed to limited computational resources, and are
not equipped with high-performance computing; therefore, the potential feed-
back relationship between human agents and the system, including the artificial
agents, has not been greatly exploited. We believe that the CE lab is the first
step toward a formal study of the fundamental question posed above.

The third issue in a sense concerns the effects of the appearance of software
agents on human agents. When human agents are explicitly informed of the
presence of anonymous software agents in the system, would they behave differ-
ently as compared to the case where such a presence is uncertain (Grossklags
& Schmidt, 2003)? Furthermore, when human agents are provided with more
detailed information regarding how software agents behave, such as their adap-
tive schemes, would that affect their own choice of adaptive schemes? This
question is particularly relevant for electronic trading systems, such as ebay. In
a sense, this question can be viewed in terms of the socio-psychological impact
on human behavior in the presence of interacting machine intelligence. An
equally important issue is concerned with the associated market dynamics and
efficiency (Chen and Tai, 2003).

The CE lab described above not only serves as a starting point toward a
foundation of agent engineering but also functions as a platform to study the
behavior of electronic markets. In this type of market, all decisions are either
made by humans aided by software or are automated completely. The former
is exactly the architecture depicted in Fig. 4, whereas the latter is equivalent to
a CE lab where all human agents are replaced by software agents as shown in
the same figure.

There are already many economic and financial applications of these two
types of architecture. For example, in Internet auctions, software agents, such as
esnipe and auctionblitz, support human bidders with routine tasks to improve
performance precision (Ockenfels & Roth, 2002; Roth & Ockenfels, 2002).

12 Having said that, we would like to point out that the modern definition of artificial intelligence
has already given up on the dream of replicating human behavior. Now, a more realistic and also
interesting definition is based on the team work cooperatively performed by artificial agents and
human agents (Lieberman, 1996).
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Another example is in financial markets where programmed trades on the
computerized trading platform can be used to help day traders in determining
their bid and ask decisions (Varian, 1988). The CE lab can be viewed as a simple
model of these complex adaptive systems, and, via agent-based simulation, can
be used to enrich our understanding of this type of system.

6 Concluding remarks

This paper has two aims. The first is to introduce a laboratory with human sub-
jects, which satisfies the computational equivalence condition. The second is that
the lab, referred to as the CE lab, can then serve as a platform to integrate the
current research in experimental economics, behavioral economics (finance)
and agent-based computational economics. These three fields share a common
research goal with regard to the relevance and significance of adaptive behavior
to economic dynamics. While, from the perspective of agent-based computa-
tional economics, it is now quite clear that aggregate dynamics can crucially
depend on the learning dynamics, the issue regarding the selection of the adap-
tation algorithms has not been effectively resolved. In particular, it cannot be
resolved solely on the basis of experimental economics in the way Robert Lucas
suggested. This is because most labs in which experiments involving human
subjects are conducted do not provide subjects with high-performance com-
puting facilities. Consequently, many adaptive schemes studied in agent-based
computational economics are virtually impossible for human agents to compute,
and the empirical relevance of adaptive schemes such as fuzzy logic, neural
networks, and genetic algorithms is beyond the current research capacity of
experimental economics.

Computational equivalence is about replicability. It basically requires that
the lab have the same computational power as ACE generally has. To achieve
this goal, software agents are introduced to and work with human agents in the
lab, as suggested by the MIT approach (to artificial intelligence). By means of
computational equivalence, what is done by the software agents (autonomous
agents) in ACE may in principle be replicated by human agents in this lab.
Only when replicability is guaranteed, can one ground the foundation of agent
engineering in experiments involving human agents.

Leaving aside ACE, the failure to incorporate these computational intelli-
gence techniques into the current experimental economics naturally limits the
computational complexity of human decision rules. This limitation can be a real
concern when the human behavior which experimental economics tries to study
is largely inspired by a computationally rich environment. Specifically, in an era
of electronic commerce, when more and more automated trading techniques are
being made available to human agents, questions regarding the dynamics and
the efficiency of different auction designs may no longer be properly answered
by the experiments conducted in the conventional lab. However, the use of the
CE lab would help. Furthermore, more intriguing questions may arise when
human agents do not only interact (play, compete) with human agents, but also
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with the possible presence of software agents, as is often seen in the case of
eBay or Nasdaq. What are the impacts of software agents on human agents?
What is the effect on market dynamics and efficiency when autonomous agents
are introduced to the markets? More generally, how do human agents adapt to
their digital surroundings and what are the consequential dynamics? The CE
lab, by effectively integrating ACE and experimental economics, provides us
with a starting place to explore the richness of the nonlinear complex digital
economy.
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